1
|
Jia ZX, Xiao BT, Li J, Cai XH, Qin W, Zhou M, Lu XZ. BTK inhibitors enhance NKG2D ligand expression by regulating IL-10/STAT3 pathway in activated non-GCB diffuse large B-cell lymphoma cells. Anticancer Drugs 2025; 36:374-382. [PMID: 40029697 DOI: 10.1097/cad.0000000000001696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The aim of this study is to explore the role of the IL-10/STAT3 pathway in the upregulation of natural killer group 2, member D (NKG2D) ligands (MICA and ULBP2) induced by Bruton's tyrosine kinase (BTK) inhibitors in non-germinal center B-cell-like diffuse large B-cell lymphoma cells. The expression levels of NKG2D ligands and the IL-10/STAT3 pathway in SUDHL4, U2932, and OCI-LY3 cells were analyzed using western blotting. After stimulation of the B-cell receptor signaling pathway with IgM antibodies, the expression levels of NKG2D ligands, as well as IL-10 and phosphorylated STAT3 (p-STAT3) were significantly reduced. In contrast, treatment with ibrutinib produced effects opposite to those induced by IgM antibodies. Additionally, treatment of U2932 and OCI-LY3 cells with the STAT3 inhibitor (STAT3-IN-1) led to an increase in NKG2D ligand expression and a decrease in IL-10 levels. When IL-10 neutralizing antibodies were introduced, p-STAT3 levels decreased, and NKG2D ligand expression increased. Similar outcomes were observed when the BTK inhibitors ACP-196 and BGB-3111 were administered. Our findings suggest that the IL-10/STAT3 pathway plays a key role in the upregulation of NKG2D ligands induced by BTK inhibitors in U2932 and OCI-LY3 cells.
Collapse
Affiliation(s)
- Zhu-Xia Jia
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
- The Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Bi-Tao Xiao
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Jin Li
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Xiao-Hui Cai
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Wei Qin
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
| | - Min Zhou
- Department of Hematology, The Third People's Hospital of Changzhou
| | - Xu-Zhang Lu
- Department of Hematology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University
- The Changzhou Medical Center of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhang R, Chong R, Yang S, He K, Wen Q. Bioequivalence of generic and branded ibrutinib capsules in healthy Chinese volunteers under fasting and fed conditions: a randomized, four-period, fully replicated, crossover study. Expert Opin Drug Metab Toxicol 2025:1-9. [PMID: 40264436 DOI: 10.1080/17425255.2025.2496459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND The aim of this study was to evaluate the bioequivalence of the test and reference products of ibrutinib capsule (140 mg). RESEARCH DESIGN AND METHODS This was a fully replicated crossover study that included 100 healthy Chinese volunteers (50 in the fasting BE study and 50 in the fed BE study). Subjects were assigned to receive a single dose of test or reference product in each treatment period. The bioequivalence of main PK parameters (Cmax, AUC0-t, and AUC0-∞) was evaluated using either the average bioequivalence (ABE) approach or the reference-scaled average bioequivalence (RSABE) approach, depending on the within-subject standard deviation of the reference product (SWR) estimated in the study. RESULTS RSABE approach was applied to Cmax as the corresponding SWR value exceeded the cutoff value of 0.294, while ABE approach was applied to AUC0-t and AUC0-∞ as the corresponding SWR values were less than 0.294. All three PK parameters (Cmax, AUC0-t, and AUC0-∞) met the bioequivalence acceptance criteria in both fasting and fed studies. CONCLUSIONS The test and reference products of ibrutinib capsule are bioequivalent under both fasting and fed conditions. This study also confirmed high intra-subject variability for the Cmax of ibrutinib. CLINICAL TRIAL REGISTRATION http://www.chinadrugtrials.org.cn/index.html identifier is CTR20202168.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Department of Clinical Pharmacology, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Rui Chong
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Department of Clinical Pharmacology, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing, China
| | - Shaomei Yang
- Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kun He
- Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qing Wen
- Clinical Research Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Qiu X, Wen R, Wu F, Mao J, Azad T, Wang Y, Zhu J, Zhou X, Xie H, Hong K, Li B, Zhang L, Wen C. The role of double-negative B cells in the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 2025; 24:103821. [PMID: 40274006 DOI: 10.1016/j.autrev.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
B cells are essential to the pathophysiology of systemic lupus erythematosus (SLE), a chronic autoimmune illness. IgD-CD27-double negative B cells (DNB cells) are one of the aberrant B cell subsets linked to SLE that have attracted much scientific interest. There is growing evidence that DNB cells play a significant role in the development of the disease and are strongly linked to the activity of lupus. These cells play a pivotal role in the pathogenesis of SLE by producing a diverse array of autoantibodies, which form immune complexes that drive target organ damage. A comprehensive understanding of SLE pathophysiology necessitates in-depth investigation into DNB cells, not only to elucidate their mechanistic contributions but also to uncover novel therapeutic strategies. According to available data, treatments that target B cells have proven effective in managing SLE; nevertheless, a significant breakthrough in precision medicine for SLE may come from targeting DNB cells specifically. Despite growing interest in DNB cells, their precise characteristics, developmental trajectories, and regulatory mechanisms remain incompletely defined, posing significant challenges to the field. A comprehensive investigation of the regulatory mechanisms governing DNB cell differentiation and expansion in SLE may facilitate novel therapeutic discoveries. This review aims to provide an updated synthesis of current research on DNB cells, with a focus on their origins, developmental trajectories in SLE, and potential as precision therapeutic targets.
Collapse
Affiliation(s)
- Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China; The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China
| | - RuiFan Wen
- Medical School, Hunan University of Chinese Medicine, No.300 Xueshi Road, Hanpu Science & Education District, Changsha, Hunan 410208, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Tasnim Azad
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Liang Zhang
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China; Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha 410007, Hunan, China.
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
4
|
Wu Z, Li Y, Dong J, Qin JJ. An updated review on the role of small molecules in mediating protein degradation. Eur J Med Chem 2025; 287:117370. [PMID: 39933402 DOI: 10.1016/j.ejmech.2025.117370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Targeted protein degradation (TPD) technologies, inspired by physiological processes, have recently provided new directions for drug development. Unlike conventional drug development focusing on targeting the active sites of disease-related proteins, TPD can utilize any nook or cranny of a protein to drive degradation through the cell's inherent destruction mechanism. It offers various advantages such as stronger pharmacological effects, an expanded range of drug targets, and higher selectivity. Based on the ubiquitin-proteasome system and the lysosomal degradation pathway, a variety of TPD strategies have been developed including PROTAC, PROTAB, and AUTOTAC. These TPD strategies have continuously enriched the toolbox for targeted protein degradation and expanded the scope of application, providing new ideas for biological research and drug discovery. This review attempts to introduce up-to-date research progress in the TPD strategies, focusing mainly on their design concepts, advantages, potential applications, and challenges, which may provide some inspiration for drug design, drug discovery, and clinical application for biologists and chemists.
Collapse
Affiliation(s)
- Zumei Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yulong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinyun Dong
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
5
|
Zhong YT, Qiu ZW, Zhang KY, Lu ZM, Li ZF, Cen Y, Li SY, Cheng H. Plasma Membrane Targeted Photodynamic Nanoagonist to Potentiate Immune Checkpoint Blockade Therapy by Initiating Tumor Cell Pyroptosis and Depleting Infiltrating B Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415078. [PMID: 40012447 DOI: 10.1002/adma.202415078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Indexed: 02/28/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has achieved remarkable benefits in the treatment of malignant tumors, but the clinical response rates are unsatisfied due to the low tumor immunogenicity and the abundant immunosuppressive cells. Herein, a plasma membrane targeted photodynamic nanoagonist (designated as PMTPN) is developed to potentiate ICB therapy by initiating tumor cell pyroptosis and depleting infiltrating B cells. PMTPN is composed of a rationally designed chimeric peptide sequence loaded with Bruton's tyrosine kinase inhibitor (Ibrutinib). Notably, PMTPN is capable of sequentially targeting tumor and tumor cell membrane to trigger immunogenic pyroptosis and cause overwhelming release of cytokines, promoting dendritic cells maturation, and cytotoxic T lymphocytes (CTLs) activation. Meanwhile, PMTPN can also deplete infiltrating B cells and reduce the secretion of interleukin-10 to decrease immunosuppressive regulatory T cells and enhance CTLs infiltration. Beneficially, the synergistic immune modulating characteristics of PMTPN potentiate ICB therapy to simultaneously eliminate primary and distant tumors. This study offers a promising strategy to elevate the immunotherapeutic response rate in consideration of the complex immunosuppressive factors.
Collapse
Affiliation(s)
- Ying-Tao Zhong
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Wen Qiu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Yan Zhang
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zhen-Ming Lu
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Zhuo-Feng Li
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Yi Cen
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hong Cheng
- School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Cai J, Qin X, Zhao X. Design, synthesis and anti-tumor activity of BTK inhibitor Orelabrutinib derivatives. Bioorg Chem 2025; 157:108278. [PMID: 40007347 DOI: 10.1016/j.bioorg.2025.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Bruton tyrosine kinase (BTK), a non-receptor tyrosine kinase falling within the Tec kinase family, forms an essential part of the B cell receptor (BCR) signaling cascade. It has come to be regarded as a potential drug target for addressing a wide range of diseases, with a particular focus on hematopoietic malignancies and autoimmune disorders related to B lymphocytes. In the present study, by uncovering the binding mechanisms of the inhibitor Orelabrutinib with BTK, we identified four crucial structural elements requisite for the inhibition. Using scaffold hopping strategies, 28 novel derivatives belonging to the tricyclic and pyridine amide series were designed and synthesized from the lead compound Orelabrutinib. The outcomes revealed that 11a and 11k were able to effectively restrain the growth and migration of the tumor cell TMD8 upon comparing their in vitro activities, meriting further examination.
Collapse
Affiliation(s)
- Jin Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| | - Xintong Qin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Xiaomin Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| |
Collapse
|
7
|
Gandhi V, Tantawy S, Aslan B, Manyam G, Iles L, Timofeeva N, Singh N, Jain N, Ferrajoli A, Thompson P, Patel K, Desikan SP, Wierda W. Pharmacological profiling in CLL patients during pirtobrutinib therapy and disease progression. RESEARCH SQUARE 2025:rs.3.rs-6249480. [PMID: 40235506 PMCID: PMC11998752 DOI: 10.21203/rs.3.rs-6249480/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pirtobrutinib is a reversible Bruton's tyrosine kinase (BTK) inhibitor that has shown efficacy for patients with chronic lymphocytic leukemia (CLL) in BRUIN trial. These patients were previously treated with covalent BTK inhibitor (cBTKi) and either discontinued cBTKi or had disease progression during therapy. As a result, some patients had wild-type BTK while others had mutant BTK (mostly C481 site where cBTKi binds). All patients received pirtobrutinib monotherapy. Twenty-six patients with CLL from BRUIN were treated at MD Anderson and twenty-three were followed up for at least two years. We compared baseline features between patients who had progressive-disease versus those who remained on therapy during the first 24 cycles of pirtobrutinib therapy. We performed pharmacological profiling of peripheral blood mononuclear cells taken from patients at pretreatment, during pirtobrutinib therapy, and at progression. Relapsed/refractory CLL to prior cBTKi, baseline BTK mutations, unmutated IGHV, bulky lymph nodes, XPO1 mutation and complex karyotype were more prevalent attributes in the pirtobrutinib progressive-disease subgroup. Interestingly, among patients who had progressive-disease, only three patients had baseline wild-type BTK, while eleven had mutant BTK (mostly C481). As reported before, we also observed that C481S mutant clone was decreased during therapy while T474 mutant either developed or increased. We did pharmacological profiling in samples taken during pirtobrutinib therapy when disease is responsive and primary cells are sensitive to pirtobrutinib. We also analyzed sensitivity of CLL cells to other targeted and clinically available agents when patient had PD on pirtobrutinib and needed a new treatment regimen. Ex vivo pharmacologic profiling suggested that during pirtobrutinib therapy, peripheral blood mononuclear cells (CLL cells) became resensitized to ibrutinib and other targeted agents. Combination therapy, including ibrutinib and venetoclax, was effective regardless of genomic background and even after relapse from pirtobrutinib monotherapy.
