1
|
Sakamoto Y, Ishida T, Masaki A, Murase T, Ohtsuka E, Takeshita M, Muto R, Choi I, Iwasaki H, Ito A, Kusumoto S, Nakano N, Tokunaga M, Yonekura K, Tashiro Y, Suehiro Y, Iida S, Utsunomiya A, Ueda R, Inagaki H. Clinical significance of NOTCH1 and FBXW7 alterations in adult T-cell leukemia/lymphoma. Int J Hematol 2025; 121:206-221. [PMID: 39586983 DOI: 10.1007/s12185-024-03880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Here, we investigated the clinical significance of NOTCH1 and FBXW7 alterations for adult T-cell leukemia/lymphoma (ATLL) treatment outcomes. NOTCH1 alterations were identified in 37 (14.4%) of 257 patients, of which 33 were single nucleotide variants/insertion-deletions in the PEST domain, and 7 were in the heterodimerization or LIN-12/Notch repeats domains. FBXW7 alterations were observed in nine ATLL patients (3.5%). For patients without allogeneic hematopoietic stem cell transplantation (HSCT), NOTCH1, but not FBXW7, alterations were significantly and independently associated with worse overall survival (median OS 0.5 years, 95% confidence interval [CI] 0.4-0.5 years for 27 patients with NOTCH1 alterations vs 1.8 years, 95% CI 1.3-2.2 years for 170 patients without). Also, for patients receiving mogamulizumab, but not allogeneic-HSCT, NOTCH1, but not FBXW7, alterations were significantly associated with worse survival (median survival from the first dose of mogamulizumab 0.4 years, 95% CI 0.3-0.5 years for 12 patients with NOTCH1 alterations vs 1.4 years, 95% CI 0.9-2.0 years for 87 without). In contrast, NOTCH1 alterations had no significant impact on survival of patients who did receive allogeneic-HSCT. Thus, mogamulizumab-containing treatment was unable to overcome treatment refractoriness of ATLL with NOTCH1 alterations. Therefore, patients with NOTCH1 alterations are recommended for allogeneic-HSCT.
Collapse
Affiliation(s)
- Yuma Sakamoto
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan.
| | - Takashi Ishida
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ayako Masaki
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Takayuki Murase
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Eiichi Ohtsuka
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| | - Morishige Takeshita
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Reiji Muto
- Department of Pathology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Ilseung Choi
- Department of Hematology and Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Hiromi Iwasaki
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Asahi Ito
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Kentaro Yonekura
- Department of Dermatology, Imamura General Hospital, Kagoshima, Japan
| | - Yukie Tashiro
- Department of Pathology, Imamura General Hospital, Kagoshima, Japan
| | - Youko Suehiro
- Department of Hematology and Cell Therapy, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Ryuzo Ueda
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Inagaki
- Department of Pathology and Molecular Diagnostics, Graduate School of Medical Sciences, Nagoya City University, 1-Kawasumi, Mizuho-Ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
2
|
Ong KOK, Mok MMH, Niibori-Nambu A, Du L, Yanagida M, Wang CQ, Bahirvani AG, Chin DWL, Koh CP, Ng KP, Yamashita N, Jacob B, Yokomizo T, Takizawa H, Matsumura T, Suda T, Lau JYA, Tan TZ, Mori S, Yang H, Iwasaki M, Minami T, Asou N, Sun QY, Ding LW, Koeffler HP, Tenen DG, Shimizu R, Yamamoto M, Ito Y, Kham SKY, Yeoh AEJ, Chng WJ, Osato M. Activation of NOTCH signaling impedes cell proliferation and survival in acute megakaryoblastic leukemia. Exp Hematol 2024; 137:104255. [PMID: 38876252 DOI: 10.1016/j.exphem.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The genetic lesions that drive acute megakaryoblastic leukemia (AMKL) have not been fully elucidated. To search for genetic alterations in AMKL, we performed targeted deep sequencing in 34 AMKL patient samples and 8 AMKL cell lines and detected frequent genetic mutations in the NOTCH pathway in addition to previously reported alterations in GATA-1 and the JAK-STAT pathway. Pharmacological and genetic NOTCH activation, but not inhibition, significantly suppressed AMKL cell proliferation in both in vitro and in vivo assays employing a patient-derived xenograft model. These results suggest that NOTCH inactivation underlies AMKL leukemogenesis. and NOTCH activation holds the potential for therapeutic application in AMKL.
Collapse
Affiliation(s)
- Kelly Ooi Kee Ong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Michelle Meng Huang Mok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Linsen Du
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Masatoshi Yanagida
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; Bioprocessing Technology Institute, A*STAR, Singapore
| | | | - Desmond Wai Loon Chin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Cai Ping Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - King Pan Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Namiko Yamashita
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Bindya Jacob
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tomomasa Yokomizo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Takayoshi Matsumura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie-Ying Amelia Lau
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Seiichi Mori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Masayuki Iwasaki
- Institute of Laboratory Animals, Tokyo Women's Medical University, Japan
| | - Takashi Minami
- Center for Animal Resources and Development, Kumamoto University, Japan
| | - Norio Asou
- International Medical Center, Saitama Medical University, Japan
| | - Qiao-Yang Sun
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shirley Kow Yin Kham
- Department of Paediatrics, National University of Singapore, Singapore, Singapore
| | - Allen Eng-Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Paediatrics, National University of Singapore, Singapore, Singapore.
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan; Department of Paediatrics, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Pan X, Tao AM, Lu S, Ma M, Hannan SB, Slaugh R, Drewes Williams S, O'Grady L, Kanca O, Person R, Carter MT, Platzer K, Schnabel F, Abou Jamra R, Roberts AE, Newburger JW, Revah-Politi A, Granadillo JL, Stegmann APA, Sinnema M, Accogli A, Salpietro V, Capra V, Ghaloul-Gonzalez L, Brueckner M, Simon MEH, Sweetser DA, Glinton KE, Kirk SE, Wangler MF, Yamamoto S, Chung WK, Bellen HJ. De novo variants in FRYL are associated with developmental delay, intellectual disability, and dysmorphic features. Am J Hum Genet 2024; 111:742-760. [PMID: 38479391 PMCID: PMC11023917 DOI: 10.1016/j.ajhg.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/07/2024] Open
Abstract
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.
Collapse
Affiliation(s)
- Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alice M Tao
- Vagelos School of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shabab B Hannan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rachel Slaugh
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Sarah Drewes Williams
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren O'Grady
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; MGH Institute of Health Professions, Charlestown, MA, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Franziska Schnabel
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Medicine, Division of Genetics, Boston Children's Hospital, Boston, MA, USA
| | - Jane W Newburger
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Anya Revah-Politi
- Institute for Genomic Medicine and Precision Genomics Laboratory, Columbia University Irving Medical Center, New York, NY, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, McGill University Health Center, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, University College London Institute of Neurology, Queen Square, London, UK
| | - Valeria Capra
- Unit of Medical Genetics and Genomics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lina Ghaloul-Gonzalez
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martina Brueckner
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Marleen E H Simon
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David A Sweetser
- Division of Medical Genetics & Metabolism, Massachusetts General for Children, Boston, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Genetics, Texas Children's Hospital, Houston, TX, USA
| | - Susan E Kirk
- Section of Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan & Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Wendy K Chung
- Departments of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Hussan SS, Ali MS, Fatima M, Altaf M, Sadaf S. Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia. Ann Hematol 2024; 103:511-523. [PMID: 37922005 DOI: 10.1007/s00277-023-05515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2023]
Abstract
The NOTCH-Delta-HES signaling cascade is regarded as a double-edged sword owing to its dual tumor-suppressor and oncogenic roles, in different cellular environments. In the T-cells, it supports leukemogenesis by promoting differentiation while in B-cells, it controls leukemogenesis by inhibiting early differentiation/inducing growth arrest in the lead to apoptosis. The present study was undertaken to assess if this bi-faceted behavior of NOTCH family can be exploited as a diagnostic biomarker or subtype classifier of acute lymphoblastic leukemia (ALL). In this pursuit, expression of seven NOTCH cascade genes was analyzed in bone marrow (BM) biopsy and blood plasma (BP) of pediatric ALL patients using quantitative PCR (qPCR). Further, promoter DNA methylation status of the differentially expressed genes (DEGs) was assessed by methylation-specific qMSP and validated through bisulphite amplicon sequencing. Whereas hypermethylation of JAG1, DLL1, and HES-2, HES-4, and HES-5 was observed in all patients, NOTCH3 was found hypermethylated specifically in Pre-B ALL cases while DLL4 in Pre-T ALL cases. Aberrant DNA methylation strongly correlated with downregulated gene expression, which restored at complete remission stage as observed in "follow-up/post-treatment" subjects. The subtype-specific ROC curve analysis and Kaplan-Meier survival analysis predicted a clinically applicable diagnostic and prognostic potential of the panel. Moreover, the logistic regression model (Pre-B vs Pre-T ALL) was found to be the best-fitted model (McFadden's R2 = 0.28, F1 measure = 0.99). Whether analyzed in BM-aspirates or blood plasma, the NOTCH epigenetic signatures displayed comparable results (p < 0.001), advocating the potential of NOTCH-Delta-HES cascade, as a subtype classifier, in minimally invasive diagnosis of ALL.
