1
|
Heisser RH, Bawa M, Shah J, Bu A, Raman R. Soft Biological Actuators for Meter-Scale Homeostatic Biohybrid Robots. Chem Rev 2025; 125:3976-4007. [PMID: 40138615 DOI: 10.1021/acs.chemrev.4c00785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Skeletal muscle's elegant protein-based architecture powers motion throughout the animal kingdom, with its constituent actomyosin complexes driving intra- and extra-cellular motion. Classical motors and recently developed soft actuators cannot match the packing density and contractility of individual muscle fibers that scale to power the motion of ants and elephants alike. Accordingly, the interdisciplinary fields of robotics and tissue engineering have combined efforts to build living muscle actuators that can power a new class of robots to be more energy-efficient, dexterous, and safe than existing motor-powered and hydraulic paradigms. Doing so ethically and at scale─creating meter-scale tissue constructs from sustainable muscle progenitor cell lines─has inspired innovations in biomaterials and tissue culture methodology. We weave discussions of muscle cell biology, materials chemistry, tissue engineering, and biohybrid design to review the state of the art in soft actuator biofabrication. Looking forward, we outline a vision for meter-scale biohybrid robotic systems and tie discussions of recent progress to long-term research goals.
Collapse
Affiliation(s)
- Ronald H Heisser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Jessica Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, Massachusetts 02142, United States of America
| | - Angel Bu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
2
|
Sadraei A, Naghib SM, Rabiee N. 4D printing biological stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 1. Expert Opin Drug Deliv 2025; 22:471-490. [PMID: 39939161 DOI: 10.1080/17425247.2025.2466772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The advent of 3D printing has revolutionized biomedical engineering, yet limitations in creating dynamic human tissues remain. The emergence of 4D printing, which introduces time as a fourth dimension, offers new possibilities by enabling the production of adaptable, stimuli-responsive structures. A thorough literature search was performed across various databases, including Google Scholar, PubMed, Scopus, and Web of Science, to identify pertinent studies published up to 2025. The search parameters were confined to articles published in English that concentrated on peer-reviewed clinical studies. AREAS COVERED This review explores the transition from 3D to 4D printing and focuses on stimuli-responsive materials, particularly hydrogels, which react to environmental changes. The literature search examined recent studies on the interaction of these materials with biological stimuli, emphasizing their application in tissue engineering and drug delivery applications. EXPERT OPINION 4D printing, combined with smart materials, holds immense promise for advancing biomedical treatments, including customized therapies and regenerative medicine. However, technological challenges must be addressed to realize its full potential.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Rossy T, Schwendeman L, Kohli S, Bawa M, Umashankar P, Habba R, Tchaicheeyan O, Lesman A, Raman R. Leveraging microtopography to pattern multi-oriented muscle actuators. Biomater Sci 2025. [PMID: 40084556 PMCID: PMC11907412 DOI: 10.1039/d4bm01017e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025]
Abstract
Engineering skeletal muscle tissue with precisely defined alignment is of significant importance for applications ranging from drug screening to biohybrid robotics. Aligning 2D contractile muscle monolayers, which are compatible with high-content imaging and can be deployed in planar soft robots, typically requires micropatterned cues. However, current protocols for integrating microscale topographical features in extracellular matrix hydrogels require expensive microfabrication equipment and multi-step procedures involving error-prone manual handling steps. To address this challenge, we present STAMP (simple templating of actuators via micro-topographical patterning), an easily accessible and cost-effective one-step method to pattern microtopography of various sizes and configurations on the surface of hydrogels using reusable 3D printed stamps. We demonstrate that STAMP enables precisely controlling the alignment of mouse and human skeletal muscle fibers without negatively impacting their maturation or function. To showcase the versatility of our technique, we designed a planar soft robot inspired by the iris, which leverages spatially segregated regions of concentric and radial muscle fibers to control pupil dilation. Optogenetic skeletal muscle fibers grown on a STAMPed iris substrates formed a multi-oriented actuator, and selective light stimulation of the radial and concentric fibers was used to control the function of the iris, including pupil constriction. Computational modeling of the biohybrid robot as an active bilayer matched experimental outcomes, showcasing the robustness of our STAMP method for designing, fabricating, and testing planar biohybrid robots capable of complex multi-DOF motion.
Collapse
Affiliation(s)
- Tamara Rossy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Laura Schwendeman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Sonika Kohli
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Maheera Bawa
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Pavankumar Umashankar
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Roi Habba
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, the Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Bu A, Afghah F, Castro N, Bawa M, Kohli S, Shah K, Rios B, Butty V, Raman R. Actuating Extracellular Matrices Decouple the Mechanical and Biochemical Effects of Muscle Contraction on Motor Neurons. Adv Healthc Mater 2025; 14:e2403712. [PMID: 39523700 PMCID: PMC11874633 DOI: 10.1002/adhm.202403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues. Motor neurons stimulated with exercised muscle-secreted factors significantly upregulate neurite outgrowth and migration, with an effect size dependent on muscle contraction intensity. Actuating magnetic microparticles embedded within fibrin hydrogels enable dynamically stretching motor neurons and non-invasively mimicking the mechanical effects of muscle contraction. Interestingly, axonogenesis is similarly upregulated in both mechanically and biochemically stimulated motor neurons, but RNA sequencing reveals different transcriptomic signatures between groups, with biochemical stimulation having a greater impact on cell signaling related to axonogenesis and synapse maturation. This study leverages actuating extracellular matrices to robustly validate a previously hypothesized role for muscle contraction in regulating motor neuron growth and maturation from the bottom-up through both mechanical and biochemical signaling.
Collapse
Affiliation(s)
- Angel Bu
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ferdows Afghah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Nicolas Castro
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Maheera Bawa
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sonika Kohli
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Karina Shah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Brandon Rios
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Vincent Butty
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ritu Raman
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
5
|
Hatano R, Smith AM, Raman R, Zamora JE, Bashir R, McCloskey KE. Comparing fabrication techniques for engineered cardiac tissue. J Biomed Mater Res A 2024; 112:1921-1929. [PMID: 38752415 DOI: 10.1002/jbm.a.37737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 09/03/2024]
Abstract
Tissue engineering can provide in vitro models for drug testing, disease modeling, and perhaps someday, tissue/organ replacements. For building 3D heart tissue, the alignment of cardiac cells or cardiomyocytes (CMs) is important in generating a synchronously contracting tissue. To that end, researchers have generated several fabrication methods for building heart tissue, but direct comparisons of pros and cons using the same cell source is lacking. Here, we derived cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) and compare the assembly of these cells using three fabrication methods: cardiospheres, muscle rings, and muscle strips. All three protocols successfully generated compacted tissue comprised of hiPSC-derived CMs stable for at least 2 weeks. The percentage of aligned cells was greatest in the muscle strip (55%) and the muscle ring (50%) compared with the relatively unaligned cardiospheres (35%). The iPSC-derived CMs within the muscle strip also exhibited the greatest elongation, with elongation factor at 2.0 compared with 1.5 for the muscle ring and 1.2 for the cardiospheres. This is the first direct comparison of various fabrication techniques using the same cell source.
Collapse
Affiliation(s)
- Rachel Hatano
- Graduate Program in Bioengineering and Small-scale Technologies, University of California, Merced, USA
| | - Ariell M Smith
- Bioengineering Department, University of California, Merced, USA
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jose E Zamora
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California, Merced, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Kara E McCloskey
- Graduate Program in Bioengineering and Small-scale Technologies, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
6
|
Raman R. Biofabrication of Living Actuators. Annu Rev Biomed Eng 2024; 26:223-245. [PMID: 38959387 DOI: 10.1146/annurev-bioeng-110122-013805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The impact of tissue engineering has extended beyond a traditional focus in medicine to the rapidly growing realm of biohybrid robotics. Leveraging living actuators as functional components in machines has been a central focus of this field, generating a range of compelling demonstrations of robots capable of muscle-powered swimming, walking, pumping, gripping, and even computation. In this review, we highlight key advances in fabricating tissue-scale cardiac and skeletal muscle actuators for a range of functional applications. We discuss areas for future growth including scalable manufacturing, integrated feedback control, and predictive modeling and also propose methods for ensuring inclusive and bioethics-focused pedagogy in this emerging discipline. We hope this review motivates the next generation of biomedical engineers to advance rational design and practical use of living machines for applications ranging from telesurgery to manufacturing to on- and off-world exploration.