Collapse
|
8
|
Zhang X, Ye J, Sun L, Xu W, He X, Bao J, Wang J. NCKAP1 Inhibits the Progression of Renal Carcinoma via Modulating Immune Responses and the PI3K/AKT/mTOR Signaling Pathway. Int J Mol Sci 2025; 26:2813. [PMID: 40141455 PMCID: PMC11942877 DOI: 10.3390/ijms26062813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Nck-associated protein 1 (NCKAP1) is critical for cytoskeletal functions and various cellular activities, and deregulation of NCKAP1 in many cancers significantly influences the outcomes of malignant diseases. However, the functions of NCKAP1 in the progression of renal cancer are yet unknown. To investigate the specific roles of NCKAP1 in the immune regulation and tumor progression of renal cancer, the expression of NCKAP1 and genetic variations were analyzed across cancer types at different pathological stages via UALCAN and cBioPortal. Immune cell infiltration in renal cancer was also assessed by ssGSEA and single-cell gene expression data from the GEO. RNA sequencing of NCKAP1-overexpressing 769P cells further examined the impact of NCKAP1 on kidney cancer. Our pancancer analyses revealed a complex NCKAP1 expression profile across various cancer types, with reduced levels in renal cancer patients linked to patient prognosis. CIBERSORT and single-cell RNA sequencing revealed the expression patterns of NCKAP1 in different cell lineages in renal cancer and a significant correlation between NCKAP1 and immune cell infiltration in the kidney tumor microenvironment. We further verified that NCKAP1 suppressed cancer cell growth and affected tumor development in renal cancer via the PI3K/AKT/mTOR signaling pathway. Our results indicate that NCKAP1 is a potential predictive marker and treatment target for renal cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China; (X.Z.); (L.S.); (W.X.)
| | - Jianqing Ye
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China;
| | - Lixiang Sun
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China; (X.Z.); (L.S.); (W.X.)
| | - Wanli Xu
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China; (X.Z.); (L.S.); (W.X.)
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China (J.B.)
| | - Juan Bao
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China (J.B.)
| | - Jin Wang
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China; (X.Z.); (L.S.); (W.X.)
| |
Collapse
|
9
|
Meng Y, Wang C, Usyk M, Kwak S, Peng C, Hu KS, Oberstein PE, Krogsgaard M, Li H, Hayes RB, Ahn J. Association of tumor microbiome with survival in resected early-stage PDAC. mSystems 2025; 10:e0122924. [PMID: 40013793 PMCID: PMC11915875 DOI: 10.1128/msystems.01229-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The pancreas tumor microbiota may influence tumor microenvironment and influence survival in early-stage pancreatic ductal adenocarcinoma (PDAC); however, current studies are limited and small. We investigated the relationship of tumor microbiota to survival in 201 surgically resected patients with localized PDAC (Stages I-II), from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts. We characterized the tumor microbiome using RNA-sequencing data. We examined the association of the tumor microbiome with overall survival (OS), via meta-analysis with the Cox PH model. A microbial risk score (MRS) was calculated from the OS-associated microbiota. We further explored whether the OS-associated microbiota is related to host tumor immune infiltration. PDAC tumor microbiome α- and β-diversities were not associated with OS; however, 11 bacterial species, including species of Gammaproteobacteria, confirmed by extensive resampling, were significantly associated with OS (all Q < 0.05). The MRS summarizing these bacteria was related to a threefold change in OS (hazard ratio = 2.96 per standard deviation change in the MRS, 95% confidence interval = 2.26-3.86). This result was consistent across the two cohorts and in stratified analyses by adjuvant therapy (chemotherapy/radiation). Identified microbiota and the MRS also exhibited association with memory B cells and naïve CD4+ T cells, which may be related to the immune landscape through BCR and TCR signaling pathways. Our study shows that a unique tumor microbiome structure, potentially affecting the tumor immune microenvironment, is associated with poorer survival in resected early-stage PDAC. These findings suggest that microbial mechanisms may be involved in PDAC survival, potentially informing PDAC prognosis and guiding personalized treatment strategies.IMPORTANCEMuch of the available data on the PDAC tumor microbiome and survival are derived from relatively small and heterogeneous studies, including those involving patients with advanced stages of pancreatic cancer. There is a critical knowledge gap in terms of the tumor microbiome and survival in early-stage patients treated by surgical resection; we expect that advancements in survival may initially be best achieved in these patients who are treated with curative intent.
Collapse
Affiliation(s)
- Yixuan Meng
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Chan Wang
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
| | - Mykhaylo Usyk
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Soyoung Kwak
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Chengwei Peng
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenneth S Hu
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, New York, USA
| | - Paul E Oberstein
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Michelle Krogsgaard
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA
| | - Huilin Li
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Richard B Hayes
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| | - Jiyoung Ahn
- Department of Population Health, NYU Grossman School of Medicine, New York, New York, USA
- NYU Laura and Isaac Perlmutter Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
Pang J, Huang J, Yu J, Li B, Wei S, Cen W, Xuan Y, Yang J, Yu Y, Mo J, Lu J, Zheng X, Zhang J. Immune dysregulation in COVID-19 induced ARDS in kidney transplant recipients revealed by single-cell RNA sequencing. Sci Rep 2025; 15:6895. [PMID: 40011702 DOI: 10.1038/s41598-025-91439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Since the emergence of COVID-19 at the end of 2019, the disease has led to widespread acute respiratory distress syndrome (ARDS), particularly among kidney transplant recipients (KTRs), who are at increased risk due to long-term immunosuppressive therapy. This study aims to explore the differences in immune responses between kidney transplant recipients and non-kidney transplant recipients in COVID-19-induced ARDS to identify potential therapeutic targets for improving outcomes. Single-cell RNA sequencing was performed on 108,320 cells derived from peripheral blood samples to construct a global single-cell map of COVID-19 induced ARDS in kidney transplant recipients(ARDSKT), COVID-19 induced ARDS in non transplant recipients(ARDSNKT), and healthy controls. Subsequently, using cellular clustering analysis, we obtained single-cell maps of different cell types. We employed enrichment analysis to determine the pathways involved in different subpopulations and focused on the role of key immune cells such as monocytes, megakaryocytes, B cells, and CD8+ T cells in the pathogenesis of ARDS. Significant immune differences were observed between ARDSKT and ARDSNKT. In ARDSKT, the S100A9+ MK subpopulation, which activates the NF-κB signaling pathway, was elevated, promoting inflammation. In contrast, the S100A12+ monocyte subpopulation that activates the chemokine signaling pathway was more abundant in ARDSNKT, reflecting a stronger inflammatory response, while its abundance was reduced in ARDSKT due to immunosuppression. The CXCR4+ B subpopulation, crucial for adaptive immunity, was significantly reduced in ARDSKT. Additionally, the XAF1+ Teff subpopulation, associated with apoptosis, was more abundant in ARDSKT, potentially impairing immune recovery. This study highlights the immune differences between ARDSKT and ARDSNKT, revealing the impact of immunosuppression on immune dysregulation. These findings suggest that targeting specific immune pathways can improve therapeutic strategies for ARDSKT.
Collapse
Affiliation(s)
- Jielong Pang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China
| | - Jingyu Huang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jianing Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Binbin Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Shanshan Wei
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Weiluan Cen
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yixuan Xuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junzhi Yang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yongbing Yu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jingjia Mo
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junyu Lu
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| | - Xiaowen Zheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, 530007, Guangxi, China.
| |
Collapse
|
11
|
Shi T, Zhang H, Chen Y. The m6A revolution: transforming tumor immunity and enhancing immunotherapy outcomes. Cell Biosci 2025; 15:27. [PMID: 39987091 PMCID: PMC11846233 DOI: 10.1186/s13578-025-01368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
N6-methyladenosine (m6A), the most prevalent RNA modification in eukaryotes, plays a critical role in the development and progression of various diseases, including cancer, through its regulation of RNA degradation, stabilization, splicing, and cap-independent translation. Emerging evidence underscores the significant role of m6A modifications in both pro-tumorigenic and anti-tumorigenic immune responses. In this review, we provide a comprehensive overview of m6A modifications and examine the relationship between m6A regulators and cancer immune responses. Additionally, we summarize recent advances in understanding how m6A modifications influence tumor immune responses by directly modulating immune cells (e.g., dendritic cells, tumor-associated macrophages, and T cells) and indirectly affecting cancer cells via mechanisms such as cytokine and chemokine regulation, modulation of cell surface molecules, and metabolic reprogramming. Furthermore, we explore the potential synergistic effects of targeting m6A regulators in combination with immune checkpoint inhibitor (ICI) therapies. Together, this review consolidates current knowledge on the role of m6A-mediated regulation in tumor immunity, offering insights into how a deeper understanding of these modifications may identify patients who are most likely to benefit from immunotherapies.
Collapse
Affiliation(s)
- Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| | - Huan Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
| | - Yueqiu Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| |
Collapse
|
12
|
Gruessner C, Wiestner A, Sun C. Resistance mechanisms and approach to chronic lymphocytic leukemia after BTK inhibitor therapy. Leuk Lymphoma 2025:1-13. [PMID: 39972943 DOI: 10.1080/10428194.2025.2466101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Bruton tyrosine kinase (BTK), an essential component of the B-cell receptor (BCR) signaling pathway, is a validated target in chronic lymphocytic leukemia. Ibrutinib, acalabrutinib, and zanubrutinib are covalent BTK inhibitors (cBTKi) that bind to residue C481, leading to sustained target inhibition. A significant proportion of patients develop resistance to continuous cBTKi therapy, predominantly via mutations in BTK and its immediate downstream effector, PLCG2. The noncovalent BTKi pirtobrutinib does not require binding to C481 and can restore BTK inhibition after progression on a cBTKi. However, non-C481 BTK mutations conferring resistance to pirtobrutinib have been identified. Furthermore, the scaffolding function of BTK, activation of bypass signaling pathways, and the tumor microenvironment may contribute to BTKi resistance. Targeting BTK for degradation is an emerging strategy that appears effective against multiple BTK mutations, and inhibitors of downstream BCR signaling proteins are under development. This review addresses BTKi resistance mechanisms and therapeutic approaches after cBTKi failure.