Collapse
Affiliation(s)
- Syeda Saliah Hussan
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Shrafat Ali
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mishal Fatima
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Memoona Altaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Saima Sadaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
5
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
6
|
IL-15 Prevents the Development of T-ALL from Aberrant Thymocytes with Impaired DNA Repair Functions and Increased NOTCH1 Activation. Cancers (Basel) 2023; 15:cancers15030671. [PMID: 36765626 PMCID: PMC9913776 DOI: 10.3390/cancers15030671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
We previously reported that NOD.Scid mice lacking interleukin-15 (IL-15), or IL-15 receptor alpha-chain, develop T-acute lymphoblastic leukemia (T-ALL). To understand the mechanisms by which IL-15 signaling controls T-ALL development, we studied the thymocyte developmental events in IL-15-deficient Scid mice from NOD and C57BL/6 genetic backgrounds. Both kinds of mice develop T-ALL characterized by circulating TCR-negative cells expressing CD4, CD8 or both. Analyses of thymocytes in NOD.Scid.Il15-/- mice prior to T-ALL development revealed discernible changes within the CD4-CD8- double-negative (DN) thymocyte developmental stages and increased frequencies of CD4+CD8+ double-positive cells with a high proportion of TCR-negative CD4+ and CD8+ cells. The DN cells also showed elevated expressions of CXCR4 and CD117, molecules implicated in the expansion of DN thymocytes. T-ALL cell lines and primary leukemic cells from IL-15-deficient NOD.Scid and C57BL/6.Scid mice displayed increased NOTCH1 activation that was inhibited by NOTCH1 inhibitors and blockers of the PI3K/AKT pathway. Primary leukemic cells from NOD.Scid.Il15-/- mice survived and expanded when cultured with MS5 thymic stromal cells expressing Delta-like ligand 4 and supplemented with IL-7 and FLT3 ligand. These findings suggest that IL-15 signaling in the thymus controls T-ALL development from aberrant thymocytes with an impaired DNA repair capacity and increased NOTCH1 activation.
Collapse
|
7
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
8
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
9
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
10
|
Suzuki S, Hourai S, Uozumi K, Uchida Y, Yoshimitsu M, Miho H, Arima N, Ueno SI, Ishitsuka K. Gamma-secretase inhibitor does not induce cytotoxicity in adult T-cell leukemia cell lines despite NOTCH1 expression. BMC Cancer 2022; 22:1065. [PMID: 36243685 PMCID: PMC9571424 DOI: 10.1186/s12885-022-10003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Background Activated mutations in NOTCH1 are drivers of T-cell type acute lymphoblastic leukemia/lymphoma. The γ-secretase inhibitor (GSI), which suppresses the function of NOTCH1, is expected to be a molecular-targeted agent. NOTCH1 is also expressed in other malignant neoplasms. We aimed to determine the function of NOTCH1 expression and the effects of GSI on adult T-cell leukemia/lymphoma (ATL) caused by long-term human T-cell leukemia virus type I (HTLV-1) infection. Methods We analyzed the expression of NOTCH1 in six ATL- and HTLV-1-infected cell lines and investigated the influence of activated NOTCH1 (i.e., the cleaved form of NOTCH1) together with GSI on cell proliferation. Results Activated NOTCH1 found in ATL- and HTLV-1-infected cell lines was undetectable after incubation with GSI, regardless of Tax expression (HTLV-1-coded protein). Whole-exome sequencing revealed that activated NOTCH1 mutations were undetectable in six ATL- and HTLV-1-infected cell lines, regardless of abundant NOTCH1 expression. Moreover, GSI did not suppress the growth of ATL cell lines. Conclusions These findings suggested that NOTCH1 protein is constitutively activated but is likely a passenger during NOTCH1-mutation-negative ATL cell proliferation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10003-w.
Collapse
Affiliation(s)
- Shinsuke Suzuki
- Cancer Center, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan. .,Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan. .,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan.
| | - Sawako Hourai
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan.,Department of Environment and Public Health, Environmental Health Section, Ministry of the Environment, National Institute for Minamata Disease, Minamata, Japan
| | - Kimiharu Uozumi
- Department of Medical Oncology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Yuichirou Uchida
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Hachiman Miho
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Naomichi Arima
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-Ichi Ueno
- Cancer Center, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.,Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
11
|
Robles-Valero J, Fernández-Nevado L, Cuadrado M, Lorenzo-Martín LF, Fernández-Pisonero I, Abad A, Redín E, Montuenga L, Martín-Zanca D, Bigas A, Mallo M, Dosil M, Bustelo XR. Characterization of the spectrum of trivalent VAV1-mutation-driven tumors using a gene-edited mouse model. Mol Oncol 2022; 16:3533-3553. [PMID: 35895495 PMCID: PMC9533688 DOI: 10.1002/1878-0261.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/07/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Mutations in the VAV1 guanine nucleotide exchange factor 1 have been recently found in peripheral T cell lymphoma and nonsmall‐cell lung cancer (NSCLC). To understand their pathogenic potential, we generated a gene‐edited mouse model that expresses a VAV1 mutant protein that recapitulates the signalling alterations present in the VAV1 mutant subclass most frequently found in tumours. We could not detect any overt tumourigenic process in those mice. However, the concurrent elimination of the Trp53 tumour suppressor gene in them drives T cell lymphomagenesis. This process represents an exacerbation of the normal functions that wild‐type VAV1 plays in follicular helper T cells. We also found that, in combination with the Kras oncogene, the VAV1 mutant version favours progression of NSCLC. These data indicate that VAV1 mutations play critical, although highly cell‐type‐specific, roles in tumourigenesis. They also indicate that such functions are contingent on the mutational landscape of the tumours involved.
Collapse
Affiliation(s)
- Javier Robles-Valero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Lucía Fernández-Nevado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Myriam Cuadrado
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - L Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Isabel Fernández-Pisonero
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Antonio Abad
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Esther Redín
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Solid Tumors Program, Center of Applied Medical Research, University of Navarra, 31008, Pamplona, Spain
| | - Luis Montuenga
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Solid Tumors Program, Center of Applied Medical Research, University of Navarra, 31008, Pamplona, Spain
| | - Dionisio Martín-Zanca
- Instituto de Biología Funcional y Genómica, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Anna Bigas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Institut Hospital del Mar d'Investigacions Médiques, 08003, Barcelona, Spain
| | - Moisés Mallo
- Gulbenkian Institute, 2780-156, Oeiras, Portugal
| | - Mercedes Dosil
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Xosé R Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
12
|
Pich O, Reyes-Salazar I, Gonzalez-Perez A, Lopez-Bigas N. Discovering the drivers of clonal hematopoiesis. Nat Commun 2022; 13:4267. [PMID: 35871184 PMCID: PMC9308779 DOI: 10.1038/s41467-022-31878-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 07/06/2022] [Indexed: 12/28/2022] Open
Abstract
Mutations in genes that confer a selective advantage to hematopoietic stem cells (HSCs) drive clonal hematopoiesis (CH). While some CH drivers have been identified, the compendium of all genes able to drive CH upon mutations in HSCs remains incomplete. Exploiting signals of positive selection in blood somatic mutations may be an effective way to identify CH driver genes, analogously to cancer. Using the tumor sample in blood/tumor pairs as reference, we identify blood somatic mutations across more than 12,000 donors from two large cancer genomics cohorts. The application of IntOGen, a driver discovery pipeline, to both cohorts, and more than 24,000 targeted sequenced samples yields a list of close to 70 genes with signals of positive selection in CH, available at http://www.intogen.org/ch . This approach recovers known CH genes, and discovers other candidates.
Collapse
Affiliation(s)
- Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Iker Reyes-Salazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
13
|
Sharma D, Bisen S, Kaur G, Van Buren EC, Rao GN, Singh NK. IL-33 enhances Jagged1 mediated NOTCH1 intracellular domain (NICD) deubiquitination and pathological angiogenesis in proliferative retinopathy. Commun Biol 2022; 5:479. [PMID: 35589941 PMCID: PMC9120174 DOI: 10.1038/s42003-022-03432-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/29/2022] [Indexed: 01/10/2023] Open
Abstract
Pathological retinal neovascularization (NV) is a clinical manifestation of various proliferative retinopathies, and treatment of NV using anti-VEGF therapies is not selective, as it also impairs normal retinal vascular growth and function. Here, we show that genetic deletion or siRNA-mediated downregulation of IL-33 reduces pathological NV in a murine model of oxygen-induced retinopathy (OIR) with no effect on the normal retinal repair. Furthermore, our fluorescent activated cell sorting (FACS) data reveals that the increase in IL-33 expression is in endothelial cells (ECs) of the hypoxic retina and conditional genetic deletion of IL-33 in retinal ECs reduces pathological NV. In vitro studies using human retinal microvascular endothelial cells (HRMVECs) show that IL-33 induces sprouting angiogenesis and requires NFkappaB-mediated Jagged1 expression and Notch1 activation. Our data also suggest that IL-33 enhances de-ubiquitination and stabilization of Notch1 intracellular domain via its interaction with BRCA1-associated protein 1 (BAP1) and Numb in HRMVECs and a murine model of OIR.