Collapse
Affiliation(s)
- Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
7
|
Xu W, Burni FA, Raghavan SR. Reversibly Sticking Metals and Graphite to Hydrogels and Tissues. ACS CENTRAL SCIENCE 2024; 10:695-707. [PMID: 38559296 PMCID: PMC10979492 DOI: 10.1021/acscentsci.3c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 04/04/2024]
Abstract
We have discovered that hard, electrical conductors (e.g., metals or graphite) can be adhered to soft, aqueous materials (e.g., hydrogels, fruit, or animal tissue) without the use of an adhesive. The adhesion is induced by a low DC electric field. As an example, when 5 V DC is applied to graphite slabs spanning a tall cylindrical gel of acrylamide (AAm), a strong adhesion develops between the anode (+) and the gel in about 3 min. This adhesion endures after the field is removed, and we term it as hard-soft electroadhesion or EA[HS]. Depending on the material, adhesion occurs at the anode (+), cathode (-), or both electrodes. In many cases, EA[HS] can be reversed by reapplying the field with reversed polarity. Adhesion via EA[HS] to AAm gels follows the electrochemical series: e.g., it occurs with copper, lead, and tin but not nickel, iron, or zinc. We show that EA[HS] arises via electrochemical reactions that generate chemical bonds between the electrode and the polymers in the gel. EA[HS] can create new hybrid materials, thus enabling applications in robotics, energy storage, and biomedical implants. Interestingly, EA[HS] can even be achieved underwater, where typical adhesives cannot be used.
Collapse
Affiliation(s)
- Wenhao Xu
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Faraz A. Burni
- Department
of Chemical & Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| | - Srinivasa R. Raghavan
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
- Department
of Chemical & Biomolecular Engineering, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
8
|
Rousseau E, Raman R, Tamir T, Bu A, Srinivasan S, Lynch N, Langer R, White FM, Cima MJ. Actuated tissue engineered muscle grafts restore functional mobility after volumetric muscle loss. Biomaterials 2023; 302:122317. [PMID: 37717406 PMCID: PMC11512195 DOI: 10.1016/j.biomaterials.2023.122317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Damage that affects large volumes of skeletal muscle tissue can severely impact health, mobility, and quality-of-life. Efforts to restore muscle function by implanting tissue engineered muscle grafts at the site of damage have demonstrated limited restoration of force production. Various forms of mechanical and biochemical stimulation have been shown to have a potentially beneficial impact on graft maturation, vascularization, and innervation. However, these approaches yield unpredictable and incomplete recovery of functional mobility. Here we show that targeted actuation of implanted grafts, via non-invasive transcutaneous light stimulation of optogenetic engineered muscle, restores motor function to levels similar to healthy mice 2 weeks post-injury. Furthermore, we conduct phosphoproteomic analysis of actuated engineered muscle in vivo and in vitro to show that repeated muscle contraction alters signaling pathways that play key roles in skeletal muscle contractility, adaptation to injury, neurite growth, neuromuscular synapse formation, angiogenesis, and cytoskeletal remodeling. Our study uncovers changes in phosphorylation of several proteins previously unreported in the context of muscle contraction, revealing promising mechanisms for leveraging actuated muscle grafts to restore mobility after volumetric muscle loss.
Collapse
Affiliation(s)
- Erin Rousseau
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Ritu Raman
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA.
| | - Tigist Tamir
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Angel Bu
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Shriya Srinivasan
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Naomi Lynch
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA; Department of Biological Engineering, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, MIT, 77 Massachusetts Ave., Cambridge, MA, 02139, USA
| |
Collapse
|
9
|
Leng Y, Li X, Zheng F, Liu H, Wang C, Wang X, Liao Y, Liu J, Meng K, Yu J, Zhang J, Wang B, Tan Y, Liu M, Jia X, Li D, Li Y, Gu Z, Fan Y. Advances in In Vitro Models of Neuromuscular Junction: Focusing on Organ-on-a-Chip, Organoids, and Biohybrid Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211059. [PMID: 36934404 DOI: 10.1002/adma.202211059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Indexed: 06/18/2023]
Abstract
The neuromuscular junction (NMJ) is a peripheral synaptic connection between presynaptic motor neurons and postsynaptic skeletal muscle fibers that enables muscle contraction and voluntary motor movement. Many traumatic, neurodegenerative, and neuroimmunological diseases are classically believed to mainly affect either the neuronal or the muscle side of the NMJ, and treatment options are lacking. Recent advances in novel techniques have helped develop in vitro physiological and pathophysiological models of the NMJ as well as enable precise control and evaluation of its functions. This paper reviews the recent developments in in vitro NMJ models with 2D or 3D cultures, from organ-on-a-chip and organoids to biohybrid robotics. Related derivative techniques are introduced for functional analysis of the NMJ, such as the patch-clamp technique, microelectrode arrays, calcium imaging, and stimulus methods, particularly optogenetic-mediated light stimulation, microelectrode-mediated electrical stimulation, and biochemical stimulation. Finally, the applications of the in vitro NMJ models as disease models or for drug screening related to suitable neuromuscular diseases are summarized and their future development trends and challenges are discussed.
Collapse
Affiliation(s)
- Yubing Leng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaorui Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xudong Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yulong Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiangyue Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Kaiqi Meng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jiaheng Yu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Jingyi Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Binyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100083, China
| |
Collapse
|
10
|
Hegde C, Su J, Tan JMR, He K, Chen X, Magdassi S. Sensing in Soft Robotics. ACS NANO 2023; 17:15277-15307. [PMID: 37530475 PMCID: PMC10448757 DOI: 10.1021/acsnano.3c04089] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Soft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots. Therefore, soft robots must be equipped with sensors for better perception of their surroundings, location, force, temperature, shape, and other stimuli for effective usage. This review highlights recent progress in sensing feedback technologies for soft robotic applications. It begins with an introduction to actuation technologies and material selection in soft robotics, followed by an in-depth exploration of various types of sensors, their integration methods, and the benefits of multimodal sensing, signal processing, and control strategies. A short description of current market leaders in soft robotics is also included in the review to illustrate the growing demands of this technology. By examining the latest advancements in sensing feedback technologies for soft robots, this review aims to highlight the potential of soft robotics and inspire innovation in the field.
Collapse
Affiliation(s)
- Chidanand Hegde
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Jiangtao Su
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Joel Ming Rui Tan
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Ke He
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Xiaodong Chen
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Shlomo Magdassi
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
- Casali
Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
11
|
You JS, Kim Y, Lee S, Bashir R, Chen J. RhoA/ROCK signalling activated by ARHGEF3 promotes muscle weakness via autophagy in dystrophic mdx mice. J Cachexia Sarcopenia Muscle 2023. [PMID: 37311604 PMCID: PMC10401546 DOI: 10.1002/jcsm.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, leads to progressive and fatal muscle weakness through yet-to-be-fully deciphered molecular perturbations. Emerging evidence implicates RhoA/Rho-associated protein kinase (ROCK) signalling in DMD pathology, yet its direct role in DMD muscle function, and related mechanisms, are unknown. METHODS Three-dimensionally engineered dystrophin-deficient mdx skeletal muscles and mdx mice were used to test the role of ROCK in DMD muscle function in vitro and in situ, respectively. The role of ARHGEF3, one of the RhoA guanine nucleotide exchange factors (GEFs), in RhoA/ROCK signalling and DMD pathology was examined by generating Arhgef3 knockout mdx mice. The role of RhoA/ROCK signalling in mediating the function of ARHGEF3 was determined by evaluating the effects of wild-type or GEF-inactive ARHGEF3 overexpression with ROCK inhibitor treatment. To gain more mechanistic insights, autophagy flux and the role of autophagy were assessed in various conditions with chloroquine. RESULTS Inhibition of ROCK with Y-27632 improved muscle force production in 3D-engineered mdx muscles (+25% from three independent experiments, P < 0.05) and in mice (+25%, P < 0.001). Unlike suggested by previous studies, this improvement was independent of muscle differentiation or quantity and instead related to increased muscle quality. We found that ARHGEF3 was elevated and responsible for RhoA/ROCK activation in mdx muscles, and that depleting ARHGEF3 in mdx mice restored muscle quality (up to +36%, P < 0.01) and morphology without affecting regeneration. Conversely, overexpressing ARHGEF3 further compromised mdx muscle quality (-13% vs. empty vector control, P < 0.01) in GEF activity- and ROCK-dependent manner. Notably, ARHGEF3/ROCK inhibition exerted the effects by rescuing autophagy which is commonly impaired in dystrophic muscles. CONCLUSIONS Our findings uncover a new pathological mechanism of muscle weakness in DMD involving the ARHGEF3-ROCK-autophagy pathway and the therapeutic potential of targeting ARHGEF3 in DMD.