Collapse
Affiliation(s)
- Christine Gruessner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Britto LS, Balasubramani D, Desai S, Phillips P, Trehan N, Cesarman E, Koff JL, Singh A. T Cells Spatially Regulate B Cell Receptor Signaling in Lymphomas through H3K9me3 Modifications. Adv Healthc Mater 2025; 14:e2401192. [PMID: 38837879 PMCID: PMC11617604 DOI: 10.1002/adhm.202401192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) is a subtype associated with poor survival outcomes. Despite identifying therapeutic targets through molecular characterization, targeted therapies have limited success. New strategies using immune-competent tissue models are needed to understand how DLBCL cells evade treatment. Here, synthetic hydrogel-based lymphoma organoids are used to demonstrate how signals in the lymphoid tumor microenvironment (Ly-TME) can alter B cell receptor (BCR) signaling and specific histone modifications, tri-methylation of histone 3 at lysine 9 (H3K9me3), dampening the effects of BCR pathway inhibition. Using imaging modalities, T cells increase DNA methyltransferase 3A expression and cytoskeleton formation in proximal ABC-DLBCL cells, regulated by H3K9me3. Expansion microscopy on lymphoma organoids reveals T cells increase the size and quantity of segregated H3K9me3 clusters in ABC-DLBCL cells. Findings suggest the re-organization of higher-order chromatin structures that may contribute to evasion or resistance to therapy via the emergence of novel transcriptional states. Treating ABC-DLBCL cells with a G9α histone methyltransferase inhibitor reverses T cell-mediated modulation of H3K9me3 and overcomes T cell-mediated attenuation of treatment response to BCR pathway inhibition. This study emphasizes the Ly-TME's role in altering DLBCL fate and suggests targeting aberrant signaling and microenvironmental cross-talk that can benefit high-risk patients.
Collapse
Affiliation(s)
- Lucy S. Britto
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Deepali Balasubramani
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Sona Desai
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Phunterion Phillips
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
| | - Neev Trehan
- St Richards HospitalUniversity Hospitals Sussex NHS Foundation TrustChichesterWest SussexPO19 6SEUK
| | - Ethel Cesarman
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNY10065USA
| | - Jean L. Koff
- Winship Cancer CenterEmory University School of MedicineAtlantaGA30307USA
| | - Ankur Singh
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA30332USA
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30318USA
- Petit Institute for Bioengineering and BiosciencesGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
14
|
Ibrahim S, Umer Khan M, Khurram I, Rehman R, Rauf A, Ahmad Z, Aljohani ASM, Al Abdulmonem W, Quradha MM. Navigating PROTACs in Cancer Therapy: Advancements, Challenges, and Future Horizons. Food Sci Nutr 2025; 13:e70011. [PMID: 39898116 PMCID: PMC11786021 DOI: 10.1002/fsn3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Proteolysis Targeting Chimeras (PROTACs) have revolutionized cancer therapy by offering a selective and innovative approach to degrade key oncogenic proteins associated with various malignancies. These hybrid molecules exploit the ubiquitin-proteasome system, facilitating the degradation of target proteins through an event-driven mechanism, thereby overcoming drug resistance and enhancing selectivity. With diverse targets including androgen receptors, BTK, estrogen receptors, BET proteins, and BRAF, PROTACs offer a versatile strategy for personalized cancer treatment. Advantages of PROTACs over traditional small molecule inhibitors include their ability to operate at lower concentrations, catalyzing the degradation of multiple proteins of interest with reduced cytotoxicity. Notably, PROTACs address challenges associated with traditionally "undruggable" targets, expanding the therapeutic landscape of cancer therapy. Ongoing preclinical and clinical studies highlight the transformative potential of PROTACs, with promising results in prostate, breast, lung, melanoma, and colorectal cancers. Despite their potential, challenges persist in optimizing physicochemical properties and enhancing bioavailability. Further research is needed to refine PROTAC design and address complexities in molecule development. Nevertheless, the development of oral androgen receptor PROTACs represents a significant milestone, demonstrating the feasibility and efficacy of this innovative therapeutic approach. This review provides a comprehensive overview of PROTACs in cancer therapy, emphasizing their mechanism of action, advantages, and challenges. As PROTAC research progresses, continued exploration in both preclinical and clinical settings will be crucial to unlocking their full therapeutic potential and shaping the future of personalized cancer treatment.
Collapse
Affiliation(s)
- Saooda Ibrahim
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Iqra Khurram
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
- Centre for Applied Molecular BiologyUniversity of the PunjabLahorePakistan
| | - Raima Rehman
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Zubair Ahmad
- Department of ChemistryUniversity of SwabiSwabiKhyber PakhtunkhwaPakistan
| | - Abdullah S. M. Aljohani
- Department of Medical BiosciencesCollege of Veterinary Medicine, Qassim UniversityBuraydahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of PathologyCollege of Medicine, Qassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
15
|
Wang H, Liu Z, Du Y, Cheng X, Gao S, Liang W, Zhu Q, Jiang Z, Gao Y, Shang P. High expression of ARPC1B promotes the proliferation and apoptosis of clear cell renal cell carcinoma cells, leading to a poor prognosis. Mol Cell Probes 2025; 79:102011. [PMID: 39818256 DOI: 10.1016/j.mcp.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients. METHODS Multi-omics data and clinical information from public databases were analyzed to determine the associations between ARPC1B and prognosis, clinical features, immune microenvironment, and drug sensitivity in ccRCC. Co-expression and gene set enrichment analyses were conducted to elucidate the potential role of ARPC1B in ccRCC pathogenesis. Functional assays, including RT-qPCR, CCK8 assays, colony formation assays, immunofluorescence, immunohistochemistry, and xenograft tumor formation in nude mice, were performed to assess ARPC1B's impact on cell proliferation and apoptosis. Flow cytometry and Western blotting were further employed to investigate the underlying molecular mechanisms of ARPC1B in ccRCC. RESULTS ARPC1B expression was significantly elevated in ccRCC and associated with an unfavorable prognosis. Both independent and meta-analyses confirmed that ARPC1B is an independent prognostic risk factor in ccRCC. Furthermore, ARPC1B expression significantly correlated with the immune microenvironment and drug sensitivity. In vitro, experiments demonstrated that ARPC1B knockdown suppressed ccRCC cell proliferation and induced apoptosis through the BAX-Bcl-2/c-caspase3/c-PARP axis, which was further validated by in vivo studies. CONCLUSION ARPC1B overexpression is associated with poor prognosis, altered immune status, and drug sensitivity in ccRCC. Furthermore, ARPC1B promotes the malignant behavior of ccRCC cells and holds potential as a prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yuelin Du
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shanjun Gao
- Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China
| | - Wenjia Liang
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Qingyun Zhu
- Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhengfa Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.
| | - Panfeng Shang
- Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
16
|
Bai H, Zhou D, Liu J, He J, Min Z, Fan W, Chen B, Xu Y. Case report: Therapeutic use of bortezomib in a patient with Schnitzler syndrome. Front Immunol 2025; 16:1520470. [PMID: 39935483 PMCID: PMC11810973 DOI: 10.3389/fimmu.2025.1520470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Schnitzler syndrome (SchS) is a rare acquired systemic autoinflammatory disorder, characterized by chronic urticarial rash and immunoglobulin M (IgM) monoclonal gammopathy. Anti-interleukin-1 (IL-1) therapies have been shown to be more effective in managing the clinical symptoms of SchS compared to anti-IL-6 therapies. In this case report, we present a male patient with urticarial rash, fever, and arthralgia. Laboratory tests identified the presence of IgMκ monoclonal protein, and the absence of IL-1β in serum. Whole exome sequencing (WES) did not reveal any pathological variants associated with monogenic autoinflammatory diseases or the MYD88 L265P mutation. He met the diagnostic criteria for SchS and was treated with bortezomib, leading to a significant improvement in clinical symptoms and a decline in IgMκ monoclonal protein levels. The patient tolerated the treatment well. This case suggests that bortezomib may be considered as a potential treatment option for SchS, in addition to anti-IL-1 therapies and bruton tyrosine kinase (BTK) inhibitors.
Collapse
Affiliation(s)
- Hua Bai
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongming Zhou
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jinwen Liu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie He
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhou Min
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenyong Fan
- Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yong Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Xia Y, Huang Y, Liu Z, Song S, Wang Y, Luo J. Case report: A panorama gene profile of ovarian cancer metastasized to axillary lymph node. Front Immunol 2025; 16:1548102. [PMID: 39925800 PMCID: PMC11802514 DOI: 10.3389/fimmu.2025.1548102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Ovarian cancer is among the most lethal gynecologic malignancies, with a high proportion of patients diagnosed at advanced stages, leading to poor survival outcomes. Axillary lymph node metastasis from ovarian cancer is extremely rare and the mechanism is still unclear. Methods A comprehensive set of clinical and gynecologic oncology assessments were performed, including ultrasound, mammography, MRI, transvaginal ultrasound, and tissue staining. To unravel the carcinogenesis, the next-generation sequencing (NGS) was performed. Results Conventional examinations and imaging suggested the presence of both occult breast cancer and ovarian cancer. However, immunohistochemical staining confirmed the diagnosis of high-grade serous ovarian carcinoma. Further analysis of NGS identified two novel missense mutations, D326E in BTK (Bruton's tyrosine kinase) at SH2 domain and D251E in EPHA5 (EPH receptor A5), along with other known cancer- associated mutations. These mutations, particularly the novel missense mutations, may lead to metastasis to the axillary lymph nodes and drug resistance. Therefore, based on these findings, the chemotherapy regimen was adjusted accordingly. Conclusion This is the first report on the panorama gene profile of ovarian cancer metastasis to axillary lymph node and we found two novel mutations (BTK pD326E and EPHA5 pD251E). This study unraveled the potential mechanism of genetic mutation for tumor metabolism, drug resistance, and metastasis.
Collapse
Affiliation(s)
- Yu Xia
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Pathology, Houston, TX, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jing Luo
- Department of Breast Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Kitata RB, Velickovic M, Xu Z, Zhao R, Scholten D, Chu RK, Orton DJ, Chrisler WB, Zhang T, Mathews JV, Bumgarner BM, Gursel DB, Moore RJ, Piehowski PD, Liu T, Smith RD, Liu H, Wasserfall CH, Tsai CF, Shi T. Robust collection and processing for label-free single voxel proteomics. Nat Commun 2025; 16:547. [PMID: 39805815 PMCID: PMC11730317 DOI: 10.1038/s41467-024-54643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single voxels dissected by LCM to the tube cap and SOP voxel processing in the same collection cap. This method enables reproducible, label-free quantification of approximately 900 and 4600 proteins for single voxels at 20 µm × 20 µm × 10 µm (~1 cell region) and 200 µm × 200 µm × 10 µm (~100 cell region) from fresh frozen human spleen tissue, respectively. It can reveal spatially resolved protein signatures and region-specific signaling pathways. Furthermore, wcSOP-MS is demonstrated to be broadly applicable for OCT-embedded and FFPE human archived tissues as well as for small-scale 2D proteome mapping of tissues at high spatial resolutions. wcSOP-MS may pave the way for routine robust single voxel proteomics and spatial proteomics.