Collapse
Affiliation(s)
- Deepti Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Eric C Van Buren
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48202, USA.
| |
Collapse
|
14
|
Wu Y, Niu D, Deng S, Lei X, Xie Z, Yang X. Tumor-derived or non-tumor-derived exosomal noncodingRNAs and signaling pathways in tumor microenvironment. Int Immunopharmacol 2022; 106:108626. [DOI: 10.1016/j.intimp.2022.108626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
15
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
16
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 499] [Impact Index Per Article: 166.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
17
|
Butzmann A, Sridhar K, Jangam D, Song H, Singh A, Kumar J, Chisholm KM, Pinsky B, Huang F, Ohgami RS. Mutations in JAK/STAT and NOTCH1 Genes Are Enriched in Post-Transplant Lymphoproliferative Disorders. Front Oncol 2022; 11:790481. [PMID: 35111674 PMCID: PMC8801788 DOI: 10.3389/fonc.2021.790481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Post-transplant lymphoproliferative disorders (PTLD) are diseases occurring in immunocompromised patients after hematopoietic stem cell transplantation (HCT) or solid organ transplantation (SOT). Although PTLD occurs rarely, it may be associated with poor outcomes. In most cases, PTLD is driven by Epstein-Barr virus (EBV) infection. Few studies have investigated the mutational landscape and gene expression profile of PTLD. In our study, we performed targeted deep sequencing and RNA-sequencing (RNA-Seq) on 16 cases of florid follicular hyperplasia (FFH) type PTLD and 15 cases of other PTLD types that include: ten monomorphic (M-PTLD), three polymorphic (P-PTLD), and two classic Hodgkin lymphoma type PTLDs (CHL-PTLD). Our study identified recurrent mutations in JAK3 in five of 15 PTLD cases and one of 16 FFH-PTLD cases, as well as 16 other genes that were mutated in M-PTLD, P-PTLD, CHL-PTLD and FFH-PTLD. Digital image analysis demonstrated significant differences in single cell area, major axis, and diameter when comparing cases of M-PTLD and P-PTLD to FFH-PTLD. No morphometric relationship was identified with regards to a specific genetic mutation. Our findings suggest that immune regulatory pathways play an essential role in PTLD, with the JAK/STAT pathway affected in many PTLDs.
Collapse
Affiliation(s)
- Alexandra Butzmann
- Agilent Technologies, Santa Clara, CA, United States
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Alexandra Butzmann,
| | - Kaushik Sridhar
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Diwash Jangam
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Hanbing Song
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Amol Singh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Jyoti Kumar
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen M. Chisholm
- Department of Laboratories, Seattle Children’s Hospital, Seattle, WA, United States
| | - Benjamin Pinsky
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Franklin Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Robert S. Ohgami
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Calcitonin Gene-Related Peptide Attenuates Hyperoxia-Induced Oxidative Damage in Alveolar Epithelial Type II Cells Through Regulating Viability and Transdifferentiation. Inflammation 2022; 45:863-875. [PMID: 34988756 DOI: 10.1007/s10753-021-01591-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
As a stem cell of alveolar epithelium, the physiological status of alveolar epithelium type II cells (AECII) after hyperoxia exposure is closely related to the occurrence of hyperoxia-induced lung injury and the restoration of normal morphological function of damaged alveolar epithelium. However, the relevant mechanisms involved are not very clear. Therefore, this study aimed to explore the effect of calcitonin gene-related peptide (CGRP) on AECII exposed to hyperoxia and its potential mechanisms. The AECII viability was detected using MTT assay. The malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were detected by spectrophotometry. The transdifferentiation capacity of AECII was evaluated by flow cytometry. The expression levels of Notch1, Hes, HERP, and AECII markers were detected using immunohistochemistry and/or RT-qPCR or immunofluorescence. ELISA was used for the determination of inflammatory markers. The results showed that CGRP significantly promoted cell viability, and markedly suppressed hyperoxia-induced transdifferentiation of AECII; these biological alterations were coincided with decreased MDA level, increased SOD activity, and activated Notch signaling pathway (upregulated expression levels of Notch1, Hes, and HERP). Notably, the in vitro effects of CGRP on Notch signaling pathway were further investigated in animal model, and the HE staining results showed that CGRP reduced in vivo oxidative injury and inflammation in hyperoxia-treated AECII through the promotion of structural and functional regeneration, accompanied by elevated Notch1 expression and activated Notch signaling cascade as shown by immunohistochemistry and QPCR, respectively. Immunohistochemistry of APQ-5 and SPC indicated that CGRP reversed the transdifferentiation of AECIIs in vivo. Our current results were consistent across both in vitro and in vivo settings, and provide a new direction for the prevention and treatment of bronchopulmonary dysplasia (BPD).
Collapse
|
19
|
Sasaki K, Fujiwara T, Ochi T, Ono K, Kato H, Onodera K, Ichikawa S, Fukuhara N, Onishi Y, Yokoyama H, Miyata T, Harigae H. TM5614, an Inhibitor of Plasminogen Activator Inhibitor-1, Exerts an Antitumor Effect on Chronic Myeloid Leukemia. TOHOKU J EXP MED 2022; 257:211-224. [DOI: 10.1620/tjem.2022.j036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Tohru Fujiwara
- Department of Hematology, Tohoku University Graduate School
| | - Tetsuro Ochi
- Department of Hematology, Tohoku University Graduate School
| | - Koya Ono
- Department of Hematology, Tohoku University Graduate School
| | - Hiroki Kato
- Department of Hematology, Tohoku University Graduate School
| | - Koichi Onodera
- Department of Hematology, Tohoku University Graduate School
| | | | | | - Yasushi Onishi
- Department of Hematology, Tohoku University Graduate School
| | | | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine
| | | |
Collapse
|
20
|
Inhibiting Notch activity in breast cancer stem cells by functionalized gold nanoparticles with gamma-secretase inhibitor DAPT and vitamin C. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|
22
|
Svidnicki MCCM, Filho MAF, Brandão MM, Dos Santos M, de Oliveira Dias R, Tavares RS, Assis-Mendonça GR, Traina F, Saad STO. New germline GATA1 variant in females with anemia and thrombocytopenia. Blood Cells Mol Dis 2021; 88:102545. [PMID: 33611093 DOI: 10.1016/j.bcmd.2021.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
Familial forms of bone marrow defects are rare disorders and description of new cases are valuable opportunities to clarify the molecular machinery that triggers hematopoiesis and blood formation, as well as risk to malignant transformation. We investigated the genetic scenario and possible patterns of transmission in a rare case of familial myeloid disorder with a history of exposure to pesticides. Blood counts of two proband sisters, age 41 and 42, revealed mild anemia, neutrophilia and thrombocytopenia with bone marrow finding mimicking primary myelofibrosis in the cellular phase. We analyzed the coding regions of 78 myeloid neoplasms-related genes and 16 encoding xenobiotic metabolizing genes using Next-Generation Sequencing. The GATA1 variant c.788C > T, p.T263M, located in the C-terminal zinc finger domain of GATA1, was detected in the DNA of the two sisters. The screening of the other kindreds also revealed the p.T263M variant in the mother and two daughters with the same bone marrow disorder. This is the first report of an alteration in the GATA1 CF domain causing anemia, thrombocytopenia and megakaryocyte proliferation with mild myelofibrosis, correlating a new GATA1 germline variant with myeloid disorder.
Collapse
Affiliation(s)
| | | | - Marcelo Mendes Brandão
- Molecular Biology and Genetic Engeneering Center, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | - Fabíola Traina
- Hematology and Transfusion Medicine Center, University of Campinas, Campinas, São Paulo, Brazil
| | | |
Collapse
|
23
|
Fang-Fang Z, You Y, Wen-Jun L. Progress in research on childhood T-cell acute lymphocytic leukemia, Notch1 signaling pathway, and its inhibitors: A review. Bosn J Basic Med Sci 2021; 21:136-144. [PMID: 32415821 PMCID: PMC7982061 DOI: 10.17305/bjbms.2020.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Childhood leukemia is cancer that seriously threatens the life of children in China. Poor sensitivity to chemotherapy and susceptibility to drug resistance are the reasons for the treatment of T-cell acute lymphocytic leukemia (T-ALL) being extremely difficult. Moreover, traditional intensive chemotherapy regimens cause great damage to children. Therefore, it is highly important to search for targeted drugs and develop a precise individualized treatment for child patients. There are activating mutations in the NOTCH1 gene in more than 50% of human T-ALLs and the Notch signaling pathway is involved in the pathogenesis of T-ALL. In this review, we summarize the progress in research on T-ALL and Notch1 signaling pathway inhibitors to provide a theoretical basis for the clinical treatment of T-ALL.
Collapse
Affiliation(s)
- Zhong Fang-Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yang You
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Liu Wen-Jun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| |
Collapse
|
24
|
Wang F, Qi Z, Yao Y, Yu G, Feng T, Zhao T, Xue HH, Zhao Y, Jiang P, Bao L, Yu S. Exploring the stage-specific roles of Tcf-1 in T cell development and malignancy at single-cell resolution. Cell Mol Immunol 2021; 18:644-659. [PMID: 32868912 PMCID: PMC8027857 DOI: 10.1038/s41423-020-00527-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Tcf-1 (encoded by Tcf7) not only plays critical roles in promoting T cell development and differentiation but also has been identified as a tumor suppressor involved in preventing T cell malignancy. However, the comprehensive mechanisms of Tcf-1 involved in T cell transformation remain poorly understood. In this study, Tcf7fl/fl mice were crossed with Vav-cre, Lck-cre, or Cd4-cre mice to delete Tcf-1 conditionally at the beginning of the HSC, DN2-DN3, or DP stage, respectively. The defective T cell development phenotypes became gradually less severe as the deletion stage became more advanced in distinct mouse models. Interestingly, consistent with Tcf7-/- mice, Tcf7fl/flVav-cre mice developed aggressive T cell lymphoma within 45 weeks, but no tumors were generated in Tcf7fl/flLck-cre or Tcf7fl/flCd4-cre mice. Single-cell RNA-seq (ScRNA-seq) indicated that ablation of Tcf-1 at distinct phases can subdivide DN1 cells into three clusters (C1, C2, and C3) and DN2-DN3 cells into three clusters (C4, C5, and C6). Moreover, Tcf-1 deficiency redirects bifurcation among divergent cell fates, and clusters C1 and C4 exhibit high potential for leukemic transformation. Mechanistically, we found that Tcf-1 directly binds and mediates chromatin accessibility for both typical T cell regulators and proto-oncogenes, including Myb, Mycn, Runx1, and Lyl1 in the DN1 phase and Lef1, Id2, Dtx1, Fyn, Bcl11b, and Zfp36l2 in the DN2-DN3 phase. The aberrant expression of these genes due to Tcf-1 deficiency in very early T cells contributes to subsequent tumorigenesis. Thus, we demonstrated that Tcf-1 plays stage-specific roles in regulating early thymocyte development and transformation, providing new insights and evidence for clinical trials on T-ALL leukemia.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Gene Expression Profiling
- Hepatocyte Nuclear Factor 1-alpha/physiology
- Lymphocyte Activation
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Single-Cell Analysis/methods
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Zhihong Qi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Tianyan Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China
| | - Peng Jiang
- Regenerative Biology Laboratory, Morgridge Institute for Research, Madison, WI, 53707, USA
| | - Li Bao
- Department Hematology, Beijing Jishuitan Hospital, 100096, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road 2, 100193, Beijing, China.
