1
|
Sun H, Yao X, Jiao Y, Kong X, Han Y, Li Y, Ge J, Cao Y, Lu H, Wang P, Xu Y, Li J, Ding K, Gao X. DNA remnants in red blood cells enable early detection of cancer. Cell Res 2025:10.1038/s41422-025-01122-7. [PMID: 40341742 DOI: 10.1038/s41422-025-01122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
Cytoplasmic DNA emerges as a consequence of genomic instability. However, its potential role in disease diagnosis has yet to be fully explored. Here we analyzed DNA remnants in mature red blood cells (rbcDNA) from both healthy individuals and cancer patients. Our study unveiled distinct genomic profiles in rbcDNA from cancer patients with early-stage solid tumors compared to those of healthy donors. Significant changes in read counts at specific genomic regions within rbcDNA were identified in patients, which were termed tumor-associated rbcDNA features. These features demonstrated potential for highly accurate early-stage cancer detection, proposing a novel approach for cancer detection. Moreover, tumor-associated rbcDNA features were observed in tumor mouse models, with some features being conserved between mice and humans. Chronic, but not transient, up-regulation of interleukin-18 is essential for the development of these features by promoting DNA damage in bone marrow hematopoietic cells through the up-regulation of NR4A1. These results underscore the remote regulation of chromosomal stability in hematopoietic cells by solid tumors and propose tumor-associated rbcDNA features as a promising strategy for early cancer detection.
Collapse
Affiliation(s)
- Haobo Sun
- School of Basic Medical Science, Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xingyun Yao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yurong Jiao
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuehua Han
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Jianping Ge
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yanfei Cao
- Department of Gastroenterology, Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongsheng Lu
- Department of Pathology, Taizhou Central Hospital Taizhou University Hospital, Taizhou, Zhejiang, China
| | - Pingli Wang
- Department of Respiratory Medicine, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofei Gao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
King A, Reichl PI, Metson JS, Parker R, Munro D, Oliveira C, Sommerova L, Becker JR, Biggs D, Preece C, Davies B, Chapman JR. Shieldin and CST co-orchestrate DNA polymerase-dependent tailed-end joining reactions independently of 53BP1-governed repair pathway choice. Nat Struct Mol Biol 2025; 32:86-97. [PMID: 39227718 PMCID: PMC11753365 DOI: 10.1038/s41594-024-01381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 08/01/2024] [Indexed: 09/05/2024]
Abstract
Tumor suppressor p53-binding protein 1 (53BP1) regulates DNA end joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting Rap1-interacting factor 1 homolog (RIF1) and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate nonhomologous end joining (NHEJ). However, how this axis regulates DNA end joining and HR suppression remains unresolved. We investigated shieldin and its interplay with the Ctc1-Stn1-Ten1 (CST) complex, which was recently implicated downstream of 53BP1. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination coreliant on both complexes. Ataxia-telangiectasia mutated kinase-dependent DNA damage signaling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, we demonstrate that 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the versatility of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.
Collapse
Affiliation(s)
- Ashleigh King
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Pia I Reichl
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jean S Metson
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Parker
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniella Munro
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Catarina Oliveira
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lucia Sommerova
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jordan R Becker
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Francis Crick Institute, London, UK
| | - J Ross Chapman
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Denis M, Swartzrock L, Willner H, Bubb QR, Haslett E, Chan YY, Chen A, Krampf MR, Czechowicz AD. Hematopoiesis after anti-CD117 monoclonal antibody treatment in the settings of wild-type and Fanconi anemia mice. Haematologica 2024; 109:2920-2929. [PMID: 38572555 PMCID: PMC11367201 DOI: 10.3324/haematol.2023.284275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Anti-CD117 monoclonal antibody (mAb) agents have emerged as exciting alternative conditioning strategies to traditional genotoxic irradiation or chemotherapy for both allogeneic and autologous gene-modified hematopoietic stem cell transplantation. Furthermore, these agents are concurrently being explored in the treatment of mast cell disorders. Despite promising results in animal models and more recently in patients, the short- and long-term effects of these treatments have not been fully explored. We conducted rigorous assessments to evaluate the effects of an antagonistic anti-mCD117 mAb, ACK2, on hematopoiesis in wild-type and Fanconi anemia (FA) mice. Importantly, we found no evidence of short-term DNA damage in either setting following this treatment, suggesting that ACK2 does not induce immediate genotoxicity, providing crucial insights into its safety profile. Surprisingly, FA mice exhibited an increase in colony formation after ACK2 treatment, indicating a potential targeting of hematopoietic stem cells and expansion of hematopoietic progenitor cells. Moreover, the long-term phenotypic and functional changes in hematopoietic stem and progenitor cells did not differ significantly between the ACK2-treated and control groups, in either setting, suggesting that ACK2 does not adversely affect hematopoietic capacity. These findings underscore the safety of these agents when utilized as a short-course treatment in the context of conditioning, as they did not induce significant DNA damage in hematopoietic stem or progenitor cells. However, single-cell RNA sequencing, used to compare gene expression between untreated and treated mice, revealed that the ACK2 mAb, via c-Kit downregulation, effectively modulated the MAPK pathway with Fos downregulation in wild-type and FA mice. Importantly, this modulation was achieved without causing prolonged disruptions. These findings validate the safety of anti-CD117 mAb treatment and also enhance our understanding of its intricate mode of action at the molecular level.
Collapse
Affiliation(s)
- Morgane Denis
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Leah Swartzrock
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Hana Willner
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Quenton R Bubb
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Ethan Haslett
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Yan Yi Chan
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Anzhi Chen
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Mark R Krampf
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford
| | - Agnieszka D Czechowicz
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Center for Definitive and Curative Medicine, Stanford University School of Medicine, Stanford.
| |
Collapse
|
4
|
Bagri P, Kumar V. Determination of genoprotection against cyclophosphamide induced toxicity in bone marrow of Swiss albino mice by Moringa oleifera leaves and Tinospora cordifolia stem. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:647-661. [PMID: 38804873 DOI: 10.1080/15287394.2024.2356861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The present study aimed to determine the genoprotective activity and safety of Moringa oleifera leave and Tinospora cordifolia stem extracts against cyclophosphamide (CP)-induced genotoxicity utilizing Swiss albino mice. Animals were divided into 14 groups for subacute treatment with either M. oleifera or T. cordifolia extracts daily for 28 days. The extract doses selected were 100, 200 or 400 mg/kg b.w administered orally alone or combined with CP (50 mg/kg b.w. intraperitoneally daily for 5 days). Analyses performed included the comet assay, micronucleus test (MN) in bone marrow cells and sperm head abnormality assay (SHA). M. oleifera and T. cordifolia extracts induced no significant genotoxic effects on somatic and germ cells. In contrast, for all cells examined M. oleifera and T. cordifolia extracts inhibited DNA damage initiated by CP. Taken together data demonstrated that both plant extracts did not exhibit marked genotoxic effects but displayed potential chemoprotective properties against CP-induced genotoxicity in Swiss mice.
Collapse
Affiliation(s)
- Preeti Bagri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Vinod Kumar
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
5
|
Tam LM, Bushnell T. Deciphering the aging process through single-cell cytometric technologies. Cytometry A 2024; 105:621-638. [PMID: 38847116 DOI: 10.1002/cyto.a.24852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 03/20/2025]
Abstract
The advent of single-cell cytometric technologies, in conjunction with advances in single-cell biology, has significantly propelled forward the field of geroscience, enhancing our comprehension of the mechanisms underlying age-related diseases. Given that aging is a primary risk factor for numerous chronic health conditions, investigating the dynamic changes within the physiological landscape at the granularity of single cells is crucial for elucidating the molecular foundations of biological aging. Utilizing hallmarks of aging as a conceptual framework, we review current literature to delineate the progression of single-cell cytometric techniques and their pivotal applications in the exploration of molecular alterations associated with aging. We next discuss recent advancements in single-cell cytometry in terms of the development in instrument, software, and reagents, highlighting its promising and critical role in driving future breakthrough discoveries in aging research.
Collapse
Affiliation(s)
- Lok Ming Tam
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, New York, USA
| | - Timothy Bushnell
- Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Kumar S, Talluri S, Zhao J, Liao C, Potluri LB, Buon L, Mu S, Shi J, Chakraborty C, Tai YT, Samur MK, Munshi NC, Shammas MA. ABL1 kinase plays an important role in spontaneous and chemotherapy-induced genomic instability in multiple myeloma. Blood 2024; 143:996-1005. [PMID: 37992230 PMCID: PMC11662223 DOI: 10.1182/blood.2023021225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.
Collapse
Affiliation(s)
- Subodh Kumar
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Srikanth Talluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jiangning Zhao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Chengcheng Liao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Lakshmi B. Potluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Leutz Buon
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shidai Mu
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jialan Shi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Chandraditya Chakraborty
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yu-Tzu Tai
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehmet K. Samur
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C. Munshi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Masood A. Shammas
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
7
|
Babini MS, Bionda CDL, Martino AL, Peltzer PM. Impacts of horticultural environments on Rhinella arenarum (Anura, Bufonidae) populations: exploring genocytotoxic damage and demographic life history traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21235-21248. [PMID: 38388975 DOI: 10.1007/s11356-024-32471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Horticulture poses a significant ecological risk, as agrochemicals are applied more frequently and in larger quantities per unit of production compared to extensive crop fields. The native amphibian Rhinella arenarum serves as a reliable bioindicator of environmental health. This study aimed to assess genocytotoxic damage and demographic life history traits of R. arenarum inhabiting horticultural environments. Sampling was conducted in suburban sites in central Argentina: H1 and H2 (sites associated with horticultural activity) and a reference site, RS. Environmental parameters were recorded, and the frequency of micronuclei (Mn), nuclear abnormalities (ENA), and indicators of cytotoxic damage were determined in tadpoles and adults. Demographic variables (age at maturity, longevity, potential reproductive lifespan, size at maturity, modal lifespan) were calculated. The highest nitrate and phosphate values, along with low dissolved oxygen values, were recorded at sites H1 and H2. Organisms inhabiting horticultural environments exhibited higher frequencies of Mn and ENA, surpassing those recorded in previous studies on tadpoles from sites with extensive crop production. Size at maturity and age at maturity of females, as well as size at maturity, longevity, mean age, and mean adult SVL of males, were lower in horticultural sites. The results support the hypothesis that anuran populations inhabiting horticultural environments demonstrate a diminished health status attributed to subpar environmental quality. Monitoring endpoints at different biological levels provides information on the ecotoxicological risk for amphibians and human populations inhabiting nearby areas.
Collapse
Affiliation(s)
- María Selene Babini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQyN), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina.
| | - Clarisa de Lourdes Bionda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQyN), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina
| | - Adolfo Ludovico Martino
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQyN), Universidad Nacional de Río Cuarto (UNRC), Río Cuarto, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| |
Collapse
|
8
|
Adams DJ, Barlas B, McIntyre RE, Salguero I, van der Weyden L, Barros A, Vicente JR, Karimpour N, Haider A, Ranzani M, Turner G, Thompson NA, Harle V, Olvera-León R, Robles-Espinoza CD, Speak AO, Geisler N, Weninger WJ, Geyer SH, Hewinson J, Karp NA, Fu B, Yang F, Kozik Z, Choudhary J, Yu L, van Ruiten MS, Rowland BD, Lelliott CJ, Del Castillo Velasco-Herrera M, Verstraten R, Bruckner L, Henssen AG, Rooimans MA, de Lange J, Mohun TJ, Arends MJ, Kentistou KA, Coelho PA, Zhao Y, Zecchini H, Perry JRB, Jackson SP, Balmus G. Genetic determinants of micronucleus formation in vivo. Nature 2024; 627:130-136. [PMID: 38355793 PMCID: PMC10917660 DOI: 10.1038/s41586-023-07009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/21/2023] [Indexed: 02/16/2024]
Abstract
Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.