Collapse
Affiliation(s)
- Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhangyang Xu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David Scholten
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeremy V Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin M Bumgarner
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Demirkan B Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
19
|
Iatrou A, Fitopoulou M, Agathangelidis A. Generation and Reactivity Profiling of Functional Human Recombinant Monoclonal Antibodies. Methods Mol Biol 2025; 2909:269-297. [PMID: 40029528 DOI: 10.1007/978-1-0716-4442-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mature B-cell lymphomas are a group of hematologic malignancies that differ in terms of pathophysiology, tissues involved, and biological profiles, as well as clinical presentation, prognosis, and outcome [1, 2]. However, a common feature in most lymphomas concerns the pronounced role of interactions between the malignant cells and elements of their microenvironment, especially (auto)antigens, throughout their natural history [3]. This highlights the critical role of the clonotypic B-cell receptor immunoglobulin (BcR IG) in lymphoma ontogeny and evolution given that it represents the most significant mediator of antigen-specific B-cell drive. Relevant studies have provided important insight into the BcR IG reactivity profiles of particular mature B-cell lymphomas, paving the way to functional studies that led to the identification of some of the relevant antigenic determinants [4-8]. Furthermore, inhibition of antigen interactions through the use of pharmacological agents that target the downstream signaling pathway of the BcR IG has displayed great efficacy and led to a therapeutic paradigm shift for mature B-cell lymphomas [9-11].Here, we describe a strategy to characterize the (auto)antigen reactivity of the BcR IG using the recombinant DNA technology. This approach allows the unbiased profiling of the human antibody repertoire, through the generation of recombinant monoclonal antibodies (rmAbs) derived from B cells of defined origin. The protocol starts with the isolation of total RNA from the B cells of interest, followed by reverse transcription-polymerase chain reaction (RT-PCR) for amplifying the clonotypic IG V(D)J gene rearrangements. Subsequently, the cDNA molecules corresponding to the BcR IG heavy and light chains are cloned into expression vectors for the in vitro production of rmAbs. Finally, the (auto)antigen reactivity profiling of the rmAbs is assessed using ELISA, flow cytometry, and immunohistochemistry. This strategy offers the potential to obtain crucial information regarding the antigenic stimuli that drive the development of mature B-cell lymphomas through the in-depth study of the reactivity profile of the clonotypic BcR IG.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Flow Cytometry/methods
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Anastasia Iatrou
- Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Andreas Agathangelidis
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
20
|
Zhang S, Wang L, Lu Y, Guo C, Zhang T, Zhang L. Targeting spleen tyrosine kinase (SYK): structure, mechanisms and drug discovery. Drug Discov Today 2025; 30:104257. [PMID: 39653169 DOI: 10.1016/j.drudis.2024.104257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/23/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Spleen tyrosine kinase (SYK) is a crucial non-receptor tyrosine kinase involved in signaling pathways that regulate various cellular processes. It is primarily expressed in hematopoietic cells and myeloid cells, which are crucial for B-cell development, maturation and antibody production, and it is a key therapeutic target for autoimmune and allergic diseases. Overexpression of SYK is also associated with cancer and cardiovascular, cerebrovascular and neurodegenerative diseases, contributing to their initiation and progression. SYK is a promising target for drug development, and several inhibitors have already been reported. This review covers the structure and regulatory pathways of SYK, as well as its links to various diseases. It also highlights key small-molecule SYK inhibitors, their design strategies and their potential therapeutic benefits, aiming to enhance our understanding and aid in the discovery of more-effective SYK inhibitors.
Collapse
Affiliation(s)
- Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lilin Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chuanxin Guo
- Nucleic Acid Division, Shanghai Cell Therapy Group, Shanghai 201805, China.
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
21
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
22
|
Wang Y, Peng L, Wang F. M6A-mediated molecular patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma. Cancer Biol Ther 2024; 25:2333590. [PMID: 38532632 DOI: 10.1080/15384047.2024.2333590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
N6-methyladenosine (m6A) is the most predominant RNA epigenetic regulation in eukaryotic cells. Numerous evidence revealed that m6A modification exerts a crucial role in the regulation of tumor microenvironment (TME) cell infiltration in several tumors. Nevertheless, the potential role and mechanism of m6A modification in nasopharyngeal carcinoma (NPC) remains unknown. mRNA expression data and clinical information from GSE102349, and GSE53819 datasets obtained from Gene Expression Omnibus (GEO) was used for differential gene expression and subsequent analysis. Consensus clustering was used to identify m6A-related molecular patterns of 88 NPC samples based on prognostic m6A regulators using Univariate Cox analysis. The TME cell-infiltrating characteristics of each m6A-related subclass were explored using single-sample gene set enrichment (ssGSEA) algorithm and CIBERSORT algotithm. DEGs between two m6A-related subclasses were screened using edgeR package. The prognostic signature and predicated nomogram were constructed based on the m6A-related DEGs. The cell infiltration and expression of prognostic signature in NPC was determined using immunohistochemistry (IHC) analysis. Chi-square test was used to analysis the significance of difference of the categorical variables. And survival analysis was performed using Kaplan-Meier plots and log-rank tests. The NPC samples were divided into two m6A-related subclasses. The TME cell-infiltrating characteristics analyses indicated that cluster 1 is characterized by immune-related and metabolism pathways activation, better response to anit-PD1 and anti-CTLA4 treatment and chemotherapy. And cluster 2 is characterized by stromal activation, low expression of HLA family and immune checkpoints, and a worse response to anti-PD1 and anti-CTLA4 treatment and chemotherapy. Furthermore, we identified 1558 DEGs between two m6A-related subclasses and constructed prognostic signatures to predicate the progression-free survival (PFS) for NPC patients. Compared to non-tumor samples, REEP2, TMSB15A, DSEL, and ID4 were upregulated in NPC samples. High expression of REEP2 and TMSB15A showed poor survival in NPC patients. The interaction between REEP2, TMSB15A, DSEL, ID4, and m6A regulators was detected. Our finding indicated that m6A modification plays an important role in the regulation of TME heterogeneity and complexity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lisha Peng
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Feng Wang
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
23
|
Sobczyńska-Konefał A, Jasek M, Karabon L, Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark Res 2024; 12:162. [PMID: 39732734 DOI: 10.1186/s40364-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p). Despite the significant progress in CLL treatment, some patients still experience disease relapse. This is due to the substantial heterogeneity of CLL as well as the interconnected genetic resistance mechanisms and pathway adaptive resistance mechanisms to targeted therapies in CLL. Although the knowledge of the pathomechanism of CLL has expanded significantly in recent years, the precise origins of CLL and the interplay between various genetic factors remain incompletely understood, necessitating further research. This review enhances the molecular understanding of CLL by describing how BCR signalling, NF-κB PI3K/AKT, and ROR1 pathways sustain CLL cell survival, proliferation, and resistance to apoptosis. It also presents genetic and pathway-adaptive resistance mechanisms in CLL. Identifying B-cell receptor (BCR) signalling as a pivotal driver of CLL progression, the findings advocate personalized treatment strategies based on molecular profiling, emphasizing the need for further research to unravel the complex interplay between BCR signalling and its associated pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Anna Sobczyńska-Konefał
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland
| | - Monika Jasek
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Emilia Jaskuła
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland.
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
24
|
Xing Y, Zhao K, Zhang Y, Wang Y. BTK inhibition in primary central nervous system lymphoma: mechanisms, clinical efficacy, and future perspectives. Front Oncol 2024; 14:1463505. [PMID: 39777345 PMCID: PMC11703922 DOI: 10.3389/fonc.2024.1463505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
The prognosis of primary central nervous system lymphoma (PCNSL) patients is relatively poor, and there is currently no standard treatment plan. Most patients choose high-dose chemotherapy based on methotrexate. While traditional chemotherapy combined with biological therapy has achieved limited results, some patients still do not respond to treatment or cannot tolerate its toxicity and side effects. Bruton's tyrosine kinase (BTK) is a key enzyme in B-cell receptor signaling, and its activation is critical for B-cell survival and proliferation. In recent years, BTK inhibitors have shown great potential in treating lymphomas derived from various B cells because of their strong targeting ability and relatively few side effects. They may also be a reasonable treatment choice for PCNSL. This article reviews the mechanism of action, clinical research, adverse reactions, and other issues of BTK inhibitors in treating PCNSL to provide a reference for individualized treatment of patients with PCNSL.
Collapse
Affiliation(s)
- Yurou Xing
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kejia Zhao
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Kim E, Chen SS, Sivina M, Hwang H, Huang X, Ferrajoli A, Jain N, Wierda WG, Wodarz D, Chiorazzi N, Burger JA. Deuterated water labeling in ibrutinib-treated patients with CLL: leukemia cell kinetics correlate with IGHV, ZAP-70, and MRD. Blood 2024; 144:2678-2681. [PMID: 39441901 PMCID: PMC11830972 DOI: 10.1182/blood.2024025683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Deuterated ("heavy") water labeling in patients with chronic lymphocytic leukemia (CLL) demonstrates that IGHV unmutated and ZAP-70+ patients have higher blood and tissue CLL death rates on ibrutinib therapy, resulting in lower measurable residual disease levels with long-term ibrutinib treatment. This trial was registered at www.clinicaltrials.gov as #NCT01752426.
Collapse
Affiliation(s)
- Ekaterina Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Mariela Sivina
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hyunsoo Hwang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dominik Wodarz
- Department of Mathematics and Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Jan A. Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
26
|
Bae H, Jeon H, Lee C. Genetic regulation of B cell receptor signaling pathway: Insights from expression quantitative trait locus analysis using a mixed model. Comput Biol Chem 2024; 113:108188. [PMID: 39236423 DOI: 10.1016/j.compbiolchem.2024.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
The B cell receptor (BCR) signaling pathway regulates non-immune cellular response through various pathways like MAPK, NF-kB, and PI3K-Akt. This study aimed to identify expression quantitative trait loci (eQTL) and their regulatory functions on BCR signaling pathway genes. A mixed model was employed to analyze eQTL using RNA expression levels in lymphoblastoid from 376 Europeans in the GEUVADIS dataset. In total, 266 SNPs, including 115 cis-acting SNPs, were found for association with transcription of 13 genes (P < 5 × 10-8), revealing 19 independent signals for five genes through linkage disequilibrium analysis. Functional analysis, aligning them with DNase sensitive sites, transcription factor binding sites, histone modification, promoters/enhancers, CpG islands, and ChIA-PET, identified regulatory variants targeting SYK, VAV2, and PLCG2. Notably, rs2562397 was validated as a SYK promoter variant, and rs694505, rs636667, and rs4889409 were confirmed as enhancer variants for VAV2 and PLCG2. Their allelic differences in gene expression were also confirmed using ENCODE ChIP-seq and Sei neural network prediction. Persistent differential expression of these genes by alleles might impact the adaptive immune system, vascular development, and/or relevant diseases that have been previously associated with other variants of the genes. Comprehensive genetic architecture studies of the BCR signaling pathway, along with experiments demonstrating related mechanisms, will greatly contribute to understanding the underlying mechanisms of relevant disease development and implementing precision medicine.