| |
Collapse
|
25
|
Case Report: Alagille Syndrome Presenting with Angioid Streaks. Optom Vis Sci 2021; 98:109-112. [PMID: 33617169 DOI: 10.1097/opx.0000000000001641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
SIGNIFICANCE Alagille syndrome is rare genetic disease, which affects liver and heart function. Cases are frequently diagnosed late, and a complete ocular examination aids in the diagnosis. Although ophthalmic manifestations are usually benign, occasionally, sight-threatening complications occur. PURPOSE The case presented herein highlights a rare condition, which usually can be diagnosed by the ophthalmological findings. However, in this particular case report, the complication of angioid streaks and choroidal neovascularization is reported for the first time in Alagille syndrome. CASE REPORT Α 32-year-old woman diagnosed with Alagille syndrome presented with diminution of vision in the left eye. The cause was choroidal neovascularization related to angioid streaks. She was treated with intravitreal injections of ranibizumab but developed an extensive macular scar. A few years later, she developed the same complication in the right eye and was treated similarly. CONCLUSIONS Alagille syndrome has many ophthalmic manifestations, most of them benign with minimal threat to vision. Herein for the first time, we present a case of Alagille syndrome with angioid streak-related choroidal neovascularization, which resulted in severe vision loss.
Collapse
|
26
|
Meireles Da Costa N, Palumbo A, De Martino M, Fusco A, Ribeiro Pinto LF, Nasciutti LE. Interplay between HMGA and TP53 in cell cycle control along tumor progression. Cell Mol Life Sci 2021; 78:817-831. [PMID: 32920697 PMCID: PMC11071717 DOI: 10.1007/s00018-020-03634-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 09/03/2020] [Indexed: 01/27/2023]
Abstract
The high mobility group A (HMGA) proteins are found to be aberrantly expressed in several tumors. Studies (in vitro and in vivo) have shown that HMGA protein overexpression has a causative role in carcinogenesis process. HMGA proteins regulate cell cycle progression through distinct mechanisms which strongly influence its normal dynamics along malignant transformation. Tumor protein p53 (TP53) is the most frequently altered gene in cancer. The loss of its activity is recognized as the fall of a barrier that enables neoplastic transformation. Among the different functions, TP53 signaling pathway is tightly involved in control of cell cycle, with cell cycle arrest being the main biological outcome observed upon p53 activation, which prevents accumulation of damaged DNA, as well as genomic instability. Therefore, the interaction and opposing effects of HMGA and p53 proteins on regulation of cell cycle in normal and tumor cells are discussed in this review. HMGA proteins and p53 may reciprocally regulate the expression and/or activity of each other, leading to the counteraction of their regulation mechanisms at different stages of the cell cycle. The existence of a functional crosstalk between these proteins in the control of cell cycle could open the possibility of targeting HMGA and p53 in combination with other therapeutic strategies, particularly those that target cell cycle regulation, to improve the management and prognosis of cancer patients.
Collapse
Affiliation(s)
- Nathalia Meireles Da Costa
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil.
| | - Antonio Palumbo
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marco De Martino
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia e Oncologia Sperimentale-CNR c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer-INCA, Rua André Cavalcanti, 37-6th floor-Centro, 20231-050, Rio de Janeiro, RJ, Brazil
| | - Luiz Eurico Nasciutti
- Laboratório de Interações Celulares, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Prédio de Ciências da Saúde-Cidade Universitária, Ilha do Fundão, A. Carlos Chagas, 373-Bloco F, Sala 26, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep 2020; 10:15837. [PMID: 32985581 PMCID: PMC7522078 DOI: 10.1038/s41598-020-72822-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
The Dlx5 homeobox gene was first implicated as an oncogene in a T-ALL mouse model expressing myristoylated (Myr) Akt2. Furthermore, overexpression of Dlx5 was sufficient to drive T-ALL in mice by directly activating Akt and Notch signaling. These findings implied that Akt2 cooperates with Dlx5 in T-cell lymphomagenesis. To test this hypothesis, Lck-Dlx5;Lck-MyrAkt2 transgenic mice were generated. MyrAkt2 synergized with Dlx5 to greatly accelerate and enhance the dissemination of T-lymphomagenesis. RNA-seq analysis performed on lymphomas from Lck-Dlx5;Lck-MyrAkt mice revealed upregulation of genes involved in the Wnt and cholesterol biosynthesis pathways. Combined RNA-seq and ChIP-seq analysis of lymphomas from Lck-Dlx5;Lck-MyrAkt mice demonstrated that β-catenin directly regulates genes involved in sterol regulatory element binding transcription factor 2 (Srebf2)-cholesterol synthesis. These lymphoma cells had high Lef1 levels and were highly sensitive to β-catenin and Srebf2-cholesterol synthesis inhibitors. Similarly, human T-ALL cell lines with activated NOTCH and AKT and elevated LEF1 levels were sensitive to inhibition of β-catenin and cholesterol pathways. Furthermore, LEF1 expression positively correlated with expression of genes involved in the cholesterol synthesis pathway in primary human T-ALL specimens. Together, these data suggest that targeting β-catenin and/or cholesterol biosynthesis, together with AKT, could have therapeutic efficacy in a subset of T-ALL patients.
Collapse
|
28
|
Li X, Song F, Sun H. Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncol Lett 2020; 20:239. [PMID: 32973953 PMCID: PMC7509509 DOI: 10.3892/ol.2020.12102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
The long non-coding (lnc)RNA associated with poor prognosis of hepatocellular carcinoma (AWPPH) serves as an oncogene in several cancers, such as liver and bladder cancers, however, to the best of our knowledge, its function in T-cell acute lymphoblastic leukemia is unknown. The results of the present study revealed that the expression levels of lncRNA AWPPH and Rho-associated protein kinase 2 (ROCK2) were upregulated in the bone marrow of patients with pediatric T-cell acute lymphoblastic leukemia compared with healthy controls. Expression levels of lncRNA AWPPH and ROCK2 were positively correlated with each other. lncRNA AWPPH and ROCK2 overexpression promoted the proliferation and inhibited the apoptosis of Loucy cells, an acute lymphoblastic leukemia cell line. Overexpression of lncRNA AWPPH resulted in upregulation of ROCK2 expression in Loucy cells. Similarly, ROCK2 overexpression also resulted in upregulation of lncRNA AWPPH in Loucy cells, suggesting an element of reciprocity in the function of lncRNA AWPPH and ROCK2. It was concluded that lncRNA AWPPH promoted the proliferation and inhibited the apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia possibly through interactions with ROCK2.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Pediatrics, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feifei Song
- Department of Pediatrics, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongqiang Sun
- Department of Pediatrics, The First Clinical Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
29
|
Phase 1 study of 2 high dose intensity schedules of the pan-Notch inhibitor crenigacestat (LY3039478) in combination with prednisone in patients with advanced or metastatic cancer. Invest New Drugs 2020; 39:193-201. [PMID: 32915419 DOI: 10.1007/s10637-020-00944-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Background Crenigacestat is a potent Notch inhibitor that decreases Notch signaling and its downstream biological effects. Here, we report the results from Part F of study 16F-MC-JJCA designed to evaluate the safety, pharmacokinetics (PK), and antitumor activity of crenigacestat with prednisone in advanced or metastatic cancer. The combination was planned to mitigate gastrointestinal toxicities. Methods Eligible patients (Study Part F) received crenigacestat loading dose (75 mg, escalating to 150 mg) administered thrice weekly (TIW) (F1) or twice weekly (BIW) (F2) for 2 weeks during Cycle 1, followed by 50 mg TIW from week 3 onwards. Prednisone was co-administered for 2 weeks in Cycle 1. Results Twenty-eight patients were enrolled; 11 in F1 (median age, 63 years), 17 in F2 (median age, 50 years). Dose-limiting toxicities were Grade 3 increased serum amylase and Grade 2 fatigue in F1, and Grade 4 hypophosphatemia and Grade 3 rash maculo-papular in F2. The maximum tolerated dose was 75 mg in F1 and 100 mg in F2. Best overall response was stable disease (F1, 6 [54.5%] patients; F2, 11 [64.7%] patients). Pharmacokinetic was dose proportional. Prednisone did not modify PK of crenigacestat, and both F1 and F2 achieved pharmacodynamics effects on evaluable tumor tissue samples. Conclusions This study demonstrated the potential use of prednisone to reduce gastrointestinal (GI) toxicities of a Notch inhibitor without affecting its PK. The safety profile observed was consistent with Notch pathway inhibitors, and the maximum tolerated dose was 75 mg TIW and 100 mg BIW in F1 and F2, respectively. ClinicalTrials.gov: NCT01695005.