Collapse
Affiliation(s)
- D J Adams
- Wellcome Sanger Institute, Cambridge, UK.
| | - B Barlas
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - I Salguero
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - A Barros
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - J R Vicente
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - N Karimpour
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - A Haider
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - M Ranzani
- Wellcome Sanger Institute, Cambridge, UK
| | - G Turner
- Wellcome Sanger Institute, Cambridge, UK
| | | | - V Harle
- Wellcome Sanger Institute, Cambridge, UK
| | | | - C D Robles-Espinoza
- Wellcome Sanger Institute, Cambridge, UK
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro, México
| | - A O Speak
- Wellcome Sanger Institute, Cambridge, UK
| | - N Geisler
- Wellcome Sanger Institute, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - W J Weninger
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - S H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Wien, Austria
| | - J Hewinson
- Wellcome Sanger Institute, Cambridge, UK
| | - N A Karp
- Wellcome Sanger Institute, Cambridge, UK
| | - B Fu
- Wellcome Sanger Institute, Cambridge, UK
| | - F Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Z Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - J Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - L Yu
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | - M S van Ruiten
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - B D Rowland
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - L Bruckner
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - A G Henssen
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M A Rooimans
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - J de Lange
- Department of Human Genetics, Section of Oncogenetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - T J Mohun
- Division of Developmental Biology, MRC, National Institute for Medical Research, London, UK
| | - M J Arends
- Division of Pathology, Cancer Research UK Scotland Centre, Institute of Genetics & Cancer The University of Edinburgh, Edinburgh, UK
| | - K A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - P A Coelho
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Y Zhao
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - H Zecchini
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - J R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - S P Jackson
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Cambridge, UK
| | - G Balmus
- Wellcome Sanger Institute, Cambridge, UK.
- UK Dementia Research Institute at the University of Cambridge, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Department of Molecular Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania.
| |
Collapse
|
9
|
Abiola T, John EO, Sossou IT, Charles Callistus B. Immune boosting and ameliorative properties of aqueous extract of Vernonia amygdalina Delile against MSG-induced genotoxicity: An in silico and in vivo approach. Heliyon 2024; 10:e23226. [PMID: 38163244 PMCID: PMC10755317 DOI: 10.1016/j.heliyon.2023.e23226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Vernonia amygdalina (VA) is popularly consumed as food and as medicine due to its nutritional and bioactive constituents. This study assessed the anti-genotoxic effect of aqueous leaf extract of VA against monosodium (MSG) -induced genotoxicity. Crude extraction and phytochemical analysis were done using standard methods. In silico studies was done using compounds in the extract against Bcl-2, NF-kB 50, DNA polymerase lambda, DNA ligase, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Twelve rats were divided into three groups with four rats in each group. Group I was fed on food and water, group II received MSG (4 g/kg) per body weight (pbw) intraperitoneally, group III received MSG (4 g/kg) pbw intraperitoneally followed by oral dose of VA leaf extract (250 mg/kg) per body weight. The number of the micronucleated red blood cells and white blood cells were determined from blood smears microscopically. Results showed that aqueous extract of VA contained in mg/100 g alkaloids (7.04 ± 0.16), saponins (3.91 ± 0.13), flavonoid (1.64 ± 0.16), phenol (3.40 ± 0.12) and tannins (0.07 ± 0.32). In silico studies revealed high binding interaction (ΔG > -8.6) of vernoniosides D and E with all the tested proteins. There was a reduction in the number of micronucleated cells, neutrophils and eosinophils of the treated group compared to the MSG group, while there was an increase in the lymphocyte count. The anti-genotoxic effects of VA leaf extract might be attributed to the synergistic interaction of the various bioactive components in the extract. VA could be a potential plant for the prevention of cancer and other diseases that attenuate the immune system.
Collapse
Affiliation(s)
- Temitope Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Emmanuel O. John
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Oduduwa University, Ipetumodu, Ile-Ife, Osun State, Nigeria
| | - Ibukun Temitope Sossou
- Department of Medical Laboratory Sciences, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | | |
Collapse
|
10
|
King A, Reichl P, Metson JS, Parker R, Munro D, Oliveira C, Becker JR, Biggs D, Preece C, Davies B, Chapman JR. Shieldin and CST co-orchestrate DNA polymerase-dependent tailed-end joining reactions independently of 53BP1-governed repair pathway choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572534. [PMID: 38187711 PMCID: PMC10769304 DOI: 10.1101/2023.12.20.572534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
53BP1 regulates DNA end-joining in lymphocytes, diversifying immune antigen receptors. This involves nucleosome-bound 53BP1 at DNA double-stranded breaks (DSBs) recruiting RIF1 and shieldin, a poorly understood DNA-binding complex. The 53BP1-RIF1-shieldin axis is pathological in BRCA1-mutated cancers, blocking homologous recombination (HR) and driving illegitimate non-homologous end-joining (NHEJ). However, how this axis regulates DNA end-joining and HR suppression remains unresolved. We investigated shieldin and its interplay with CST, a complex recently implicated in 53BP1-dependent activities. Immunophenotypically, mice lacking shieldin or CST are equivalent, with class-switch recombination co-reliant on both complexes. ATM-dependent DNA damage signalling underpins this cooperation, inducing physical interactions between these complexes that reveal shieldin as a DSB-responsive CST adaptor. Furthermore, DNA polymerase ζ functions downstream of shieldin, establishing DNA fill-in synthesis as the physiological function of shieldin-CST. Lastly, 53BP1 suppresses HR and promotes NHEJ in BRCA1-deficient mice and cells independently of shieldin. These findings showcase the resilience of the 53BP1 pathway, achieved through the collaboration of chromatin-bound 53BP1 complexes and DNA end-processing effector proteins.
Collapse
Affiliation(s)
- Ashleigh King
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Pia Reichl
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Jean S. Metson
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Robert Parker
- Centre for ImmunoOncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniella Munro
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Catarina Oliveira
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Jordan R. Becker
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Chris Preece
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Francis Crick Institute, 1 Midland Rd, London, UK
| | - J. Ross Chapman
- Genome Integrity laboratory, Medical Research Council Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Dressel N, Natusch L, Munz CM, Costas Ramon S, Morcos MNF, Loff A, Hiller B, Haase C, Schulze L, Müller P, Lesche M, Dahl A, Luksch H, Rösen-Wolff A, Roers A, Behrendt R, Gerbaulet A. Activation of the cGAS/STING Axis in Genome-Damaged Hematopoietic Cells Does Not Impact Blood Cell Formation or Leukemogenesis. Cancer Res 2023; 83:2858-2872. [PMID: 37335136 DOI: 10.1158/0008-5472.can-22-3860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/04/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Genome damage is a main driver of malignant transformation, but it also induces aberrant inflammation via the cGAS/STING DNA-sensing pathway. Activation of cGAS/STING can trigger cell death and senescence, thereby potentially eliminating genome-damaged cells and preventing against malignant transformation. Here, we report that defective ribonucleotide excision repair (RER) in the hematopoietic system caused genome instability with concomitant activation of the cGAS/STING axis and compromised hematopoietic stem cell function, ultimately resulting in leukemogenesis. Additional inactivation of cGAS, STING, or type I IFN signaling, however, had no detectable effect on blood cell generation and leukemia development in RER-deficient hematopoietic cells. In wild-type mice, hematopoiesis under steady-state conditions and in response to genome damage was not affected by loss of cGAS. Together, these data challenge a role of the cGAS/STING pathway in protecting the hematopoietic system against DNA damage and leukemic transformation. SIGNIFICANCE Loss of cGAS/STING signaling does not impact DNA damage-driven leukemogenesis or alter steady-state, perturbed or malignant hematopoiesis, indicating that the cGAS/STING axis is not a crucial antioncogenic mechanism in the hematopoietic system. See related commentary by Zierhut, p. 2807.
Collapse
Affiliation(s)
- Nicole Dressel
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Loreen Natusch
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Clara M Munz
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - Mina N F Morcos
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Anja Loff
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Björn Hiller
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christa Haase
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Livia Schulze
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany
| | - Hella Luksch
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Axel Roers
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
12
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Kumar S, Zhao J, Talluri S, Buon L, Mu S, Potluri LB, Liao C, Shi J, Chakraborty C, Gonzalez GB, Tai YT, Patel J, Pal J, Mashimo H, Samur MK, Munshi NC, Shammas MA. Elevated APE1 Dysregulates Homologous Recombination and Cell Cycle Driving Genomic Evolution, Tumorigenesis, and Chemoresistance in Esophageal Adenocarcinoma. Gastroenterology 2023; 165:357-373. [PMID: 37178737 PMCID: PMC10524563 DOI: 10.1053/j.gastro.2023.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND & AIMS The purpose of this study was to identify drivers of genomic evolution in esophageal adenocarcinoma (EAC) and other solid tumors. METHODS An integrated genomics strategy was used to identify deoxyribonucleases correlating with genomic instability (as assessed from total copy number events in each patient) in 6 cancers. Apurinic/apyrimidinic nuclease 1 (APE1), identified as the top gene in functional screens, was either suppressed in cancer cell lines or overexpressed in normal esophageal cells and the impact on genome stability and growth was monitored in vitro and in vivo. The impact on DNA and chromosomal instability was monitored using multiple approaches, including investigation of micronuclei, acquisition of single nucleotide polymorphisms, whole genome sequencing, and/or multicolor fluorescence in situ hybridization. RESULTS Expression of 4 deoxyribonucleases correlated with genomic instability in 6 human cancers. Functional screens of these genes identified APE1 as the top candidate for further evaluation. APE1 suppression in EAC, breast, lung, and prostate cancer cell lines caused cell cycle arrest; impaired growth and increased cytotoxicity of cisplatin in all cell lines and types and in a mouse model of EAC; and inhibition of homologous recombination and spontaneous and chemotherapy-induced genomic instability. APE1 overexpression in normal cells caused a massive chromosomal instability, leading to their oncogenic transformation. Evaluation of these cells by means of whole genome sequencing demonstrated the acquisition of changes throughout the genome and identified homologous recombination as the top mutational process. CONCLUSIONS Elevated APE1 dysregulates homologous recombination and cell cycle, contributing to genomic instability, tumorigenesis, and chemoresistance, and its inhibitors have the potential to target these processes in EAC and possibly other cancers.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jiangning Zhao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Srikanth Talluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Leutz Buon
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Shidai Mu
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Lakshmi B Potluri
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Chengcheng Liao
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts
| | - Jialan Shi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Gabriel B Gonzalez
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Yu-Tzu Tai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Jaymin Patel
- Department of Medicine, Harvard Medical School, Boston, Massachusetts; Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jagannath Pal
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Hiroshi Mashimo
- Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts; Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Masood A Shammas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts; Hematology and Oncology, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts.
| |
Collapse
|
14
|
Guo X, Su F, Gao Y, Tang L, Yu X, Zi J, Zhou Y, Wang H, Xue J, Wang X. Effects of dietary restriction on genome stability are sex and feeding regimen dependent. Food Funct 2023; 14:471-488. [PMID: 36519635 DOI: 10.1039/d2fo03138h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Preserving genome stability is essential to prevent aging and cancer. Dietary restriction (DR) is the most reproducible non-pharmacological way to improve health and extend lifespan in various species. Whether DR helps to preserve genome stability and whether this effect is altered by experimental variables remain unclear. Moreover, DR research relies heavily on experimental animals, making the development of reliable in vitro mimetics of great interest. Therefore, we tested the effects of sex and feeding regimen (time-restricted eating, alternate day fasting and calorie restriction) on genome stability in CF-1 mice and whether these effects can be recapitulated by cell culture paradigms. Here, we show that calorie restriction significantly decreases the spontaneous micronuclei (MN), a biomarker of genome instability, in bone marrow cells of females instead of males. Alternate day fasting significantly decreases cisplatin-induced MN in females instead of males. Unexpectedly, daily time-restricted eating significantly exacerbates cisplatin-induced MN in males but not in females. Additionally, we design several culture paradigms that are able to faithfully recapitulate the key effects of these DR regimens on genome stability. In particular, 30% reduction of serum, a mimetic of calorie restriction, exhibits a strong ability to decrease spontaneous and cisplatin-induced MN in immortalized human umbilical vein endothelial cells. We conclude that the effects of different DR regimens on genome stability are not universal and females from each diet regimen sustain a more stable genome than males. Our results provide novel insight into the understanding of how DR influences genome stability in a sex and regimen dependent way, and suggest that our in vitro DR mimetics could be adopted to study the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China
| | - Fuping Su
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Yue Gao
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Liyan Tang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Xixi Yu
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Jiangli Zi
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Yingshui Zhou
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China.