Collapse
Affiliation(s)
- Hojin Bae
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Hyowon Jeon
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Chaeyoung Lee
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea.
| |
Collapse
|
27
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
28
|
Liang Y, Chen X, Zhang X, Guo C, Zhang Y. Virus-driven dysregulation of the BCR pathway: a potential mechanism for the high prevalence of HIV related B-cell lymphoma. Ann Hematol 2024; 103:4839-4849. [PMID: 39196379 DOI: 10.1007/s00277-024-05959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
In people living with HIV (PLWH), the susceptibility to malignancies is notably augmented, with lymphoma emerging as a predominant malignancy. Even in the antiretroviral therapy (ART) era, aggressive B-cell lymphoma stands out as a paramount concern. Yet, the pathogenesis of HIV related lymphoma (HRL) largely remains an enigma. Recent insights underscore the pivotal role of the dysregulated B cell receptor (BCR) signaling cascade, evidencing its oncogenic potential across a spectrum of lymphomas. Intricate interplays between HIV and BCR structural-functional integrity have been identified in PLWH. In this review, we elucidated the mechanism by which the BCR signaling pathway is involved in HRL, mainly including the following aspects: HIV can reshape BCR structure by modulating of activation-induced cytidine deaminase (AID) and recombination-activating gene (RAG) dynamics; HIV can act as a chronic antigen to activate the BCR signaling pathway, such as upregulating PI3K and MAPK signaling pathway and reducing the expression of CD300a; HIV co-infection with other oncogenic viruses may also influence tumor formation mediated by the BCR signaling pathway. This review aims to elucidate the intricate regulation of the BCR signaling pathway by HIV in B cell lymphoma, providing a novel perspective on the pathogenesis of lymphoma in HIV-affected environments.
Collapse
Affiliation(s)
- Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Caiping Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Beijing Institute of Hepatology, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing100069, China.
| |
Collapse
|
29
|
Gu X, Li D, Wu P, Zhang C, Cui X, Shang D, Ma R, Liu J, Sun N, He J. Revisiting the CXCL13/CXCR5 axis in the tumor microenvironment in the era of single-cell omics: Implications for immunotherapy. Cancer Lett 2024; 605:217278. [PMID: 39332588 DOI: 10.1016/j.canlet.2024.217278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
As one of the important members of the family of chemokines and their receptors, the CXCL13/CXCR5 axis is involved in follicle formation in normal lymphoid tissues and the establishment of somatic cavity immunity under physiological conditions, as well as being associated with a wide range of infectious, autoimmune, and tumoral diseases. Here in this review, we focus on its role in tumors. Traditional studies have found the axis to be both pro- and anti-tumorigenic, involving a variety of immune cells, including the tumor cells themselves and those in the tumor microenvironment (TME), and the prognostic significance of this axis is clinical context-dependent. With the development of techniques at the single-cell level, we were able to explain in detail the status of the CXCL13/CXCR5 axis in the TME based on real clinical samples and found that it involves a range of crucial intrinsic anti-tumor immune processes in the TME and is therefore important in tumor immunotherapy. We summarize the cellular subsets, physiological functions, and prognostic significance associated with this axis in the most promising immune checkpoint inhibitor (ICI) therapies of the day and summarize possible therapeutic ideas based on this axis. As with any TME study, the most important takeaway is that the complexity of the CXCL13/CXCR5 axis in TME suggests the importance of personalized therapy in tumor therapy.
Collapse
Affiliation(s)
- Xuanyu Gu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinyu Cui
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dexin Shang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruijie Ma
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
30
|
Masnikosa R, Cvetković Z, Pirić D. Tumor Biology Hides Novel Therapeutic Approaches to Diffuse Large B-Cell Lymphoma: A Narrative Review. Int J Mol Sci 2024; 25:11384. [PMID: 39518937 PMCID: PMC11545713 DOI: 10.3390/ijms252111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a malignancy of immense biological and clinical heterogeneity. Based on the transcriptomic or genomic approach, several different classification schemes have evolved over the years to subdivide DLBCL into clinically (prognostically) relevant subsets, but each leaves unclassified samples. Herein, we outline the DLBCL tumor biology behind the actual and potential drug targets and address the challenges and drawbacks coupled with their (potential) use. Therapeutic modalities are discussed, including small-molecule inhibitors, naked antibodies, antibody-drug conjugates, chimeric antigen receptors, bispecific antibodies and T-cell engagers, and immune checkpoint inhibitors. Candidate drugs explored in ongoing clinical trials are coupled with diverse toxicity issues and refractoriness to drugs. According to the literature on DLBCL, the promise for new therapeutic targets lies in epigenetic alterations, B-cell receptor and NF-κB pathways. Herein, we present putative targets hiding in lipid pathways, ferroptosis, and the gut microbiome that could be used in addition to immuno-chemotherapy to improve the general health status of DLBCL patients, thus increasing the chance of being cured. It may be time to devote more effort to exploring DLBCL metabolism to discover novel druggable targets. We also performed a bibliometric and knowledge-map analysis of the literature on DLBCL published from 2014-2023.
Collapse
Affiliation(s)
- Romana Masnikosa
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| | - Zorica Cvetković
- Department of Hematology, Clinical Hospital Centre Zemun, Vukova 9, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia
| | - David Pirić
- Department of Physical Chemistry, Vinca Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia;
| |
Collapse
|
31
|
Xue D, Hu S, Zheng R, Luo H, Ren X. Tumor-infiltrating B cells: Their dual mechanistic roles in the tumor microenvironment. Biomed Pharmacother 2024; 179:117436. [PMID: 39270540 DOI: 10.1016/j.biopha.2024.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
The occurrence and development of tumors are closely associated with abnormalities in the immune system's structure and function, with tumor immunotherapy being intricately linked to the tumor microenvironment (TME). Early studies on lymphocytes within the TME primarily concentrated on T cells. However, as research has advanced, the multifaceted roles of tumor-infiltrating B cells (TIL-Bs) in tumor immunity, encompassing both anti-tumor and pro-tumor effects, have garnered increasing attention. This paper explored the composition of the TME and the biological characteristics of TIL-Bs, investigating the dual roles within the TME to offer new insights and strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Demin Xue
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaozhen Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huidan Luo
- Department of Pulmonology, Hechi Hospital of Traditional Chinese Medicine, Guangxi 547000, China
| | - Xi Ren
- Department of Oncology II, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
32
|
Alsagaby SA. Biological roles of THRAP3, STMN1 and GNA13 in human blood cancer cells. 3 Biotech 2024; 14:248. [PMID: 39345963 PMCID: PMC11424602 DOI: 10.1007/s13205-024-04093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Blood cancers, such as diffuse large B-cell lymphoma (DLBCL), Burkitt's lymphoma (BL) and acute myeloid leukemia (AML), are aggressive neoplasms that are characterized by undesired clinical courses with dismal survival rates. The objective of the current work is to study the expression THRAP3, STMN1 and GNA13 in DLBCL, BL and AML, and to investigate if these proteins are implicated in the prognosis and progression of the blood cancers. Isolation of normal blood cells was performed using lymphoprep coupled with gradient centrifugation and magnetic beads. Flow-cytometric analysis showed high quality of the isolated cells. Western blotting identified THRAP3, STMN1 and GNA13 to be overexpressed in the blood cancer cells but hardly detected in normal blood cells from healthy donors. Consistently, investigations performed using genotype-tissue expression (GTEx) and gene expression profiling interactive analysis (GEPIA) showed that the three proteins had higher mRNA expression in various cancers compared with matched normal tissues (p ≤ 0.01). Furthermore, the up-regulated transcript expression of these proteins was a feature of short overall survival (OS; p ≤ 0.02) in patients with the blood cancers. Interestingly, functional profiling using gProfiler and protein-protein interaction network analysis using STRING with cytoscape reported THRAP3 to be associated with cancer-dependent proliferation and survival pathways (corrected p ≤ 0.05) and to interact with proteins (p = 1 × 10-16) implicated in tumourigenesis and chemotherapy resistance. Taken together, these findings indicated a possible implication of THRAP3, STMN1 and GNA13 in the progression and prognosis of the blood cancers. Additional work using clinical samples of the blood cancers is required to further investigate and validate the results reported here. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04093-5.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, 11932 Saudi Arabia
| |
Collapse
|
33
|
Zhang N, Yang M, Yang JM, Zhang CY, Guo AY. A Predictive Network-Based Immune Checkpoint Blockade Immunotherapeutic Signature Optimizing Patient Selection and Treatment Strategies. SMALL METHODS 2024; 8:e2301685. [PMID: 38546036 DOI: 10.1002/smtd.202301685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Indexed: 10/18/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has brought significant advancements to the field of oncology. However, the diverse responses among patients highlight the need for more accurate predictive tools. In this study, insights are drawn from tumor-immunology pathways, and a novel network-based ICB immunotherapeutic signature, termed ICBnetIS, is constructed. The signature is derived from advanced biological network-based computational strategies involving co-expression networks and molecular interactions networks. The efficacy of ICBnetIS is established through its association with enhanced patient survival and a robust immune response characterized by diverse immune cell infiltration and active anti-tumor immune pathways. The validation process positions ICBnetIS as an effective tool in predicting responses to ICB therapy, analyzing ICB data from a broad collection of over 700 samples from multiple cancer types of more than 15 datasets. It achieves an aggregated prediction AUC of 0.784, which outperforms the other nine renowned immunotherapeutic signatures, indicating the superior predictive capability of ICBnetIS. To sum up, the findings suggest ICBnetIS as a potent tool in predicting ICB therapy responses, offering significant implications for patient selection and treatment optimization in oncology. The study highlights the role of ICBnetIS in advancing personalized treatment strategies, potentially transforming the clinical landscape of ICB therapy.
Collapse
Affiliation(s)
- Nan Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mei Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing-Min Yang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chu-Yu Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Thoracic Surgery, West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
34
|
Song PR, Wan ZP, Huang GG, Song ZL, Zhang T, Tong LJ, Fang Y, Tang HT, Xue Y, Zhan ZS, Feng F, Li Y, Shi WH, Huang YQ, Chen Y, Duan WH, Ding J, Zhang A, Xie H. Discovery of a novel BTK inhibitor S-016 and identification of a new strategy for the treatment of lymphomas including BTK inhibitor-resistant lymphomas. Acta Pharmacol Sin 2024; 45:2163-2173. [PMID: 38834683 PMCID: PMC11420226 DOI: 10.1038/s41401-024-01311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Bruton's tyrosine kinase (BTK) has emerged as a therapeutic target for B-cell malignancies, which is substantiated by the efficacy of various irreversible or reversible BTK inhibitors. However, on-target BTK mutations facilitating evasion from BTK inhibition lead to resistance that limits the therapeutic efficacy of BTK inhibitors. In this study we employed structure-based drug design strategies based on established BTK inhibitors and yielded a series of BTK targeting compounds. Among them, compound S-016 bearing a unique tricyclic structure exhibited potent BTK kinase inhibitory activity with an IC50 value of 0.5 nM, comparable to a commercially available BTK inhibitor ibrutinib (IC50 = 0.4 nM). S-016, as a novel irreversible BTK inhibitor, displayed superior kinase selectivity compared to ibrutinib and significant therapeutic effects against B-cell lymphoma both in vitro and in vivo. Furthermore, we generated BTK inhibitor-resistant lymphoma cells harboring BTK C481F or A428D to explore strategies for overcoming resistance. Co-culture of these DLBCL cells with M0 macrophages led to the polarization of M0 macrophages toward the M2 phenotype, a process known to support tumor progression. Intriguingly, we demonstrated that SYHA1813, a compound targeting both VEGFR and CSF1R, effectively reshaped the tumor microenvironment (TME) and significantly overcame the acquired resistance to BTK inhibitors in both BTK-mutated and wild-type BTK DLBCL models by inhibiting angiogenesis and modulating macrophage polarization. Overall, this study not only promotes the development of new BTK inhibitors but also offers innovative treatment strategies for B-cell lymphomas, including those with BTK mutations.