Collapse
|
30
|
Cheng L, Ma D, Lu L, Ouyang D, Xi Z. Building Customizable Multisite‐Targeting c‐Myc shRNA Array into Branch‐PCR‐Constructed DNA Nanovectors for Enhanced Tumor Cell Suppression. ChemistrySelect 2020. [DOI: 10.1002/slct.202002609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Longhuai Cheng
- Department of Chemical Biology State Key Laboratory of Elemento-Organic Chemistry National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Weijin Road 94 Tianjin 300071 P. R. China
| | - Dejun Ma
- Department of Chemical Biology State Key Laboratory of Elemento-Organic Chemistry National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Weijin Road 94 Tianjin 300071 P. R. China
| | - Liqing Lu
- Department of Chemical Biology State Key Laboratory of Elemento-Organic Chemistry National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Weijin Road 94 Tianjin 300071 P. R. China
| | - Di Ouyang
- Department of Chemical Biology State Key Laboratory of Elemento-Organic Chemistry National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Weijin Road 94 Tianjin 300071 P. R. China
| | - Zhen Xi
- Department of Chemical Biology State Key Laboratory of Elemento-Organic Chemistry National Engineering Research Center of Pesticide (Tianjin) College of Chemistry Nankai University Weijin Road 94 Tianjin 300071 P. R. China
| |
Collapse
|
31
|
KDM2B in polycomb repressive complex 1.1 functions as a tumor suppressor in the initiation of T-cell leukemogenesis. Blood Adv 2020; 3:2537-2549. [PMID: 31471323 DOI: 10.1182/bloodadvances.2018028522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
KDM2B together with RING1B, PCGF1, and BCOR or BCORL1 comprise polycomb repressive complex 1.1 (PRC1.1), a noncanonical PRC1 that catalyzes H2AK119ub1. It binds to nonmethylated CpG islands through its zinc finger-CxxC DNA binding domain and recruits the complex to target gene loci. Recent studies identified the loss of function mutations in the PRC1.1 gene, BCOR and BCORL1 in human T-cell acute lymphoblastic leukemia (T-ALL). We previously reported that Bcor insufficiency induces T-ALL in mice, supporting a tumor suppressor role for BCOR. However, the function of BCOR responsible for tumor suppression, either its corepressor function for BCL6 or that as a component of PRC1.1, remains unclear. We herein examined mice specifically lacking the zinc finger-CxxC domain of KDM2B in hematopoietic cells. Similar to Bcor-deficient mice, Kdm2b-deficient mice developed lethal T-ALL mostly in a NOTCH1-dependent manner. A chromatin immunoprecipitation sequence analysis of thymocytes revealed the binding of KDM2B at promoter regions, at which BCOR and EZH2 colocalized. KDM2B target genes markedly overlapped with those of NOTCH1 in human T-ALL cells, suggesting that noncanonical PRC1.1 antagonizes NOTCH1-mediated gene activation. KDM2B target genes were expressed at higher levels than the others and were marked with high levels of H2AK119ub1 and H3K4me3, but low levels of H3K27me3, suggesting that KDM2B target genes are transcriptionally active or primed for activation. These results indicate that PRC1.1 plays a key role in restricting excessive transcriptional activation by active NOTCH1, thereby acting as a tumor suppressor in the initiation of T-cell leukemogenesis.
Collapse
|
32
|
Morrugares R, Correa-Sáez A, Moreno R, Garrido-Rodríguez M, Muñoz E, de la Vega L, Calzado MA. Phosphorylation-dependent regulation of the NOTCH1 intracellular domain by dual-specificity tyrosine-regulated kinase 2. Cell Mol Life Sci 2020; 77:2621-2639. [PMID: 31605148 PMCID: PMC7320039 DOI: 10.1007/s00018-019-03309-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/10/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022]
Abstract
NOTCH proteins constitute a receptor family with a widely conserved role in cell cycle, growing and development regulation. NOTCH1, the best characterised member of this family, regulates the expression of key genes in cell growth and angiogenesis, playing an essential role in cancer development. These observations provide a relevant rationale to propose the inhibition of the intracellular domain of NOTCH1 (Notch1-IC) as a strategy for treating various types of cancer. Notch1-IC stability is mainly controlled by post-translational modifications. FBXW7 ubiquitin E3 ligase-mediated degradation is considered one of the most relevant, being the previous phosphorylation at Thr-2512 residue required. In the present study, we describe for the first time a new regulation mechanism of the NOTCH1 signalling pathway mediated by DYRK2. We demonstrate that DYRK2 phosphorylates Notch1-IC in response to chemotherapeutic agents and facilitates its proteasomal degradation by FBXW7 ubiquitin ligase through a Thr-2512 phosphorylation-dependent mechanism. We show that DYRK2 regulation by chemotherapeutic agents has a relevant effect on the viability, motility and invasion capacity of cancer cells expressing NOTCH1. In summary, we reveal a novel mechanism of regulation for NOTCH1 which might help us to better understand its role in cancer biology.
Collapse
Affiliation(s)
- Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rita Moreno
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, James Arrott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Innohealth Group, Madrid, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Laureano de la Vega
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, James Arrott Drive, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n. 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
33
|
Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, Lazaris C, Chen X, Hu H, Bakogianni S, Wang J, Fu Y, Boccalatte F, Zhong H, Paietta E, Trimarchi T, Zhu Y, Van Vlierberghe P, Inghirami GG, Lionnet T, Aifantis I, Tsirigos A. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. Nat Genet 2020; 52:388-400. [PMID: 32203470 PMCID: PMC7138649 DOI: 10.1038/s41588-020-0602-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Differences in three-dimensional (3D) chromatin architecture can influence the integrity of topologically associating domains (TADs) and rewire specific enhancer-promoter interactions, impacting gene expression and leading to human disease. Here we investigate the 3D chromatin architecture in T cell acute lymphoblastic leukemia (T-ALL) by using primary human leukemia specimens and examine the dynamic responses of this architecture to pharmacological agents. Systematic integration of matched in situ Hi-C, RNA-seq and CTCF ChIP-seq datasets revealed widespread differences in intra-TAD chromatin interactions and TAD boundary insulation in T-ALL. Our studies identify and focus on a TAD 'fusion' event associated with absence of CTCF-mediated insulation, enabling direct interactions between the MYC promoter and a distal super-enhancer. Moreover, our data also demonstrate that small-molecule inhibitors targeting either oncogenic signal transduction or epigenetic regulation can alter specific 3D interactions found in leukemia. Overall, our study highlights the impact, complexity and dynamic nature of 3D chromatin architecture in human acute leukemia.
Collapse
Affiliation(s)
- Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Palaniraja Thandapani
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Panagiotis Ntziachristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Yohana Ghebrechristos
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Nomikou
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Charalampos Lazaris
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Xufeng Chen
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Sofia Bakogianni
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Sciences, New York, NY, USA
| | - Jingjing Wang
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Yi Fu
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Francesco Boccalatte
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Hua Zhong
- Division of Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | | | - Thomas Trimarchi
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.,BridgeBio Pharma, Palo Alto, CA, USA
| | - Yixing Zhu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Timothee Lionnet
- Department of Cell Biology, Institute for Systems Genetics, New York University, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA. .,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. .,Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Eroglu B, Pang J, Jin X, Xi C, Moskophidis D, Mivechi NF. HSF1-Mediated Control of Cellular Energy Metabolism and mTORC1 Activation Drive Acute T-Cell Lymphoblastic Leukemia Progression. Mol Cancer Res 2020; 18:463-476. [PMID: 31744878 PMCID: PMC7056558 DOI: 10.1158/1541-7786.mcr-19-0217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/16/2023]
Abstract
Deregulated oncogenic signaling linked to PI3K/AKT and mTORC1 pathway activation is a hallmark of human T-cell acute leukemia (T-ALL) pathogenesis and contributes to leukemic cell resistance and adverse prognosis. Notably, although the multiagent chemotherapy of leukemia leads to a high rate of complete remission, options for salvage therapy for relapsed/refractory disease are limited due to the serious side effects of augmenting cytotoxic chemotherapy. We report that ablation of HSF1, a key transcriptional regulator of the chaperone response and cellular bioenergetics, from mouse T-ALL tumors driven by PTEN loss or human T-ALL cell lines, has significant therapeutic effects in reducing tumor burden and sensitizing malignant cell death. From a mechanistic perspective, the enhanced sensitivity of T-ALLs to HSF1 depletion resides in the reduced MAPK-ERK signaling and metabolic and ATP-producing capacity of malignant cells lacking HSF1 activity. Impaired mitochondrial ATP production and decreased intracellular amino acid content in HSF1-deficient T-ALL cells trigger an energy-saving adaptive response featured by attenuation of the mTORC1 activity, which is coregulated by ATP, and its downstream target proteins (p70S6K and 4E-BP). This leads to protein translation attenuation that diminishes oncogenic signals and malignant cell growth. Collectively, these metabolic alterations in the absence of HSF1 activity reveal cancer cell liabilities and have a profound negative impact on T-ALL progression. IMPLICATIONS: Targeting HSF1 and HSF1-dependent cancer-specific anabolic and protein homeostasis programs has a significant therapeutic potential for T-ALL and may prevent progression of relapsed/refractory disease.
Collapse
Affiliation(s)
- Binnur Eroglu
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Junfeng Pang
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Xiongjie Jin
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Caixia Xi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Demetrius Moskophidis
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia.
