1
|
Zhang M, Li Y, Quan Z, Zhou X, Meng X, Ye J, Wang Y, Wang J, Qin W, Wang J, Kang F. Value of [ 68Ga]Ga-PSMA-11 PET/CT in Reflecting the Intra- and Intertumor Heterogeneity of Neovascularization in Clear Cell Renal Cell Carcinoma. Mol Pharm 2025; 22:1529-1538. [PMID: 39912786 DOI: 10.1021/acs.molpharmaceut.4c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Prostate-specific membrane antigen (PSMA) is a potential target for the diagnosis and treatment of angiogenesis in clear cell renal cell carcinoma (ccRCC). We aimed to investigate the degree of PSMA signal variability in ccRCC and assess its correlation with neovascularization in the tumor microenvironment. We included 120 patients with suspected renal tumors who underwent [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) scan before surgery in this retrospective study, including 98 ccRCC, 17 non-ccRCC, and 5 benign diseases. We compared the maximum standard uptake value (SUVmax) and tumor-to-liver ratio (TLR) of primary lesions in different groups and analyzed the diagnostic efficacy of PSMA imaging for ccRCC. The coefficient of variation (CV) of SUVmax, which reflects intertumor heterogeneity, and volume ratio (VR), which reflects intratumor heterogeneity, were obtained from PET imaging. We analyzed the correlation between SUVmax, PSMA immunohistiochemical (IHC) staining, microvessel density (MVD), and serum vascular endothelial growth factor (VEGF) and compared the inter- and intratumor heterogeneity of primary lesions and metastases. In our study, ccRCC showed significantly higher SUVmax and TLR compared to non-ccRCC and benign diseases (F = 14.48, p < 0.001; F = 14.49, p < 0.001). PSMA IHC staining exhibited moderate correlation with SUVmax (r = 0.421, p = 0.021) and MVD (r = 0.518, p = 0.003), but it was not correlated with serum VEGF (r = -0.003, p = 0.989). SUVmax had a moderate correlation with MVD (r = 0.448, p = 0.013) and serum VEGF (r = 0.345, p = 0.020). Serum VEGF exhibited a weak correlation with MVD (r = 0.338, p = 0.145). Based on the correlation, the SUVmax-to-angiogenesis model was validated. The mean SUVmax values of primary lesions, bone metastases, and tumor thrombi were 16.13, 18.69, and 6.02, respectively. The CV of the mean SUVmax was 58.5%, 55.9%, and 80.6%. The mean VR values of primary lesions, bone metastases, and tumor thrombi were 0.33, 0.46, and 0.75, respectively. The CV of the mean VR was 81.8%, 41.3%, and 26.7%. The SUVmax of primary lesions was significantly correlated with corresponding bone metastases and tumor thrombi (r = 0.52, p = 0.011; r = 0.87, p = 0.024). The SUVmax of primary lesion in localized ccRCC and advanced ccRCC showed no significant difference (p = 0.251), while the VR was significantly different (p = 0.049). In conclusion, [68Ga]Ga-PSMA-11 PET/CT is an effective molecular imaging tool for assessing angiogenesis and its heterogeneity and differentiating ccRCC. The SUVmax of primary lesions was significantly correlated with PSMA IHC staining, MVD, and serum VEGF. The intertumor heterogeneity of tumor thrombi was significantly higher than that of primary lesions and bone metastases. Primary lesions exhibited the highest intratumor heterogeneity, and lesions with high intratumor heterogeneity showed invasive behavior. PSMA uptake by primary lesions has a positive effect on metastasis.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Yu Li
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
- State Key Laboratory of Oral Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Zhiyong Quan
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Xiang Zhou
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Xiaoli Meng
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - JiaJun Ye
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Yirong Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Junling Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032 China
| |
Collapse
|
2
|
Bignotti E, Simeon V, Ardighieri L, Kuhn E, Marchini S, Califano D, Cecere SC, Bugatti M, Spina A, Scognamiglio G, Paracchini L, Russo D, Arenare L, Tognon G, Lorusso D, Beltrame L, D'Incalci M, Sartori E, De Censi A, Odicino F, Perrone F, Chiodini P, Pignata S. TP53 mutations and survival in ovarian carcinoma patients receiving first-line chemotherapy plus bevacizumab: Results of the MITO16A/MaNGO OV-2 study. Int J Cancer 2025; 156:1085-1096. [PMID: 39415516 DOI: 10.1002/ijc.35203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/18/2024]
Abstract
To date, there are no biomarkers that define a patient subpopulation responsive to bevacizumab (BEV), an effective treatment option for advanced ovarian carcinoma (OC). In the context of the MITO16A/MaNGO OV-2 trial, a Phase IV study of chemotherapy combined with BEV in first-line treatment of advanced OC, we evaluated TP53 mutations by next-generation sequencing and p53 expression by immunohistochemistry (IHC) on 202 and 311 cases, respectively. We further correlated TP53 mutations in terms of type, function, and site, and IHC data with patients' clinicopathological characteristics and survival. TP53 missense mutations of unknown function (named unclassified) represented the majority of variants in our population (44.4%) and were associated with a significantly improved overall survival (OS) both in univariable (hazard ratio [HR] = 0.43, 95% confidence interval [CI] = 0.20-0.92, p = .03) and multivariable analysis (HR = 0.39, 95% CI = 0.18-0.86, p = .02). Concordance between TP53 mutational analysis and IHC was 91%. We observed an HR of 0.70 for OS in patients with p53 IHC overexpression compared to p53 wild-type, which however did not reach statistical significance (p = .31, 95% CI = 0.36-1.38). Our results indicate that the presence of unclassified TP53 mutations has favorable prognostic significance in patients with OC receiving upfront BEV plus chemotherapy. In particular, unclassified missense TP53 mutations characterize a subpopulation of patients with a significant survival advantage, independently of clinicopathological characteristics. Our findings warrant future investigations to confirm the prognostic impact of TP53 mutations in BEV-treated OC patients and deserve to be assessed for their potential predictive role in future randomized clinical studies.
Collapse
Affiliation(s)
- Eliana Bignotti
- 'Angelo Nocivelli' Institute of Molecular Medicine, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Vittorio Simeon
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Laura Ardighieri
- Department of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Elisabetta Kuhn
- Department of Biomedical Surgical and Dental Sciences, University of Milan, Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sergio Marchini
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Daniela Califano
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Sabrina Chiara Cecere
- Uro-Gynecological Medical Oncology, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples, Italy
| | - Mattia Bugatti
- Department of Pathology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Anna Spina
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | | | - Lara Paracchini
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Daniela Russo
- Microenvironment Molecular Targets Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Laura Arenare
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Germana Tognon
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Domenica Lorusso
- Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli and Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Luca Beltrame
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Maurizio D'Incalci
- IRCCS Humanitas Research Hospital, Molecular Pharmacology Lab, Rozzano, Italy
| | - Enrico Sartori
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Andrea De Censi
- Medical Oncology Unit, National Hospital E.O. Ospedali Galliera, Genoa, Italy
| | - Franco Odicino
- Division of Obstetrics and Gynecology, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori IRCCS, Naples, Italy
| | - Paolo Chiodini
- Department of Mental Health and Public Medicine, Section of Statistics, Università Degli Studi Della Campania Luigi Vanvitelli, Naples, Italy
| | - Sandro Pignata
- Uro-Gynecological Medical Oncology, Istituto Nazionale Tumori, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione G Pascale, Naples, Italy
| |
Collapse
|
3
|
Weng J, Shan Y, Chang Q, Cao C, Liu X. Research progress on N 6-Methyladenosine modification in angiogenesis, vasculogenic mimicry, and therapeutic implications in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:57-70. [PMID: 39710080 DOI: 10.1016/j.pbiomolbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
N6-methyladenosine (m6A) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The m6A modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of m6A modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer. We review how m6A modification and associated transcripts influence relevant factors by affecting key factors and signaling pathways, highlighting the interactions among m6A "writers," "erasers," and "readers," and their overall impact on tumor angiogenesis and vasculogenic mimicry, as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Weng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Qingyu Chang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Chenyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Xuemin Liu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China.
| |
Collapse
|
4
|
Okun SA, Lu D, Sew K, Subramaniam A, Lockwood WW. MET Activation in Lung Cancer and Response to Targeted Therapies. Cancers (Basel) 2025; 17:281. [PMID: 39858062 PMCID: PMC11764361 DOI: 10.3390/cancers17020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The hepatocyte growth factor receptor (MET) is a receptor tyrosine kinase (RTK) that mediates the activity of a variety of downstream pathways upon its activation. These pathways regulate various physiological processes within the cell, including growth, survival, proliferation, and motility. Under normal physiological conditions, this allows MET to regulate various development and regenerative processes; however, mutations resulting in aberrant MET activity and the consequent dysregulation of downstream signaling can contribute to cellular pathophysiology. Mutations within MET have been identified in a variety of cancers and have been shown to mediate tumorigenesis by increasing RTK activity and downstream signaling. In lung cancer specifically, a number of patients have been identified as possessing MET alterations, commonly receptor amplification (METamp) or splice site mutations resulting in loss of exon 14 (METex14). Due to MET's role in mediating oncogenesis, it has become an attractive clinical target and has led to the development of various targeted therapies, including MET tyrosine kinase inhibitors (TKIs). Unfortunately, these TKIs have demonstrated limited clinical efficacy, as patients often present with either primary or acquired resistance to these therapies. Mechanisms of resistance vary but often occur through off-target or bypass mechanisms that render downstream signaling pathways insensitive to MET inhibition. This review provides an overview of the therapeutic landscape for MET-positive cancers and explores the various mechanisms that contribute to therapeutic resistance in these cases.
Collapse
Affiliation(s)
- Sarah Anna Okun
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Lu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Katherine Sew
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Asha Subramaniam
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - William W. Lockwood
- Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.A.O.); (K.S.); (A.S.)