Collapse
Affiliation(s)
- Pei-Ran Song
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhi-Peng Wan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ge-Ge Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Zi-Lan Song
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tao Zhang
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lin-Jiang Tong
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Fang
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Tian Tang
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yu Xue
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zheng-Sheng Zhan
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Fang Feng
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Li
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Hao Shi
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Yu-Qing Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Yi Chen
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wen-Hu Duan
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jian Ding
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Ao Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hua Xie
- Division of Antitumor Pharmacology & Small-Molecule Drug Research Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
35
|
Park B, Choi ME, Ryu KJ, Park C, Choi M, Yoon SE, Kim WS, Kim HH, Hong JY, Kim SJ. Exosomal miR-155-5p drives ibrutinib resistance in B-cell lymphoma. Exp Cell Res 2024; 442:114248. [PMID: 39260673 DOI: 10.1016/j.yexcr.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Ibrutinib, a Bruton Tyrosine Kinase (BTK) inhibitor, has shown effectiveness against various B-cell lymphoid malignancies. However, prolonged usage can induce resistance, affecting treatment outcomes. The oncogenic microRNA, miR-155-5p, is associated with poor prognosis in B-cell lymphomas, prompting our investigation into the mechanism of acquired ibrutinib resistance in these cells. We generated ibrutinib-resistant OCI-Ly1 cells (OCI-Ly1-IbtR) through continuous exposure to 1 μM and 2 μM of ibrutinib. We conducted microRNA profiling of OCI-Ly1-IbtR and isolated exosomes via ultracentrifugation. Comparative studies of microRNA levels in cells and exosomes, as well as exploration of targets of up-regulated microRNAs in OCI-Ly1-IbtR, were performed. Target validation involved transfection of candidate microRNAs, and co-culture experiments utilized OCI-Ly1 cells with exosomes from OCI-Ly1-IbtR. Elevated levels of miR-155-5p were observed in OCI-Ly1-IbtR and its exosomes, correlating with AKT and NF-κB activation. Transfection of miR-155-5p induced AKT/NF-κB pathway activation in OCI-Ly1, resulting in ibrutinib resistance, enhanced colony formation, and sustained BTK activity. Primary cell lines from ibrutinib-refractory B-cell lymphoma patients exhibited similar signaling protein activation. Target evaluation identified KDM5B and DEPTOR as miR-155-5p targets, confirmed by downregulation after transfection. We observed KDM5B and DEPTOR enrichment in Ago2 during ibrutinib resistance and miR-155-5p transfection. Co-culture experiments demonstrated exosome-mediated transfer of miR-155-5p, inducing ibrutinib resistance and KDM5B/DEPTOR downregulation in OCI-Ly1. Our findings suggest that miR-155-5p overexpression is associated with AKT and NF-κB pathway activation in ibrutinib-resistant cells, proposing a potential role for acquired miR-155-5p upregulation in B-cell lymphoma ibrutinib resistance.
Collapse
Affiliation(s)
- Bon Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Myung Eun Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Kyung Ju Ryu
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Chaehwa Park
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Minki Choi
- College of Medicine, Catholic University of Korea, Seoul, South Korea
| | - Sang Eun Yoon
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyeon Ho Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Jung Yong Hong
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Seok Jin Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
36
|
Yu H, Wang C, Ke S, Xu Y, Lu S, Feng Z, Bai M, Qian B, Xu Y, Li Z, Yin B, Li X, Hua Y, Zhou M, Li Z, Fu Y, Ma Y. An integrative pan-cancer analysis of MASP1 and the potential clinical implications for the tumor immune microenvironment. Int J Biol Macromol 2024; 280:135834. [PMID: 39307490 DOI: 10.1016/j.ijbiomac.2024.135834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Mannose-binding lectin-associated serine protease 1 (MASP1) plays a crucial role in the complement lectin pathway and the mediation of immune responses. However, comprehensive research on MASP1 across various cancer types has not been performed to date. This study aimed to evaluate the significance of MASP1 in pan-cancer. The Cancer Genome Atlas (TCGA), UCSC Xena and Genotype Tissue Expression (GTEx) databases were used to evaluate the expression profiles, genomic features, prognostic relevance, and immune microenvironment associations of MASP1 across 33 cancer types. We observed significant dysregulation of MASP1 expression in multiple cancers, with strong associations between MASP1 expression levels and diagnostic value as well as patient prognosis. Mechanistic insights revealed significant correlations between MASP1 levels and various immunological and genomic factors, including tumor-infiltrating immune cells (TIICs), immune-related genes, mismatch repair (MMR), tumor mutation burden (TMB), and microsatellite instability (MSI), highlighting a critical regulatory function of MASP1 within the tumor immune microenvironment (TIME). In vitro and in vivo experiments demonstrated that MASP1 expression was markedly decreased in liver hepatocellular carcinoma (LIHC). Moreover, the overexpression of MASP1 in hepatocellular carcinoma (HCC) cell lines significantly inhibited their proliferation, invasion and migration. In conclusion, MASP1 exhibits differential expression in the pan-cancer analyses and might play an important role in TIME. MASP1 is a promising prognostic biomarker and a potential target for immunological research, particularly in LIHC.
Collapse
Affiliation(s)
- Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Xihu University, Hangzhou, China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Miaoyu Bai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Xu
- Department of Pediatrics, Hainan Hospital of PLA General Hospital, Hainan, China
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
37
|
Aslan B, Manyam G, Iles LR, Tantawy SI, Desikan SP, Wierda WG, Gandhi V. Transcriptomic and proteomic differences in BTK-WT and BTK-mutated CLL and their changes during therapy with pirtobrutinib. Blood Adv 2024; 8:4487-4501. [PMID: 38968154 PMCID: PMC11395759 DOI: 10.1182/bloodadvances.2023012360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT Covalent Bruton tyrosine kinase inhibitors (cBTKis), which bind to the BTK C481 residue, are now primary therapeutics for chronic lymphocytic leukemia (CLL). Alterations at C481, primarily C481S, prevent cBTKi binding and lead to the emergence of resistant clones. Pirtobrutinib is a noncovalent BTKi that binds to both wild-type (WT) and C481S-mutated BTK and has shown efficacy in BTK-WT and -mutated CLL patient groups. To compare baseline clinical, transcriptomic, and proteomic characteristics and their changes during treatment in these 2 groups, we used 67 longitudinal peripheral blood samples obtained during the first 3 cycles of treatment with pirtobrutinib from 18 patients with CLL (11 BTK-mutated, 7 BTK-WT) enrolled in the BRUIN (pirtobrutinib in relapsed or refractory B-cell malignancies) trial. Eastern Cooperative Oncology Group performance status, age, and Rai stage were similar in both groups. At baseline, lymph nodes were larger in the BTK-mutated cohort. All patients achieved partial remission within 4 cycles of pirtobrutinib. Lactate dehydrogenase and β2-microglobulin levels decreased in both cohorts after 1 treatment cycle. Expression analysis demonstrated upregulation of 35 genes and downregulation of 6 in the BTK-mutated group. Gene set enrichment analysis revealed that the primary pathways enriched in BTK-mutated cells were involved in cell proliferation, metabolism, and stress response. Pathways associated with metabolism and proliferation were downregulated in both groups during pirtobrutinib treatment. Proteomic data corroborated transcriptomic findings. Our data identified inherent differences between BTK-mutated and -WT CLL and demonstrated molecular normalization of plasma and omics parameters with pirtobrutinib treatment in both groups.
Collapse
MESH Headings
- Humans
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mutation
- Middle Aged
- Transcriptome
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Proteomics/methods
- Female
- Male
- Aged
- Piperidines/therapeutic use
- Piperidines/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Proteome
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Aged, 80 and over
Collapse
Affiliation(s)
- Burcu Aslan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lakesla R. Iles
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sai Prasad Desikan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
38
|
Kong C, Wu M, Lu Q, Ke B, Xie J, Li A. PI3K/AKT confers intrinsic and acquired resistance to pirtobrutinib in chronic lymphocytic leukemia. Leuk Res 2024; 144:107548. [PMID: 39018782 DOI: 10.1016/j.leukres.2024.107548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE Pirtobrutinib, a non-covalent Bruton's tyrosine kinase (BTK) inhibitor, has been approved as the first agent to overcome resistance to covalent BTK inhibitors (such as ibrutinib, acalabrutinib, and zanubrutinib). However, the mechanisms of pirtobrutinib resistance in chronic lymphocytic leukemia (CLL) remain poorly understood. METHODS To investigate pirtobrutinib resistance, we established resistant cell models using BTK knock-out via CRISPR-Cas9 or chronic exposure to pirtobrutinib in MEC-1 cells. These models mimicked intrinsic or acquired resistance, respectively. We then analyzed differential protein expression between wild-type (WT) and resistant MEC-1 cells using Revers Phase Protein microArray (RPPA) and confirmed the findings through Western Blot. Additionally, we evaluated potential drugs to overcome pirtobrutinib resistance by conducting cell proliferation assays, apoptosis studies, and animal experiments using both sensitive and resistant cells. RESULTS MEC-1 cells developed resistance to pirtobrutinib either through BTK knock-out or prolonged drug exposure over three months. RPPA analysis revealed significant activation of proteins related to the PI3K/AKT pathway, including AKT and S6, in the resistant cells. Western Blot confirmed increased phosphorylation of AKT and S6 in pirtobrutinib-resistant MEC-1 cells. Notably, both the PI3K inhibitor (CAL101) and the AKT inhibitor (MK2206) effectively reduced cell proliferation and induced apoptosis in the resistant cells. The anti-tumor efficacy of these drugs was mediated by inhibiting the PI3K/AKT pathway. In vivo animal studies further supported the potential of targeting PI3K/AKT to overcome both intrinsic and acquired resistance to pirtobrutinib. CONCLUSION The PI3K/AKT pathway plays a crucial role in both intrinsic and acquired resistance to pirtobrutinib in CLL. Therapeutically targeting this pathway may offer a promising strategy to overcome pirtobrutinib resistance.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/drug effects
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Mice
- Phosphatidylinositol 3-Kinases/metabolism
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Pyrimidines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Xenograft Model Antitumor Assays
- Piperidines/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Signal Transduction/drug effects
- Pyrazoles/pharmacology
Collapse
Affiliation(s)
- Chunfang Kong
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Mei Wu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Qilin Lu
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Bo Ke
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Jianhui Xie
- Medical College of Nanchang University, Nanchang 330006, China
| | - Anna Li
- Department of Hematology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| |
Collapse
|
39
|
Chang CA, Emberley E, D'Souza AL, Zhao W, Cosgrove C, Parrish K, Mitra D, Payson E, Oleksijew A, Ellis P, Rodriguez L, Duggan R, Hrusch C, Lasko L, Assaily W, Zheng P, Liu W, Hernandez A, McCarthy K, Zhang Z, Rha G, Cao Z, Li Y, Perng O, Campbell J, Zhang G, Curran T, Bruncko M, Marvin CC, Hobson A, McPherson M, Uziel T, Pysz MA, Zhao X, Bankovich A, Hayflick J, McDevitt M, Freise KJ, Morgan-Lappe S, Purcell JW. ABBV-319: a CD19-targeting glucocorticoid receptor modulator antibody-drug conjugate therapy for B-cell malignancies. Blood 2024; 144:757-770. [PMID: 38701407 PMCID: PMC11375461 DOI: 10.1182/blood.2024023849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Glucocorticoids are key components of the standard-of-care treatment regimens for B-cell malignancy. However, systemic glucocorticoid treatment is associated with several adverse events. ABBV-319 is a CD19-targeting antibody-drug conjugate engineered to reduce glucocorticoid-associated toxicities while possessing 3 distinct mechanisms of action (MOA) to increase therapeutic efficacy: (1) antibody-mediated delivery of a glucocorticoid receptor modulator (GRM) payload to activate apoptosis, (2) inhibition of CD19 signaling, and (3) enhanced fragment crystallizable (Fc)-mediated effector function via afucosylation of the antibody backbone. ABBV-319 elicited potent GRM-driven antitumor activity against multiple malignant B-cell lines in vitro, as well as in cell line-derived xenografts and patient-derived xenografts (PDXs) in vivo. Remarkably, a single dose of ABBV-319 induced sustained tumor regression and enhanced antitumor activity compared with repeated dosing of systemic prednisolone at the maximum tolerated dose in mice. The unconjugated CD19 monoclonal antibody (mAb) also displayed antiproliferative activity in a subset of B-cell lymphoma cell lines through the inhibition of phosphoinositide 3-kinase signaling. Moreover, afucosylation of CD19 mAb enhanced Fc-mediated antibody-dependent cellular cytotoxicity. Notably, ABBV-319 displayed superior efficacy compared with afucosylated CD19 mAb in human CD34+ peripheral blood mononuclear cell-engrafted NSG-Tg(Hu-IL15) transgenic mice, demonstrating enhanced antitumor activity when multiple MOAs are enabled. ABBV-319 also showed durable antitumor activity across multiple B-cell lymphoma PDX models, including nongerminal center B-cell diffuse large B-cell lymphoma and relapsed lymphoma after R-CHOP treatment. Collectively, these data support the ongoing evaluation of ABBV-319 in a phase 1 clinical trial.