- Department of Medicine, Augusta University, Augusta, Georgia
| | - Nahid F Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, Georgia.
- Department of Medicine, Augusta University, Augusta, Georgia
- Department of Radiation Oncology, Augusta University, Augusta, Georgia
| |
Collapse
|
35
|
Epigenetic Regulation of Notch Signaling During Drosophila Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:59-75. [PMID: 32060871 DOI: 10.1007/978-3-030-34436-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Notch signaling exerts multiple important functions in various developmental processes, including cell differentiation and cell proliferation, while mis-regulation of this pathway results in a variety of complex diseases, such as cancer and developmental defects. The simplicity of the Notch pathway in Drosophila melanogaster, in combination with the availability of powerful genetics, makes this an attractive model for studying the fundamental mechanisms of how Notch signaling is regulated and how it functions in various cellular contexts. Recently, increasing evidence for epigenetic control of Notch signaling reveals the intimate link between epigenetic regulators and Notch signaling pathway. In this chapter, we summarize the research advances of Notch and CAF-1 in Drosophila development and the epigenetic regulation mechanisms of Notch signaling activity by CAF-1 as well as other epigenetic modification machineries, which enables Notch to orchestrate different biological inputs and outputs in specific cellular contexts.
Collapse
|
36
|
Biernacki MA, Bleakley M. Neoantigens in Hematologic Malignancies. Front Immunol 2020; 11:121. [PMID: 32117272 PMCID: PMC7033457 DOI: 10.3389/fimmu.2020.00121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
T cell cancer neoantigens are created from peptides derived from cancer-specific aberrant proteins, such as mutated and fusion proteins, presented in complex with human leukocyte antigens on the cancer cell surface. Because expression of the aberrant target protein is exclusive to malignant cells, immunotherapy directed against neoantigens should avoid “on-target, off-tumor” toxicity. The efficacy of neoantigen vaccines in melanoma and glioblastoma and of adoptive transfer of neoantigen-specific T cells in epithelial tumors indicates that neoantigens are valid therapeutic targets. Improvements in sequencing technology and innovations in antigen discovery approaches have facilitated the identification of neoantigens. In comparison to many solid tumors, hematologic malignancies have few mutations and thus fewer potential neoantigens. Despite this, neoantigens have been identified in a wide variety of hematologic malignancies. These include mutated nucleophosmin1 and PML-RARA in acute myeloid leukemia, ETV6-RUNX1 fusions and other mutated proteins in acute lymphoblastic leukemia, BCR-ABL1 fusions in chronic myeloid leukemia, driver mutations in myeloproliferative neoplasms, immunoglobulins in lymphomas, and proteins derived from patient-specific mutations in chronic lymphoid leukemias. We will review advances in the field of neoantigen discovery, describe the spectrum of identified neoantigens in hematologic malignancies, and discuss the potential of these neoantigens for clinical translation.
Collapse
Affiliation(s)
- Melinda A Biernacki
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Marie Bleakley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
37
|
Zhu Q, Hu L, Guo Y, Xiao Z, Xu Q, Tong X. FBW7 in hematological tumors. Oncol Lett 2020; 19:1657-1664. [PMID: 32194657 PMCID: PMC7039162 DOI: 10.3892/ol.2020.11264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
F-box and WD repeat domain-containing protein 7 (FBW7), also known as FBXW7, AGO or hCDC4, is an F-box protein with seven tandem WD40 repeats. FBW7 is a key substrate recognition subunit of the Skp1-Cul1-F-box-protein E3 ubiquitin ligase. FBW7 targets for ubiquitination and destruction of numerous crucial transcription factors and protooncogenes, including cyclin E, c-Myc, c-Jun, Notch and MCL-1. FBW7 is a well-characterized tumor suppressor, and its gene is frequently mutated or deleted in various types of human cancer, including colorectal cancer, gastric cancer, ovarian cancer and different types of leukemia. Accumulating evidence indicates that the aberrant expression of FBW7 is involved in the development of hematological tumors, including T cell acute lymphoblastic leukemia, adult T cell leukemia/lymphoma, chronic lymphocytic leukemia and multiple myeloma. The present review will describe the latest findings on the role of FBW7 in hematological tumors, in order to identify a novel target for future therapies.
Collapse
Affiliation(s)
- Qiaojuan Zhu
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Linjun Hu
- Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Yang Guo
- Graduate Department, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Zunqiang Xiao
- The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
38
|
Wang YN, Wang J, Yang HN, Zhang BL, Zhang P, Sun PY, Zhang N, Wang Y, Sheng J, Wang XJ, Zi CT. The oxidation of (-)-epigallocatechin-3-gallate inhibits T-cell acute lymphoblastic leukemia cell line HPB-ALL via the regulation of Notch1 expression. RSC Adv 2020; 10:1679-1684. [PMID: 35494663 PMCID: PMC9047518 DOI: 10.1039/c9ra08459b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, and commonly associated with activating mutations in the Notch1 pathway. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant and active catechin and has been shown to regulate Notch signaling. Taking into account the highly oxidizable and unstable of EGCG, we proposed that EGCG oxides may have greater potential to regulate Notch signaling than EGCG. In this study, we isolated and identified EGCG oxides (compound 2-4), using a chemical oxidation strategy, and evaluated for cytotoxicity against T-cell acute lymphoblastic leukemia cell line (HPB-ALL) by using the MTS assay. We found compound 3 significantly induced cell proliferation inhibition (38.3858 ± 1.67106 μM), cell apoptosis and cell cycle arrest in a dose-dependent manner. Remarkably, compound 3 inhibited expression of Notch1 compared with EGCG in HPB-ALL cells. Meanwhile, we found that compound 3 significantly inhibited c-Myc and Hes1, which are downstream target genes of Notch1. The findings demonstrate for the first time that an oxidation product of EGCG (compound 3) inhibits T-cell acute lymphoblastic leukemia cell line (HPB-ALL) and is a promising agent for cancer therapy deserving further research.
Collapse
Affiliation(s)
- Yu-Na Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Jing Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Hao-Nan Yang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Bang-Lei Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Pan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Pei-Yuan Sun
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Nin Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Ya Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University Kunming 650201 China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
- College of Science, Yunnan Agricultural University Kunming 650201 China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University Kunming 650201 China
| | - Cheng-Ting Zi
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University Kunming 650201 China
- College of Science, Yunnan Agricultural University Kunming 650201 China
| |
Collapse
|
39
|
Dreval K, Lake RJ, Fan HY. HDAC1 negatively regulates selective mitotic chromatin binding of the Notch effector RBPJ in a KDM5A-dependent manner. Nucleic Acids Res 2019; 47:4521-4538. [PMID: 30916347 PMCID: PMC6511865 DOI: 10.1093/nar/gkz178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023] Open
Abstract
Faithful propagation of transcription programs through cell division underlies cell-identity maintenance. Transcriptional regulators selectively bound on mitotic chromatin are emerging critical elements for mitotic transcriptional memory; however, mechanisms governing their site-selective binding remain elusive. By studying how protein-protein interactions impact mitotic chromatin binding of RBPJ, the major downstream effector of the Notch signaling pathway, we found that histone modifying enzymes HDAC1 and KDM5A play critical, regulatory roles in this process. We found that HDAC1 knockdown or inactivation leads to increased RBPJ occupancy on mitotic chromatin in a site-specific manner, with a concomitant increase of KDM5A occupancy at these sites. Strikingly, the presence of KDM5A is essential for increased RBPJ occupancy. Our results uncover a regulatory mechanism in which HDAC1 negatively regulates RBPJ binding on mitotic chromatin in a KDM5A-dependent manner. We propose that relative chromatin affinity of a minimal regulatory complex, reflecting a specific transcription program, renders selective RBPJ binding on mitotic chromatin.
Collapse
Affiliation(s)
- Kostiantyn Dreval
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Robert J Lake
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Hua-Ying Fan
- From the Department of Internal Medicine, Division of Molecular Medicine, Program in Cancer Genetics, Epigenetics and Genomics, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
40
|
Tillman H, Janke LJ, Funk A, Vogel P, Rehg JE. Morphologic and Immunohistochemical Characterization of Spontaneous Lymphoma/Leukemia in NSG Mice. Vet Pathol 2019; 57:160-171. [PMID: 31736441 DOI: 10.1177/0300985819882631] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ strain (NOD scid gamma, NSG) is a severely immunodeficient inbred laboratory mouse used for preclinical studies because it is amenable to engraftment with human cells. Combining scid and Il2rgnull mutations results in severe immunodeficiency by impairing the maturation, survival, and functionality of interleukin 2-dependent immune cells, including T, B, and natural killer lymphocytes. While NSG mice are reportedly resistant to developing spontaneous lymphomas/leukemias, there are reports of hematopoietic cancers developing. In this study, we characterized the immunophenotype of spontaneous lymphoma/leukemia in 12 NSG mice (20 to 38 weeks old). The mice had a combination of grossly enlarged thymus, spleen, or lymph nodes and variable histologic involvement of the bone marrow and other tissues. All 12 lymphomas were diffusely CD3, TDT, and CD4 positive, and 11 of 12 were also positive for CD8, which together was consistent with precursor T-cell lymphoblastic lymphoma/leukemia (pre-T-LBL). A subset of NSG tissues from all mice and neoplastic lymphocytes from 8 of 12 cases had strong immunoreactivity for retroviral p30 core protein, suggesting an association with a viral infection. These data highlight that NSG mice may develop T-cell lymphoma at low frequency, necessitating the recognition of this spontaneously arising disease when interpreting studies.