| | - Han Wang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China
| | - Jinglun Xue
- Yeda Institute of Gene and Cell Therapy, Taizhou 318000, Zhejiang, China
| | - Xu Wang
- School of Life Sciences and The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming 650500, Yunnan, China. .,Yunnan Environmental Mutagen Society, Kunming 650500, Yunnan, China.,Yeda Institute of Gene and Cell Therapy, Taizhou 318000, Zhejiang, China
| |
Collapse
|
15
|
Liao C, Talluri S, Zhao J, Mu S, Kumar S, Shi J, Buon L, Munshi NC, Shammas MA. RAD51 Is Implicated in DNA Damage, Chemoresistance and Immune Dysregulation in Solid Tumors. Cancers (Basel) 2022; 14:5697. [PMID: 36428789 PMCID: PMC9688595 DOI: 10.3390/cancers14225697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In normal cells, homologous recombination (HR) is tightly regulated and plays an important role in the maintenance of genomic integrity and stability through precise repair of DNA damage. RAD51 is a recombinase that mediates homologous base pairing and strand exchange during DNA repair by HR. Our previous data in multiple myeloma and esophageal adenocarcinoma (EAC) show that dysregulated HR mediates genomic instability. Purpose of this study was to investigate role of HR in genomic instability, chemoresistance and immune dysregulation in solid tumors including colon and breast cancers. METHODS The GEO dataset were used to investigate correlation of RAD51 expression with patient survival and expression of various immune markers in EAC, breast and colorectal cancers. RAD51 was inhibited in cancer cell lines using shRNAs and a small molecule inhibitor. HR activity was evaluated using a plasmid-based assay, DNA breaks assessed by evaluating expression of γ-H2AX (a marker of DNA breaks) and p-RPA32 (a marker of DNA end resection) using Western blotting. Genomic instability was monitored by investigating micronuclei (a marker of genomic instability). Impact of RAD51 inhibitor and/or a DNA-damaging agent was assessed on viability and apoptosis in EAC, breast and colon cancer cell lines in vitro and in a subcutaneous tumor model of EAC. Impact of RAD51 inhibitor on expression profile was monitored by RNA sequencing. RESULTS Elevated RAD51 expression correlated with poor survival of EAC, breast and colon cancer patients. RAD51 knockdown in cancer cell lines inhibited DNA end resection and strand exchange activity (key steps in the initiation of HR) as well as spontaneous DNA breaks, whereas its overexpression increased DNA breaks and genomic instability. Treatment of EAC, colon and breast cancer cell lines with a small molecule inhibitor of RAD51 inhibited DNA breaking agent-induced DNA breaks and genomic instability. RAD51 inhibitor potentiated cytotoxicity of DNA breaking agent in all cancer cell types tested in vitro as well as in a subcutaneous model of EAC. Evaluation by RNA sequencing demonstrated that DNA repair and cell cycle related pathways were induced by DNA breaking agent whereas their induction either prevented or reversed by RAD51 inhibitor. In addition, immune-related pathways such as PD-1 and Interferon Signaling were also induced by DNA breaking agent whereas their induction prevented by RAD51 inhibitor. Consistent with these observations, elevated RAD51 expression also correlated with that of genes involved in inflammation and other immune surveillance. CONCLUSIONS Elevated expression of RAD51 and associated HR activity is involved in spontaneous and DNA damaging agent-induced DNA breaks and genomic instability thus contributing to chemoresistance, immune dysregulation and poor prognosis in cancer. Therefore, inhibitors of RAD51 have great potential as therapeutic agents for EAC, colon, breast and probably other solid tumors.
Collapse
Affiliation(s)
- Chengcheng Liao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning 530021, China
| | - Srikanth Talluri
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jiangning Zhao
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Shidai Mu
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Subodh Kumar
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| | - Jialan Shi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Leutz Buon
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | - Nikhil C. Munshi
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Masood A. Shammas
- Department of Adult Oncology, Harvard (Dana Farber) Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
- VA Health Care System, Boston, MA 02215, USA
| |
Collapse
|
16
|
Schumann T, Ramon SC, Schubert N, Mayo MA, Hega M, Maser KI, Ada SR, Sydow L, Hajikazemi M, Badstübner M, Müller P, Ge Y, Shakeri F, Buness A, Rupf B, Lienenklaus S, Utess B, Muhandes L, Haase M, Rupp L, Schmitz M, Gramberg T, Manel N, Hartmann G, Zillinger T, Kato H, Bauer S, Gerbaulet A, Paeschke K, Roers A, Behrendt R. Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner. J Exp Med 2022; 220:213670. [PMID: 36346347 PMCID: PMC9648672 DOI: 10.1084/jem.20220829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.
Collapse
Affiliation(s)
- Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Santiago Costas Ramon
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mohamad Aref Mayo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Melanie Hega
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katharina Isabell Maser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Servi-Remzi Ada
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lukas Sydow
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Markus Badstübner
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Rupf
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Barbara Utess
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lina Muhandes
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Michael Haase
- Department of Pediatric Surgery, University Hospital Dresden, Dresden, Germany
| | - Luise Rupp
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany,German Cancer Consortium, Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Manel
- Institut national de la santé et de la recherche médicale U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany,Correspondence to Rayk Behrendt:
| |
Collapse
|
17
|
Paradoxical Radiosensitizing Effect of Carnosic Acid on B16F10 Metastatic Melanoma Cells: A New Treatment Strategy. Antioxidants (Basel) 2022; 11:antiox11112166. [PMID: 36358539 PMCID: PMC9686564 DOI: 10.3390/antiox11112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene characterized by its high antioxidant activity; it is used in industrial, cosmetic, and nutritional applications. We evaluated the radioprotective capacity of CA on cells directly exposed to X-rays and non-irradiated cells that received signals from X-ray treated cells (radiation induced bystander effect, RIBE). The genoprotective capacity was studied by in vivo and in vitro micronucleus assays. Radioprotective capacity was evaluated by clonogenic cell survival, MTT, apoptosis and intracellular glutathione assays comparing radiosensitive cells (human prostate epithelium, PNT2) with radioresistant cells (murine metastatic melanoma, B16F10). CA was found to exhibit a genoprotective capacity in cells exposed to radiation (p < 0.001) and in RIBE (p < 0.01). In PNT2 cells, considered as normal cells in our study, CA achieved 97% cell survival after exposure to 20 Gy of X-rays, eliminating 67% of radiation-induced cell death (p < 0.001), decreasing apoptosis (p < 0.001), and increasing the GSH/GSSH ratio (p < 0.01). However, the administration of CA to B16F10 cells decreased cell survival by 32%, increased cell death by 200% (p < 0.001) compared to irradiated cells, and increased cell death by 100% (p < 0.001) in RIBE bystander cells (p < 0.01). Furthermore, it increased apoptosis (p < 0.001) and decreased the GSH/GSSG ratio (p < 0.01), expressing a paradoxical radiosensitizing effect in these cells. Knowing the potential mechanisms of action of substances such as CA could help to create new applications that would protect healthy cells and exclusively damage neoplastic cells, thus presenting a new desirable strategy for cancer patients in need of radiotherapy.
Collapse
|
18
|
Schubert N, Schumann T, Daum E, Flade K, Ge Y, Hagedorn L, Edelmann W, Müller L, Schmitz M, Kuut G, Hornung V, Behrendt R, Roers A. Genome Replication Is Associated With Release of Immunogenic DNA Waste. Front Immunol 2022; 13:880413. [PMID: 35634291 PMCID: PMC9130835 DOI: 10.3389/fimmu.2022.880413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Innate DNA sensors detect foreign and endogenous DNA to induce responses to infection and cellular stress or damage. Inappropriate activation by self-DNA triggers severe autoinflammatory conditions, including Aicardi-Goutières syndrome (AGS) that can be caused by defects of the cytosolic DNase 3’repair exonuclease 1 (TREX1). TREX1 loss-of-function alleles are also associated with systemic lupus erythematosus (SLE). Chronic activation of innate antiviral immunity in TREX1-deficient cells depends on the DNA sensor cGAS, implying that accumulating TREX1 DNA substrates cause the inflammatory pathology. Retrotransposon-derived cDNAs were shown to activate cGAS in TREX1-deficient neuronal cells. We addressed other endogenous sources of cGAS ligands in cells lacking TREX1. We find that induced loss of TREX1 in primary cells induces a rapid IFN response that requires ongoing proliferation. The inflammatory phenotype of Trex1-/- mice was partially rescued by additional knock out of exonuclease 1, a multifunctional enzyme providing 5’ flap endonuclease activity for Okazaki fragment processing and postreplicative ribonucleotide excision repair. Our data imply genome replication as a source of DNA waste with pathogenic potential that is efficiently degraded by TREX1.