Collapse
Affiliation(s)
- Jae-Sung You
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yongdeok Kim
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Soohyun Lee
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, Illinois, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Liang X, Chen Z, Deng Y, Liu D, Liu X, Huang Q, Arai T. Field-Controlled Microrobots Fabricated by Photopolymerization. CYBORG AND BIONIC SYSTEMS 2023; 4:0009. [PMID: 37287461 PMCID: PMC10243896 DOI: 10.34133/cbsystems.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2024] Open
Abstract
Field-controlled microrobots have attracted extensive research in the biological and medical fields due to the prominent characteristics including high flexibility, small size, strong controllability, remote manipulation, and minimal damage to living organisms. However, the fabrication of these field-controlled microrobots with complex and high-precision 2- or 3-dimensional structures remains challenging. The photopolymerization technology is often chosen to fabricate field-controlled microrobots due to its fast-printing velocity, high accuracy, and high surface quality. This review categorizes the photopolymerization technologies utilized in the fabrication of field-controlled microrobots into stereolithography, digital light processing, and 2-photon polymerization. Furthermore, the photopolymerized microrobots actuated by different field forces and their functions are introduced. Finally, we conclude the future development and potential applications of photopolymerization for the fabrication of field-controlled microrobots.
Collapse
Affiliation(s)
- Xiyue Liang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhuo Chen
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yan Deng
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering,
The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
13
|
Hakim Khalili M, Zhang R, Wilson S, Goel S, Impey SA, Aria AI. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers (Basel) 2023; 15:2341. [PMID: 37242919 PMCID: PMC10221499 DOI: 10.3390/polym15102341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
Collapse
Affiliation(s)
- Mohammad Hakim Khalili
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Rujing Zhang
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Sandra Wilson
- Sophion Bioscience A/S, Baltorpvej 154, 2750 Copenhagen, Denmark; (R.Z.); (S.W.)
| | - Saurav Goel
- School of Engineering, London South Bank University, 103 Borough Road, London SE1 0AA, UK;
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Susan A. Impey
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| | - Adrianus Indrat Aria
- Surface Engineering and Precision Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; (M.H.K.); (S.A.I.)
| |
Collapse
|
14
|
Kim Y, Yang Y, Zhang X, Li Z, Vázquez-Guardado A, Park I, Wang J, Efimov AI, Dou Z, Wang Y, Park J, Luan H, Ni X, Kim YS, Baek J, Park JJ, Xie Z, Zhao H, Gazzola M, Rogers JA, Bashir R. Remote control of muscle-driven miniature robots with battery-free wireless optoelectronics. Sci Robot 2023; 8:eadd1053. [PMID: 36652505 DOI: 10.1126/scirobotics.add1053] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bioengineering approaches that combine living cellular components with three-dimensional scaffolds to generate motion can be used to develop a new generation of miniature robots. Integrating on-board electronics and remote control in these biological machines will enable various applications across engineering, biology, and medicine. Here, we present hybrid bioelectronic robots equipped with battery-free and microinorganic light-emitting diodes for wireless control and real-time communication. Centimeter-scale walking robots were computationally designed and optimized to host on-board optoelectronics with independent stimulation of multiple optogenetic skeletal muscles, achieving remote command of walking, turning, plowing, and transport functions both at individual and collective levels. This work paves the way toward a class of biohybrid machines able to combine biological actuation and sensing with on-board computing.
Collapse
Affiliation(s)
- Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaotian Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhengwei Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.,Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.,Department of Biomedical Sciences, University of Houston, Houston, TX 77204, USA
| | | | - Insu Park
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiaojiao Wang
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew I Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhi Dou
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Junehu Park
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yun Seong Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Janice Baek
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joshua Jaehyung Park
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mattia Gazzola
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John A Rogers
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.,Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.,Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rashid Bashir
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Application of 4D printing and AI to cardiovascular devices. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants. Commun Biol 2022; 5:737. [PMID: 35869250 PMCID: PMC9307618 DOI: 10.1038/s42003-022-03593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRecent advances in tissue engineering and biofabrication technology have yielded a plethora of biological tissues. Among these, engineering of bioartificial muscle stands out for its exceptional versatility and its wide range of applications. From the food industry to the technology sector and medicine, the development of this tissue has the potential to affect many different industries at once. However, to date, the biofabrication of cultured meat, biorobotic systems, and bioartificial muscle implants are still considered in isolation by individual peer groups. To establish common ground and share advances, this review outlines application-specific requirements for muscle tissue generation and provides a comprehensive overview of commonly used biofabrication strategies and current application trends. By solving the individual challenges and merging various expertise, synergetic leaps of innovation that inspire each other can be expected in all three industries in the future.
Collapse
|
17
|
Webster-Wood VA, Guix M, Xu NW, Behkam B, Sato H, Sarkar D, Sanchez S, Shimizu M, Parker KK. Biohybrid robots: recent progress, challenges, and perspectives. BIOINSPIRATION & BIOMIMETICS 2022; 18:015001. [PMID: 36265472 DOI: 10.1088/1748-3190/ac9c3b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The past ten years have seen the rapid expansion of the field of biohybrid robotics. By combining engineered, synthetic components with living biological materials, new robotics solutions have been developed that harness the adaptability of living muscles, the sensitivity of living sensory cells, and even the computational abilities of living neurons. Biohybrid robotics has taken the popular and scientific media by storm with advances in the field, moving biohybrid robotics out of science fiction and into real science and engineering. So how did we get here, and where should the field of biohybrid robotics go next? In this perspective, we first provide the historical context of crucial subareas of biohybrid robotics by reviewing the past 10+ years of advances in microorganism-bots and sperm-bots, cyborgs, and tissue-based robots. We then present critical challenges facing the field and provide our perspectives on the vital future steps toward creating autonomous living machines.
Collapse
Affiliation(s)
- Victoria A Webster-Wood
- Mechanical Engineering, Biomedical Engineering (by courtesy), McGowan Institute of Regenerative Medicine, Carnegie Mellon University, Pittsburgh, PA 15116, United States of America
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional Barcelona, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Nicole W Xu
- Laboratories for Computational Physics and Fluid Dynamics, U.S. Naval Research Laboratory, Code 6041, Washington, DC, United States of America
| | - Bahareh Behkam
- Department of Mechanical Engineering, Institute for Critical Technology and Applied Science, Blacksburg, VA 24061, United States of America
| | - Hirotaka Sato
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 65 Nanyang Drive, Singapore, 637460, Singapore
| | - Deblina Sarkar
- MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Samuel Sanchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Avda. Lluis Companys 23, 08010 Barcelona, Spain
| | - Masahiro Shimizu
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-machi, Toyonaka, Osaka, Japan
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
18
|
Ze Y, Wang R, Deng H, Zhou Z, Chen X, Huang L, Yao Y. Three-dimensional bioprinting: A cutting-edge tool for designing and fabricating engineered living materials. BIOMATERIALS ADVANCES 2022; 140:213053. [PMID: 35964390 DOI: 10.1016/j.bioadv.2022.213053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The design of engineered living materials (ELMs) is an emerging field developed from synthetic biology and materials science principles. ELMs are multi-scale bulk materials that combine the properties of self-healing and organism adaptability with the designed physicochemical or mechanical properties for functional applications in various fields, including therapy, electronics, and architecture. Among the many ELM design and manufacturing methods, three-dimensional (3D) bioprinting stands out for its precise control over the structure of the fabricated constructs and the spatial distribution of cells. In this review, we summarize the progress in the field, cell type and material selection, and the latest applications of 3D bioprinting to manufacture ELMs, as well as their advantages and limitations, hoping to deepen our understanding and provide new insights into ELM design. We believe that 3D bioprinting will become an important development direction and provide more contributions to this field.