Collapse
Affiliation(s)
- Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amy Funk
- Animal Resources Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
41
|
Shin S, Kim K, Kim HR, Ylaya K, Do SI, Hewitt SM, Park HS, Roe JS, Chung JY, Song J. Deubiquitylation and stabilization of Notch1 intracellular domain by ubiquitin-specific protease 8 enhance tumorigenesis in breast cancer. Cell Death Differ 2019; 27:1341-1354. [PMID: 31527799 DOI: 10.1038/s41418-019-0419-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Notch, an essential factor in tissue development and homoeostasis, has been reported to play an oncogenic function in a variety of cancers. Here, we report ubiquitin-specific protease 8 (USP8) as a novel deubiquitylase of Notch1 intracellular domain (NICD). USP8 specifically stabilizes and deubiquitylates NICD through a direct interaction. The inhibition of USP8 downregulated the Notch signalling pathway via NICD destabilization, resulting in the retardation of cellular growth, wound closure, and colony forming ability of breast cancer cell lines. These phenomena were restored by the reconstitution of NICD or USP8, supporting the direct interaction between these two proteins. The expression levels of NICD and USP8 proteins were positively correlated in patients with advanced breast cancer. Taken together, our results suggest that USP8 functions as a positive regulator of Notch signalling, offering a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungeun Kim
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kris Ylaya
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
42
|
Gao J, Van Meter M, Hernandez Lopez S, Chen G, Huang Y, Ren S, Zhao Q, Rojas J, Gurer C, Thurston G, Kuhnert F. Therapeutic targeting of Notch signaling and immune checkpoint blockade in a spontaneous, genetically heterogeneous mouse model of T-cell acute lymphoblastic leukemia. Dis Model Mech 2019; 12:dmm.040931. [PMID: 31399482 PMCID: PMC6765191 DOI: 10.1242/dmm.040931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic cancer derived from the malignant transformation of T-cell progenitors. Outcomes remain poor for T-ALL patients who have either primary resistance to standard-of-care chemotherapy or disease relapse. Notably, there are currently no targeted therapies available in T-ALL. This lack of next-generation therapies highlights the need for relevant preclinical disease modeling to identify and validate new targets and treatment approaches. Here, we adapted a spontaneously arising, genetically heterogeneous, thymic transplantation-based murine model of T-ALL, recapitulating key histopathological and genetic features of the human disease, to the preclinical testing of targeted and immune-directed therapies. Genetic engineering of the murine Notch1 locus aligned the spectrum of Notch1 mutations in the mouse model to that of human T-ALL and confirmed aberrant, recombination-activating gene (RAG)-mediated 5′ Notch1 recombination events as the preferred pathway in murine T-ALL development. Testing of Notch1-targeting therapeutic antibodies demonstrated T-ALL sensitivity to different classes of Notch1 blockers based on Notch1 mutational status. In contrast, genetic ablation of Notch3 did not impact T-ALL development. The T-ALL model was further applied to the testing of immunotherapeutic agents in fully immunocompetent, syngeneic mice. In line with recent clinical experience in T-cell malignancies, programmed cell death 1 (PD-1) blockade alone lacked anti-tumor activity against murine T-ALL tumors. Overall, the unique features of the spontaneous T-ALL model coupled with genetic manipulations and the application to therapeutic testing in immunocompetent backgrounds will be of great utility for the preclinical evaluation of novel therapies against T-ALL. Summary: Adapting a spontaneous, genetically heterogenous T-ALL model to preclinical testing demonstrated that response to therapeutic anti-Notch1 antibodies was determined by Notch1 mutational status and that PD-1 immune checkpoint blockade alone lacked anti-tumor activity.
Collapse
Affiliation(s)
- Jie Gao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | | | | | - Guoying Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Ying Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Shumei Ren
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Qi Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Jose Rojas
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Cagan Gurer
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| | - Frank Kuhnert
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York, NY 10591, USA
| |
Collapse
|
43
|
Mitsiadis TA. Emerging Trends and Promises in Orofacial Cancers. Front Physiol 2019; 10:679. [PMID: 31191362 PMCID: PMC6549536 DOI: 10.3389/fphys.2019.00679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Thimios A Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Centre for Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Yang SA, Portilla JM, Mihailovic S, Huang YC, Deng WM. Oncogenic Notch Triggers Neoplastic Tumorigenesis in a Transition-Zone-like Tissue Microenvironment. Dev Cell 2019; 49:461-472.e5. [PMID: 30982664 PMCID: PMC6504601 DOI: 10.1016/j.devcel.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 12/30/2022]
Abstract
During the initial stages of tumorigenesis, the tissue microenvironment where the pro-tumor cells reside plays a crucial role in determining the fate of these cells. Transition zones, where two types of epithelial cells meet, are high-risk sites for carcinogenesis, but the underlying mechanism remains largely unclear. Here, we show that persistent upregulation of Notch signaling induces neoplastic tumorigenesis in a transition zone between the salivary gland imaginal ring cells and the giant cells in Drosophila larvae. In this region, local endogenous JAK-STAT and JNK signaling creates a tissue microenvironment that is susceptible to oncogenic-Notch-induced tumorigenesis, whereas the rest of the salivary gland imaginal ring is refractory to Notch-induced tumor transformation. JNK signaling activates a matrix metalloprotease (MMP1) to promote Notch-induced tumorigenesis at the transition zone. These findings illustrate the significance of local endogenous inflammatory signaling in primary tumor formation.
Collapse
Affiliation(s)
- Sheng-An Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Juan-Martin Portilla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Sonja Mihailovic
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Yi-Chun Huang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
45
|
Gill BS, Kumar S. Antioxidant potential of ganoderic acid in Notch-1 protein in neuroblastoma. Mol Cell Biochem 2018; 456:1-14. [PMID: 30511344 DOI: 10.1007/s11010-018-3485-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is a childhood tumor arising from developing a sympathetic nervous system and causes around 10% of pediatric tumors. Despite advancement in the use of sophisticated techniques in molecular biology, neuroblastoma patient's survivability rate is very less. Notch pathway is significant in upholding cell maintenance and developmental process of organs. Notch-1 proteins are a ligand-activated transmembrane receptor which decides the fate of the cell. Notch signaling leads to transcription of genes which indulged in numerous diseases including tumor progression. Ganoderic acid, a lanosterol triterpene, isolated from fungus Ganoderma lucidum with a wide range of medicinal values. In the present study, various isoforms of the ganoderic acid and natural inhibitors were docked by molecular docking using Maestro 9 in the Notch-1 signaling pathway. The receptor-based molecular docking exposed the best binding interaction of Notch-1 with ganoderic acid A with GScore (- 8.088), kcal/mol, Lipophilic EvdW (- 1.74), Electro (- 1.18), Glide emodel (- 89.944) with the active participation of Arg 189, Arg 199, Glu 232 residues. On the other hand natural inhibitor, curcumin has GScore (- 7.644), kcal/mol, Lipophilic EvdW (- 2.19), Electro (- 0.73), Glide emodel (- 70.957) with Arg 75 residues involved in docking. The ligand binding affinity of ganoderic acid A in Notch-1 is calculated using MM-GBSA (- 76.782), whereas curcumin has (- 72.815) kcal/mol. The QikProp analyzed the various drug-likeness parameters such as absorption, distribution, metabolism, excretion, and toxicity (ADME/T) and isoforms of ganoderic acid require some modification to fall under Lipinski rule. The ganoderic acid A and curcumin were the best-docked among different compounds and exhibits downregulation in Notch-1 mRNA expression and inhibits proliferation, viability, and ROS activity in IMR-32 cells.
Collapse
Affiliation(s)
- Balraj Singh Gill
- Centre for Biosciences, Central University of Punjab, Bathinda, 151001, India.
- Department of Higher Education, Shimla, Himachal Pradesh, India.
| | - Sanjeev Kumar
- Centre for Plant Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
46
|
Singrang N, Kittisenachai S, Roytrakul S, Svasti J, Kangsamaksin T. NOTCH1 regulates the viability of cholangiocarcinoma cells via 14-3-3 theta. J Cell Commun Signal 2018; 13:245-254. [PMID: 30264361 DOI: 10.1007/s12079-018-0488-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Notch signaling has been reported to correlate with tumor progression and metastasis in several types of cancer. In cholangiocarcinoma (CCA), it has recently been shown that NOTCH1 is overexpressed in both nucleus and cytoplasm of CCA cells; however, the complete understanding of Notch signaling in CCA is still lacking. Here, we aimed to understand the functions of NOTCH1 in CCA cells and the molecular mechanisms that underlie those functions. We used retroviral vectors to overexpress active forms of NOTCH1, the NOTCH1 intracellular domain (N1ICD) and N1ICD that lacks the RBP-J-associated module (RAM), in human CCA cell lines RMCCA-1 and HuCCA-1. Our results showed that activation of Notch signaling by both N1ICD variants enhanced CCA cell proliferation and survival via upregulation of pro-survival protein Mcl-1 and Bcl-xL. Moreover, our LC-MS/MS proteomic studies demonstrated that NOTCH1 may cooperate with 14-3-3 theta to promote CCA cell survival. Knockdown of 14-3-3 theta in RMCCA-1 cells overexpressing N1ICD, diminished pro-survival effects of N1ICD under gemcitabine treatment. In conclusion, these data demonstrated that NOTCH1 plays a role in CCA cell proliferation and survival via the regulation of 14-3-3 theta in a RAM-independent fashion.