Collapse
Affiliation(s)
- Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Elena Daum
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Karolin Flade
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Lara Hagedorn
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luise Müller
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunnar Kuut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
da Mata AMOF, Paz MFCJ, de Menezes AAPM, dos Reis AC, da Silva Souza B, de Carvalho Sousa CD, Machado SA, Medeiros TSG, Sarkar C, Islam MT, Sharifi-Rad J, Daştan SD, Alshehri MM, de Castro e Sousa JM, de Carvalho Melo Cavalcante AA. Evaluation of mutagenesis, necrosis and apoptosis induced by omeprazole in stomach cells of patients with gastritis. Cancer Cell Int 2022; 22:154. [PMID: 35436881 PMCID: PMC9016981 DOI: 10.1186/s12935-022-02563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Gastritis is a superficial and prevalent inflammatory lesion that is considered a public health concern once can cause gastric ulcers and gastric cancer, especially when associated with Helicobacter pylori infection. Proton pump inhibitors, such as omeprazole, are the most widely used drugs to treat this illness. The aim of the study was evaluate cytogenetic effects of omeprazole in stomach epithelial cells of patients with gastritis in presence and absence of H. pylori, through cytogenetic biomarkers and catalse and superoxide dismutase analysis. METHODS The study included 152 patients from the Gastroenterology Outpatient Clinic of Hospital Getúlio Vargas, Teresina-Brazil, that reported continuous and prolonged omeprazole use in doses of 20, 30 and 40 mg/kg. The participants were divided into groups: (1) patients without gastritis (n = 32); (2) patients without gastritis but with OME use (n = 24); (3) patients with gastritis (n = 26); (4) patients with gastritis undergoing OME therapy (n = 26); (5) patients with gastritis and H. pylori (n = 22) and (6) patients with gastritis and H. pylori on OME therapy (n = 22). RESULTS OME induced cytogenetic imbalance in the stomach epithelium through the formation of micronuclei (group 6 > 1, 2, 3, 4, 5; group 5 > 1, 2, 3; group 4 > 1, 2, 3); bridges (groups 4 and 6 > 1, 2, 3, 5 and group 2 > 3, 5); buds (groups 2,4,6 > , 1, 3, 5); binucleated cells (group 6 > 1, 2, 3, 4, 5; group 4 > 1, 2, 3); (groups 2 and 3 > 1); picnoses (group 6 > 1, 2, 3, 4, 5), groups 2 and 5 > 1, 3; group 4 > 1, 2, 3, 5); cariorrexis (groups 6 and 4 > 1, 2, 3, 5; groups 2, 3, 5 > 1) and karyolysis (groups 2, 4, and 6 > 1, 3, 5; groups 3 and 5 > 1). The OME cytogenetic instability was associated with H. pylori infection, indicating clastogenic/aneugenic effects, chromosomes alterations, gene expression changes, cytotoxicity and apoptosis. CONCLUSIONS The cytogenetic changescan be attributed to several mechanisms that are still unclear, including oxidative damage, as observed by increased catalase and superoxide dismutase expresion. Positive correlations between antioxidant enzymes were found with micronuclei formation, and were negative for picnoses. Thus, the continuous and prolonged omeprazole use induces genetic instability, which can be monitored through cytogenetic analyzes, as precursor for gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Bangladesh, Gopalganj, 8100 Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Bangladesh, Gopalganj, 8100 Bangladesh
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
20
|
ASSIS RHAYANEA, BENVINDO-SOUZA MARCELINO, ARAÚJO-SANTOS CIRLEYG, BORGES RINNEUE, SANTOS-FILHO ITAMARD, OLIVEIRA LEISSACAROLINA, MENDONÇA MARIAANDREIAC, SANTOS LIARAQUELS. Mutagenic effect of a commercial fungicide on Rana catesbeiana and Leptodactylus latrans tadpoles. AN ACAD BRAS CIENC 2022; 94:e20210161. [DOI: 10.1590/0001-3765202220210161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/08/2021] [Indexed: 05/31/2023] Open
Affiliation(s)
- RHAYANE A. ASSIS
- Instituto Federal Goiano, Brazil; Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Edwards DM, Mitchell DK, Abdul-Sater Z, Chan KK, Sun Z, Sheth A, He Y, Jiang L, Yuan J, Sharma R, Czader M, Chin PJ, Liu Y, de Cárcer G, Nalepa G, Broxmeyer HE, Clapp DW, Sierra Potchanant EA. Mitotic Errors Promote Genomic Instability and Leukemia in a Novel Mouse Model of Fanconi Anemia. Front Oncol 2021; 11:752933. [PMID: 34804941 PMCID: PMC8602820 DOI: 10.3389/fonc.2021.752933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2021] [Indexed: 01/20/2023] Open
Abstract
Fanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis in vivo, the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood. To examine the role of mitotic dysregulation in FA pathway deficient malignancies, we genetically exacerbated the baseline mitotic defect in Fancc-/- mice by introducing heterozygosity of the key spindle assembly checkpoint regulator Mad2. Fancc-/-;Mad2+/- mice were viable, but died from acute myeloid leukemia (AML), thus recapitulating the high risk of myeloid malignancies in FA patients better than Fancc-/-mice. We utilized hematopoietic stem cell transplantation to propagate Fancc-/-; Mad2+/- AML in irradiated healthy mice to model FANCC-deficient AMLs arising in the non-FA population. Compared to cells from Fancc-/- mice, those from Fancc-/-;Mad2+/- mice demonstrated an increase in mitotic errors but equivalent DNA cross-linker hypersensitivity, indicating that the cancer phenotype of Fancc-/-;Mad2+/- mice results from error-prone cell division and not exacerbation of the DNA damage repair defect. We found that FANCC enhances targeting of endogenous MAD2 to prometaphase kinetochores, suggesting a mechanism for how FANCC-dependent regulation of the spindle assembly checkpoint prevents chromosome mis-segregation. Whole-exome sequencing revealed similarities between human FA-associated myelodysplastic syndrome (MDS)/AML and the AML that developed in Fancc-/-; Mad2+/- mice. Together, these data illuminate the role of mitotic dysregulation in FA-pathway deficient malignancies in vivo, show how FANCC adjusts the spindle assembly checkpoint rheostat by regulating MAD2 kinetochore targeting in cell cycle-dependent manner, and establish two new mouse models for preclinical studies of AML.
Collapse
Affiliation(s)
- Donna M Edwards
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Dana K Mitchell
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zahi Abdul-Sater
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ka-Kui Chan
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zejin Sun
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aditya Sheth
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying He
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Li Jiang
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jin Yuan
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richa Sharma
- Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN, United States
| | - Magdalena Czader
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pei-Ju Chin
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yie Liu
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Guillermo de Cárcer
- Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Grzegorz Nalepa
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN, United States
| | - Hal E Broxmeyer
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - D Wade Clapp
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Pediatrics, Riley Hospital for Children, Indianapolis, IN, United States
| | - Elizabeth A Sierra Potchanant
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
22
|
Talluri S, Samur MK, Buon L, Kumar S, Potluri LB, Shi J, Prabhala RH, Shammas MA, Munshi NC. Dysregulated APOBEC3G causes DNA damage and promotes genomic instability in multiple myeloma. Blood Cancer J 2021; 11:166. [PMID: 34625538 PMCID: PMC8501035 DOI: 10.1038/s41408-021-00554-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/14/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous disease characterized by significant genomic instability. Recently, a causal role for the AID/APOBEC deaminases in inducing somatic mutations in myeloma has been reported. We have identified APOBEC/AID as a prominent mutational signature at diagnosis with further increase at relapse in MM. In this study, we identified upregulation of several members of APOBEC3 family (A3A, A3B, A3C, and A3G) with A3G, as one of the most expressed APOBECs. We investigated the role of APOBEC3G in MM and observed that A3G expression and APOBEC deaminase activity is elevated in myeloma cell lines and patient samples. Loss-of and gain-of function studies demonstrated that APOBEC3G significantly contributes to increase in DNA damage (abasic sites and DNA breaks) in MM cells. Evaluation of the impact on genome stability, using SNP arrays and whole genome sequencing, indicated that elevated APOBEC3G contributes to ongoing acquisition of both the copy number and mutational changes in MM cells over time. Elevated APOBEC3G also contributed to increased homologous recombination activity, a mechanism that can utilize increased DNA breaks to mediate genomic rearrangements in cancer cells. These data identify APOBEC3G as a novel gene impacting genomic evolution and underlying mechanisms in MM.
Collapse
Affiliation(s)
- Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
| | | | - Leutz Buon
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
| | - Subodh Kumar
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Lakshmi B Potluri
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Jialan Shi
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Rao H Prabhala
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
- Harvard Medical School, Boston, MA, 02215, USA
| | - Masood A Shammas
- Dana Farber Cancer Institute, Boston, MA, 02115, USA
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Nikhil C Munshi
- Dana Farber Cancer Institute, Boston, MA, 02115, USA.
- Veterans Administration Boston Healthcare System, West Roxbury, MA, 02132, USA.
- Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Sumi K, Munakata K, Konno S, Ashida K, Nakazato K. Inorganic Iron Supplementation Rescues Hematological Insufficiency Even Under Intense Exercise Training in a Mouse Model of Iron Deficiency with Anemia. Biol Trace Elem Res 2021; 199:2945-2960. [PMID: 33025520 DOI: 10.1007/s12011-020-02402-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Iron deficiency anemia (IDA) due to malnutrition and/or blood loss is a common condition, especially in women of reproductive age. Intense exercise can induce anemia via an inflammatory response, but whether intense exercise affects the efficacy of iron supplementation to treat IDA is unclear. Here, we show in a mouse model of IDA that acute intense swimming increased IL-6 levels in the blood, but did not affect the maximum elevation of plasma iron following oral administration of 0.5 mg/kg Bw iron. However, compared with the control group without intense exercise, acute intense swimming was associated with a significant decrease in plasma iron 2 and 4 h after iron loading that could be attributed to rapid iron absorption in peripheral tissues. In the chronic experiment, IDA mice administered 0.36, 1.06, or 3.2 mg/kg Bw iron per day that were subjected to 11 intense swimming sessions over 3 weeks showed significantly decreased recovery levels for hemoglobin and red blood cell count during the early phase of the experimental period. At the end of the experimental period, significant, dose-dependent effects of iron, but not the main effect of intense exercise, were seen for recovery of hemoglobin and red blood cell counts, consistent with the acute exercise study. These results suggested that intense exercise in the presence of IDA does not inhibit iron absorption from the gastrointestinal tract and that iron supplementation can enhance the recovery process even after intense exercise.
Collapse
Affiliation(s)
- Koichiro Sumi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan.
| | - Kinuyo Munakata
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Saori Konno
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Kinya Ashida
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachiouji, Tokyo, 192-0919, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
24
|
Ju MK, Shin KJ, Lee JR, Khim KW, A Lee E, Ra JS, Kim BG, Jo HS, Yoon JH, Kim TM, Myung K, Choi JH, Kim H, Chae YC. NSMF promotes the replication stress-induced DNA damage response for genome maintenance. Nucleic Acids Res 2021; 49:5605-5622. [PMID: 33963872 PMCID: PMC8191778 DOI: 10.1093/nar/gkab311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Proper activation of DNA repair pathways in response to DNA replication stress is critical for maintaining genomic integrity. Due to the complex nature of the replication fork (RF), problems at the RF require multiple proteins, some of which remain unidentified, for resolution. In this study, we identified the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF) as a key replication stress response factor that is important for ataxia telangiectasia and Rad3-related protein (ATR) activation. NSMF localizes rapidly to stalled RFs and acts as a scaffold to modulate replication protein A (RPA) complex formation with cell division cycle 5-like (CDC5L) and ATR/ATR-interacting protein (ATRIP). Depletion of NSMF compromised phosphorylation and ubiquitination of RPA2 and the ATR signaling cascade, resulting in genomic instability at RFs under DNA replication stress. Consistently, NSMF knockout mice exhibited increased genomic instability and hypersensitivity to genotoxic stress. NSMF deficiency in human and mouse cells also caused increased chromosomal instability. Collectively, these findings demonstrate that NSMF regulates the ATR pathway and the replication stress response network for genome maintenance and cell survival.
Collapse
Affiliation(s)
- Min Kyung Ju
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyeong Jin Shin
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joo Rak Lee
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Keon Woo Khim
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Han-Seul Jo
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Tae Moon Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea.,Department of Biomedical Engineering, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jang Hyun Choi
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.,Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan 44919, Republic of Korea
| | - Young Chan Chae
- Department of Life Sciences, Ulsan National University of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
25
|
Kumar S, Buon L, Talluri S, Roncador M, Liao C, Zhao J, Shi J, Chakraborty C, Gonzalez G, Tai YT, Prabhala R, Samur MK, Munshi NC, Shammas MA. Integrated genomics and comprehensive validation reveal drivers of genomic evolution in esophageal adenocarcinoma. Commun Biol 2021; 4:617. [PMID: 34031527 PMCID: PMC8144613 DOI: 10.1038/s42003-021-02125-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is associated with a marked genomic instability, which underlies disease progression and development of resistance to treatment. In this study, we used an integrated genomics approach to identify a genomic instability signature. Here we show that elevated expression of this signature correlates with poor survival in EAC as well as three other cancers. Knockout and overexpression screens establish the relevance of these genes to genomic instability. Indepth evaluation of three genes (TTK, TPX2 and RAD54B) confirms their role in genomic instability and tumor growth. Mutational signatures identified by whole genome sequencing and functional studies demonstrate that DNA damage and homologous recombination are common mechanisms of genomic instability induced by these genes. Our data suggest that the inhibitors of TTK and possibly other genes identified in this study have potential to inhibit/reduce growth and spontaneous as well as chemotherapy-induced genomic instability in EAC and possibly other cancers. Subodh Kumar et al. identify a gene signature correlated with genomic instability and poor survival in esophageal adenocarcinoma (EAC), using a combination of integrative genomic analysis of patient data and laboratory validation in cell line models and mice. They find that inhibitors of some of the identified proteins, including TTK, could be used to reduce genomic evolution as well as inhibit growth of EAC cells.