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Abudoureyimu M, Sun N, Chen W, Lin X, Pan F, Wang R. Aurora-A promotes lenvatinib resistance experimentally through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2025; 39:3946320251316692. [PMID: 39895095 PMCID: PMC11789117 DOI: 10.1177/03946320251316692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
OBJECTIVE This study aimed to investigate whether the dysregulation of Aurora-A is involved in lenvatinib resistance in hepatocellular carcinoma. METHODS Bioinformatics tools and drug sensitivity assays were used to investigate the association between Aurora-A expression level and lenvatinib resistance in hepatocellular carcinoma cell lines. Cell function experiments had performed after treatment with lenvatinib and/or a selective Aurora-A inhibitor (MLN-8237). CircRNA microarray, RIP, RNA pull-down, and dual-luciferace reporter assay were performed to identify the downstream molecular mechanism of Aurora-A dysregulation. RESULTS Aurora-A expression was positively correlated with lenvatinib resistance in hepatocellular carcinoma cells. The Aurora-A selective inhibitor MLN-8237, in combination with lenvatinib, synergistically inhibited hepatocellular carcinoma cell proliferation in vitro and vivo, suggesting the Aurora-A might be a potential therapeutic target for lenvatinib resistance. Mechanistically, Aurora-A induced FGFR1 expression through the hsa-circ-0058046/miR-424-5p/FGFR1 axis. Aurora-A promotes lenvatinib resistance through hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma cells. The simultaneous inhibition of FGFR1 by the Aurora-A inhibitor MLN-8237 and lenvatinib overcame lenvatinib resistance in hepatocellular carcinoma cells. CONCLUSION Collectively, our findings indicate that Aurora-A promotes lenvatinib resistance through the hsa-circ-0058046/miR-424-5p/FGFR1 axis in hepatocellular carcinoma (HCC) cells. These results suggest that Aurora-A may serve as a therapeutic target for HCC patients exhibiting lenvatinib resistance. Furthermore, the combination of lenvatinib and MLN-8237 shows potential for clinical trials aimed at overcoming lenvatinib resistance.
Collapse
MESH Headings
- Humans
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/enzymology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/enzymology
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Aurora Kinase A/metabolism
- Aurora Kinase A/genetics
- Aurora Kinase A/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic
- Pyrimidines/pharmacology
- Antineoplastic Agents/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Azepines/pharmacology
- Mice, Nude
- Signal Transduction/drug effects
- Mice
Collapse
Affiliation(s)
- Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ni Sun
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Weiwei Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Sallah S, Warwicker J. Computational investigation of missense somatic mutations in cancer and potential links to pH-dependence and proteostasis. PLoS One 2024; 19:e0314022. [PMID: 39561123 PMCID: PMC11575792 DOI: 10.1371/journal.pone.0314022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Metabolic changes during tumour development lead to acidification of the extracellular environment and a smaller increase of intracellular pH. Searches for somatic missense mutations that could reveal adaptation to altered pH have focussed on arginine to histidine changes, part of a general arginine depletion that originates from DNA mutational mechanisms. Analysis of mutations to histidine, potentially a simple route to the introduction of pH-sensing, shows no clear biophysical separation overall of subsets that are more and less frequently mutated in cancer genomes. Within the more frequently mutated subset, individual sites predicted to mediate pH-dependence upon mutation include NDST1 (a Golgi-resident heparan sulphate modifying enzyme), the HLA-C chain of MHCI complex, and the water channel AQP-7. Arginine depletion is a general feature that persists in the more frequently mutated subset, and is complemented by over-representation of mutations to lysine. Arginine to lysine balance is a known factor in determining protein solubility, with higher lysine content being more favourable. Proteins with greater change in arginine to lysine balance are enriched for cell periphery location, where proteostasis is likely to be challenged in tumour cells. Somatic missense mutations in a cancer genome number only in the 10s typically, although can be much higher. Whether the altered arginine to lysine balance is of sufficient scale to play a role in tumour development is unknown.
Collapse
Affiliation(s)
- Shalaw Sallah
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Jim Warwicker
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Harris AL, Kerr DJ, Pezzella F, Ribatti D. Accessing the vasculature in cancer: revising an old hallmark. Trends Cancer 2024; 10:1038-1051. [PMID: 39358088 DOI: 10.1016/j.trecan.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
The classic cancer hallmark, inducing angiogenesis, was born out of the long-held notion that tumours could grow only if new vessels were formed. The attempts, based on this premise, to therapeutically restrain angiogenesis in hopes of controlling tumour growth have been less effective than expected. This is partly because primary and metastatic tumours can grow without angiogenesis. The discovery of nonangiogenic cancers and the mechanisms they use to exploit normal vessels, called 'vessel co-option,' has opened a new field in cancer biology. Consequently, the cancer hallmark, 'inducing angiogenesis,' has been modified to 'inducing or accessing vasculature.'
Collapse
Affiliation(s)
| | - David J Kerr
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, Oxford, UK
| | - Francesco Pezzella
- Radcliffe Department of Medicine, Nuffield Division of Clinical Laboratory Science, University of Oxford, Oxford, UK.
| | - Domenico Ribatti
- Dipartimento di Biomedicina Traslazionale e Neuroscienze, Università degli Studi di Bari, Bari, Italy
| |
Collapse
|
8
|
Kim MS, Glassman D, Handley KF, Lankenau Ahumada A, Jennings NB, Bayraktar E, Foster K, Joseph R, Lee S, Coleman RL, Sood AK. Mechanism and rational combinations with GP-2250, a novel oxathiazine derivative, in ovarian cancer. Cancer Med 2024; 13:e70031. [PMID: 39114948 PMCID: PMC11306972 DOI: 10.1002/cam4.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/27/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND GP-2250, a novel analog of taurultam (TRLT), has emerged as a potent anti-neoplastic drug; however, the mechanisms underlying its effects are not well understood. Here, we investigated the mechanism of action and the biological effects of GP-2250 using in vitro and in vivo models. METHODS We carried out a series of in vitro (MTT assay, Annexin V/PI assay, colony formation assay, reverse-phase protein array [RPPA], and HRLC/IC analysis) to determine the biological activity of GP-2250 and investigate the mechanism of action. In vivo experiments were carried out to determine the therapeutic efficacy of GP-2250 alone and in combination with standard-of-care drugs (e.g., paclitaxel, cisplatin, topotecan, and poly ADP-ribose polymerase [PARP] inhibitors). RESULTS We investigated the cytotoxic effect of GP-2250 in 10 ovarian cancer cell lines and found GP-2250 combined with a PARP inhibitor had the greatest synergy. RPPA revealed that GP-2250 inhibited hypoxia-inducible factor-1α, AKT, and mammalian target of rapamycin (mTOR) activation and expression. High-resolution mass spectrometry revealed that hexokinase2 activity and protein expression were significantly reduced by GP-2250 exposure. Furthermore, GP-2250 reduced glycolysis and ATP synthesis in cancer cells. An in vivo pharmacodynamic experiment using the OVCAR8 mouse model demonstrated that 500 mg/kg GP-2250 was effective in downregulating AKT and mTOR activation and expression. In the in vivo therapy experiment using an orthotopic mouse model, a combination of GP-2250 with either PARP inhibitors or bevacizumab showed a significant reduction of tumor weights and nodules compared to those treated with a vehicle, control IgG groups, or monotherapy groups. CONCLUSIONS Taken together, our data indicate that GP-2250 exerts profound effects on tumor metabolism and, in combination with PARP inhibitors or bevacizumab, showed promising anti-tumor efficacy. These findings could have implications for the clinical development of GP-2250.
Collapse
Affiliation(s)
- Mark S. Kim
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Katelyn F. Handley
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Gynecologic OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | - Adrian Lankenau Ahumada
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Nicholas B. Jennings
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences HoustonHoustonTexasUSA
| | - Katherine Foster
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Robiya Joseph
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | | | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
9
|
Thapa K, Khan H, Kaur G, Kumar P, Singh TG. Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun 2023; 687:149130. [PMID: 37944468 DOI: 10.1016/j.bbrc.2023.149130] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | | |
Collapse
|
10
|
Abstract
Cancers undergo sequential changes to proton (H+) concentration and sensing that are consequences of the disease and facilitate its further progression. The impact of protonation state on protein activity can arise from alterations to amino acids or their titration. Indeed, many cancer-initiating mutations influence pH balance, regulation or sensing in a manner that enables growth and invasion outside normal constraints as part of oncogenic transformation. These cancer-supporting effects become more prominent when tumours develop an acidic microenvironment owing to metabolic reprogramming and disordered perfusion. The ensuing intracellular and extracellular pH disturbances affect multiple aspects of tumour biology, ranging from proliferation to immune surveillance, and can even facilitate further mutagenesis. As a selection pressure, extracellular acidosis accelerates disease progression by favouring acid-resistant cancer cells, which are typically associated with aggressive phenotypes. Although acid-base disturbances in tumours often occur alongside hypoxia and lactate accumulation, there is now ample evidence for a distinct role of H+-operated responses in key events underpinning cancer. The breadth of these actions presents therapeutic opportunities to change the trajectory of disease.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Stine Falsig Pedersen
- Department of Biology, University of Copenhagen, University of Copenhagen, Faculty of Science, København, Denmark.
| |
Collapse
|
11
|
Gu Z, da Silva CG, Ma S, Liu Q, Schomann T, Ossendorp F, Cruz LJ. Dual-Targeting Nanoliposome Improves Proinflammatory Immunomodulation of the Tumor Microenvironment. Adv Healthc Mater 2023; 12:e2302046. [PMID: 37605325 PMCID: PMC11468610 DOI: 10.1002/adhm.202302046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Immunotherapies targeting immune checkpoints have revolutionized cancer treatment by normalizing the immunosuppressive microenvironment of tumors and reducing adverse effects on the immune system. Indoleamine 2,3-dioxygenase (IDO) inhibitors have garnered attention as a promising therapeutic agent for cancer. However, their application alone has shown limited clinical benefits. Cabozantinib, a multitarget tyrosine kinase inhibitor, holds immunomodulatory potential by promoting infiltration and activation of effector cells and inhibiting suppressive immune cells. Despite its potential, cabozantinib as a monotherapy has shown limited efficacy in terms of objective response rate. In this study, IDO-IN-7 and cabozantinib are coencapsulated into liposomes to enhance tumor accumulation and minimize adverse effects. The liposomal combination exhibits potent cytotoxicity and inhibits the function of IDO enzyme. Furthermore, the dual-targeted treatment effectively inhibits tumor development and reverses the suppressive tumor microenvironment by regulating both adaptive and innate branch of immune system. This is evidenced by pronounced infiltration of T cells and B cells, a decrease of regulatory T lymphocytes, a shift to a proinflammatory phenotype of tumor-associated macrophages, and increases levels of neutrophils. This is the first developed of a liposome-delivered combination of IDO inhibitors and cabozantinib, and holds great potential for future clinical application as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zili Gu
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Candido G. da Silva
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Sen Ma
- Department of OphthalmologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Qi Liu
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Timo Schomann
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
- Department of Vascular SurgeryLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Ferry Ossendorp
- Department of ImmunologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| | - Luis J. Cruz
- Department of RadiologyLeiden University Medical CenterLeiden2333 ZAThe Netherlands
| |
Collapse
|
12
|
Jia W, Jin B, Xu W, Liu S, Mao X, Peng H, Zhang Y. pH-Responsive and Actively Targeted Metal-Organic Framework Structures for Multimodal Antitumor Therapy and Inhibition of Tumor Invasion and Metastasis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50069-50082. [PMID: 37871135 DOI: 10.1021/acsami.3c11909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Multimodal treatment is an important tool to overcome tumor drug resistance. The reactive oxygen species (ROS) generated by photodynamic therapy (PDT) can directly play a killing role on tumor cells, which has the advantages of repeatable treatment and no drug resistance. However, its therapeutic oxygen consumption and destruction of tumor microvessels lead to hypoxia in tumor tissues, and hypoxia leads to overexpression of the receptor tyrosine kinase (c-MET) and vascular endothelial growth factor receptor (VEGFR). Overexpression of these two receptors leads to increased tumor invasiveness and metastasis. The molecularly targeted drug cabozantinib (CAB) has multiple targets, including anti-c-MET and VEGFR, to inhibit the development of hepatocellular carcinoma (HCC). In this study, our team designed a pH-sensitive nanoparticle CAB/Ce6@ZIF-8@PEG-FA (CCZP) loaded with CAB and Ce6, which exerted a multimodal therapeutic effect of PDT and molecularly targeted therapy by laser irradiation, and the PDT-induced overexpression of MET and VEGFR could also be inhibited by the target of CAB, thus reducing the invasive tumor cells metastasis. In summary, CCZP gives full play to the advantages of both drugs, exerting multimodal treatment while reducing HCC invasion and metastasis, providing a safe, potential approach to clinical treatment.