Collapse
Affiliation(s)
- Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruixin Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanzhi Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zheqing Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoju Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
19
|
Wang J, Wang Y, Kim Y, Yu T, Bashir R. Multi-actuator light-controlled biological robots. APL Bioeng 2022; 6:036103. [PMID: 36035771 PMCID: PMC9417571 DOI: 10.1063/5.0091507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
Biohybrid robots, composed of cellular actuators and synthetic scaffolds, have garnered much attention in recent years owing to the advantages provided by their biological components. In recent years, various forms of biohybrid robots have been developed that are capable of life-like movements, such as walking, swimming, and gripping. Specifically, for walking or crawling biorobots, there is a need for complex functionality and versatile and robust fabrication processes. Here, we designed and fabricated multi-actuator biohybrid walkers with multi-directional walking capabilities in response to noninvasive optical stimulation through a scalable modular biofabrication process. Our new fabrication approach provides a constant mechanical strain throughout the cellular differentiation and maturation process. This maximizes the myotube formation and alignment, limits passive bending, and produces higher active forces. These demonstrations of the new fabrication process and bioactuator designs can pave the way for advanced multi-cellular biohybrid robots and enhance our understanding of the emergent behaviors of these multi-cellular engineered living systems.
Collapse
Affiliation(s)
| | | | | | - Tianqi Yu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | |
Collapse
|
20
|
Wang J, Soto F, Ma P, Ahmed R, Yang H, Chen S, Wang J, Liu C, Akin D, Fu K, Cao X, Chen P, Hsu EC, Soh HT, Stoyanova T, Wu JC, Demirci U. Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS NANO 2022; 16:10219-10230. [PMID: 35671037 DOI: 10.1021/acsnano.2c01908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Fernando Soto
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Peng Ma
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Rajib Ahmed
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Sihan Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Jibo Wang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Demir Akin
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Kaiyu Fu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - En-Chi Hsu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Hyongsok Tom Soh
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Utkan Demirci
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| |
Collapse
|
21
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
22
|
Ramos DM, Abdulmalik S, Arul MR, Sardashti N, Banasavadi-Siddegowda YK, Nukavarapu SP, Drissi H, Kumbar SG. Insulin-Functionalized Bioactive Fiber Matrices with Bone Marrow-Derived Stem Cells in Rat Achilles Tendon Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:2851-2861. [PMID: 35642544 DOI: 10.1021/acsabm.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Approximately half of annual musculoskeletal injuries in the US involve tendon tears. The naturally hypocellular and hypovascular tendon environment makes tendons injury-prone and heal slowly. Tendon tissue engineering strategies often use biomimetic scaffolds combined with bioactive factors and/or cells to enhance healing. FDA-approved growth factors to promote tendon healing are lacking, which highlights the need for safe and effective bioactive factors. Our previous work evaluated insulin as a bioactive factor and identified an optimal dose to promote in vitro mesenchymal stem cell survival, division, and tenogenesis. The present work evaluates the ability of insulin-functionalized electrospun nanofiber matrices with or without mesenchymal stem cells to enhance tendon repair in a rat Achilles injury model. Electrospun nanofiber matrices were functionalized with insulin, cultured with or without mesenchymal stem cells, and sutured to transected Achilles tendons in rats. We analyzed rat tendons 4 and 8 weeks after surgery for the tendon morphology, collagen production, and mechanical properties. Bioactive insulin-functionalized fiber matrices with mesenchymal stem cells resulted in significantly increased collagen I and III at 4 and 8 weeks postsurgery. Additionally, these matrices supported highly aligned collagen fibrils in the regenerated tendon tissue at 8 weeks. However, treatment- and control-regenerated tissues had similar tensile properties at 8 weeks, which were less than that of the native Achilles tendon. Our preliminary results establish the benefits of insulin-functionalized fiber matrices in promoting higher levels of collagen synthesis and alignment needed for functional recovery of tendon repair.
Collapse
Affiliation(s)
- Daisy M Ramos
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael R Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States
| | - Naseem Sardashti
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yeshavanth Kumar Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Syam P Nukavarapu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hicham Drissi
- Department of Orthopedic Surgery, School of Medicine, Emory University, Atlanta, Georgia 30322-1007, United States
| | - Sangamesh G Kumbar
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Orthopedic Surgery, University of Connecticut Health, Farmington, Connecticut 06032-1941, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
23
|
Kim D, Shin M, Choi JH, Choi JW. Actuation-Augmented Biohybrid Robot by Hyaluronic Acid-Modified Au Nanoparticles in Muscle Bundles to Evaluate Drug Effects. ACS Sens 2022; 7:740-747. [PMID: 35138092 DOI: 10.1021/acssensors.1c02125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biohybrid robots, which comprise soft materials with biological components, have the potential to sense, respond, and adapt to changing environmental loads dynamically. Instead of humans and other living things, biohybrid robots can be used in various fields such as drug screening and toxicity assessment. In the actuation part, however, since a muscle cell-based biohybrid robot is limited in that the driving force is weak, it is difficult to evaluate drug and toxicological effects by distinguishing changes in the biohybrid robot's motion. To overcome this limitation, we introduced hyaluronic acid-modified gold nanoparticles (HA-AuNPs) into a muscle bundle-based biohybrid robot that moves forward in response to electrical stimulation. To enhance the actuation of muscle bundles, HA-AuNPs were embedded into the muscle bundles. The motion of the fabricated biohybrid robot was improved due to the enhanced differentiation and the improved electrical conductivity of muscle bundles by HA-AuNPs. In addition, the fabricated biohybrid robot exhibited huge changes in motion with respect to the addition of positive and negative inotropic drugs. The proposed biohybrid robot has the potential for neuromuscular disease drug screening by incorporating nervous tissues such as motor neuron organoids and brain organoids.
Collapse
Affiliation(s)
- Dongyeon Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
24
|
Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. NATURE REVIEWS. MATERIALS 2022; 7:235-249. [PMID: 35474944 PMCID: PMC7612659 DOI: 10.1038/s41578-021-00389-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.
Collapse
Affiliation(s)
- Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| |
Collapse
|
25
|
Aydin O, Passaro AP, Raman R, Spellicy SE, Weinberg RP, Kamm RD, Sample M, Truskey GA, Zartman J, Dar RD, Palacios S, Wang J, Tordoff J, Montserrat N, Bashir R, Saif MTA, Weiss R. Principles for the design of multicellular engineered living systems. APL Bioeng 2022; 6:010903. [PMID: 35274072 PMCID: PMC8893975 DOI: 10.1063/5.0076635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Remarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell-cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the "black box" of living cells.