Collapse
Affiliation(s)
- Nongnuch Singrang
- Graduate Programme in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suthathip Kittisenachai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12110, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Khlong Luang, Pathum Thani, 12110, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Thaned Kangsamaksin
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
47
|
Dastur A, Choi AH, Costa C, Yin X, Williams A, McClanaghan J, Greenberg M, Roderick J, Patel NU, Boisvert J, McDermott U, Garnett MJ, Almenara J, Grant S, Rizzo K, Engelman JA, Kelliher M, Faber AC, Benes CH. NOTCH1 Represses MCL-1 Levels in GSI-resistant T-ALL, Making them Susceptible to ABT-263. Clin Cancer Res 2018; 25:312-324. [PMID: 30224339 DOI: 10.1158/1078-0432.ccr-18-0867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/19/2018] [Accepted: 09/11/2018] [Indexed: 02/01/2023]
Abstract
PURPOSE Effective targeted therapies are lacking for refractory and relapsed T-cell acute lymphoblastic leukemia (T-ALL). Suppression of the NOTCH pathway using gamma-secretase inhibitors (GSI) is toxic and clinically not effective. The goal of this study was to identify alternative therapeutic strategies for T-ALL. EXPERIMENTAL DESIGN We performed a comprehensive analysis of our high-throughput drug screen across hundreds of human cell lines including 15 T-ALL models. We validated and further studied the top hit, navitoclax (ABT-263). We used multiple human T-ALL cell lines as well as primary patient samples, and performed both in vitro experiments and in vivo studies on patient-derived xenograft models. RESULTS We found that T-ALL are hypersensitive to navitoclax, an inhibitor of BCL2 family of antiapoptotic proteins. Importantly, GSI-resistant T-ALL are also susceptible to navitoclax. Sensitivity to navitoclax is due to low levels of MCL-1 in T-ALL. We identify an unsuspected regulation of mTORC1 by the NOTCH pathway, resulting in increased MCL-1 upon GSI treatment. Finally, we show that pharmacologic inhibition of mTORC1 lowers MCL-1 levels and further sensitizes cells to navitoclax in vitro and leads to tumor regressions in vivo. CONCLUSIONS Our results support the development of navitoclax, as single agent and in combination with mTOR inhibitors, as a new therapeutic strategy for T-ALL, including in the setting of GSI resistance.
Collapse
Affiliation(s)
- Anahita Dastur
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - AHyun Choi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Carlotta Costa
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Xunqin Yin
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - August Williams
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Joseph McClanaghan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Max Greenberg
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Justine Roderick
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Neha U Patel
- VCU Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Jessica Boisvert
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Ultan McDermott
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Mathew J Garnett
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Jorge Almenara
- Department of Anatomic Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Steven Grant
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, The Institute for Molecular Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Kathryn Rizzo
- Department of Anatomic Pathology, Virginia Commonwealth University, Richmond, Virginia
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anthony C Faber
- VCU Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts. .,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Zhao L, Xu Y, Tao L, Yang Y, Shen X, Li L, Luo P. Oxymatrine Inhibits Transforming Growth Factor β1 (TGF-β1)-Induced Cardiac Fibroblast-to-Myofibroblast Transformation (FMT) by Mediating the Notch Signaling Pathway In Vitro. Med Sci Monit 2018; 24:6280-6288. [PMID: 30196308 PMCID: PMC6142867 DOI: 10.12659/msm.910142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Oxymatrine, a component extracted from the traditional Chinese herb Sophora japonica (Sophora flavescens Ait.), has various pharmacological effects, especially on the cardiovascular system. However, its cardiac protection effects and the underlying mechanism are still poorly understood. In the present study, we investigated the inhibitory effect and mechanism of oxymatrine on cardiac fibrosis induced by TGF-β1. MATERIAL AND METHODS Cardiac fibroblasts were isolated and purified from neonatal rats. Immunocytochemical staining was used to identify the cells. MTT assay and immunofluorescence staining were used to assess cardiac fibroblasts proliferation and myofibroblasts transformation. Hematoxylin-eosin staining was performed to evaluate morphological changes of cardiac fibroblasts. The secretion of type I and III collagen was assessed by staining with picrosirius red and the hydroxyproline content was determined by colorimetric assay. Cardiac fibroblast migration was examined by scratch assay and DNA content was detected to analyze cell cycle distribution using flow cytometry. Western blot analysis was used to detect the protein expressions of Notch pathway-associated protein in cardiac fibroblasts. RESULTS Oxymatrine and Notch signaling pathway inhibitor DAPT could attenuated TGF-β1 induced the capacity of proliferation and migration increased in cardiac fibroblasts, as well as the secretion of collagen and hydroxyproline colorimetric content in medium. TGF-β1 induced the biomarker α-SMA of fibroblast-to-myofibroblast transformation (FMT), which was inhibited by oxymatrine and DAPT. Western blotting confirmed that oxymatrine blocked the activation of Notch induced by TGF-β1. CONCLUSIONS Oxymatrine is a potential inhibitor FMT induced by TGF-β1, which is at least in part mediated via inhibition of Notch signaling.
Collapse
Affiliation(s)
- Linglu Zhao
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- Medical Function of the Laboratory, School of Basic Medical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
| | - Yini Xu
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- Medical Function of the Laboratory, School of Basic Medical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
| | - Ling Tao
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- Medical Function of the Laboratory, School of Basic Medical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
| | - Yu Yang
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
| | - Xiangchun Shen
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- Department of Pharmacology of Chinese Material Medica, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
| | - Ling Li
- Medical Function of the Laboratory, School of Basic Medical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
| | - Peng Luo
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
- Department of Pharmacology of Chinese Material Medica, School of Pharmaceutical Science, Guizhou Medical University, Huaxi University Town, Guiyang, Guizhou, P.R. China
| |
Collapse
|
49
|
Kourtis N, Lazaris C, Hockemeyer K, Balandrán JC, Jimenez AR, Mullenders J, Gong Y, Trimarchi T, Bhatt K, Hu H, Shrestha L, Ambesi-Impiombato A, Kelliher M, Paietta E, Chiosis G, Guzman ML, Ferrando AA, Tsirigos A, Aifantis I. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat Med 2018; 24:1157-1166. [PMID: 30038221 PMCID: PMC6082694 DOI: 10.1038/s41591-018-0105-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2018] [Indexed: 12/13/2022]
Abstract
Cellular transformation is accompanied by extensive rewiring of many biological processes leading to augmented levels of distinct types of cellular stress, including proteotoxic stress. Cancer cells critically depend on stress-relief pathways for their survival. However, the mechanisms underlying the transcriptional initiation and maintenance of the oncogenic stress response remain elusive. Here, we show that the expression of heat shock transcription factor 1 (HSF1) and the downstream mediators of the heat shock response is transcriptionally upregulated in T cell acute lymphoblastic leukemia (T-ALL). Hsf1 ablation suppresses the growth of human T-ALL and eradicates leukemia in mouse models of T-ALL, while sparing normal hematopoiesis. HSF1 drives a compact transcriptional program and among the direct HSF1 targets, specific chaperones and co-chaperones mediate its critical role in T-ALL. Notably, we demonstrate that the central T-ALL oncogene NOTCH1 hijacks the cellular stress response machinery by inducing the expression of HSF1 and its downstream effectors. The NOTCH1 signaling status controls the levels of chaperone/co-chaperone complexes and predicts the response of T-ALL patient samples to HSP90 inhibition. Our data demonstrate an integral crosstalk between mediators of oncogene and non-oncogene addiction and reveal critical nodes of the heat shock response pathway that can be targeted therapeutically.
Collapse
Affiliation(s)
- Nikos Kourtis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| | - Charalampos Lazaris
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kathryn Hockemeyer
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Juan Carlos Balandrán
- Molecular Biomedicine Program, CINVESTAV IPN, Mexico City, Mexico
- CONACYT-Centro de Investigacion Biomedica de Oriente, IMSS Delegacion Puebla, Atlixco, Mexico
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alejandra R Jimenez
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jasper Mullenders
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC), Utrecht, the Netherlands
| | - Yixiao Gong
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Thomas Trimarchi
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Kamala Bhatt
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Hai Hu
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
| | - Liza Shrestha
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Alberto Ambesi-Impiombato
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, New York, NY, USA
- PsychoGenics Inc., Tarrytown, New York, NY, USA
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Gabriela Chiosis
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Monica L Guzman
- Haematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Department of Pathology and Department of Pediatrics, Columbia University, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
50
|
Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells. Front Med 2018; 12:374-386. [PMID: 30043222 DOI: 10.1007/s11684-018-0652-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A family of transcription factors known as Id proteins, or inhibitor of DNA binding and differentiation, is capable of regulating cell proliferation, survival and differentiation, and is often upregulated in multiple types of tumors. Due to their ability to promote self-renewal, Id proteins have been considered as oncogenes, and potential therapeutic targets in cancer models. On the contrary, certain Id proteins are reported to act as tumor suppressors in the development of Burkitt's lymphoma in humans, and hepatosplenic and innate-like T cell lymphomas in mice. The contexts and mechanisms by which Id proteins can serve in such contradictory roles to determine tumor outcomes are still not well understood. In this review, we explore the roles of Id proteins in lymphocyte development and tumorigenesis, particularly with respect to inhibition of their canonical DNA binding partners known as E proteins. Transcriptional regulation by E proteins, and their antagonism by Id proteins, act as gatekeepers to ensure appropriate lymphocyte development at key checkpoints. We re-examine the derailment of these regulatory mechanisms in lymphocytes that facilitate tumor development. These mechanistic insights can allow better appreciation of the context-dependent roles of Id proteins in cancers and improve considerations for therapy.
Collapse
|