Collapse
Affiliation(s)
- Subodh Kumar
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Leutz Buon
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Srikanth Talluri
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | | | - Chengcheng Liao
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Jiangning Zhao
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA
| | - Jialan Shi
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Gabriel Gonzalez
- Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yu-Tzu Tai
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Rao Prabhala
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | - Nikhil C Munshi
- Dana Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Healthcare System, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Masood A Shammas
- Dana Farber Cancer Institute, Boston, MA, USA. .,Veterans Administration Healthcare System, Boston, MA, USA.
| |
Collapse
|
26
|
Yan S, Li Q, Zhang D, Wang X, Xu Y, Zhang C, Guo D, Bao Y. Necroptosis pathway blockage attenuates PFKFB3 inhibitor-induced cell viability loss and genome instability in colorectal cancer cells. Am J Cancer Res 2021; 11:2062-2080. [PMID: 34094669 PMCID: PMC8167677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/23/2021] [Indexed: 06/12/2023] Open
Abstract
Cancer cells prone to utilize aerobic glycolysis other than oxidative phosphorylation to sustain its continuous cell activity in the stress microenvironment. Meanwhile, cancer cells generally suffer from genome instability, and both radiotherapy and chemotherapy may arouse DNA strand break, a common phenotype of genome instability. Glycolytic enzyme PFKFB3 (6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3), plays essential roles in variety physiology and pathology processes, and generally maintain high level in cancer cells. Although this protein has been reported to involve in genome instability, its role remains unclear and controversial. Here, we showed that PFK-15, a PFKFB3 inhibitor, obviously induced apoptosis, cell viability loss, and inhibited cell proliferation/migration. Besides, PFK-15 was also found to induce necroptosis, as it not only up-regulated the phosphorylated RIP1, RIP3 and MLKL, but also enhanced the interaction between RIP3 and RIP1/MLKL, all of which are characterization of necroptosis induction. Both genetically and pharmacologically deprivation of necroptosis attenuated the cytotoxic effect of PFK-15. Besides, PFK-15 increased the γ-H2AX level and micronuclei formation, markers for genome instability, and inhibition of necroptosis attenuated these phenotypes. Collectively, the presented data demonstrated that PFK-15 induced genome instability and necroptosis, and deprivation of necroptosis attenuated cytotoxicity and genotoxicity of PFK-15 in colorectal cancer cells, thereby revealing a more intimate relationship among PFKFB3, necroptosis and genome instability.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Qianqian Li
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Deru Zhang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Xiaowen Wang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Yang Xu
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Cong Zhang
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| | - Dongli Guo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical UniversityJining 272000, China
| | - Yonghua Bao
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical UniversityJining 272067, China
| |
Collapse
|
27
|
Devi R S, Srinivas P, Thoppil JE. Evaluation of genoprotection against malathion induced toxicity by Orthosiphon thymiflorus Sleesen. J Ayurveda Integr Med 2021; 12:320-329. [PMID: 33781615 PMCID: PMC8185970 DOI: 10.1016/j.jaim.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Pesticide toxicity is considered to be one of the significant reason for increased incidence of cancer. Plants are treasure troves of active phytochemical compounds which are used as herbal medicine as well as nutraceuticals. OBJECTIVE To evaluate the genoprotective potential of Orthosiphon thymiflorus (Roth) Sleesen, (Lamiaceae) against the toxicity induced by malathion by a battery of four in vivo assays in Swiss albino mice. MATERIALS AND METHODS Micronucleus assay was performed for analyzing the micronuclei induction and ratio of polychromatic and normochromatic erythrocytes (PCE/NCE). Anticlastogenic and mito depressive effect of the methanol and hexane extracts of O.thymiflorus were evaluated by chromosome aberration assay. Alkali comet assay was performed to assess double strand DNA repair. DNA damage sensing ability of the bone marrow cells were assessed by γ-H2AX foci formation. Phytochemical screening of hexane and methanol extract was done by GC-MS analysis. RESULT O. thymiflorus extracts showed a dose dependant protective effect in all assays. It significantly decreased the frequency of micronuclei and improved PCE/NCE value in post treated groups of animals. Malathion induced clastogenic aberrations were effectively attenuated by methanol and hexane extracts. DNA comet assay showed that malathion induced damage can be protected by O. thymiflorus extracts. Multiple foci formation in γ-H2AX assay confirmed the activation of DNA repair proteins in post treated animals. CONCLUSION Genoprotective effect of O. thymiflorus against malathion induced toxicity was confirmed. This study would be helpful to initiate more research including clinical using O. thymiflorus extract against pesticide induced toxicity.
Collapse
Affiliation(s)
- Seema Devi R
- Department of Botany, N.S.S College, Manjeri, Malappuram, Kerala, 676 122, India.
| | - Priya Srinivas
- Rajiv Gandhi Centre for Biotechnology, Thiruvanthapuram, Kerala, 695 014, India
| | - John E Thoppil
- Cell and Molecular Biology Division, Dept of Botany, University of Calicut, Malappuram, Kerala, 673635, India
| |
Collapse
|
28
|
Zhao M, Wang F, Wu J, Cheng Y, Cao Y, Wu X, Ma M, Tang F, Liu Z, Liu H, Ge B. CGAS is a micronucleophagy receptor for the clearance of micronuclei. Autophagy 2021; 17:3976-3991. [PMID: 33752561 PMCID: PMC8726603 DOI: 10.1080/15548627.2021.1899440] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Micronuclei are constantly considered as a marker of genome instability and very recently found to be a trigger of innate immune responses. An increased frequency of micronuclei is associated with many diseases, but the mechanism underlying the regulation of micronuclei homeostasis remains largely unknown. Here, we report that CGAS (cyclic GMP-AMP synthase), a known regulator of DNA sensing and DNA repair, reduces the abundance of micronuclei under genotoxic stress in an autophagy-dependent manner. CGAS accumulates in the autophagic machinery and directly interacts with MAP1LC3B/LC3B in a manner dependent upon its MAP1LC3-interacting region (LIR). Importantly, the interaction is essential for MAP1LC3 recruitment to micronuclei and subsequent clearance of micronuclei via autophagy (micronucleophagy) in response to genotoxic stress. Moreover, in contrast to its DNA sensing function to activate micronuclei-driven inflammation, CGAS-mediated micronucleophagy blunts the production of cyclic GMP-AMP (cGAMP) induced by genotoxic stress. We therefore conclude that CGAS is a receptor for the selective autophagic clearance of micronuclei and uncovered an unprecedented role of CGAS in micronuclei homeostasis to dampen innate immune surveillance. Abbreviations: ATG: autophagy-related; CGAS: cyclic GMP-AMP synthase; CQ: chloroquine; GABARAP: GABA type A receptor-associated protein; GFP: green fluorescent protein; LAMP1: lysosomal associated membrane protein 1; LAMP2: lysosomal associated membrane protein 2; LIR, MAP1LC3-interacting region; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; NDZ: nocodazole; STING1: stimulator of interferon response cGAMP interactor 1
Collapse
Affiliation(s)
- Mengmeng Zhao
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Fei Wang
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Juehui Wu
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yuanna Cheng
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Yajuan Cao
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiangyang Wu
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Mingtong Ma
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Fen Tang
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China
| | - Zhi Liu
- CryoEM group, Shanghai Viva Biotech., Shanghai, China
| | - Haipeng Liu
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, China.,Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Radiation-Induced Bystander Effect: Loss of Radioprotective Capacity of Rosmarinic Acid In Vivo and In Vitro. Antioxidants (Basel) 2021; 10:antiox10020231. [PMID: 33546480 PMCID: PMC7913630 DOI: 10.3390/antiox10020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 01/19/2023] Open
Abstract
In radiation oncology, the modulation of the bystander effect is a target both for the destruction of tumor cells and to protect healthy cells. With this objective, we determine whether the radioprotective capacity of rosmarinic acid (RA) can affect the intensity of these effects. Genoprotective capacity was obtained by determining the micronuclei frequencies in in vivo and in vitro assays and the cell survival was determined by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) (MTT) assay in three cell lines (PNT2, TRAMPC1 and B16F10), both in direct exposure to X-rays and after the production of radiation-induced bystander effect. The administration of RA in irradiated cells produced a decrease in the frequency of micronuclei both in vivo and in vitro, and an increase in cell survival, as expression of its radioprotective effect (p < 0.001) attributable to its ability to scavenge radio-induced free radicals (ROS). However, RA does not achieve any modification in the animals receiving serum or in the cultures treated with the irradiated medium, which expresses an absence of radioprotective capacity. The results suggest that ROS participates in the formation of signals in directly irradiated cells, but only certain subtypes of ROS, the cytotoxic products of lipid peroxidation, participate in the creation of lesions in recipient cells.
Collapse
|
30
|
Braga AL, do Nascimento PB, Paz MFCJ, de Lima RMT, Santos JVDO, de Alencar MVOB, de Meneses AAPM, Júnior ALG, Islam MT, Sousa JMDCE, Melo-Cavalcante AADC. Antioxidative defense against omeprazole-induced toxicogenetical effects in Swiss mice. Pharmacol Rep 2021; 73:551-562. [PMID: 33476036 DOI: 10.1007/s43440-021-00219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Omeprazole (OME), a most frequently used proton pump inhibitor in gastric acidosis, is evident to show many adverse effects, including genetic instability. This study evaluated toxicogenic effects of OME in Mus musculus. METHODS For this study, 40 male Swiss mice were divided into 8 groups (n = 5) and treated with OME at doses of 10, 20, and 40 mg/kg and/or treated with the antioxidants retinol palmitate (100 IU/kg) and ascorbic acid (2.0 μM/kg). Cyclophosphamide 50 mg/kg, (cytotoxic agent) and the vehicle were served as positive and negative control group, respectively. After 14 days of treatment, the stomach cells along with the bone marrow and peripheral blood lymphocytes were collected and submitted to the comet assay (alkaline version) and micronucleus test. Additionally, hematological and biochemical parameters of the animals were also determined inspect of vehicle group. RESULTS The results suggest that OME at all doses induced genotoxicity and mutagenicity in the treated cells. However, in association with the antioxidants, these effects were modulated and/or inhibited along with a DNA repair capacity. CONCLUSIONS Taken together, antioxidants (such as retinol palmitate and ascorbic acid) may be one of the best options to counteract OME-induced cytogenetic instability.
Collapse
Affiliation(s)
- Antonio Lima Braga
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | | | - Márcia Fernanda Correia Jardim Paz
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Rosália Maria Tôrres de Lima
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - José Victor de Oliveira Santos
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Ag-Anne Pereira Melo de Meneses
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Antonio Luiz Gomes Júnior
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| | - Muhammad Torequl Islam
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - João Marcelo de Castro E Sousa
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Department of Biological Sciences, Federal University of Piauí, 64.607-670, Picos, Piauí, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Laboratory of Genetics and Toxicology (LAPGENIC), Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64.049-550, Teresina, Piauí, Brazil
| |
Collapse
|
31
|
Brendt J, Lackmann C, Heger S, Velki M, Crawford SE, Xiao H, Thalmann B, Schiwy A, Hollert H. Using a high-throughput method in the micronucleus assay to compare animal-free with rat-derived S9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:142269. [PMID: 33182016 DOI: 10.1016/j.scitotenv.2020.142269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
This study presents a high-throughput (HTP) micronucleus assay in multi-well plates with an automated evaluation for risk assessment applications. The evaluation of genotoxicity via the micronucleus assays according to international guidelines ISO 21427-2 with Chinese hamster (Cricetulus griseus) V79 cells was the starting point to develop our methodology. A drawback of this assay is that it is very time consuming and cost intensive. Our HTP micronucleus assay in a 48-well plate format allows for the simultaneous assessment of five different sample-concentrations with additional positive, negative and solvent controls with six technical replicates each within a quarter of the time required for the equivalent evaluation using the traditional slide method. In accordance with the 3R principle, animal compounds should be replaced with animal-free alternatives. However, traditional cell culture-based methods still require animal derived compounds like rat-liver derived S9-fraction, which is used to simulate the mammalian metabolism in in vitro assays that do show intrinsic metabolization capabilities. In the present study, a recently developed animal-free biotechnological alternative (ewoS9R) was investigated in the new high-throughput micronucleus assay. In total, 12 different mutagenic or genotoxic chemicals were investigated to assess the potential use of the animal-free metabolization system (ewoS9R) in comparison to a common rat-derived product. Out of the 12 compounds, one compound did not induce micronuclei in any treatment and 2 substances showed a genotoxic potential without the need for a metabolization system. EwoS9R demonstrated promising potential for future applications as it shows comparable results to the rat-derived S9 for 6 of the 9 pro-genotoxic substances tested. The remaining 3 substances (2-Acetamidofluorene, Benzo[a]pyrene, Cyclophosphamide) were only metabolized by rat-derived S9. A potential explanation is that ewoS9R was investigated with an approx. 10-fold lower enzyme concentration and was only optimized for CYP1A metabolization that may be improved with a modified production procedure. Future applications of ewoS9R go beyond the micronucleus assay, but further research is necessary.