Collapse
Affiliation(s)
| | - Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | - Ritu Raman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - Robert P. Weinberg
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts 02115, USA
| | | | - Matthew Sample
- Center for Ethics and Law in the Life Sciences, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - George A. Truskey
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sebastian Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jesse Tordoff
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | | | - M. Taher A. Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ron Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
26
|
Blake C, Massey O, Boyd-Moss M, Firipis K, Rifai A, Franks S, Quigley A, Kapsa R, Nisbet DR, Williams RJ. Replace and repair: Biomimetic bioprinting for effective muscle engineering. APL Bioeng 2021; 5:031502. [PMID: 34258499 PMCID: PMC8270648 DOI: 10.1063/5.0040764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 12/24/2022] Open
Abstract
The debilitating effects of muscle damage, either through ischemic injury or volumetric muscle loss (VML), can have significant impacts on patients, and yet there are few effective treatments. This challenge arises when function is degraded due to significant amounts of skeletal muscle loss, beyond the regenerative ability of endogenous repair mechanisms. Currently available surgical interventions for VML are quite invasive and cannot typically restore function adequately. In response to this, many new bioengineering studies implicate 3D bioprinting as a viable option. Bioprinting for VML repair includes three distinct phases: printing and seeding, growth and maturation, and implantation and application. Although this 3D bioprinting technology has existed for several decades, the advent of more advanced and novel printing techniques has brought us closer to clinical applications. Recent studies have overcome previous limitations in diffusion distance with novel microchannel construct architectures and improved myotubule alignment with highly biomimetic nanostructures. These structures may also enhance angiogenic and nervous ingrowth post-implantation, though further research to improve these parameters has been limited. Inclusion of neural cells has also shown to improve myoblast maturation and development of neuromuscular junctions, bringing us one step closer to functional, implantable skeletal muscle constructs. Given the current state of skeletal muscle 3D bioprinting, the most pressing future avenues of research include furthering our understanding of the physical and biochemical mechanisms of myotube development and expanding our control over macroscopic and microscopic construct structures. Further to this, current investigation needs to be expanded from immunocompromised rodent and murine myoblast models to more clinically applicable human cell lines as we move closer to viable therapeutic implementation.
Collapse
Affiliation(s)
- Cooper Blake
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Oliver Massey
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | | | | | | | - Stephanie Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | |
Collapse
|
27
|
Mestre R, García N, Patiño T, Guix M, Fuentes J, Valerio-Santiago M, Almiñana N, Sánchez S. 3D-bioengineered model of human skeletal muscle tissue with phenotypic features of aging for drug testing purposes. Biofabrication 2021; 13. [PMID: 34284359 DOI: 10.1088/1758-5090/ac165b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/20/2021] [Indexed: 01/20/2023]
Abstract
Three-dimensional engineering of skeletal muscle is becoming increasingly relevant for tissue engineering, disease modeling and bio-hybrid robotics, where flexible, versatile and multidisciplinary approaches for the evaluation of tissue differentiation, functionality and force measurement are required. This works presents a 3D-printed platform of bioengineered human skeletal muscle which can efficiently model the three-dimensional structure of native tissue, while providing information about force generation and contraction profiles. Proper differentiation and maturation of myocytes is demonstrated by the expression of key myo-proteins using immunocytochemistry and analyzed by confocal microscopy, and the functionality assessed via electrical stimulation and analysis of contraction kinetics. To validate the flexibility of this platform for complex tissue modeling, the bioengineered muscle is treated with tumor necrosis factorαto mimic the conditions of aging, which is supported by morphological and functional changes. Moreover, as a proof of concept, the effects of Argireline® Amplified peptide, a cosmetic ingredient that causes muscle relaxation, are evaluated in both healthy and aged tissue models. Therefore, the results demonstrate that this 3D-bioengineered human muscle platform could be used to assess morphological and functional changes in the aging process of muscular tissue with potential applications in biomedicine, cosmetics and bio-hybrid robotics.
Collapse
Affiliation(s)
- Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Nerea García
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.,Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Judith Fuentes
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Mauricio Valerio-Santiago
- Lubrizol Life Science Beauty. LipotecTM Active Ingredients, Isaac Peral 17 (Pol. Industrial Camí Ral), 08850 Gavà, Barcelona, Spain
| | - Núria Almiñana
- Lubrizol Life Science Beauty. LipotecTM Active Ingredients, Isaac Peral 17 (Pol. Industrial Camí Ral), 08850 Gavà, Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
28
|
Abstract
Abstract
In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored.
Graphic abstract
Collapse
|
29
|
Compliant 3D frameworks instrumented with strain sensors for characterization of millimeter-scale engineered muscle tissues. Proc Natl Acad Sci U S A 2021; 118:2100077118. [PMID: 33941674 DOI: 10.1073/pnas.2100077118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tissue-on-chip systems represent promising platforms for monitoring and controlling tissue functions in vitro for various purposes in biomedical research. The two-dimensional (2D) layouts of these constructs constrain the types of interactions that can be studied and limit their relevance to three-dimensional (3D) tissues. The development of 3D electronic scaffolds and microphysiological devices with geometries and functions tailored to realistic 3D tissues has the potential to create important possibilities in advanced sensing and control. This study presents classes of compliant 3D frameworks that incorporate microscale strain sensors for high-sensitivity measurements of contractile forces of engineered optogenetic muscle tissue rings, supported by quantitative simulations. Compared with traditional approaches based on optical microscopy, these 3D mechanical frameworks and sensing systems can measure not only motions but also contractile forces with high accuracy and high temporal resolution. Results of active tension force measurements of engineered muscle rings under different stimulation conditions in long-term monitoring settings for over 5 wk and in response to various chemical and drug doses demonstrate the utility of such platforms in sensing and modulation of muscle and other tissues. Possibilities for applications range from drug screening and disease modeling to biohybrid robotic engineering.
Collapse
|
30
|
Guix M, Mestre R, Patiño T, De Corato M, Fuentes J, Zarpellon G, Sánchez S. Biohybrid soft robots with self-stimulating skeletons. Sci Robot 2021; 6:6/53/eabe7577. [PMID: 34043566 DOI: 10.1126/scirobotics.abe7577] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Bioinspired hybrid soft robots that combine living and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e., swimmers, crawlers, and walkers). The integration of biological components offers unique characteristics that artificial materials cannot precisely replicate, such as adaptability and response to external stimuli. Here, we present a skeletal muscle-based swimming biobot with a three-dimensional (3D)-printed serpentine spring skeleton that provides mechanical integrity and self-stimulation during the cell maturation process. The restoring force inherent to the spring system allows a dynamic skeleton compliance upon spontaneous muscle contraction, leading to a cyclic mechanical stimulation process that improves the muscle force output without external stimuli. Optimization of the 3D-printed skeletons is carried out by studying the geometrical stiffnesses of different designs via finite element analysis. Upon electrical actuation of the muscle tissue, two types of motion mechanisms are experimentally observed: directional swimming when the biobot is at the liquid-air interface and coasting motion when it is near the bottom surface. The integrated compliant skeleton provides both the mechanical self-stimulation and the required asymmetry for directional motion, displaying its maximum velocity at 5 hertz (800 micrometers per second, 3 body lengths per second). This skeletal muscle-based biohybrid swimmer attains speeds comparable with those of cardiac-based biohybrid robots and outperforms other muscle-based swimmers. The integration of serpentine-like structures in hybrid robotic systems allows self-stimulation processes that could lead to higher force outputs in current and future biomimetic robotic platforms.
Collapse
Affiliation(s)
- Maria Guix
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.
| | - Rafael Mestre
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.,Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Marco De Corato
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Judith Fuentes
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Giulia Zarpellon
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
31
|
Zhang F, Li S, Shen Z, Cheng X, Xue Z, Zhang H, Song H, Bai K, Yan D, Wang H, Zhang Y, Huang Y. Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. Proc Natl Acad Sci U S A 2021; 118:e2026414118. [PMID: 33836614 PMCID: PMC7980465 DOI: 10.1073/pnas.2026414118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Zhangming Shen
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xu Cheng
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhaoguo Xue
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Hang Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Honglie Song
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ke Bai
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Dongjia Yan
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Yihui Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| |
Collapse
|
32
|
Gao L, Akhtar MU, Yang F, Ahmad S, He J, Lian Q, Cheng W, Zhang J, Li D. Recent progress in engineering functional biohybrid robots actuated by living cells. Acta Biomater 2021; 121:29-40. [PMID: 33285324 DOI: 10.1016/j.actbio.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
Living cells are highly scalable biological actuators found in nature, and they are efficient technological solutions to actuate robotic systems. Recent advancements in biofabrication and tissue engineering have bridged the gap to interface muscle cells with artificial technology. In this review, we summarize the recent progress in engineering the attributes of individual components for the development of fully functional biohybrid robots. First, we address the fabrication of biological actuators for biohybrid robots with muscle cells and tissues, including cardiomyocytes, skeletal muscles, insect tissues, and neuromuscular tissues, in well-organized pattern of 2D sheets and 3D constructs. Next, we discuss the performance of biohybrid robots for various biomimetic tasks such as swimming, walking, gripping, and pumping. Finally, the challenges and future directions in the development of biohybrid robots are described from different viewpoints of living material engineering, multiscale modeling, 3D printing for manufacturing, and multifunctional robotic system development.