Collapse
MESH Headings
- Humans
- Animals
- Antigens, CD19/immunology
- Mice
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Xenograft Model Antitumor Assays
- Receptors, Glucocorticoid/antagonists & inhibitors
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/pathology
- Cell Line, Tumor
- Mice, SCID
- Female
- Maytansine/analogs & derivatives
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Wei Liu
- AbbVie Bay Area, South San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xi Zhao
- AbbVie Bay Area, South San Francisco, CA
| | | | | | | | | | | | | |
Collapse
|
40
|
Hu D, Cao J, Yu H, Ding N, Mi L, Ye Y, Li M, Wang D, Wu J, Wang X, Song Y, Zhu J, Ping L. PI3K inhibitor idelalisib enhances the anti-tumor effects of CDK4/6 inhibitor palbociclib via PLK1 in B-cell lymphoma. Cancer Lett 2024; 597:216996. [PMID: 38815797 DOI: 10.1016/j.canlet.2024.216996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Relapsed or refractory diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients still faced with poor survival, representing an unmet clinical need. In-depth research into the disease's pathogenesis and the development of targeted treatment strategies are urgently needed. Here, we conducted a comprehensive bioinformatic analysis of gene mutation and expression using data from our center and public databases. Cell cycle-related genes especially for CDKN2A/B-CDK4/6/CCND1 machinery altered frequently in DLBCL and MCL. Clinically, high CDK4 and CDK6 expression were correlated with poor prognosis of DLBCL and MCL patients. Furthermore, we also validated the pharmacological efficacy of CDK4/6 inhibitor palbociclib and its synergy effect with PI3K inhibitor idelalisib utilizing in vitro cell lines and in vivo cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. Our results provided sufficient pre-clinical evidence to support the potential combination of palbociclib and idelalisib for DLBCL and MCL patients.
Collapse
MESH Headings
- Humans
- Purines/pharmacology
- Animals
- Piperazines/pharmacology
- Pyridines/pharmacology
- Quinazolinones/pharmacology
- Cyclin-Dependent Kinase 6/antagonists & inhibitors
- Cyclin-Dependent Kinase 6/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/antagonists & inhibitors
- Cyclin-Dependent Kinase 4/metabolism
- Drug Synergism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Lymphoma, Mantle-Cell/genetics
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Proliferation/drug effects
- Female
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Dingyao Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiaowu Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hui Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ning Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lan Mi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yingying Ye
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Miaomiao Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dedao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiajin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaogan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Lingyan Ping
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
41
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
42
|
Jiang C, Sun C, Wang X, Ma S, Jia W, Zhang D. BTK Expression Level Prediction and the High-Grade Glioma Prognosis Using Radiomic Machine Learning Models. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1359-1374. [PMID: 38381384 PMCID: PMC11300408 DOI: 10.1007/s10278-024-01026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
We aimed to study whether the Bruton's tyrosine kinase (BTK) expression is correlated with the prognosis of patients with high-grade gliomas (HGGs) and predict its expression level prior to surgery, by constructing radiomic models. Clinical and gene expression data of 310 patients from The Cancer Genome Atlas (TCGA) were included for gene-based prognostic analysis. Among them, contrast-enhanced T1-weighted imaging (T1WI + C) from The Cancer Imaging Archive (TCIA) with genomic data was selected from 82 patients for radiomic models, including support vector machine (SVM) and logistic regression (LR) models. Furthermore, the nomogram incorporating radiomic signatures was constructed to evaluate its clinical efficacy. BTK was identified as an independent risk factor for HGGs through univariate and multivariate Cox regression analyses. Three radiomic features were selected to construct the SVM and LR models, and the validation set showed area under curve (AUCs) values of 0.711 (95% CI, 0.598-0.824) and 0.736 (95% CI, 0.627-0.844), respectively. The median survival times of the high Rad_score and low-Rad_score groups based on LR model were 15.53 and 23.03 months, respectively. In addition, the total risk score of each patient was used to construct a predictive nomogram, and the AUCs calculated from the corresponding time-dependent ROC curves were 0.533, 0.659, and 0.767 for 1, 3, and 5 years, respectively. BTK is an independent risk factor associated with poor prognosis in patients, and the radiomic model constructed in this study can effectively and non-invasively predict preoperative BTK expression levels and patient prognosis based on T1WI + C.
Collapse
Affiliation(s)
- Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Chen Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Xi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Shunchang Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China
| | - Dainan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 West Road, South Fourth Ring Road, Beijing, China.
| |
Collapse
|
43
|
Li G, Li J, Tian Y, Zhao Y, Pang X, Yan A. Machine learning-based classification models for non-covalent Bruton's tyrosine kinase inhibitors: predictive ability and interpretability. Mol Divers 2024; 28:2429-2447. [PMID: 37479824 DOI: 10.1007/s11030-023-10696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023]
Abstract
In this study, we built classification models using machine learning techniques to predict the bioactivity of non-covalent inhibitors of Bruton's tyrosine kinase (BTK) and to provide interpretable and transparent explanations for these predictions. To achieve this, we gathered data on BTK inhibitors from the Reaxys and ChEMBL databases, removing compounds with covalent bonds and duplicates to obtain a dataset of 3895 inhibitors of non-covalent. These inhibitors were characterized using MACCS fingerprints and Morgan fingerprints, and four traditional machine learning algorithms (decision trees (DT), random forests (RF), support vector machines (SVM), and extreme gradient boosting (XGBoost)) were used to build 16 classification models. In addition, four deep learning models were developed using deep neural networks (DNN). The best model, Model D_4, which was built using XGBoost and MACCS fingerprints, achieved an accuracy of 94.1% and a Matthews correlation coefficient (MCC) of 0.75 on the test set. To provide interpretable explanations, we employed the SHAP method to decompose the predicted values into the contributions of each feature. We also used K-means dimensionality reduction and hierarchical clustering to visualize the clustering effects of molecular structures of the inhibitors. The results of this study were validated using crystal structures, and we found that the interaction between the BTK amino acid residue and the important features of clustered scaffold was consistent with the known properties of the complex crystal structures. Overall, our models demonstrated high predictive ability and a qualitative model can be converted to a quantitative model to some extent by SHAP, making them valuable for guiding the design of new BTK inhibitors with desired activity.
Collapse
Affiliation(s)
- Guo Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Jiaxuan Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Yujia Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Yunyang Zhao
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Xiaoyang Pang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
44
|
Ramesh S, Go M, Call ME, Call MJ. Deep mutational scanning reveals transmembrane features governing surface expression of the B cell antigen receptor. Front Immunol 2024; 15:1426795. [PMID: 39108267 PMCID: PMC11300204 DOI: 10.3389/fimmu.2024.1426795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/05/2024] [Indexed: 09/17/2024] Open
Abstract
B cells surveil the body for foreign matter using their surface-expressed B cell antigen receptor (BCR), a tetrameric complex comprising a membrane-tethered antibody (mIg) that binds antigens and a signaling dimer (CD79AB) that conveys this interaction to the B cell. Recent cryogenic electron microscopy (cryo-EM) structures of IgM and IgG isotype BCRs provide the first complete views of their architecture, revealing that the largest interaction surfaces between the mIg and CD79AB are in their transmembrane domains (TMDs). These structures support decades of biochemical work interrogating the requirements for assembly of a functional BCR and provide the basis for explaining the effects of mutations. Here we report a focused saturating mutagenesis to comprehensively characterize the nature of the interactions in the mIg TMD that are required for BCR surface expression. We examined the effects of 600 single-amino-acid changes simultaneously in a pooled competition assay and quantified their effects by next-generation sequencing. Our deep mutational scanning results reflect a feature-rich TMD sequence, with some positions completely intolerant to mutation and others requiring specific biochemical properties such as charge, polarity or hydrophobicity, emphasizing the high value of saturating mutagenesis over, for example, alanine scanning. The data agree closely with published mutagenesis and the cryo-EM structures, while also highlighting several positions and surfaces that have not previously been characterized or have effects that are difficult to rationalize purely based on structure. This unbiased and complete mutagenesis dataset serves as a reference and framework for informed hypothesis testing, design of therapeutics to regulate BCR surface expression and to annotate patient mutations.