Collapse
Affiliation(s)
- Julia Brendt
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Carina Lackmann
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Sebastian Heger
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Mirna Velki
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Sarah E Crawford
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Hongxia Xiao
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Beat Thalmann
- EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Andreas Schiwy
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany; EWOMIS GmbH, Schießstrasse 26c, 63486 Bruchköbel, Germany.
| |
Collapse
|
32
|
Liao C, Zhao J, Kumar S, Chakraborty C, Talluri S, Munshi NC, Shammas MA. RAD51 Inhibitor Reverses Etoposide-Induced Genomic Toxicity and Instability in Esophageal Adenocarcinoma Cells. ARCHIVES OF CLINICAL TOXICOLOGY 2020; 2:3-9. [PMID: 32968740 PMCID: PMC7508453 DOI: 10.46439/toxicology.2.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aim: In normal cells, homologous recombination (HR) is strictly regulated and precise and plays an important role in preserving genomic integrity by accurately repairing DNA damage. RAD51 is the recombinase which mediates homologous base pairing and strand exchange during DNA repair by HR. We have previously reported that HR is spontaneously elevated (or dysregulated) in esophageal adenocarcinoma (EAC) and contributes to ongoing genomic changes and instability. The purpose of this study was to evaluate the impact of RAD51 inhibitor on genomic toxicity caused by etoposide, a chemotherapeutic agent. Methods: EAC cell lines (FLO-1 and OE19) were cultured in the presence of RAD51 inhibitor and/or etoposide, and impact on cell viability, apoptosis and genomic integrity/stability investigated. Genomic integrity/stability was monitored by evaluating cells for γ-H2AX (a marker for DNA breaks), phosphorylated RPA32 (a marker of DNA end resection which is a distinct step in the initiation of HR) and micronuclei (a marker of genomic instability). Results: Treatment with etoposide, a chemotherapeutic agent, was associated with marked genomic toxicity (as evident from increase in DNA breaks) and genomic instability in both EAC cell lines. Consistently, the treatment was also associated with apoptotic cell death. A small molecule inhibitor of RAD51 increased cytotoxicity while reducing genomic toxicity and instability caused by etoposide, in both EAC cell lines. Conclusion: RAD51 inhibitors have potential to increase cytotoxicity while reducing harmful genomic impact of chemotherapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | | | - Subodh Kumar
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | | | - Srikanth Talluri
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| | - Nikhil C Munshi
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA.,Harvard Medical School, USA
| | - Masood A Shammas
- Dana Farber Cancer Institute, USA.,Veterans Administration Boston Healthcare System, USA
| |
Collapse
|
33
|
Montanuy H, Martínez-Barriocanal Á, Antonio Casado J, Rovirosa L, Ramírez MJ, Nieto R, Carrascoso-Rubio C, Riera P, González A, Lerma E, Lasa A, Carreras-Puigvert J, Helleday T, Bueren JA, Arango D, Minguillón J, Surrallés J. Gefitinib and Afatinib Show Potential Efficacy for Fanconi Anemia-Related Head and Neck Cancer. Clin Cancer Res 2020; 26:3044-3057. [PMID: 32005748 DOI: 10.1158/1078-0432.ccr-19-1625] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Fanconi anemia rare disease is characterized by bone marrow failure and a high predisposition to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Patients with Fanconi anemia with HNSCC are not eligible for conventional therapies due to high toxicity in healthy cells, predominantly hematotoxicity, and the only treatment currently available is surgical resection. In this work, we searched and validated two already approved drugs as new potential therapies for HNSCC in patients with Fanconi anemia. EXPERIMENTAL DESIGN We conducted a high-content screening of 3,802 drugs in a FANCA-deficient tumor cell line to identify nongenotoxic drugs with cytotoxic/cytostatic activity. The best candidates were further studied in vitro and in vivo for efficacy and safety. RESULTS Several FDA/European Medicines Agency (EMA)-approved anticancer drugs showed cancer-specific lethality or cell growth inhibition in Fanconi anemia HNSCC cell lines. The two best candidates, gefitinib and afatinib, EGFR inhibitors approved for non-small cell lung cancer (NSCLC), displayed nontumor/tumor IC50 ratios of approximately 400 and approximately 100 times, respectively. Neither gefitinib nor afatinib activated the Fanconi anemia signaling pathway or induced chromosomal fragility in Fanconi anemia cell lines. Importantly, both drugs inhibited tumor growth in xenograft experiments in immunodeficient mice using two Fanconi anemia patient-derived HNSCCs. Finally, in vivo toxicity studies in Fanca-deficient mice showed that administration of gefitinib or afatinib was well-tolerated, displayed manageable side effects, no toxicity to bone marrow progenitors, and did not alter any hematologic parameters. CONCLUSIONS Our data present a complete preclinical analysis and promising therapeutic line of the first FDA/EMA-approved anticancer drugs exerting cancer-specific toxicity for HNSCC in patients with Fanconi anemia.
Collapse
Affiliation(s)
- Helena Montanuy
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - José Antonio Casado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Llorenç Rovirosa
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria José Ramírez
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos Carrascoso-Rubio
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Pau Riera
- Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Alan González
- Department of Anatomic Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Enrique Lerma
- Pharmacy Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Adriana Lasa
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Genetics Department and Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Carreras-Puigvert
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Molecular Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Department of Molecular Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juan A Bueren
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Molecular Oncology, IRB Lleida, Lleida, Spain
| | - Jordi Minguillón
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Jordi Surrallés
- Department of Genetics and Microbiology. Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| |
Collapse
|
34
|
Pérez-Iglesias JM, Brodeur JC, Larramendy ML. An imazethapyr-based herbicide formulation induces genotoxic, biochemical, and individual organizational effects in Leptodactylus latinasus tadpoles (Anura: Leptodactylidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2131-2143. [PMID: 31773531 DOI: 10.1007/s11356-019-06880-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Genotoxic, biochemical, and individual organizational effects on Leptodactylus latinasus tadpoles were evaluated after exposure to an imazethapyr (IMZT)-based commercial herbicide formulation, Pivot® H (10.59% IMZT). A determination of the value of the lethal concentration (LC50) was determined as a toxicological endpoint. Alterations in animal behavior and morphological abnormalities as well as cholinesterase (ChE), catalase (CAT), and glutathione S-transferase (GST) activities were employed as individual sublethal endpoints. Micronuclei frequencies (MNs), binucleated cells (BNs), blebbed nuclei (BLs), lobed nuclei (LBs), notched nuclei (NTs), erythroplastids (EPs), and evaluation of DNA strand breaks were employed as genotoxic endpoints. All biomarkers were evaluated after 48 and 96 h of exposure to concentrations of IMZT within 0.07-4.89 mg/L. LC5096h values of 1.01 and 0.29 mg/L IMZT were obtained for Gosner stages 25 and 36, respectively. Irregular swimming, diamond body shape, and decreased frequency of keratodonts were detected at both sampling times. Results showed that IMZT increased GST activity and MN frequency at 48 and 96 h of exposure. Other nuclear abnormalities were also observed in the circulating erythrocytes of tadpoles, i.e., NT and BL values after 48 h, and LN, BL, and EP values after 96 h. Finally, results showed that IMZT within 0.07-0.22 mg/L increased the genetic damage index in tadpoles exposed for both exposure times (48 and 96 h). This study is the first to report the sublethal biochemical effects of IMZT in anurans and is also the first report using L. latinasus tadpoles as a bioindicator for ecotoxicological studies.
Collapse
Affiliation(s)
- Juan M Pérez-Iglesias
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 No. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Centro de Investigaciones del Medio Ambiente (CIMA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julie C Brodeur
- Instituto de Recursos Biológicos, Centro de Investigaciones de Recursos Naturales (CIRN), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 No. 3 (esq. 120), B1904AMA, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
35
|
Park SH, Kang N, Song E, Wie M, Lee EA, Hwang S, Lee D, Ra JS, Park IB, Park J, Kang S, Park JH, Hohng S, Lee KY, Myung K. ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress. Nat Commun 2019; 10:5718. [PMID: 31844045 PMCID: PMC6914801 DOI: 10.1038/s41467-019-13667-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Maintaining stability of replication forks is important for genomic integrity. However, it is not clear how replisome proteins contribute to fork stability under replication stress. Here, we report that ATAD5, a PCNA unloader, plays multiple functions at stalled forks including promoting its restart. ATAD5 depletion increases genomic instability upon hydroxyurea treatment in cultured cells and mice. ATAD5 recruits RAD51 to stalled forks in an ATR kinase-dependent manner by hydroxyurea-enhanced protein-protein interactions and timely removes PCNA from stalled forks for RAD51 recruitment. Consistent with the role of RAD51 in fork regression, ATAD5 depletion inhibits slowdown of fork progression and native 5-bromo-2'-deoxyuridine signal induced by hydroxyurea. Single-molecule FRET showed that PCNA itself acts as a mechanical barrier to fork regression. Consequently, DNA breaks required for fork restart are reduced by ATAD5 depletion. Collectively, our results suggest an important role of ATAD5 in maintaining genome integrity during replication stress.
Collapse
Affiliation(s)
- Su Hyung Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Nalae Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Eunho Song
- Interdisciplinary Graduate Program in Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minwoo Wie
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Deokjae Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Medytox Inc. 114, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - In Bae Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jieun Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sukhyun Kang
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Jun Hong Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea
| | - Sungchul Hohng
- Interdisciplinary Graduate Program in Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.,Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoo-Young Lee
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea.
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Korea. .,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
36
|
Role of apurinic/apyrimidinic nucleases in the regulation of homologous recombination in myeloma: mechanisms and translational significance. Blood Cancer J 2018; 8:92. [PMID: 30301882 PMCID: PMC6177467 DOI: 10.1038/s41408-018-0129-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously reported that homologous recombination (HR) is dysregulated in multiple myeloma (MM) and contributes to genomic instability and development of drug resistance. We now demonstrate that base excision repair (BER) associated apurinic/apyrimidinic (AP) nucleases (APEX1 and APEX2) contribute to regulation of HR in MM cells. Transgenic as well as chemical inhibition of APEX1 and/or APEX2 inhibits HR activity in MM cells, whereas the overexpression of either nuclease in normal human cells, increases HR activity. Regulation of HR by AP nucleases could be attributed, at least in part, to their ability to regulate recombinase (RAD51) expression. We also show that both nucleases interact with major HR regulators and that APEX1 is involved in P73-mediated regulation of RAD51 expression in MM cells. Consistent with the role in HR, we also show that AP-knockdown or treatment with inhibitor of AP nuclease activity increases sensitivity of MM cells to melphalan and PARP inhibitor. Importantly, although inhibition of AP nuclease activity increases cytotoxicity, it reduces genomic instability caused by melphalan. In summary, we show that APEX1 and APEX2, major BER proteins, also contribute to regulation of HR in MM. These data provide basis for potential use of AP nuclease inhibitors in combination with chemotherapeutics such as melphalan for synergistic cytotoxicity in MM.