Collapse
|
33
|
Lee JM, Yeong WY. Engineering macroscale cell alignment through coordinated toolpath design using support-assisted 3D bioprinting. J R Soc Interface 2020; 17:20200294. [PMID: 32674709 DOI: 10.1098/rsif.2020.0294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aligned cells provide direction-dependent mechanical properties that influence biological and mechanical function in native tissues. Alignment techniques such as casting and uniaxial stretching cannot fully replicate the complex fibre orientation of native tissue such as the heart. In this study, bioprinting is used to direct the orientation of cell alignment. A 0°-90° grid structure was printed to assess the robustness of the support-assisted bioprinting technique. The variation in the angles of the grid pattern is designed to mimic the differences in fibril orientation of native tissues, where angles of cell alignment vary across the different layers. Through bioprinting of a cell-hydrogel mixture, C2C12 cells displayed directed alignment along the longitudinal axis of printed struts. Cell alignment is induced through firstly establishing structurally stable constructs (i.e. distinct 0°-90° structures) and secondly, allowing cells to dynamically remodel the bioprinted construct. Herein reports a method of inducing a macroscale level of controlled cell alignment with angle variation. This was not achievable both in terms of methods (i.e. conventional alignment techniques such as stretching and electrical stimulation) and magnitude (i.e. hydrogel features with less than 100 µm features).
Collapse
Affiliation(s)
- Jia Min Lee
- Singapore Centre for 3D Printing (SC3DP), Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
34
|
Kaufman CD, Liu SC, Cvetkovic C, Lee CA, Naseri Kouzehgarani G, Gillette R, Bashir R, Gillette MU. Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator. APL Bioeng 2020; 4:026104. [PMID: 32548540 PMCID: PMC7190368 DOI: 10.1063/1.5121440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/26/2020] [Indexed: 01/25/2023] Open
Abstract
Three-dimensional (3D) biomimetic systems hold great promise for the study of biological systems in vitro as well as for the development and testing of pharmaceuticals. Here, we test the hypothesis that an intact segment of lumbar rat spinal cord will form functional neuromuscular junctions (NMJs) with engineered, 3D muscle tissue, mimicking the partial development of the peripheral nervous system (PNS). Muscle tissues are grown on a 3D-printed polyethylene glycol (PEG) skeleton where deflection of the backbone due to muscle contraction causes the displacement of the pillar-like "feet." We show that spinal cord explants extend a robust and complex arbor of motor neurons and glia in vitro. We then engineered a "spinobot" by innervating the muscle tissue with an intact segment of lumbar spinal cord that houses the hindlimb locomotor central pattern generator (CPG). Within 7 days of the spinal cord being introduced to the muscle tissue, functional neuromuscular junctions (NMJs) are formed, resulting in the development of an early PNS in vitro. The newly innervated muscles exhibit spontaneous contractions as measured by the displacement of pillars on the PEG skeleton. Upon chemical excitation, the spinal cord-muscle system initiated muscular twitches with a consistent frequency pattern. These sequences of contraction/relaxation suggest the action of a spinal CPG. Chemical inhibition with a blocker of neuronal glutamate receptors effectively blocked contractions. Overall, these data demonstrate that a rat spinal cord is capable of forming functional neuromuscular junctions ex vivo with an engineered muscle tissue at an ontogenetically similar timescale.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. U. Gillette
- Author to whom correspondence should be addressed:. Tel.: 217-244-1355
| |
Collapse
|
35
|
Abstract
Building on the recent progress of four-dimensional (4D) printing to produce dynamic structures, this study aimed to bring this technology to the next level by introducing control-based 4D printing to develop adaptive 4D-printed systems with highly versatile multi-disciplinary applications, including medicine, in the form of assisted soft robots, smart textiles as wearable electronics and other industries such as agriculture and microfluidics. This study introduced and analysed adaptive 4D-printed systems with an advanced manufacturing approach for developing stimuli-responsive constructs that organically adapted to environmental dynamic situations and uncertainties as nature does. The adaptive 4D-printed systems incorporated synergic integration of three-dimensional (3D)-printed sensors into 4D-printing and control units, which could be assembled and programmed to transform their shapes based on the assigned tasks and environmental stimuli. This paper demonstrates the adaptivity of these systems via a combination of proprioceptive sensory feedback, modeling and controllers, as well as the challenges and future opportunities they present.
Collapse
|
36
|
Rehor I, Maslen C, Moerman PG, van Ravensteijn BGP, van Alst R, Groenewold J, Eral HB, Kegel WK. Photoresponsive Hydrogel Microcrawlers Exploit Friction Hysteresis to Crawl by Reciprocal Actuation. Soft Robot 2020; 8:10-18. [PMID: 32320334 DOI: 10.1089/soro.2019.0169] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mimicking the locomotive abilities of living organisms on the microscale, where the downsizing of rigid parts and circuitry presents inherent problems, is a complex feat. In nature, many soft-bodied organisms (inchworm, leech) have evolved simple, yet efficient locomotion strategies in which reciprocal actuation cycles synchronize with spatiotemporal modulation of friction between their bodies and environment. We developed microscopic (∼100 μm) hydrogel crawlers that move in aqueous environment through spatiotemporal modulation of the friction between their bodies and the substrate. Thermo-responsive poly-n-isopropyl acrylamide hydrogels loaded with gold nanoparticles shrink locally and reversibly when heated photothermally with laser light. The out-of-equilibrium collapse and reswelling of the hydrogel is responsible for asymmetric changes in the friction between the actuating section of the crawler and the substrate. This friction hysteresis, together with off-centered irradiation, results in directional motion of the crawler. We developed a model that predicts the order of magnitude of the crawler motion (within 50%) and agrees with the observed experimental trends. Crawler trajectories can be controlled enabling applications of the crawler as micromanipulator that can push small cargo along a surface.
Collapse
Affiliation(s)
- Ivan Rehor
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Charlie Maslen
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
| | - Pepijn G Moerman
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Bas G P van Ravensteijn
- Netherlands Organization for Applied Scientific Research (TNO), Materials Solutions, Eindhoven, The Netherlands
| | - Renee van Alst
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Jan Groenewold
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, China
| | - Huseyin Burak Eral
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.,Process and Energy Laboratory, 3ME Faculty, TU Delft, Delft, The Netherlands
| | - Willem K Kegel
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Raman R, Langer R. Biohybrid Design Gets Personal: New Materials for Patient-Specific Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901969. [PMID: 31271257 PMCID: PMC6942246 DOI: 10.1002/adma.201901969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/15/2019] [Indexed: 05/08/2023]
Abstract
Precision medicine requires materials and devices that can sense and adapt to dynamic physiological and pathological conditions. This motivates the design and manufacture of biohybrid materials that mimic the responsive behaviors demonstrated by natural biological systems. Two parallel approaches to biohybrid design are presented-biomimetics and biointegration. Biohybrid hydrogels that mimic the form and function of natural materials, or that integrate living cells or bioactive moieties, can respond to a range of environmental stimuli in parallel, including heat, light, pH, hydration, enzymes, and electric, mechanical, and magnetic forces. A range of examples that illustrate the tremendous potential of this nascent discipline are presented, and ongoing technical challenges related to manufacturing, storage, transport, and external noninvasive control of these materials that will need to be overcome in the coming years are outlined. The ethical, educational, and regulatory challenges that will govern translation of biohybrid design into medical applications are also discussed. Personalized medical therapies that target the precise needs of patients are a critically needed and expanding market. Biohybrid design offers the unique ability to manufacture materials and devices that match the dynamic and patient-specific in vivo environment, promising to generate more effective and safe therapies that enable personalized care.