Collapse
Affiliation(s)
- WeiLu Jia
- Medical School, Southeast University, Nanjing 210009, China
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, China
| | - WenJing Xu
- Medical School, Southeast University, Nanjing 210009, China
| | - ShiWei Liu
- Medical School, Southeast University, Nanjing 210009, China
| | - XinYu Mao
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hao Peng
- Medical School, Southeast University, Nanjing 210009, China
| | - YeWei Zhang
- Medical School, Southeast University, Nanjing 210009, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
13
|
Ishihara H, Nemoto Y, Tachibana H, Fukuda H, Yoshida K, Kobayashi H, Iizuka J, Hashimoto Y, Kondo T, Takagi T. Real-world efficacy and safety of cabozantinib following immune checkpoint inhibitor failure in Japanese patients with advanced renal cell carcinoma. Jpn J Clin Oncol 2023; 53:977-983. [PMID: 37519060 DOI: 10.1093/jjco/hyad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Real-world data of cabozantinib after failure of immune checkpoint inhibitors for advanced renal cell carcinoma in Japanese population are limited. Additionally, prognostic factors of cabozantinib in this setting are still unknown. METHODS We retrospectively evaluated data of 56 patients treated with cabozantinib subsequent to failed immune checkpoint inhibitors at four institutions. Regarding the efficacy profile, progression-free survival, overall survival and objective response rate were assessed. In terms of the safety profile, rate of adverse events, dose reduction and treatment interruption were assessed. Furthermore, risk factors of progression-free survival were analyzed. RESULTS Twenty-nine patients (52%) were treated with cabozantinib as second-line therapy. Most frequent prior immune checkpoint inhibitor treatment was nivolumab plus ipilimumab combination therapy as first-line therapy (n = 30, 54%). Median progression-free survival and overall survival were 9.76 and 25.5 months, respectively, and objective response rate was 34%. All patients experienced at least one adverse event, and grade ≥ 3 adverse events were observed in 31 patients (55%). Forty-four (79%) and 31 (55%) patients needed dose reduction and treatment interruption, respectively. Multivariate analysis showed that reduced initial dose (i.e. <60 mg) (hazard ratio: 2.50, P = 0.0355) and presence of lymph node metastasis (hazard ratio: 2.50, P = 0.0172) were independent factors of shorter progression-free survival. CONCLUSION Cabozantinib in Japanese patients with advanced renal cell carcinoma who failed immune checkpoint inhibitors was efficacious and had a manageable safety profile. These results appear to be similar to those of previous clinical trials.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yuki Nemoto
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
- Department of Urology, Tokyo Women's Medical University, Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | | | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiko Yoshida
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hirohito Kobayashi
- Department of Urology, Tokyo Women's Medical University, Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| | - Yasunobu Hashimoto
- Department of Urology, Saiseikai Kawaguchi General Hospital, Kawaguchi, Saitama, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University, Adachi Medical Center, Adachi-ku, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
14
|
Lu XJ, Lai HF, Wu SC, Chen CL, Chiu YL. Elucidating the Associated Biological Function and Clinical Significance of RHOJ Expression in Urothelial Carcinoma. Int J Mol Sci 2023; 24:14081. [PMID: 37762382 PMCID: PMC10531362 DOI: 10.3390/ijms241814081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Urothelial cancer, a common urinary system malignancy, often presents treatment challenges due to metastasis and chemotherapy side effects. Angiogenesis, crucial for tumor growth, has become a target for drug development. This study explores the expression, prognostic value, and clinical correlation of RHOJ in the TCGA BLCA, GSE31684, and GSE32894 datasets. We identify common differentially expressed genes across these databases and utilize g:Profiler and Cytoscape ClueGO for functional assessment. Further, we perform a gene set enrichment analysis (GSEA) using Hallmark gene sets and use the imsig package for immune cell infiltration analysis. Our analysis indicates that RHOJ expression levels significantly impact survival rates, tumor progression, and immune response in urothelial tumors. High RHOJ expression correlated with poor prognosis, advanced disease stages, and an increase in monocyte population within the tumor microenvironment. This aligns with current literature indicating a key role of immune infiltration in bladder cancer progression and treatment response. Moreover, the GSEA and imsig results further suggest a potential mechanistic link between RHOJ expression and immune-related pathways. Considering the increasing emphasis on immunotherapeutic strategies in bladder cancer management, our findings on RHOJ's potential as a diagnostic biomarker and its association with immune response open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Xin-Jie Lu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (X.-J.L.); (H.-F.L.); (Y.-L.C.)
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (X.-J.L.); (H.-F.L.); (Y.-L.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Sheng-Cheng Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, Magong 880, Taiwan
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (X.-J.L.); (H.-F.L.); (Y.-L.C.)
| |
Collapse
|
15
|
Fejza A, Camicia L, Carobolante G, Poletto E, Paulitti A, Schinello G, Di Siena E, Cannizzaro R, Iozzo RV, Baldassarre G, Andreuzzi E, Spessotto P, Mongiat M. Emilin2 fosters vascular stability by promoting pericyte recruitment. Matrix Biol 2023; 122:18-32. [PMID: 37579864 DOI: 10.1016/j.matbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Angiogenesis, the formation of the new blood vessels from pre-existing vasculature, is an essential process occurring under both normal and pathological conditions, such as inflammation and cancer. This complex process is regulated by several cytokines, growth factors and extracellular matrix components modulating endothelial cell and pericyte function. In this study, we discovered that the extracellular matrix glycoprotein Elastin Microfibril Interfacer 2 (Emilin2) plays a prominent role in pericyte physiology. This work was originally prompted by the observations that tumor-associated vessels from Emilin2-/- mice display less pericyte coverage, impaired vascular perfusion, and reduced drug efficacy, suggesting that Emilin2 could promote vessel maturation and stabilization affecting pericyte recruitment. We found that Emilin2 affects different mechanisms engaged in pericyte recruitment and vascular stabilization. First, human primary endothelial cells challenged with recombinant Emilin2 synthesized and released ∼ 2.1 and 1.2 folds more PDGF-BB and HB-EGF, two cytokines known to promote pericyte recruitment. We also discovered that Emilin2, by directly engaging α5β1 and α6β1 integrins, highly expressed in pericytes, served as an adhesion substrate and haptotactic stimulus for pericytes. Moreover, Emilin2 evoked increased NCadherin expression via the sphingosine-1-phosphate receptor, leading to enhanced vascular stability by fostering interconnection between endothelial cells and pericytes. Finally, restoring pericyte coverage in melanoma and ovarian tumor vessels developed in Emilin2-/- mice improved drug delivery to the tumors. Collectively, our results implicate Emilin2 as a prominent regulator of pericyte function and suggest that Emilin2 expression could represent a promising maker to predict the clinical outcome of patients with melanoma, ovarian, and potentially other forms of cancer.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina 10000, Kosovo
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; VivaBioCell S.P.A., Udine, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gustavo Baldassarre
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste 34137, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy.
| |
Collapse
|
16
|
Cannell IG, Sawicka K, Pearsall I, Wild SA, Deighton L, Pearsall SM, Lerda G, Joud F, Khan S, Bruna A, Simpson KL, Mulvey CM, Nugent F, Qosaj F, Bressan D, Dive C, Caldas C, Hannon GJ. FOXC2 promotes vasculogenic mimicry and resistance to anti-angiogenic therapy. Cell Rep 2023; 42:112791. [PMID: 37499655 DOI: 10.1016/j.celrep.2023.112791] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/09/2022] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Vasculogenic mimicry (VM) describes the formation of pseudo blood vessels constructed of tumor cells that have acquired endothelial-like properties. VM channels endow the tumor with a tumor-derived vascular system that directly connects to host blood vessels, and their presence is generally associated with poor patient prognosis. Here we show that the transcription factor, Foxc2, promotes VM in diverse solid tumor types by driving ectopic expression of endothelial genes in tumor cells, a process that is stimulated by hypoxia. VM-proficient tumors are resistant to anti-angiogenic therapy, and suppression of Foxc2 augments response. This work establishes co-option of an embryonic endothelial transcription factor by tumor cells as a key mechanism driving VM proclivity and motivates the search for VM-inhibitory agents that could form the basis of combination therapies with anti-angiogenics.