Collapse
|
37
|
Flow cytometry in peripheral blood reticulocytes as a marker of chromosome instability in highgrade glioma patients. BIOMEDICA 2018; 38:379-387. [PMID: 30335243 DOI: 10.7705/biomedica.v38i4.3882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 03/01/2018] [Indexed: 11/21/2022]
Abstract
Introduction: The quantification of chromosomal instability is an important parameter to assess genotoxicity and radiosensitivity. Most conventional techniques require cell cultures or laborious microscopic analyses of chromosomes or nuclei. However, a flow cytometry that selects the reticulocytes has been developed as an alternative for in vivo studies, which expedites the analytical procedures and increases up to 20 times the number of target cells to be analyzed.
Objectives: To standardize the flow cytometry parameters for selecting and quantifying the micronucleated reticulocytesCD71+ (MN-RET) from freshly drawn peripheral blood and to quantify the frequency of this abnormal cell subpopulation as a measure of cytogenetic instability in populations of healthy volunteers (n =25), and patients (n=25), recently diagnosed with high-grade gliomas before the onset of treatment.
Materials and methods: Blood cells were methanol-fixed and labeled with anti-CD-71-PE for reticulocytes, antiCD-61-FITC for platelet exclusion, and propidium iodide for DNA detection in reticulocytes. The MN-RETCD71+ cell fraction was selected and quantified with an automatic flow cytometer.
Results: The standardization of cytometry parameters was described in detail, emphasizing the selection and quantification of the MN-RETCD71+ cellular fraction. The micronuclei basal level was established in healthy controls. In patients, a 5.2-fold increase before the onset of treatment was observed (p <0.05).
Conclusion: The data showed the usefulness of flow cytometry coupled with anti-CD-71-PE and anti-CD-61-FITC labeling in circulating reticulocytes as an efficient and high resolution method to quantify chromosome instability in vivo. Finally, possible reasons for the higher average of micronuclei in RETCD71+ cells from untreated high-grade glioma patients were discussed.
Collapse
|
38
|
Nébor D, Graber JH, Ciciotte SL, Robledo RF, Papoin J, Hartman E, Gillinder KR, Perkins AC, Bieker JJ, Blanc L, Peters LL. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 2018; 8:12793. [PMID: 30143664 PMCID: PMC6109071 DOI: 10.1038/s41598-018-30839-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo.
Collapse
Affiliation(s)
| | - Joel H Graber
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,MDI Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | | | | | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Emily Hartman
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin R Gillinder
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - James J Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
39
|
Lieberman R, Pan J, Zhang Q, You M. Rad52 deficiency decreases development of lung squamous cell carcinomas by enhancing immuno-surveillance. Oncotarget 2018; 8:34032-34044. [PMID: 28415565 PMCID: PMC5470949 DOI: 10.18632/oncotarget.16371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023] Open
Abstract
RAD52 is involved in homologous recombination and DNA repair. This study focuses on lung cancer progression and how the DNA repair gene, Rad52, enables tumor cells to have sufficient genome integrity, i.e., the ability to repair lethal DNA damage, to avoid cell death. In this report, we analyze the phenotypic differences between wild type and Rad52-/- in inhibition of tumor phenotypes including cell growth, viability, cytolysis, and immune profiling. We demonstrated that loss of Rad52 not only increases the death of cells undergoing carcinogen-induced transformation in vivo, but that Rad52 loss also augments in vivo antitumor activity through an enhanced capacity for direct killing of LLC tumor cells by stimulated Rad52-/- NK and CD8+ T cells. We hypothesize that upon DNA damage, wild type cells attempt to repair DNA lesions, but those cells that survive will continue to divide with damage and a high likelihood of progressing to malignancy. Loss of Rad52, however, appears to increase genomic instability beyond a manageable threshold, acceding the damaged cells to death before they are able to become tumor cells. Our results suggest a key role for the complex interplay between the DNA damage response and host immunity in determining risk for Squamous Cell Lung Carcinoma.
Collapse
Affiliation(s)
- Rachel Lieberman
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jing Pan
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qi Zhang
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ming You
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
40
|
García-Calderón CB, Bejarano-García JA, Tinoco-Gago I, Castro MJ, Moreno-Gordillo P, Piruat JI, Caballero-Velázquez T, Pérez-Simón JA, Rosado IV. Genotoxicity of tetrahydrofolic acid to hematopoietic stem and progenitor cells. Cell Death Differ 2018; 25:1967-1979. [PMID: 29511342 DOI: 10.1038/s41418-018-0089-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/19/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolically reactive formaldehyde is a genotoxin and a carcinogen. Mice lacking the main formaldehyde-detoxifying gene Adh5 combined with the loss of the Fanconi anemia (FA) DNA repair pathway rapidly succumbed to bone marrow failure (BMF) primarily due to the extensive ablation of the hematopoietic stem cell (HSC) pool. However, the mechanism by which formaldehyde mediates these toxic effects is still unknown. We uncover a detrimental role of tetrahydrofolic acid (THF) in cells lacking Adh5 or the FA repair pathway. We show that Adh5- or FA-deficient cells are hypersensitive to formaldehyde and to THF, presenting DNA damage and genome instability. THF cytotoxicity involved imbalance of the nucleotide pool by deregulation of the thymidylate synthase (TYMS) enzyme, which stalled replication forks. In mice, THF exposure had widespread effects on hematopoiesis, affecting the frequency and the viability of myeloid- and lymphoid-committed precursor cells. Moreover, the hematopoietic stem and progenitor cells (HSPC) showed genomic instability, reduced colony-forming capacity and increased frequency of cycling and apoptotic HSCs upon THF exposure. Overall, our data reveal that the physiological pool of THF and formaldehyde challenge the stability of the genome of HSPCs that might lead to blood disorders.
Collapse
Affiliation(s)
- Clara B García-Calderón
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - José Antonio Bejarano-García
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - Isabel Tinoco-Gago
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - María José Castro
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - Paula Moreno-Gordillo
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain
| | - José I Piruat
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain.,Departamento de Hematología, Hospital Universitario Virgen del Rocío, 41013, Seville, Spain
| | - Teresa Caballero-Velázquez
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain.,Departamento de Hematología, Hospital Universitario Virgen del Rocío, 41013, Seville, Spain
| | - José A Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain.,Departamento de Hematología, Hospital Universitario Virgen del Rocío, 41013, Seville, Spain
| | - Iván V Rosado
- Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla/Campus Hospital Universitario Vírgen del Rocío, 41013, Seville, Spain. .,Departamento de Genética, Universidad de Sevilla, 41013, Seville, Spain.
| |
Collapse
|
41
|
Mendlovic F, Cruz-Rivera M, Diaz-Gandarilla JA, Flores-Torres MA, Avila G, Perfiliev M, Salazar AM, Arriaga-Pizano L, Ostrosky-Wegman P, Flisser A. Orally administered Taenia solium Calreticulin prevents experimental intestinal inflammation and is associated with a type 2 immune response. PLoS One 2017; 12:e0186510. [PMID: 29036211 PMCID: PMC5643116 DOI: 10.1371/journal.pone.0186510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/03/2017] [Indexed: 01/15/2023] Open
Abstract
Intestinal helminth antigens are inducers of type 2 responses and can elicit regulatory immune responses, resulting in dampened inflammation. Several platyhelminth proteins with anti-inflammatory activity have been reported. We have identified, cloned and expressed the Taenia solium calreticulin (rTsCRT) and shown that it predominantly induces a type 2 response characterized by IgG1, IL-4 and IL-5 production in mice. Here, we report the rTsCRT anti-inflammatory activity in a well-known experimental colitis murine model. Mice were orally immunized with purified rTsCRT and colitis was induced with trinitrobenzene sulfonic acid (TNBS). Clinical signs of disease, macroscopic and microscopic tissue inflammation, cytokine production and micronuclei formation, as a marker of genotoxicity, were measured in order to assess the effect of rTsCRT immunization on experimentally induced colitis. rTsCRT administration prior to TNBS instillation significantly reduced the inflammatory parameters, including the acute phase cytokines TNF-α, IL-1β and IL-6. Dampened inflammation was associated with increased local expression of IL-13 and systemic IL-10 and TGF-β production. Genotoxic damage produced by the inflammatory response was also precluded. Our results show that oral treatment with rTsCRT prevents excessive TNBS-induced inflammation in mice and suggest that rTsCRT has immunomodulatory properties associated with the expression of type 2 and regulatory cytokines commonly observed in other helminths.
Collapse
Affiliation(s)
- Fela Mendlovic
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Estado de Mexico, Mexico
- * E-mail:
| | - Mayra Cruz-Rivera
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Jose Alfredo Diaz-Gandarilla
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
- Division Academica Multidisciplinaria de Comalcalco, Universidad Juarez Autonoma de Tabasco, Comalcalco, Tabasco, Mexico
| | - Marco Antonio Flores-Torres
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Guillermina Avila
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Maria Perfiliev
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Ana Maria Salazar
- Departamento de Medicina Genomica y Toxicologıa Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Lourdes Arriaga-Pizano
- Unidad de Investigación Medica en Inmunoquimica, Hospital de Especialidades CMN "Siglo XXI", IMSS, Ciudad de Mexico, Mexico
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologıa Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Ana Flisser
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| |
Collapse
|
42
|
Kesimci E, Çoşkun E, Uğur G, Müderris T, İzdeş S, Karahalil B. Can Sevoflurane Induce Micronuclei Formation in Nasal Epithelial Cells of Adult Patients? Turk J Anaesthesiol Reanim 2017; 45:264-269. [PMID: 29114410 DOI: 10.5152/tjar.2017.09475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
Objective Volatile anaesthetics can inhibit the bronchociliary clearence in a dose- and time-dependend way. Moreover, they can have potential mutagenic/carcinogenic effects under chronic exposure. A genotoxicity test -micronuclei assay- was carried out in nasal epithelial cells to analyze the genotoxic effect of sevoflurane in adult patients undergoing general anesthesia. Methods In this study, micronucleus (MN) assay was conducted using nasal epithelial cells of 37 adult patients (age, 18-65 years) who underwent elective, minor, short surgical procedures under general anaesthesia with sevoflurane. Anaesthesia was induced and maintained using 8% sevoflurane (in 6 L min-1 of oxygen) and an inspired concentration of 2% in O2-air mixture, respectively. Nasal epithelial samples were collected at three time points: before anaesthesia induction (T1), after recovery from anaesthesia in the postanaesthesia care unit (T2) and on postoperative day 21 (T3). Results Sevoflurane significantly increased mean MN (‰) frequencies in nasal epithelial cells at T2 (6.97±2.33) and T3 (6.22±2.47) compared with those at T1 (3.84±1.89) (p<0.001). Similar result were observed for MN frequencies if the patients were analysed with regard to age (>40 or <40 years) or sex. Conclusion Short-term administration of sevoflurane anaesthesia induces MN formation in nasal epithelial cells of this patient population. Further studies are required for evaluation of the results. The prolonged administration of volatile anaesthetics in various risk groups and surgical protocols should be conducted for evaluating their safety.