Collapse
Affiliation(s)
- Samyuktha Ramesh
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Margareta Go
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew E. Call
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Melissa J. Call
- Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
45
|
Song B, Wang K, Na S, Yao J, Fattah FJ, von Itzstein MS, Yang DM, Liu J, Xue Y, Liang C, Guo Y, Raman I, Zhu C, Dowell JE, Homsi J, Rashdan S, Yang S, Gwin ME, Hsiehchen D, Gloria-McCutchen Y, Raj P, Bai X, Wang J, Conejo-Garcia J, Xie Y, Gerber DE, Huang J, Wang T. Cmai: Predicting Antigen-Antibody Interactions from Massive Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601035. [PMID: 39005456 PMCID: PMC11244862 DOI: 10.1101/2024.06.27.601035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The interaction between antigens and antibodies (B cell receptors, BCRs) is the key step underlying the function of the humoral immune system in various biological contexts. The capability to profile the landscape of antigen-binding affinity of a vast number of BCRs will provide a powerful tool to reveal novel insights at unprecedented levels and will yield powerful tools for translational development. However, current experimental approaches for profiling antibody-antigen interactions are costly and time-consuming, and can only achieve low-to-mid throughput. On the other hand, bioinformatics tools in the field of antibody informatics mostly focus on optimization of antibodies given known binding antigens, which is a very different research question and of limited scope. In this work, we developed an innovative Artificial Intelligence tool, Cmai, to address the prediction of the binding between antibodies and antigens that can be scaled to high-throughput sequencing data. Cmai achieved an AUROC of 0.91 in our validation cohort. We devised a biomarker metric based on the output from Cmai applied to high-throughput BCR sequencing data. We found that, during immune-related adverse events (irAEs) caused by immune-checkpoint inhibitor (ICI) treatment, the humoral immunity is preferentially responsive to intracellular antigens from the organs affected by the irAEs. In contrast, extracellular antigens on malignant tumor cells are inducing B cell infiltrations, and the infiltrating B cells have a greater tendency to co-localize with tumor cells expressing these antigens. We further found that the abundance of tumor antigen-targeting antibodies is predictive of ICI treatment response. Overall, Cmai and our biomarker approach filled in a gap that is not addressed by current antibody optimization works nor works such as AlphaFold3 that predict the structures of complexes of proteins that are known to bind.
Collapse
|
46
|
Ke L, Li S, Huang D, Wang Y. Efficacy and safety of first- versus second-generation Bruton tyrosine kinase inhibitors in chronic lymphocytic leukemia: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1413985. [PMID: 39050755 PMCID: PMC11266288 DOI: 10.3389/fphar.2024.1413985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
We conducted this first systematic review and meta-analysis to assess the competitive advantage of 2nd-generation Bruton tyrosine kinase inhibitors (BTKi) compared to 1st-generation BTKi in chronic lymphocytic leukemia (CLL). The literature search was conducted from PubMed, Web of Science, Embase databases, and hematology annual conferences. Data of over response rate (ORR), progression-free survival (PFS), and overall survival (OS) were extracted to a pool meta-analysis of efficacy; adverse events (AEs) were also extracted to a pool meta-analysis of safety. Bias risk assessment and meta-analysis were performed by Review Manager 5.3 and STATA 14 software. A total of 3649 patients from 29 cohorts were included. The results showed that the benefits of ORR and 24-month PFS in 2nd-generation BTKi compared to 1st-generation BTKi were not significant in the whole population but only in the relapsed or refractory (R/R) CLL patient subgroup (ORR: 86.4% vs. 76.2%, p = 0.013; 24-month PFS: 76.9% vs. 67.9%, p = 0.004). Any-grade AEs were comparable between 1st- and 2nd-generation BTKi, but grade 3 or higher AEs were significantly less frequent with 2nd-generation BTKi versus 1st-generation BTKi (grade 3 or higher: 53.1% vs. 72.5%; p = 0.002). Headache was more frequent with 2nd-generation BTKi, while diarrhea and atrial fibrillation were more frequent with 1st-generation BTKi. Only for patients with relapsed or refractory CLL did 2nd-generation BTKi have a competitive advantage, while adverse effects still need to be considered. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO, Identifier 42022342488.
Collapse
Affiliation(s)
- Liyuan Ke
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | | | | | | |
Collapse
|
47
|
Sambur E, Oktay L, Durdağı S. Covalent docking-driven virtual screening of extensive small-molecule libraries against Bruton tyrosine kinase for the identification of highly selective and potent novel therapeutic candidates. J Mol Graph Model 2024; 130:108762. [PMID: 38614067 DOI: 10.1016/j.jmgm.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024]
Abstract
Bruton tyrosine kinases (BTKs) play critical roles in various diseases, including chronic lymphatic leukemia (CLL), Waldenström Macroglobulinemia, Marginal Zone Lymphoma, Mantle Cell Lymphoma (MCL), and Graft Versus Host diseases. BTKs are a family of tyrosine kinases involved in B lymphocyte signal transduction, development, and maturation. Their overexpression can lead to cancer as they are essential for the activation of the B Cell Receptor (BCR) signaling pathway. Blocking the activation of BTKs presents a promising approach for treating CLL. This study was centered around the identification of small-molecule therapeutics that have an impact on human BTK. The covalently bound Ibrutinib molecule, recognized for its ability to inhibit BTK, was used as the query molecule. IUPAC text files containing molecular fragments of Ibrutinib were employed to virtually screen five different libraries comprising small-molecules, resulting in the screening of over 2.4 million synthesized compounds. Covalent docking simulations were applied to the selected small-molecules obtained through text mining from databases. Potent hit molecules capable of inhibiting BTKs through virtual screening algorithms were identified, paving the way for novel therapeutic strategies in the treatment of CLL.
Collapse
Affiliation(s)
- Ezgi Sambur
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul, Turkey
| | - Lalehan Oktay
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul, Turkey
| | - Serdar Durdağı
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey; Lab for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, Istanbul, Turkey; Molecular Therapy Lab, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, Istanbul, Turkey.
| |
Collapse
|
48
|
Bhattacharyya P, Christopherson RI, Skarratt KK, Fuller SJ. Method for B Cell Receptor Enrichment in Malignant B Cells. Cancers (Basel) 2024; 16:2341. [PMID: 39001403 PMCID: PMC11240526 DOI: 10.3390/cancers16132341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
B cells are central to the adaptive immune response and provide long-lasting immunity after infection. B cell activation is mediated by the surface membrane-bound B cell receptor (BCR) following recognition of a specific antigen. The BCR has been challenging to analyse using mass spectrometry (MS) due to the difficulty of isolating and enriching this membrane-bound protein complex. There are approximately 120,000 BCRs on the B cell surface; however, depending on the B cell activation state, there may be hundreds-of-millions to billions of proteins in a B cell. Consequently, advanced proteomic techniques such as MS workflows that use purified proteins to yield structural and protein-interaction information have not been published for the BCR complex. This paper describes a method for enriching the BCR complex that is MS-compatible. The method involves a Protein G pull down on agarose beads using an intermediary antibody to each of the BCR complex subcomponents (CD79a, CD79b, and membrane immunoglobulin). The enrichment process is shown to pull down the entire BCR complex and has the advantage of being readily compatible with further proteomic study including MS analysis. Using intermediary antibodies has the potential to enrich all isotypes of the BCR, unlike previous methods described in the literature that use protein G-coated beads to directly pull down the membrane IgG (mIgG) but cannot be used for other mIg isotypes.
Collapse
Affiliation(s)
- Puja Bhattacharyya
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Penrith, NSW 2750, Australia; (P.B.); (K.K.S.)
- Blacktown Hospital, Blacktown Rd., Blacktown, NSW 2148, Australia
| | | | - Kristen K. Skarratt
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Penrith, NSW 2750, Australia; (P.B.); (K.K.S.)
- Nepean Hospital, Derby Str., Kingswood, NSW 2747, Australia
| | - Stephen J. Fuller
- Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Penrith, NSW 2750, Australia; (P.B.); (K.K.S.)
- Nepean Hospital, Derby Str., Kingswood, NSW 2747, Australia
| |
Collapse
|
49
|
Susa KJ, Bradshaw GA, Eisert RJ, Schilling CM, Kalocsay M, Blacklow SC, Kruse AC. A spatiotemporal map of co-receptor signaling networks underlying B cell activation. Cell Rep 2024; 43:114332. [PMID: 38850533 PMCID: PMC11256977 DOI: 10.1016/j.celrep.2024.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track co-receptor signaling dynamics in Raji cells from 10 s to 2 h after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the signaling subunit of the co-receptor complex. We detail the recruitment kinetics of signaling effectors to CD19 and identify previously uncharacterized mediators of B cell activation. We show that the glutamate transporter SLC1A1 is responsible for mediating rapid metabolic reprogramming and for maintaining redox homeostasis during B cell activation. This study provides a comprehensive map of BCR signaling and a rich resource for uncovering the complex signaling networks that regulate activation.
Collapse
Affiliation(s)
- Katherine J Susa
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Gary A Bradshaw
- Department of Systems Biology, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robyn J Eisert
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Charlotte M Schilling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Jiang S, Li X, Xue W, Xia S, Wang J, Sai Y, Dai G, Su W. Preclinical pharmacokinetic characterization of amdizalisib, a novel PI3Kδ inhibitor for the treatment of hematological malignancies. Front Pharmacol 2024; 15:1392209. [PMID: 38948472 PMCID: PMC11211886 DOI: 10.3389/fphar.2024.1392209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Amdizalisib, also named HMPL-689, a novel selective and potent PI3Kδ inhibitor, is currently under Phase II clinical development in China for treating hematological malignancies. The preclinical pharmacokinetics (PK) of amdizalisib were extensively characterized in vitro and in vivo to support the further development of amdizalisib. We characterized the plasma protein binding, blood-to-plasma partition ratio, cell permeability, hepatic microsomal metabolic stability, and drug-drug interaction potential of amdizalisib using in vitro experiments. In vivo PK assessment was undertaken in mice, rats, dogs, and monkeys following a single intravenous or oral administration of amdizalisib. The tissue distribution and excretion of amdizalisib were evaluated in rats. The PK parameters (CL and Vss) of amdizalisib in preclinical species (mice, rats, dogs, and monkeys) were utilized for the human PK projection using the allometric scaling (AS) approach. Amdizalisib was well absorbed and showed low-to-moderate clearance in mice, rats, dogs, and monkeys. It had high cell permeability without P-glycoprotein (P-gp) or breast cancer resistance protein (BCRP) substrate liability. Plasma protein binding of amdizalisib was high (approximately 90%). It was extensively distributed but with a low brain-to-plasma exposure ratio in rats. Amdizalisib was extensively metabolized in vivo, and the recovery rate of the prototype drug was low in the excreta. Amdizalisib and/or its metabolites were primarily excreted via the bile and urine in rats. Amdizalisib showed inhibition potential on P-gp but not on BCRP and was observed to inhibit CYP2C8 and CYP2C9 with IC50 values of 30.4 and 10.7 μM, respectively. It exhibited induction potential on CYP1A2, CYP2B6, CYP3A4, and CYP2C9. The preclinical data from these ADME studies demonstrate a favorable pharmacokinetic profile for amdizalisib, which is expected to support the future clinical development of amdizalisib as a promising anti-cancer agent.
Collapse
Affiliation(s)
| | | | | | | | - Jian Wang
- HUTCHMED Limited, Zhangjiang Hi-Tech Park, Shanghai, China
| | | | | | | |
Collapse
|