Collapse
Affiliation(s)
- Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA, 02142, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA, 02142, USA
| |
Collapse
|
38
|
Guo Z, Richardson JJ, Kong B, Liang K. Nanobiohybrids: Materials approaches for bioaugmentation. SCIENCE ADVANCES 2020; 6:eaaz0330. [PMID: 32206719 PMCID: PMC7080450 DOI: 10.1126/sciadv.aaz0330] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/20/2019] [Indexed: 05/10/2023]
Abstract
Nanobiohybrids, synthesized by integrating functional nanomaterials with living systems, have emerged as an exciting branch of research at the interface of materials engineering and biological science. Nanobiohybrids use synthetic nanomaterials to impart organisms with emergent properties outside their scope of evolution. Consequently, they endow new or augmented properties that are either innate or exogenous, such as enhanced tolerance against stress, programmed metabolism and proliferation, artificial photosynthesis, or conductivity. Advances in new materials design and processing technologies made it possible to tailor the physicochemical properties of the nanomaterials coupled with the biological systems. To date, many different types of nanomaterials have been integrated with various biological systems from simple biomolecules to complex multicellular organisms. Here, we provide a critical overview of recent developments of nanobiohybrids that enable new or augmented biological functions that show promise in high-tech applications across many disciplines, including energy harvesting, biocatalysis, biosensing, medicine, and robotics.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and the Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200438 P. R. China
- Corresponding author. (B.K.); (K.L.)
| | - Kang Liang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
- Corresponding author. (B.K.); (K.L.)
| |
Collapse
|
39
|
Sun W, Starly B, Daly AC, Burdick JA, Groll J, Skeldon G, Shu W, Sakai Y, Shinohara M, Nishikawa M, Jang J, Cho DW, Nie M, Takeuchi S, Ostrovidov S, Khademhosseini A, Kamm RD, Mironov V, Moroni L, Ozbolat IT. The bioprinting roadmap. Biofabrication 2020; 12:022002. [DOI: 10.1088/1758-5090/ab5158] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Kim Y, Pagan-Diaz G, Gapinske L, Kim Y, Suh J, Solomon E, Harris JF, Nam S, Bashir R. Integration of Graphene Electrodes with 3D Skeletal Muscle Tissue Models. Adv Healthc Mater 2020; 9:e1901137. [PMID: 31944612 PMCID: PMC8029654 DOI: 10.1002/adhm.201901137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105 times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.
Collapse
Affiliation(s)
- Yongdeok Kim
- Department of Materials Science and Engineering and Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Gelson Pagan-Diaz
- Department of Bioengineering and Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Lauren Gapinske
- Department of Bioengineering and Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yerim Kim
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Judy Suh
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emilia Solomon
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | - SungWoo Nam
- Department of Mechanical Science and Engineering and Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rashid Bashir
- Department of Bioengineering, Nick J. Holonyak Micro and Nanotechnology Laboratory and Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
41
|
Sun L, Yu Y, Chen Z, Bian F, Ye F, Sun L, Zhao Y. Biohybrid robotics with living cell actuation. Chem Soc Rev 2020; 49:4043-4069. [DOI: 10.1039/d0cs00120a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review comprehensively discusses recent advances in the basic components, controlling methods and especially in the applications of biohybrid robots.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yunru Yu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Zhuoyue Chen
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- 210096 Nanjing
- China
| | - Fangfu Ye
- Wenzhou Institute
- University of Chinese Academy of Sciences
- Wenzhou
- China
- Beijing National Laboratory for Condensed Matter Physics
| | - Lingyun Sun
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology
- The Affiliated Drum Tower Hospital of Nanjing University Medical School
- 210008 Nanjing
- China
- Department of Rheumatology and Immunology
| |
Collapse
|
42
|
Electric Phenomenon: A Disregarded Tool in Tissue Engineering and Regenerative Medicine. Trends Biotechnol 2020; 38:24-49. [DOI: 10.1016/j.tibtech.2019.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
|
43
|
Pagan-Diaz GJ, Ramos-Cruz KP, Sam R, Kandel ME, Aydin O, Saif MTA, Popescu G, Bashir R. Engineering geometrical 3-dimensional untethered in vitro neural tissue mimic. Proc Natl Acad Sci U S A 2019; 116:25932-25940. [PMID: 31796592 PMCID: PMC6926042 DOI: 10.1073/pnas.1916138116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Formation of tissue models in 3 dimensions is more effective in recapitulating structure and function compared to their 2-dimensional (2D) counterparts. Formation of 3D engineered tissue to control shape and size can have important implications in biomedical research and in engineering applications such as biological soft robotics. While neural spheroids routinely are created during differentiation processes, further geometric control of in vitro neural models has not been demonstrated. Here, we present an approach to form functional in vitro neural tissue mimic (NTM) of different shapes using stem cells, a fibrin matrix, and 3D printed molds. We used murine-derived embryonic stem cells for optimizing cell-seeding protocols, characterization of the resulting internal structure of the construct, and remodeling of the extracellular matrix, as well as validation of electrophysiological activity. Then, we used these findings to biofabricate these constructs using neurons derived from human embryonic stem cells. This method can provide a large degree of design flexibility for development of in vitro functional neural tissue models of varying forms for therapeutic biomedical research, drug discovery, and disease modeling, and engineering applications.
Collapse
Affiliation(s)
- Gelson J Pagan-Diaz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Karla P Ramos-Cruz
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Richard Sam
- School of Molecular and Cellular Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Mikhail E Kandel
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Gabriel Popescu
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL 61801;
| |
Collapse
|
44
|
Appiah C, Arndt C, Siemsen K, Heitmann A, Staubitz A, Selhuber-Unkel C. Living Materials Herald a New Era in Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807747. [PMID: 31267628 DOI: 10.1002/adma.201807747] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/07/2019] [Indexed: 05/22/2023]
Abstract
Living beings have an unsurpassed range of ways to manipulate objects and interact with them. They can make autonomous decisions and can heal themselves. So far, a conventional robot cannot mimic this complexity even remotely. Classical robots are often used to help with lifting and gripping and thus to alleviate the effects of menial tasks. Sensors can render robots responsive, and artificial intelligence aims at enabling autonomous responses. Inanimate soft robots are a step in this direction, but it will only be in combination with living systems that full complexity will be achievable. The field of biohybrid soft robotics provides entirely new concepts to address current challenges, for example the ability to self-heal, enable a soft touch, or to show situational versatility. Therefore, "living materials" are at the heart of this review. Similarly to biological taxonomy, there is a recent effort for taxonomy of biohybrid soft robotics. Here, an expansion is proposed to take into account not only function and origin of biohybrid soft robotic components, but also the materials. This materials taxonomy key demonstrates visually that materials science will drive the development of the field of soft biohybrid robotics.