Collapse
Affiliation(s)
- Ian G Cannell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| | - Kirsty Sawicka
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Isabella Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Lauren Deighton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah M Pearsall
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Giulia Lerda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fadwa Joud
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Showkhin Khan
- New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA
| | - Alejandra Bruna
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Preclinical Modelling of Paediatric Cancer Evolution Team, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5N, UK
| | - Kathryn L Simpson
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Claire M Mulvey
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fiona Nugent
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Fatime Qosaj
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Caroline Dive
- Cancer Research UK Cancer Biomarker Centre, Manchester M20 4BX, UK; CRUK Manchester Institute, Manchester M20 4BX, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; Department of Oncology and Breast Cancer Programme, CRUK Cambridge Centre, Cambridge University Hospitals NHS and University of Cambridge, Cambridge CB2 2QQ, UK
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; New York Genome Center, 101 Avenue of the Americas, New York, NY 10013, USA.
| |
Collapse
|
17
|
Shyam Sunder S, Sharma UC, Pokharel S. Adverse effects of tyrosine kinase inhibitors in cancer therapy: pathophysiology, mechanisms and clinical management. Signal Transduct Target Ther 2023; 8:262. [PMID: 37414756 PMCID: PMC10326056 DOI: 10.1038/s41392-023-01469-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
Since their invention in the early 2000s, tyrosine kinase inhibitors (TKIs) have gained prominence as the most effective pathway-directed anti-cancer agents. TKIs have shown significant utility in the treatment of multiple hematological malignancies and solid tumors, including chronic myelogenous leukemia, non-small cell lung cancers, gastrointestinal stromal tumors, and HER2-positive breast cancers. Given their widespread applications, an increasing frequency of TKI-induced adverse effects has been reported. Although TKIs are known to affect multiple organs in the body including the lungs, liver, gastrointestinal tract, kidneys, thyroid, blood, and skin, cardiac involvement accounts for some of the most serious complications. The most frequently reported cardiovascular side effects range from hypertension, atrial fibrillation, reduced cardiac function, and heart failure to sudden death. The potential mechanisms of these side effects are unclear, leading to critical knowledge gaps in the development of effective therapy and treatment guidelines. There are limited data to infer the best clinical approaches for the early detection and therapeutic modulation of TKI-induced side effects, and universal consensus regarding various management guidelines is yet to be reached. In this state-of-the-art review, we examine multiple pre-clinical and clinical studies and curate evidence on the pathophysiology, mechanisms, and clinical management of these adverse reactions. We expect that this review will provide researchers and allied healthcare providers with the most up-to-date information on the pathophysiology, natural history, risk stratification, and management of emerging TKI-induced side effects in cancer patients.
Collapse
Affiliation(s)
- Sunitha Shyam Sunder
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Umesh C Sharma
- Division of Cardiovascular Medicine, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Saraswati Pokharel
- Cardio-Oncology Research Group, Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
18
|
Qin W, Chandra J, Abourehab MAS, Gupta N, Chen ZS, Kesharwani P, Cao HL. New opportunities for RGD-engineered metal nanoparticles in cancer. Mol Cancer 2023; 22:87. [PMID: 37226188 DOI: 10.1186/s12943-023-01784-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
The advent of nanotechnology has opened new possibilities for bioimaging. Metal nanoparticles (such as gold, silver, iron, copper, etc.) hold tremendous potential and offer enormous opportunities for imaging and diagnostics due to their broad optical characteristics, ease of manufacturing technique, and simple surface modification. The arginine-glycine-aspartate (RGD) peptide is a three-amino acid sequence that seems to have a considerably greater ability to adhere to integrin adhesion molecules that exclusively express on tumour cells. RGD peptides act as the efficient tailoring ligand with a variety of benefits including non-toxicity, greater precision, rapid clearance, etc. This review focuses on the possibility of non-invasive cancer imaging using metal nanoparticles with RGD assistance.
Collapse
Affiliation(s)
- Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Jyoti Chandra
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Neelima Gupta
- Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Zhe-Sheng Chen
- Institute for Biotechnology, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
19
|
Hänggi K, Ruffell B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023; 9:381-396. [PMID: 36841748 PMCID: PMC10121860 DOI: 10.1016/j.trecan.2023.02.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Induction of cell death is inexorably linked with cancer therapy, but this can also initiate wound-healing processes that have been linked to cancer progression and therapeutic resistance. Here we describe the contribution of apoptosis and the lytic cell death pathways in the response to therapy (including chemotherapy and immunotherapy). We also discuss how necroptosis, pyroptosis, and ferroptosis function to promote tumor immunogenicity, along with emerging findings that these same forms of death can paradoxically contribute to immune suppression and tumor progression. Understanding the duality of cell death in cancer may allow for the development of therapeutics that shift the balance towards regression.
Collapse
Affiliation(s)
- Kay Hänggi
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
20
|
Becker LM, Chen SH, Rodor J, de Rooij LPMH, Baker AH, Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res 2023; 119:6-27. [PMID: 35179567 PMCID: PMC10022871 DOI: 10.1093/cvr/cvac018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial for homeostatic regulation of blood vessel physiology, but also play a key role in pathogenesis of many diseases, thereby representing realistic therapeutic targets. However, it has become evident that ECs are heterogeneous, encompassing several subtypes with distinct functions, which makes EC targeting and modulation in diseases challenging. The rise of the new single-cell era has led to an emergence of studies aimed at interrogating transcriptome diversity along the vascular tree, and has revolutionized our understanding of EC heterogeneity from both a physiological and pathophysiological context. Here, we discuss recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We cover driving (epi)genetic, transcriptomic, and metabolic forces underlying EC heterogeneity in health and disease, as well as current strategies used to combat disease-enriched EC phenotypes, and propose strategies to transcend largely descriptive heterogeneity towards prioritization and functional validation of therapeutically targetable drivers of EC diversity. Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs.
Collapse
Affiliation(s)
| | | | | | | | - Andrew H Baker
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| | - Peter Carmeliet
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| |
Collapse
|
21
|
Glassman D, Kim MS, Spradlin M, Badal S, Taki M, Bhattacharya P, Dutta P, Kingsley CV, Foster KI, Animasahun O, Jeon JH, Achreja A, Jayaraman A, Kumar P, Nenwani M, Wuchu F, Bayraktar E, Wu Y, Stur E, Mangala L, Lee S, Yap TA, Westin SN, Eberlin LS, Nagrath D, Sood AK. Exploiting metabolic vulnerabilities after anti-VEGF antibody therapy in ovarian cancer. iScience 2023; 26:106020. [PMID: 36824283 PMCID: PMC9941132 DOI: 10.1016/j.isci.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/19/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Despite modest clinical improvement with anti-vascular endothelial growth factor antibody (AVA) therapy in ovarian cancer, adaptive resistance is ubiquitous and additional options are limited. A dependence on glutamine metabolism, via the enzyme glutaminase (GLS), is a known mechanism of adaptive resistance and we aimed to investigate the utility of a GLS inhibitor (GLSi). Our in vitro findings demonstrated increased glutamine abundance and a significant cytotoxic effect in AVA-resistant tumors when GLSi was administered in combination with bevacizumab. In vivo, GLSi led to a reduction in tumor growth as monotherapy and when combined with AVA. Furthermore, GLSi initiated after the emergence of resistance to AVA therapy resulted in a decreased metabolic conversion of pyruvate to lactate as assessed by hyperpolarized magnetic resonance spectroscopy and demonstrated robust antitumor effects with a survival advantage. Given the increasing population of patients receiving AVA therapy, these findings justify further development of GLSi in AVA resistance.
Collapse
Affiliation(s)
- Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Mark S. Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Meredith Spradlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sunil Badal
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
| | - Mana Taki
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles V. Kingsley
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine I. Foster
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Olamide Animasahun
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jin Heon Jeon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Anusha Jayaraman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Kumar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Minal Nenwani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Fulei Wuchu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Emine Bayraktar
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yutuan Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Lingegowda Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sanghoon Lee
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy A. Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shannon N. Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Deepak Nagrath
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
22
|
Chillà A, Anceschi C, Frediani E, Scavone F, Del Rosso T, Pelagio G, Tufaro A, De Palma G, Del Rosso M, Fibbi G, Chiarugi P, Laurenzana A, Margheri F. Inhibition of MMPs supports amoeboid angiogenesis hampering VEGF-targeted therapies via MLC and ERK 1/2 signaling. J Transl Med 2023; 21:102. [PMID: 36759828 PMCID: PMC9912547 DOI: 10.1186/s12967-023-03954-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND In the past decades studies on anti-tumoral drugs inhibiting matrix metalloproteinase (MMPs) were disappointing. Recently, we demonstrated that mature endothelial cells (ECs) and endothelial colony forming cells (ECFCs) can switch between invasion modes to cope with challenging environments, performing the "amoeboid angiogenesis" in the absence of proteases activity. METHODS We first set out to investigate by ELISA if the inhibitors of the main protease family involved in angiogenesis were differently expressed during breast cancer progression. We used Marimastat, a broad-spectrum MMP inhibitor, as a means of inducing amoeboid characteristics and studied VEGF role in amoeboid angiogenesis. Thus, we performed invasion and capillary morphogenesis assay, morphological, cell signaling and in vivo mouse studies. RESULTS Our data showed that TIMP1, TIMP2, alpha2-antiplasmin, PAI-1 and cystatin increase in breast cancer serum of patients with primary cancer and lymph node positive compared to healthy women. In vitro results revealed that the most high-powered protease inhibitors able to induce amoeboid invasion of ECFCs were TIMP1, 2 and 3. Surprisingly, Marimastat promotes ECFC invasion and tubular formation in vitro and in vivo, inducing amoeboid characteristics. We observed that the combination of Marimastat plus VEGF doesn't boost neither cell invasion nor vessel formation capacity. Moreover, inhibition of VEGF activity with Bevacizumab in the presence of Marimastat confirmed that amoeboid angiogenesis is independent from the stimulus of the main vascular growth factor, VEGF. CONCLUSIONS We underline the importance to consider the amoeboid mechanism of endothelial and cancer cell invasion, probably responsible for the failure of synthetic metalloproteinase inhibitors as cancer therapy and tumor resistance to VEGF-targeted therapies, to set-up new drugs to be used in cancer therapy.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
| | - Cecilia Anceschi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Elena Frediani
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Scavone
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Tommaso Del Rosso
- grid.4839.60000 0001 2323 852XDepartment of Physics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ 22451-900 Brazil
| | - Giuseppe Pelagio
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Antonio Tufaro
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Giuseppe De Palma
- IRCCS Istituto Tumori Giovanni Paolo II Bari, Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Mario Del Rosso
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Gabriella Fibbi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Paola Chiarugi
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Anna Laurenzana
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| | - Francesca Margheri
- grid.8404.80000 0004 1757 2304Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
23
|
Kuo CL, Chou HY, Lien HW, Yeh CA, Wang JR, Chen CH, Fan CC, Hsu CP, Kao TY, Ko TM, Lee AYL. A Fc-VEGF chimeric fusion enhances PD-L1 immunotherapy via inducing immune reprogramming and infiltration in the immunosuppressive tumor microenvironment. Cancer Immunol Immunother 2023; 72:351-369. [PMID: 35895109 PMCID: PMC9870840 DOI: 10.1007/s00262-022-03255-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Immunotherapy is an emerging cancer therapy with potential great success; however, immune checkpoint inhibitor (e.g., anti-PD-1) has response rates of only 10-30% in solid tumor because of the immunosuppressive tumor microenvironment (TME). This affliction can be solved by vascular normalization and TME reprogramming. METHODS By using the single-cell RNA sequencing (scRNAseq) approach, we tried to find out the reprogramming mechanism that the Fc-VEGF chimeric antibody drug (Fc-VFD) enhances immune cell infiltration in the TME. RESULTS In this work, we showed that Fc-VEGF121-VEGF165 (Fc-VEGF chimeric antibody drug, Fc-VFD) arrests excess angiogenesis and tumor growth through vascular normalization using in vitro and in vivo studies. The results confirmed that the treatment of Fc-VFD increases immune cell infiltration including cytotoxic T, NK, and M1-macrophages cells. Indeed, Fc-VFD inhibits Lon-induced M2 macrophages polarization that induces angiogenesis. Furthermore, Fc-VFD inhibits the secretion of VEGF-A, IL-6, TGF-β, or IL-10 from endothelial, cancer cells, and M2 macrophage, which reprograms immunosuppressive TME. Importantly, Fc-VFD enhances the synergistic effect on the combination immunotherapy with anti-PD-L1 in vivo. CONCLUSIONS In short, Fc-VFD fusion normalizes intratumor vasculature to reprogram the immunosuppressive TME and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng-Liang Kuo
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Han-Yu Chou
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Hui-Wen Lien
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chia-An Yeh
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Jing-Rong Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Chi-Chen Fan
- Department of research and development, Marker Exploration Corporation, Taipei, Taiwan
| | - Chih-Ping Hsu
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Ting-Yu Kao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, 300, Taiwan
| | - Tai-Ming Ko
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
- Department of Life Sciences, College of Life Science, National Central University, Taoyuan, 32031, Taiwan.