Collapse
Affiliation(s)
- Elvin Kesimci
- Clinic of Anaesthesiology and Reanimation, Atatürk Training and Research Hospital, Ankara, Turkey
| | - Erdem Çoşkun
- Department of Toxicology, Gazi University School of Pharmacy Ankara, Turkey
| | - Gökçer Uğur
- Clinic of Anaesthesiology and Reanimation, Atatürk Training and Research Hospital, Ankara, Turkey
| | - Togay Müderris
- Clinic of Ear Nose and Throat Surgery, Ataturk Training and Research Hospital, Ankara, Turkey
| | - Seval İzdeş
- Department of Anaesthesiology and Reanimation, Yıldırım Beyazıt University School of Medicine, Ankara, Turkey
| | - Bensu Karahalil
- Department of Toxicology, Gazi University School of Pharmacy Ankara, Turkey
| |
Collapse
|
43
|
Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, Osborn RT, Wheeler AP, Nowotny M, Gilbert N, Chandra T, Reijns MAM, Jackson AP. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 2017; 548:461-465. [PMID: 28738408 PMCID: PMC5870830 DOI: 10.1038/nature23449] [Citation(s) in RCA: 1236] [Impact Index Per Article: 154.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/04/2017] [Indexed: 12/12/2022]
Abstract
DNA is strictly compartmentalized within the nucleus to prevent autoimmunity; despite this, cyclic GMP-AMP synthase (cGAS), a cytosolic sensor of double-stranded DNA, is activated in autoinflammatory disorders and by DNA damage. Precisely how cellular DNA gains access to the cytoplasm remains to be determined. Here, we report that cGAS localizes to micronuclei arising from genome instability in a mouse model of monogenic autoinflammation, after exogenous DNA damage and spontaneously in human cancer cells. Such micronuclei occur after mis-segregation of DNA during cell division and consist of chromatin surrounded by its own nuclear membrane. Breakdown of the micronuclear envelope, a process associated with chromothripsis, leads to rapid accumulation of cGAS, providing a mechanism by which self-DNA becomes exposed to the cytosol. cGAS is activated by chromatin, and consistent with a mitotic origin, micronuclei formation and the proinflammatory response following DNA damage are cell-cycle dependent. By combining live-cell laser microdissection with single cell transcriptomics, we establish that interferon-stimulated gene expression is induced in micronucleated cells. We therefore conclude that micronuclei represent an important source of immunostimulatory DNA. As micronuclei formed from lagging chromosomes also activate this pathway, recognition of micronuclei by cGAS may act as a cell-intrinsic immune surveillance mechanism that detects a range of neoplasia-inducing processes.
Collapse
Affiliation(s)
- Karen J Mackenzie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Paula Carroll
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Carol-Anne Martin
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Olga Murina
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Daniel J Simpson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Nelly Olova
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Hannah Sutcliffe
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jacqueline K Rainger
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrea Leitch
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ruby T Osborn
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ann P Wheeler
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Nick Gilbert
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Martin A M Reijns
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev 2017; 161:19-36. [PMID: 27013377 PMCID: PMC5490080 DOI: 10.1016/j.mad.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 01/31/2023]
Abstract
Aneuploidy and polyploidy are a form of Genomic Instability (GIN) known as Chromosomal Instability (CIN) characterized by sporadic abnormalities in chromosome copy numbers. Aneuploidy is commonly linked to pathological states. It is a hallmark of spontaneous abortions and birth defects and it is observed virtually in every human tumor, therefore being generally regarded as detrimental for the development or the maturation of tissues under physiological conditions. Polyploidy however, occurs as part of normal physiological processes during maturation and differentiation of some mammalian cell types. Surprisingly, high levels of aneuploidy are present in the brain, and their frequency increases with age suggesting that the brain is able to maintain its functionality in the presence of high levels of mosaic aneuploidy. Because somatic aneuploidy with age can reach exceptionally high levels, it is likely to have long-term adverse effects in this organ. We describe the mechanisms accountable for an abnormal DNA content with a particular emphasis on the CNS where cell division is limited. Next, we briefly summarize the types of GIN known to date and discuss how they interconnect with CIN. Lastly we highlight how several forms of CIN may contribute to genetic variation, tissue degeneration and disease in the CNS.
Collapse
Affiliation(s)
- Grasiella A Andriani
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department Ophthalmology and Visual Science, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA; Department of Pathology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| |
Collapse
|
45
|
Roussel-Gervais A, Naciri I, Kirsh O, Kasprzyk L, Velasco G, Grillo G, Dubus P, Defossez PA. Loss of the Methyl-CpG-Binding Protein ZBTB4 Alters Mitotic Checkpoint, Increases Aneuploidy, and Promotes Tumorigenesis. Cancer Res 2016; 77:62-73. [PMID: 27815388 DOI: 10.1158/0008-5472.can-16-1181] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/01/2016] [Accepted: 10/26/2016] [Indexed: 11/16/2022]
Abstract
Chromosome segregation during mitosis is monitored by the mitotic checkpoint and is dependent upon DNA methylation. ZBTB4 is a mammalian epigenetic regulator with high affinity for methylated CpGs that localizes at pericentromeric heterochromatin and is frequently downregulated in cancer. Here, we report that decreased ZBTB4 expression correlates with high genome instability across many frequent human cancers. In human cell lines, ZBTB4 depletion was sufficient to increase the prevalence of micronuclei and binucleated cells in parallel with aberrant mitotic checkpoint gene expression, a weakened mitotic checkpoint, and an increased frequency of lagging chromosomes during mitosis. To extend these findings, we generated Zbtb4-deficient mice. Zbtb4-/- mice were smaller than their wild-type littermates. Primary cells isolated from Zbtb4-/- mice exhibited diminished mitotic checkpoint activity, increased mitotic defects, aneuploid cells marked by a specific transcriptional signature, and increased genomic instability. Zbtb4-/- mice were also more susceptible to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA)-induced skin carcinogenesis. Our results establish the epigenetic regulator ZBTB4 as an essential component in maintaining genomic stability in mammals. Cancer Res; 77(1); 62-73. ©2016 AACR.
Collapse
Affiliation(s)
- Audrey Roussel-Gervais
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Ikrame Naciri
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Olivier Kirsh
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Laetitia Kasprzyk
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Guillaume Velasco
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Giacomo Grillo
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France
| | - Pierre Dubus
- University Bordeaux, UMR INSERM 1053, Bordeaux, France
| | - Pierre-Antoine Defossez
- University Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Paris, France.
| |
Collapse
|
46
|
Balmus G, Barros AC, Wijnhoven PWG, Lescale C, Hasse HL, Boroviak K, le Sage C, Doe B, Speak AO, Galli A, Jacobsen M, Deriano L, Adams DJ, Blackford AN, Jackson SP. Synthetic lethality between PAXX and XLF in mammalian development. Genes Dev 2016; 30:2152-2157. [PMID: 27798842 PMCID: PMC5088564 DOI: 10.1101/gad.290510.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
PAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf-/- mice, Paxx-/- mice are viable, grow normally, and are fertile but show mild radiosensitivity. Strikingly, while Paxx loss is epistatic with Ku80, Lig4, and Atm deficiency, Paxx/Xlf double-knockout mice display embryonic lethality associated with genomic instability, cell death in the central nervous system, and an almost complete block in lymphogenesis, phenotypes that closely resemble those of Xrcc4-/- and Lig4-/- mice. Thus, combined loss of Paxx and Xlf is synthetic-lethal in mammals.
Collapse
Affiliation(s)
- Gabriel Balmus
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
| | - Ana C Barros
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
| | - Paul W G Wijnhoven
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | - Chloé Lescale
- Department of Immunology, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Hélène Lenden Hasse
- Department of Immunology, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | | | - Carlos le Sage
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Brendan Doe
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
| | | | - Antonella Galli
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
| | | | - Ludovic Deriano
- Department of Immunology, University of Cambridge, Cambridge CB2 1GA, United Kingdom
- Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - David J Adams
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
| | - Andrew N Blackford
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Stephen P Jackson
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
47
|
McIntyre RE, Nicod J, Robles-Espinoza CD, Maciejowski J, Cai N, Hill J, Verstraten R, Iyer V, Rust AG, Balmus G, Mott R, Flint J, Adams DJ. A Genome-Wide Association Study for Regulators of Micronucleus Formation in Mice. G3 (BETHESDA, MD.) 2016; 6:2343-54. [PMID: 27233670 PMCID: PMC4978889 DOI: 10.1534/g3.116.030767] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 12/29/2022]
Abstract
In mammals the regulation of genomic instability plays a key role in tumor suppression and also controls genome plasticity, which is important for recombination during the processes of immunity and meiosis. Most studies to identify regulators of genomic instability have been performed in cells in culture or in systems that report on gross rearrangements of the genome, yet subtle differences in the level of genomic instability can contribute to whole organism phenotypes such as tumor predisposition. Here we performed a genome-wide association study in a population of 1379 outbred Crl:CFW(SW)-US_P08 mice to dissect the genetic landscape of micronucleus formation, a biomarker of chromosomal breaks, whole chromosome loss, and extranuclear DNA. Variation in micronucleus levels is a complex trait with a genome-wide heritability of 53.1%. We identify seven loci influencing micronucleus formation (false discovery rate <5%), and define candidate genes at each locus. Intriguingly at several loci we find evidence for sexual dimorphism in micronucleus formation, with a locus on chromosome 11 being specific to males.
Collapse
Affiliation(s)
- Rebecca E McIntyre
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Carla Daniela Robles-Espinoza
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico
| | - John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065
| | - Na Cai
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - Jennifer Hill
- Microbial Pathogenesis, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ruth Verstraten
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Vivek Iyer
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Alistair G Rust
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK Tumour Profiling Unit, The Institute of Cancer Research, London SW3 6JB, UK
| | - Gabriel Balmus
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, CB2 1QN, UK
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK UCL Genetics Institute, University College London, WC1E 6BT, UK
| | - Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
48
|
Zhang XH, Hu XD, Zhao SY, Xie LH, Miao YJ, Li Q, Min R, Liu PD, Zhang HQ. Methemoglobin-Based Biological Dose Assessment for Human Blood. HEALTH PHYSICS 2016; 111:30-36. [PMID: 27218292 DOI: 10.1097/hp.0000000000000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methemoglobin is an oxidative form of hemoglobin in erythrocytes. The authors' aim was to develop a new biological dosimeter based on a methemoglobin assay. Methemoglobin in peripheral blood (of females or males) that was exposed to a Co source (0.20 Gy min) was quantified using an enzyme-linked immunosorbent assay. The dose range was 0.5-8.0 Gy. In a time-course experiment, the time points 0, 0.02, 1, 2, 3, 7, 15, 21, and 30 d after 4-Gy irradiation of heparinized peripheral blood were used. Methemoglobin levels in a lysed erythrocyte pellet from the irradiated blood of females and males increased with the increasing dose. Methemoglobin levels in female blood irradiated with γ-doses more than 4 Gy were significantly higher than those in male samples at the same doses. Two dose-response relations were fitted to the straight line: one is with the correlation coefficient of 0.98 for females, and the other is with the correlation coefficient of 0.99 for males. The lower limit of dose assessment based on methemoglobin is about 1 Gy. Methemoglobin levels in blood as a result of auto-oxidation increase after 7-d storage at -20 °C. The upregulation of methemoglobin induced by γ-radiation persists for ∼3 d. The absorbed doses that were estimated using the two dose-response relations were close to the actual doses. The results suggest that methemoglobin can be used as a rapid and accurate biological dosimeter for early assessment of absorbed γ-dose in human blood.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- *Department of Nuclear Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210006, P.R. China; †Clincal Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China; ‡Division of Radiation Medicine, Department of Naval Medicine, Second Military Medical University, Shanghai 200433, P.R. China; §Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210018, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health. Toxicol Appl Pharmacol 2016; 294:11-20. [DOI: 10.1016/j.taap.2016.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/09/2016] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
|
50
|
Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos. Proc Natl Acad Sci U S A 2016; 113:626-31. [PMID: 26729872 DOI: 10.1073/pnas.1517628112] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis.
Collapse
|