Collapse
Affiliation(s)
- Clement Appiah
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Christine Arndt
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Katharina Siemsen
- Institute for Materials Science, University of Kiel, Kaiserstr. 2, D-24143, Kiel, Germany
| | - Anne Heitmann
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
| | - Anne Staubitz
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Str. 7, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359, Bremen, Germany
- Otto-Diels-Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, D-24118, Kiel, Germany
| | | |
Collapse
|
45
|
Sample M, Boulicault M, Allen C, Bashir R, Hyun I, Levis M, Lowenthal C, Mertz D, Montserrat N, Palmer MJ, Saha K, Zartman J. Multi-cellular engineered living systems: building a community around responsible research on emergence. Biofabrication 2019; 11:043001. [PMID: 31158828 PMCID: PMC7551891 DOI: 10.1088/1758-5090/ab268c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ranging from miniaturized biological robots to organoids, multi-cellular engineered living systems (M-CELS) pose complex ethical and societal challenges. Some of these challenges, such as how to best distribute risks and benefits, are likely to arise in the development of any new technology. Other challenges arise specifically because of the particular characteristics of M-CELS. For example, as an engineered living system becomes increasingly complex, it may provoke societal debate about its moral considerability, perhaps necessitating protection from harm or recognition of positive moral and legal rights, particularly if derived from cells of human origin. The use of emergence-based principles in M-CELS development may also create unique challenges, making the technology difficult to fully control or predict in the laboratory as well as in applied medical or environmental settings. In response to these challenges, we argue that the M-CELS community has an obligation to systematically address the ethical and societal aspects of research and to seek input from and accountability to a broad range of stakeholders and publics. As a newly developing field, M-CELS has a significant opportunity to integrate ethically responsible norms and standards into its research and development practices from the start. With the aim of seizing this opportunity, we identify two general kinds of salient ethical issues arising from M-CELS research, and then present a set of commitments to and strategies for addressing these issues. If adopted, these commitments and strategies would help define M-CELS as not only an innovative field, but also as a model for responsible research and engineering.
Collapse
Affiliation(s)
- Matthew Sample
- Pragmatic Health Ethics Research Unit, Institut de recherches cliniques de Montreal and Department of Neurology and Neurosurgery, McGill University, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Grant L, Raman R, Cvetkovic C, Ferrall-Fairbanks MC, Pagan-Diaz GJ, Hadley P, Ko E, Platt MO, Bashir R. Long-Term Cryopreservation and Revival of Tissue-Engineered Skeletal Muscle. Tissue Eng Part A 2019; 25:1023-1036. [PMID: 30412045 PMCID: PMC6916121 DOI: 10.1089/ten.tea.2018.0202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 01/13/2023] Open
Abstract
IMPACT STATEMENT The ability to freeze, revive, and prolong the lifetime of tissue-engineered skeletal muscle without incurring any loss of function represents a significant advancement in the field of tissue engineering. Cryopreservation enables the efficient fabrication, storage, and shipment of these tissues. This in turn facilitates multidisciplinary collaboration between research groups, enabling advances in skeletal muscle regenerative medicine, organ-on-a-chip models of disease, drug testing, and soft robotics. Furthermore, the observation that freezing undifferentiated skeletal muscle enhances functional performance may motivate future studies developing stronger and more clinically relevant engineered muscle.
Collapse
Affiliation(s)
- Lauren Grant
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Caroline Cvetkovic
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Meghan C. Ferrall-Fairbanks
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Gelson J. Pagan-Diaz
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Pierce Hadley
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Eunkyung Ko
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
47
|
Affiliation(s)
- Ritu Raman
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
48
|
Chen H, Zhong J, Wang J, Huang R, Qiao X, Wang H, Tan Z. Enhanced growth and differentiation of myoblast cells grown on E-jet 3D printed platforms. Int J Nanomedicine 2019; 14:937-950. [PMID: 30787608 PMCID: PMC6366362 DOI: 10.2147/ijn.s193624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Skeletal muscle tissue engineering often involves the prefabrication of muscle tissues in vitro by differentiation and maturation of muscle precursor cells on a platform which provides an environment that facilitates the myogenic differentiation of the seeded cells. METHODS Poly lactic-co-glycolic acid (PLGA) 3D printed scaffolds, which simulate the highly complex structure of extracellular matrix (ECM), were fabricated by E-jet 3D printing in this study. The scaffolds were used as platforms, providing environment that aids in growth, differentiation and other properties of C2C12 myoblast cells. RESULTS The C2C12 myoblast cells grown on the PLGA 3D printed platforms had enhanced cell adhesion and proliferation. Moreover, the platforms were able to induce myogenic differentiation of the myoblast cells by promoting the formation of myotubes and up-regulating the expressions of myogenic genes (MyHC and MyOG). CONCLUSION The fabricated 3D printed platforms have excellent biocompatibility, thereby can potentially be used as functional cell culture platforms in skeletal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Haoxiang Chen
- College of Biology, Hunan University, Changsha, Hunan 410082, China,
| | - Juchang Zhong
- College of Biology, Hunan University, Changsha, Hunan 410082, China,
| | - Jian Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, China,
| | - Ruiying Huang
- College of Biology, Hunan University, Changsha, Hunan 410082, China,
| | - Xiaoyin Qiao
- College of Biology, Hunan University, Changsha, Hunan 410082, China,
| | - Honghui Wang
- College of Biology, Hunan University, Changsha, Hunan 410082, China,
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha, Hunan 410082, China,
| |
Collapse
|
49
|
Li Z, Seo Y, Aydin O, Elhebeary M, Kamm RD, Kong H, Saif MTA. Biohybrid valveless pump-bot powered by engineered skeletal muscle. Proc Natl Acad Sci U S A 2019; 116:1543-1548. [PMID: 30635415 PMCID: PMC6358718 DOI: 10.1073/pnas.1817682116] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pumps are critical life-sustaining components for all animals. At the earliest stages of life, the tubular embryonic heart works as a valveless pump capable of generating unidirectional blood flow. Inspired by this elementary pump, we developed an example of a biohybrid valveless pump-bot powered by engineered skeletal muscle. Our pump-bot consists of a soft hydrogel tube connected at both ends to a stiffer polydimethylsiloxane (PDMS) scaffold, creating an impedance mismatch. A contractile muscle ring wraps around the hydrogel tube at an off-center location, squeezing the tube with or without buckling it locally. Cyclic muscle contractions, spontaneous or electrically stimulated, further squeeze the tube, resulting in elastic waves that propagate along the soft tube and get reflected back at the soft/stiff tube boundaries. Asymmetric placement of muscle ring results in a time delay between the wave arrivals, thus establishing a net unidirectional fluid flow irrespective of whether the tube is buckled or not. Flow rates of up to 22.5 μL/min are achieved by the present pump-bot, which are at least three orders of magnitude higher than those from cardiomyocyte-powered valve pumps of similar size. Owning to its simple geometry, robustness, ease of fabrication, and high pumping performance, our pump-bot is particularly well-suited for a wide range of biomedical applications in microfluidics, drug delivery, biomedical devices, cardiovascular pumping system, and more.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yongbeom Seo
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Onur Aydin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mohamed Elhebeary
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
50
|
Kamm RD, Bashir R, Arora N, Dar RD, Gillette MU, Griffith LG, Kemp ML, Kinlaw K, Levin M, Martin AC, McDevitt TC, Nerem RM, Powers MJ, Saif TA, Sharpe J, Takayama S, Takeuchi S, Weiss R, Ye K, Yevick HG, Zaman MH. Perspective: The promise of multi-cellular engineered living systems. APL Bioeng 2018; 2:040901. [PMID: 31069321 PMCID: PMC6481725 DOI: 10.1063/1.5038337] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Recent technological breakthroughs in our ability to derive and differentiate induced pluripotent stem cells, organoid biology, organ-on-chip assays, and 3-D bioprinting have all contributed to a heightened interest in the design, assembly, and manufacture of living systems with a broad range of potential uses. This white paper summarizes the state of the emerging field of "multi-cellular engineered living systems," which are composed of interacting cell populations. Recent accomplishments are described, focusing on current and potential applications, as well as barriers to future advances, and the outlook for longer term benefits and potential ethical issues that need to be considered.
Collapse
Affiliation(s)
- Roger D. Kamm
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Rashid Bashir
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - Natasha Arora
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Roy D. Dar
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | | | - Linda G. Griffith
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Melissa L. Kemp
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Adam C. Martin
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | | - Robert M. Nerem
- Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Mark J. Powers
- Thermo Fisher Scientific, Frederick, Maryland 21704, USA
| | - Taher A. Saif
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, USA
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona 08003, Spain
| | | | | | - Ron Weiss
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | - Kaiming Ye
- Binghamton University, Binghamton, New York 13902, USA
| | - Hannah G. Yevick
- Massachusetts Institute of Technology, Boston, Massachusetts 02139, USA
| | | |
Collapse
|