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
24
|
Iinuma K, Tomioka-Inagawa R, Kameyama K, Taniguchi T, Kawada K, Ishida T, Nagai S, Enomoto T, Ueda S, Kawase M, Takeuchi S, Kawase K, Kato D, Takai M, Nakane K, Koie T. Efficacy and Safety of Cabozantinib in Patients with Advanced or Metastatic Renal Cell Carcinoma: A Multicenter Retrospective Cohort Study. Biomedicines 2022; 10:biomedicines10123172. [PMID: 36551927 PMCID: PMC9775439 DOI: 10.3390/biomedicines10123172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/26/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
A multicenter retrospective study was conducted to evaluate the efficacy and safety of cabozantinib in patients with advanced or metastatic renal cell carcinoma (mRCC). We enrolled 53 patients with mRCC who received cabozantinib at eight institutions in Japan. The primary endpoint was overall survival (OS). The secondary endpoints were objective response rate (ORR), disease control rate (DCR), and progression-free survival (PFS). In addition, we analyzed prognostic factors in patients with mRCC treated with cabozantinib. The median follow-up period was 8 months, and the median OS was 20.0 months. The ORR and DCR were 39.6% and 83.0%, respectively. The median PFS was 11.0 months. PFS was significantly shorter in patients previously treated with at least two tyrosine kinase inhibitors and in those with C-reactive protein (CRP) ≥ 1.27 mg/dL (p = 0.021 and p = 0.029, respectively). Adverse events of any grade and grades ≥3 occurred in 42 (79.2%) and 10 (18.9%) patients, respectively. Cabozantinib is a useful treatment option for patients with mRCC and may benefit from earlier use. In this study, CRP ≥ 1.27 mg/dL is a poor prognostic factor in patients treated with cabozantinib, and careful follow-up may be required in treating patients with high CRP.
Collapse
Affiliation(s)
- Koji Iinuma
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Risa Tomioka-Inagawa
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Koji Kameyama
- Department of Urology, Kizawa Memorial Hospital, 590 shimokobi, Kobicho, Minokamo, Gifu 505-8503, Japan
| | - Tomoki Taniguchi
- Department of Urology, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki, Gifu 503-8502, Japan
| | - Kei Kawada
- Department of Urology, Gifu Prefectural General Medical Center, 4-6-1 Noisiki, Gifu 500-8717, Japan
| | - Takashi Ishida
- Department of Urology, Gifu Municipal Hospital, 7-1 Kashimacho, Gifu 500-8513, Japan
| | - Shingo Nagai
- Department of Urology, Toyota Memorial Hospital, 1-1 Heiwacho, Toyota, Aichi 471-8513, Japan
| | - Torai Enomoto
- Department of Urology, Matsunami General Hospital, 185-1 Kasamatsucho, Hashima-gun, Gifu 501-6062, Japan
| | - Shota Ueda
- Department of Urology, Japanese Red Cross Takayama Hospital, 3-113-11 Tenman-machi, Takayama-shi, Gifu 506-8550, Japan
| | - Makoto Kawase
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Shinichi Takeuchi
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kota Kawase
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Daiki Kato
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Manabu Takai
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Keita Nakane
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
- Correspondence: ; Tel.: +81-58-230-6000
| |
Collapse
|
25
|
Xiao M, Shi Y, Jiang S, Cao M, Chen W, Xu Y, Xu Z, Wang K. Recent advances of nanomaterial-based anti-angiogenic therapy in tumor vascular normalization and immunotherapy. Front Oncol 2022; 12:1039378. [PMID: 36523993 PMCID: PMC9745116 DOI: 10.3389/fonc.2022.1039378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 01/04/2025] Open
Abstract
Anti-angiogenesis therapy and immunotherapy are the first-line therapeutic strategies for various tumor treatments in the clinic, bringing significant advantages for tumor patients. Recent studies have shown that anti-angiogenic therapy can potentiate immunotherapy, with many clinical trials conducted based on the combination of anti-angiogenic agents and immune checkpoint inhibitors (ICIs). However, currently available clinical dosing strategies and tools are limited, emphasizing the need for more improvements. Although significant progress has been achieved, several big questions remained, such as how to achieve cell-specific targeting in the tumor microenvironment? How to improve drug delivery efficiency in tumors? Can nanotechnology be used to potentiate existing clinical drugs and achieve synergistic sensitization effects? Over the recent few years, nanomedicines have shown unique advantages in antitumor research, including cell-specific targeting, improved delivery potentiation, and photothermal effects. Given that the applications of nanomaterials in tumor immunotherapy have been widely reported, this review provides a comprehensive overview of research advances on nanomaterials in anti-angiogenesis therapy, mainly focusing on the immunosuppressive effects of abnormal tumor vessels in the tumor immune microenvironment, the targets and strategies of anti-angiogenesis nanomedicines, and the potential synergistic effects and molecular mechanisms of anti-angiogenic nanomedicines in combination with immunotherapy, ultimately providing new perspectives on the nanomedicine-based synergy between anti-angiogenic and immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
26
|
Duke ES, Barone AK, Chatterjee S, Mishra-Kalyani PS, Shen YL, Isikwei E, Zhao H, Bi Y, Liu J, Rahman NA, Wearne E, Leighton JK, Stephenson M, Ojofeitimi I, Scepura B, Nair A, Pazdur R, Beaver JA, Singh H. FDA Approval Summary: Cabozantinib for Differentiated Thyroid Cancer. Clin Cancer Res 2022; 28:4173-4177. [PMID: 35679021 PMCID: PMC9529996 DOI: 10.1158/1078-0432.ccr-22-0873] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
Abstract
On September 17, 2021, the FDA approved cabozantinib (Cabometyx; Exelixis, Inc.) for the treatment of adult and pediatric patients 12 years of age and older with locally advanced or metastatic differentiated thyroid cancer (DTC) that has progressed following prior VEGFR-targeted therapy and who are radioactive iodine (RAI)-refractory or ineligible. This is the first approval for patients with RAI-refractory locally advanced or metastatic DTC who have progressed following prior therapy and the first approval in pediatric patients with DTC. The approval was based on data from COSMIC-311 (Study XL184-311, NCT03690388), an international, randomized, double-blind trial in which patients with locally advanced or metastatic RAI-refractory DTC that progressed during or following treatment with at least one VEGFR-targeting tyrosine kinase inhibitor were treated with either cabozantinib 60 mg orally once daily (N = 170) or placebo with best supportive care (N = 88). The primary efficacy outcome measures were progression-free survival (PFS) and overall response rate (ORR) by blinded independent central review per RECIST 1.1. The median PFS was 11.0 months [95% confidence interval (CI), 7.4-13.8] in the cabozantinib arm compared with 1.9 months (95% CI, 1.9-3.7) in the control arm, with an HR of 0.22 (95% CI, 0.15-0.31). The endpoint of ORR was not met. No new safety signals were identified with the exception of hypocalcemia, which was added as a warning in the product labeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Zhao
- Center for Drug Evaluation and Research
| | - Youwei Bi
- Center for Drug Evaluation and Research
| | - Jiang Liu
- Center for Drug Evaluation and Research
| | | | | | | | | | | | | | | | - Richard Pazdur
- Center for Drug Evaluation and Research,Oncology Center of Excellence, U.S. Food and Drug Administration
| | - Julia A. Beaver
- Center for Drug Evaluation and Research,Oncology Center of Excellence, U.S. Food and Drug Administration
| | - Harpreet Singh
- Center for Drug Evaluation and Research,Oncology Center of Excellence, U.S. Food and Drug Administration
| |
Collapse
|
27
|
Dimerization of the C-type lectin-like receptor CD93 promotes its binding to Multimerin-2 in endothelial cells. Int J Biol Macromol 2022; 224:453-464. [DOI: 10.1016/j.ijbiomac.2022.10.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
28
|
She L, Su L, Liu C. Bevacizumab combined with re-irradiation in recurrent glioblastoma. Front Oncol 2022; 12:961014. [PMID: 36046037 PMCID: PMC9423039 DOI: 10.3389/fonc.2022.961014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Glioblastoma is characterized by rich vasculature and abnormal vascular structure and function. Currently, there is no standard treatment for recurrent glioblastoma (rGBM). Bevacizumab (BEV) has established role of inhibiting neovascularization, alleviating hypoxia in the tumor area and activating the immune microenvironment. BEV may exert synergistic effects with re-irradiation (re-RT) to improve the tumor microenvironment for rGBM. Purpose The purpose of this study was to evaluate the safety, tolerability, and efficacy of a combination of BEV and re-RT for rGBM treatment. Methods In this retrospective study, a total of 26 rGBM patients with surgical pathologically confirmed glioblastoma and at least one event of recurrence were enrolled. All patients were treated with re-RT in combination with BEV. BEV was administered until progression or serious adverse events. Results Median follow-up was 21.9 months for all patients, whereas median progression-free survival (PFS) was 8.0 months (95% confidence interval [CI]: 6.5–9.5 months). In addition, the 6-month and 1-year PFS rates were 65.4% and 28.2%, respectively. The median overall survival (OS), 6-month OS rate, and 1-year OS rate were 13.6 months (95% CI: 10.2–17.0 months), 92.3%, and 67.5%, respectively. The patient showed good tolerance during the treatment with no grade > 3 grade side event and radiation necrosis occurrence rate of 0%. Combined treatment of gross total resection (GTR) before re-RT and concurrent temozolomide during re-RT was an independent prognostic factor that affected both OS and PFS in the whole cohort (OS: 0.067, 95% CI: 0.009–0.521, p = 0.010; PFS: 0.238, 95% CI: 0.076–0.744, p = 0.038). Conclusion In this study, re-RT combined with concurrent and maintenance BEV treatment was safe, tolerable, and effective in rGBM patients. Moreover, GTR before re-RT and selective concurrent temozolomide could further improve patient PFS and OS.
Collapse
Affiliation(s)
- Lei She
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Su
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Ma C, Shi ZH, Han XY, Liu C, Yan B, Du JL. Targeting circRNA-MAP4K2 for the treatment of diabetes-induced retinal vascular dysfunction. Aging (Albany NY) 2022; 14:6255-6268. [PMID: 35963645 PMCID: PMC9417218 DOI: 10.18632/aging.204215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Diabetic retinopathy (DR) is an important ocular vascular disease in working-age adults. However, the molecular mechanism underlying retinal vascular dysfunction is still not fully understood in DR. Circular RNAs have been recognized as the crucial regulators in many biological processes and human diseases. Herein, we determined the role of circular RNA-MAP4K2 (cMAP4K2) in diabetes-induced retinal vascular dysfunction. The results showed that high glucose treatment led to increased levels of cMAP4K2 expression in vitro and in vivo. Silencing of cMAP4K2 could reduce endothelial cell viability, proliferation, migration, and tube formation in vitro and alleviate retinal vascular dysfunction in vivo as shown by decreased vascular leakage and inflammation. By contrast, cMAP4K2 overexpression had an opposite effect on retinal vascular dysfunction. Mechanistically, cMAP4K2 acted as miR-377 sponge to affect the biological activity of miR-377, which led to increased expression of vascular endothelial growth factor A (VEGFA). Clinically, cMAP4K2 expression was significantly up-regulated in the clinical sample of DR patients. Collectively, cMAP4K2 is shown as a potential target for the diagnosis and treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Cong Ma
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China.,Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Ze-Hui Shi
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yan Han
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chang Liu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Biao Yan
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Ling Du
- Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
30
|
Resveratrol and Its Analogue 4,4′-Dihydroxy-trans-stilbene Inhibit Lewis Lung Carcinoma Growth In Vivo through Apoptosis, Autophagy and Modulation of the Tumour Microenvironment in a Murine Model. Biomedicines 2022; 10:biomedicines10081784. [PMID: 35892684 PMCID: PMC9332680 DOI: 10.3390/biomedicines10081784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most prevalent cancer worldwide. Despite advances in surgery and immune-chemotherapy, the therapeutic outcome remains poor. In recent years, the anticancer properties of natural compounds, along with their low toxic side effects, have attracted the interest of researchers. Resveratrol (RSV) and many of its derivatives received particular attention for their beneficial bioactivity. Here we studied the activity of RSV and of its analogue 4,4′-dihydroxystilbene (DHS) in C57BL/6J mice bearing cancers resulting from Lung Lewis Carcinoma (LLC) cell implantation, considering tumour mass weight, angiogenesis, cell proliferation and death, autophagy, as well as characterization of their immune microenvironment, including infiltrating cancer-associated fibroblasts (CAFs). C57BL/6J mice started treatment with RSV or DHS, solubilised in drinking water, one week before LLC implantation, and continued for 21 days, at the end of which they were sacrificed, and the tumour masses collected. Histology was performed according to standard procedures; angiogenesis, cell proliferation and death, autophagy, infiltrating-immune cells, macrophages and fibroblasts were assessed by immunodetection assays. Both stilbenic compounds were able to contrast the tumour growth by increasing apoptosis and autophagy in LLC tumour masses. Additionally, they contrasted the tumour-permissive microenvironment by limiting the infiltration of tumour-associated immune-cells and, more importantly, by counteracting CAF maturation. Therefore, both stilbenes could be employed to synergise with conventional oncotherapies to limit the contribution of stromal cells in tumour growth.
Collapse
|
31
|
Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects. Drug Resist Updat 2022; 64:100849. [PMID: 35842983 DOI: 10.1016/j.drup.2022.100849] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Angiogenesis is a hallmark of cancer and is required for tumor growth and progression. Antiangiogenic therapy has been revolutionarily developing and was approved for the treatment of various types of cancer for nearly two decades, among which bevacizumab and sorafenib continue to be the two most frequently used antiangiogenic drugs. Although antiangiogenic therapy has brought substantial survival benefits to many cancer patients, resistance to antiangiogenic drugs frequently occurs during clinical treatment, leading to poor outcomes and treatment failure. Cumulative evidence has demonstrated that the intricate interplay among tumor cells, bone marrow-derived cells, and local stromal cells critically allows for tumor escape from antiangiogenic therapy. Currently, drug resistance has become the main challenge that hinders the therapeutic efficacies of antiangiogenic therapy. In this review, we describe and summarize the cellular and molecular mechanisms conferring tumor drug resistance to antiangiogenic therapy, which was predominantly associated with redundancy in angiogenic signaling molecules (e.g., VEGFs, GM-CSF, G-CSF, and IL17), alterations in biological processes of tumor cells (e.g., tumor invasiveness and metastasis, stemness, autophagy, metabolic reprogramming, vessel co-option, and vasculogenic mimicry), increased recruitment of bone marrow-derived cells (e.g., myeloid-derived suppressive cells, tumor-associated macrophages, and tumor-associated neutrophils), and changes in the biological functions and features of local stromal cells (e.g., pericytes, cancer-associated fibroblasts, and endothelial cells). We also review potential biomarkers to predict the response to antiangiogenic therapy in cancer patients, which mainly consist of imaging biomarkers, cellular and extracellular proteins, a certain type of bone marrow-derived cells, local stromal cell content (e.g., pericyte coverage) as well as serum or plasma biomarkers (e.g., non-coding RNAs). Finally, we highlight the recent advances in combination strategies with the aim of enhancing the response to antiangiogenic therapy in cancer patients and mouse models. This review introduces a comprehensive understanding of the mechanisms and biomarkers associated with the evasion of antiangiogenic therapy in cancer, providing an outlook for developing more effective approaches to promote the therapeutic efficacy of antiangiogenic therapy.
Collapse
Affiliation(s)
- Maohua Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Yuning Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Chenran Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Lijuan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Minfeng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for Biotechnology, St. John's University, NY 11439, USA.
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
32
|
Hu WH, Zhang XY, Leung KW, Duan R, Dong TX(T, Qin QW, Tsim KWK. Resveratrol, an Inhibitor Binding to VEGF, Restores the Pathology of Abnormal Angiogenesis in Retinopathy of Prematurity (ROP) in Mice: Application by Intravitreal and Topical Instillation. Int J Mol Sci 2022; 23:ijms23126455. [PMID: 35742898 PMCID: PMC9223486 DOI: 10.3390/ijms23126455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a severe eye disease leading to blindness. Abnormal vessel formation is the pathological hallmark of neovascular ROP. In forming vessels, vascular endothelial growth factor (VEGF) is an important stimulator. The current anti-ROP therapy has focused on bevacizumab, a monoclonal antibody against VEGF, and pazopanib, a tyrosine kinase inhibitor on the VEGF receptor (VEGFR). Several lines of evidence have proposed that natural compounds may be more effective and safer for anti-VEGF function. Resveratrol, a common natural compound, binds to VEGF and blocks its interaction with VEGFR, thereafter suppressing angiogenesis. Here, we evaluate the efficacy of intravitreal injection, or topical instillation (eye drops), of resveratrol into the eyes of mice suffering from oxygen-induced retinopathy, i.e., developing ROP. The treatment of resveratrol significantly relieved the degree of vascular distortion, permeability and hyperplasia; the efficacy could be revealed by both methods of resveratrol application. In parallel, the treatments of resveratrol inhibited the retinal expressions of VEGF, VEGFR and CD31. Moreover, the applied resveratrol significantly relieved the damage caused by oxygen radicals through upregulating the level of superoxide dismutase (SOD) and downregulating the level of malondialdehyde (MDA) in the retina. Taken together, the potential therapeutic benefit of resveratrol in pro-angiogenic diseases, including retinopathy, can be considered.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
| | - Xiao-Yong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
| | - Ka-Wing Leung
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting-Xia (Tina) Dong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
| | - Karl Wah-Keung Tsim
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (W.-H.H.); (X.-Y.Z.); (T.-X.D.); (Q.-W.Q.)
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518063, China; (K.-W.L.); (R.D.)
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: ; Tel.: +852-2358-7332; Fax: +852-2358-1559
| |
Collapse
|
33
|
Zhang Q, Guo YX, Zhang WL, Lian HY, Iranzad N, Wang E, Li YC, Tong HC, Li LY, Dong LY, Yang LH, Ma S. Intra-tumoral angiogenesis correlates with immune features and prognosis in glioma. Aging (Albany NY) 2022; 14:4402-4424. [PMID: 35579998 PMCID: PMC9186765 DOI: 10.18632/aging.204079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
Abstract
Gliomas are the most common malignant tumor in the brain. As with other tumors, the progression of glioma depends on intra-tumoral angiogenesis. However, the effect of angiogenesis on gliomas is still not fully understood. In this study, we developed an angiogenesis pathway score using Gene Set Variation Analysis (GSAV) in R to assess the status of intra-glioma angiogenesis in The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA mRNAseq_325, CGGA mRNA-array), and GSE16011 datasets. We found that the angiogenesis pathway score not only accurately predicted the prognosis of glioma patients, but also accurately distinguished the malignant phenotype and immune characteristics of gliomas. In addition, as an independent prognostic factor, the score could predict glioma sensitivity to radiotherapy and chemotherapy. In summary, we used the angiogenesis pathway score to reveal the relationship between glioma angiogenesis and the malignant phenotype, immune characteristics, and prognosis of glioma.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yao-Xing Guo
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wan-Lin Zhang
- Department of Pathology, Hebei Petro China Central Hospital, Langfang, Hebei, China
| | - Hai-Yan Lian
- Department of Ophthalmology, Jili Hospital of Liuyang (Liuyang Eye Hospital), Changsha, Hunan, China
| | - Natasha Iranzad
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Endi Wang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ying-Chun Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hai-Chao Tong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Le-Yao Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Ling-Yun Dong
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Lian-He Yang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Ma
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.,Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
34
|
Serzan M, Atkins MB. Adjuvant therapy for patients with renal cell carcinoma following surgery: a focus on pembrolizumab. Expert Rev Anticancer Ther 2022; 22:565-574. [PMID: 35483033 DOI: 10.1080/14737140.2022.2072300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Many patients with renal cell carcinoma (RCC) who undergo surgery with curative intent have a high risk of disease recurrence and until recently no palatable adjuvant systemic therapy options. Blocking the programmed death ligand (PD-1) immune checkpoint pathway with pembrolizumab has robust clinical efficacy in patients with metastatic RCC. Results from the KEYNOTE 564 trial demonstrate that adjuvant pembrolizumab significantly improves disease- free survival after nephrectomy or metastatectomy. AREAS COVERED We provide an overview of efforts to develop an adjuvant therapy in patients with high-risk RCC. This includes a critical review of efficacy, toxicity, and clinical implications from a large phase III trial leading to the FDA and EMA approvals of adjuvant pembrolizumab. EXPERT OPINION Pembrolizumab offers an effective and well-tolerated adjuvant therapy for patients with surgically resected RCC at high-risk of disease recurrence. Future research will focus on optimal patient selection and biomarkers that predict benefit and/or toxicity from therapy.
Collapse
Affiliation(s)
- Michael Serzan
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Washington DC.,Department of Medicine, Medstar Georgetown University Hospital, Washington DC
| | - Michael B Atkins
- Department of Oncology, Georgetown-Lombardi Comprehensive Cancer Center, Washington DC.,Department of Medicine, Medstar Georgetown University Hospital, Washington DC
| |
Collapse
|
35
|
Angermann R, Huber AL, Nowosielski Y, Salcher S, Gasser T, Seifarth C, Kralinger MT, Zehetner C. CHANGES IN SYSTEMIC LEVELS OF VASCULAR ENDOTHELIAL GROWTH FACTOR AFTER INTRAVITREAL INJECTION OF AFLIBERCEPT OR BROLUCIZUMAB FOR NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina 2022; 42:503-510. [PMID: 34731094 PMCID: PMC8852685 DOI: 10.1097/iae.0000000000003344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE To analyze and compare the effects of intravitreal brolucizumab versus aflibercept on systemic vascular endothelial growth factor (VEGF)-A levels in patients with neovascular age-related macular degeneration. METHODS In this prospective interventional case series study, brolucizumab (6.0 mg/50 µL) or aflibercept (2.0 mg/50 µL) was injected intravitreally in 30 patients each. Blood samples were drawn at baseline and 7 days and 28 days after the first injection. Systemic VEGF-A levels were measured using enzyme-linked immunosorbent assay. Thirty healthy individuals served as controls. RESULTS The median baseline systemic VEGF-A levels in the brolucizumab, aflibercept, and control groups were 10.8 (8.0-13.2), 12.0 (8.0-18.5), and 10.0 (8.0-15.1) pg/mL, respectively (P = 0.315). In the brolucizumab group, VEGF-A levels significantly decreased to 8.0 (8.0-11.5) pg/mL on Day 7 (P = 0.0254) and to 8.0 (8.0-8.0) pg/mL on Day 28 (P < 0.001). In the aflibercept group, VEGF-A levels significantly decreased to 8.0 (8.0-8.0) pg/mL on Day 7 (P < 0.001) but returned to the baseline level, 12.5 (8.5-14.6) pg/mL, on Day 28 (P = 0.120). Vascular endothelial growth factor-A levels were significantly different between the treatment groups after 28 days (P < 0.001). CONCLUSION Intravitreal brolucizumab resulted in a sustained reduction of systemic VEGF-A levels until 28 days posttreatment, which raises concerns regarding its safety and long-term effects.
Collapse
Affiliation(s)
- Reinhard Angermann
- Department of Ophthalmology, Medical University Innsbruck, Innsbruck, Austria
- Department of Ophthalmology, Paracelsus Medical University Salzburg, Salzburg, Austria; and
| | - Anna Lena Huber
- Department of Ophthalmology, Medical University Innsbruck, Innsbruck, Austria
| | - Yvonne Nowosielski
- Department of Ophthalmology, Medical University Innsbruck, Innsbruck, Austria
| | - Stefan Salcher
- Department of Hematology and Oncology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Gasser
- Department of Ophthalmology, Medical University Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Department of Ophthalmology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Claus Zehetner
- Department of Ophthalmology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
36
|
Huang M, Lei Y, Zhong Y, Chung C, Wang M, Hu M, Deng L. New Insights Into the Regulatory Roles of Extracellular Vesicles in Tumor Angiogenesis and Their Clinical Implications. Front Cell Dev Biol 2021; 9:791882. [PMID: 34966744 PMCID: PMC8710745 DOI: 10.3389/fcell.2021.791882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022] Open
Abstract
Angiogenesis is required for tumor growth and development. Extracellular vesicles (EVs) are important signaling entities that mediate communication between diverse types of cells and regulate various cell biological processes, including angiogenesis. Recently, emerging evidence has suggested that tumor-derived EVs play essential roles in tumor progression by regulating angiogenesis. Thousands of molecules are carried by EVs, and the two major types of biomolecules, noncoding RNAs (ncRNAs) and proteins, are transported between cells and regulate physiological and pathological functions in recipient cells. Understanding the regulation of EVs and their cargoes in tumor angiogenesis has become increasingly important. In this review, we summarize the effects of tumor-derived EVs and their cargoes, especially ncRNAs and proteins, on tumor angiogenesis and their mechanisms, and we highlight the clinical implications of EVs in bodily fluids as biomarkers and as diagnostic, prognostic, and therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Maohua Huang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,College of Pharmacy, Jinan University, Guangzhou, China
| | - Yuhe Lei
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yinqin Zhong
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chiwing Chung
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Mei Wang
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Min Hu
- Department of Hepatobiliary Surgery, Jinan University First Affiliated Hospital, Guangzhou, China
| | - Lijuan Deng
- Formula Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Duitama M, Moreno Y, Santander SP, Casas Z, Sutachan JJ, Torres YP, Albarracín SL. TRP Channels as Molecular Targets to Relieve Cancer Pain. Biomolecules 2021; 12:1. [PMID: 35053150 PMCID: PMC8774023 DOI: 10.3390/biom12010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential (TRP) channels are critical receptors in the transduction of nociceptive stimuli. The microenvironment of diverse types of cancer releases substances, including growth factors, neurotransmitters, and inflammatory mediators, which modulate the activity of TRPs through the regulation of intracellular signaling pathways. The modulation of TRP channels is associated with the peripheral sensitization observed in patients with cancer, which results in mild noxious sensory stimuli being perceived as hyperalgesia and allodynia. Secondary metabolites derived from plant extracts can induce the activation, blocking, and desensitization of TRP channels. Thus, these compounds could act as potential therapeutic agents, as their antinociceptive properties could be beneficial in relieving cancer-derived pain. In this review, we will summarize the role of TRPV1 and TRPA1 in pain associated with cancer and discuss molecules that have been reported to modulate these channels, focusing particularly on the mechanisms of channel activation associated with molecules released in the tumor microenvironment.
Collapse
Affiliation(s)
- Milena Duitama
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yurany Moreno
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA;
| | - Sandra Paola Santander
- Phytoimmunomodulation Research Group, Juan N. Corpas University Foundation, Bogotá 111111, Colombia;
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (M.D.); (Z.C.); (J.J.S.)
| |
Collapse
|
38
|
Jin X, Dong C, Zheng K, Shi X, Liu Y, Huo L, Wang F, Li F. Scintigraphic Imaging of Neovascularization With 99mTc-3PRGD 2 for Evaluating Early Response to Endostar Involved Therapies on Pancreatic Cancer Xenografts In Vivo. Front Oncol 2021; 11:792431. [PMID: 35769548 PMCID: PMC9236135 DOI: 10.3389/fonc.2021.792431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
Background Molecular imaging targeting angiogenesis can specifically monitor the early therapeutic effect of antiangiogenesis therapy. We explore the predictive values of an integrin αvβ3-targeted tracer, 99mTc-PEG4-E[PEG4-c(RGDfK)]2 (99mTc-3PRGD2), for monitoring the efficacy of Endostar antiangiogenic therapy and chemotherapy in animal models. Methods The pancreatic cancer xenograft mice were randomly divided into four groups, with seven animals in each group and treated in different groups with 10 mg/kg/day of Endostar, 10 mg/kg/day of gemcitabine, 10 mg/kg/day of Endostar +10 mg/kg/day of gemcitabine at the same time, and the control group with 0.9% saline (0.1 ml/day). 99mTc-3PRGD2 scintigraphic imaging was carried out to monitor therapeutic effects. Microvessel density (MVD) was measured using immunohistochemical staining of the tumor tissues. The region of interest (ROI) of tumor (T) and contralateral corresponding site (NT) was delineated, and the ratio of radioactivity (T/NT) was calculated. Two-way repeated-measure analysis of variance (ANOVA) was used to assess differences between treatment groups. Results Tumor growth was significantly lower in treatment groups than that in the control group (p < 0.05), and the differences were noted on day 28 posttreatment. The differences of 99mTc-3PRGD2 uptakes were observed between the control group and Endostar group (p = 0.033) and the combined treatment group (p < 0.01) on day 7 posttreatment and on day 14 posttreatment between the control group and gemcitabine group (p < 0.01). The accumulation of 99mTc-3PRGD2 was significantly correlated with MVD (r = 0.998, p = 0.002). Conclusion With 99mTc-3PRGD2 scintigraphic imaging, the tumor response to antiangiogenic therapy, chemotherapy, and the combined treatment can be observed at an early stage of the treatments, much earlier than the tumor volume change. It provides new opportunities for developing individualized therapies and dose optimization.
Collapse
Affiliation(s)
- Xiaona Jin
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | | | - Kun Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Ximin Shi
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Yu Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Li Huo
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| | - Fan Wang
- Medical Isotopes Research Center, Peking University,
Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in
Nuclear Medicine, Beijing,
China
| |
Collapse
|
39
|
Wang S, Luo Z, Zhou X, Wang C, Luo Y, Yi N, Liao YL. Multifunctional Nanoparticles Loaded with Vascular Endothelial Growth Factor Inhibitors and MED1 siRNA to Inhibit Breast Cancer Progression by Targeting Tumor-Associated Macrophages and Breast Cancer Cells. J Biomed Nanotechnol 2021; 17:2364-2373. [PMID: 34974859 DOI: 10.1166/jbn.2021.3207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer is still threatening many people' lives, hence novel targeted therapies are urgently required to improve the poor outcome of breast cancer patients. Herein, our study aimed to explore the potential of nanoparticles (NPs)-loaded with VEGF inhibitors and MED1 siRNA for treatment of the disorder. PEG and MTC conjugates were synthesized by ion gelation, and equipped with VEGF inhibitor (siV) and MED1 (siD) siRNA (MT/PC/siV-D NPs). The size and morphology of the NPs were detected by TEM. Agarose gel experiment was performed to detect drug encapsulation rate and NPs stability. Zeta potential was assessed by immunofluorescence assay and cell uptake was detected by fluorescence analysis. After cancer cells were treated with NPs or PBS, cell proliferation and invasion were evaluated with VEGF and MED1 expression was detected by Western blot and RT-qPCR analyses. Animal model was conducted to confirm the role of NPs in tumor growth. Results showed that, the MT/PC/siV-D NPs exhibited great stability, drug encapsulation and internalization ability. The combined NPs caused decreased proliferation and invasion of tumor cells, inducing M2 macrophages to re-polarize to M1 type with declined expression of VEGF and MED1. Moreover, the NPs remarkably alleviated breast tumor progression. The multifunctional NPs equipped with EGF inhibitors and MED1 siRNA can inhibit tumor progression by targeting TAMs and cancer cells during breast cancer.
Collapse
Affiliation(s)
- Song Wang
- Department of Breast and Thyroid Surgery, Key Laboratory of Biological Targeting Diagnosis Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Zifeng Luo
- School of International Studies, Hunan Institute of Technology, Hengyang, Hunan, 421002, China
| | - Xinke Zhou
- Department of Breast and Thyroid Surgery, Key Laboratory of Biological Targeting Diagnosis Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Chong Wang
- Department of Breast and Thyroid Surgery, Key Laboratory of Biological Targeting Diagnosis Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Yuanwei Luo
- Department of Breast and Thyroid Surgery, Key Laboratory of Biological Targeting Diagnosis Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Nian Yi
- Department of Breast and Thyroid surgery, The Affifiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Yu Ling Liao
- Department of Breast Surgery, Huizhou First Hospital, Huizhou, Guangdong, 516000, China
| |
Collapse
|
40
|
Zhang S, Xie B, Wang L, Yang H, Zhang H, Chen Y, Wang F, Liu C, He H. Macrophage-mediated vascular permeability via VLA4/VCAM1 pathway dictates ascites development in ovarian cancer. J Clin Invest 2021; 131:140315. [PMID: 33295887 DOI: 10.1172/jci140315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The development of ascites correlates with advanced stage disease and poor prognosis in ovarian cancer. Vascular permeability is the key pathophysiological change involved in ascites development. Previously, we provided evidence that perivascular M2-like macrophages protect the vascular barrier through direct contact with endothelial cells (ECs). Here, we investigated the molecular mechanism and its clinical significance in the ovarian cancer setting. We found that upon direct coculture with the endothelium, M2 macrophages tuned down their VLA4 and reduced the levels of VCAM1 in ECs. On the other hand, ectopically overexpressing VLA4 in macrophages or VCAM1 in ECs induced hyperpermeability. Mechanistically, downregulation of VLA4 or VCAM1 led to reduced levels of RAC1 and ROS, which resulted in decreased phosphorylation of PYK2 (p-PYK2) and VE-cadherin (p-VE-cad), hence enhancing cell adhesion. Furthermore, targeting the VLA4/VCAM1 axis augmented vascular integrity and abrogated ascites formation in vivo. Finally, VLA4 expression on the macrophages isolated from ascites dictated permeability ex vivo. Importantly, VLA4 antibody acted synergistically with bevacizumab to further enhance the vascular barrier. Taking these data together, we reveal here that M2 macrophages regulate the vascular barrier though the VCAM1/RAC1/ROS/p-PYK2/p-VE-cad cascade, which provides specific therapeutic targets for the treatment of malignant ascites.
Collapse
Affiliation(s)
- Shibo Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bingfan Xie
- Department of Gynaecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lijie Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hua Yang
- Department of Gynaecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Haopei Zhang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yuming Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Feng Wang
- Department of Gynaecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Changqing Liu
- Department of Gynaecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
41
|
Zhang M, Liu J, Liu G, Xing Z, Jia Z, Li J, Wang W, Wang J, Qin L, Wang X, Wang X. Anti-vascular endothelial growth factor therapy in breast cancer: Molecular pathway, potential targets, and current treatment strategies. Cancer Lett 2021; 520:422-433. [PMID: 34389434 DOI: 10.1016/j.canlet.2021.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
As the highest incidence of female malignancy, breast cancer is likewise the leading cause of cancer-related deaths. The development of cancer relies on neo-vascularization, which provides sufficient nutrition and oxygen, and supplies a pathway for distant metastasis. Angiogenesis represents the formation of new blood vessels, and is a principal pathogenetic action in breast cancer. Vascular endothelial growth factor (VEGF) is a major angiogenesis regulator that modulates the maintenance and function of mature vascular networks. Therefore, the VEGF pathway is a promising oncotherapeutic target. This review elaborates an update on the prognostic value of VEGF in breast cancer, summarizes clinical experience and lessons of anti-VEGF therapeutics, meanwhile, provides an overview of biomarkers that predict the effectiveness of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Menglu Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiaqi Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Gang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zeyu Xing
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiaxin Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenyan Wang
- Department of Breast Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jie Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ling Qin
- Department of Breast Surgical Oncology, Cancer Hospital of HuanXing, Beijing, 100021, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Xiang Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
42
|
Magnussen AL, Mills IG. Vascular normalisation as the stepping stone into tumour microenvironment transformation. Br J Cancer 2021; 125:324-336. [PMID: 33828258 PMCID: PMC8329166 DOI: 10.1038/s41416-021-01330-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/17/2021] [Accepted: 02/17/2021] [Indexed: 02/01/2023] Open
Abstract
A functional vascular system is indispensable for drug delivery and fundamental for responsiveness of the tumour microenvironment to such medication. At the same time, the progression of a tumour is defined by the interactions of the cancer cells with their surrounding environment, including neovessels, and the vascular network continues to be the major route for the dissemination of tumour cells in cancer, facilitating metastasis. So how can this apparent conflict be reconciled? Vessel normalisation-in which redundant structures are pruned and the abnormal vasculature is stabilised and remodelled-is generally considered to be beneficial in the course of anti-cancer treatments. A causality between normalised vasculature and improved response to medication and treatment is observed. For this reason, it is important to discern the consequence of vessel normalisation on the tumour microenvironment and to modulate the vasculature advantageously. This article will highlight the challenges of controlled neovascular remodelling and outline how vascular normalisation can shape disease management.
Collapse
Affiliation(s)
- Anette L Magnussen
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ian G Mills
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Belfast, UK.
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
43
|
Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13133358. [PMID: 34283087 PMCID: PMC8268862 DOI: 10.3390/cancers13133358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary In the present paper, we identified miR-23a-3p, a hypoxia regulated-microRNA (miRNA), as a potential biomarker of chemoresistance and poor outcome in two independent cohorts of high-grade serous ovarian carcinoma (HGSOC) patients. Then, we predicted the involvement of miR-23a-3p in the platinum resistance pathway, together with its target APAF-1 gene, and validated their anticorrelation and association with platinum response in HGSOC patients and cell lines. We propose that the evaluation of miR-23a-3p expression may provide important clinical indications on patients not responding to platinum treatment and that the miR23a-3p/APAF1 axis could be considered a possible target for personalized medicine in HGSOC patients. Abstract The onset of chemo-resistant recurrence represents the principal cause of high-grade serous ovarian carcinoma (HGSOC) death. HGSOC masses are characterized by a hypoxic microenvironment, which contributes to the development of this chemo-resistant phenotype. Hypoxia regulated-miRNAs (HRMs) represent a molecular response of cancer cells to hypoxia and are involved in tumor progression. We investigated the expression of HRMs using miRNA expression data from a total of 273 advanced-stage HGSOC samples. The miRNAs associated with chemoresistance and survival were validated by RT-qPCR and target prediction, and comparative pathway analysis was conducted for target gene identification. Analysis of miRNA expression profiles indicated miR-23a-3p and miR-181c-5p over-expression as associated with chemoresistance and poor PFS. RT-qPCR data confirmed upregulation of miR-23a-3p in tumors from chemoresistant HGSOC patients and its significant association with shorter PFS. In silico miR-23a-3p target prediction and comparative pathway analysis identified platinum drug resistance as the pathway with the highest number of miR-23a-3p target genes. Among them, APAF-1 emerged as the most promising, being downregulated in platinum-resistant patients and in HGSOC chemo-resistant cells. These results highlight miR-23a-3p as a potential biomarker for HGSOC platinum response and prognosis and the miR23a-3p/APAF1 axis as a possible target to overcome platinum-resistance.
Collapse
|
44
|
Dorrell MI, Kast-Woelbern HR, Botts RT, Bravo SA, Tremblay JR, Giles S, Wada JF, Alexander M, Garcia E, Villegas G, Booth CB, Purington KJ, Everett HM, Siles EN, Wheelock M, Silva JA, Fortin BM, Lowey CA, Hale AL, Kurz TL, Rusing JC, Goral DM, Thompson P, Johnson AM, Elson DJ, Tadros R, Gillette CE, Coopwood C, Rausch AL, Snowbarger JM. A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis. PLoS One 2021; 16:e0252233. [PMID: 34077449 PMCID: PMC8172048 DOI: 10.1371/journal.pone.0252233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.
Collapse
Affiliation(s)
- Michael I. Dorrell
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States of America
- * E-mail:
| | - Heidi R. Kast-Woelbern
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Ryan T. Botts
- Department of Mathematical, Information, and Computer Sciences, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Stephen A. Bravo
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jacob R. Tremblay
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Sarah Giles
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jessica F. Wada
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - MaryAnn Alexander
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Eric Garcia
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Gabriel Villegas
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Caylor B. Booth
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Kaitlyn J. Purington
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Haylie M. Everett
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Erik N. Siles
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Michael Wheelock
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jordan A. Silva
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Bridget M. Fortin
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Connor A. Lowey
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Allison L. Hale
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Troy L. Kurz
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jack C. Rusing
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Dawn M. Goral
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Paul Thompson
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Alec M. Johnson
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Daniel J. Elson
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Roujih Tadros
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Charisa E. Gillette
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Carley Coopwood
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Amy L. Rausch
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jeffrey M. Snowbarger
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| |
Collapse
|
45
|
Barbera S, Lugano R, Pedalina A, Mongiat M, Santucci A, Tosi GM, Dimberg A, Galvagni F, Orlandini M. The C-type lectin CD93 controls endothelial cell migration via activation of the Rho family of small GTPases. Matrix Biol 2021; 99:1-17. [PMID: 34062268 DOI: 10.1016/j.matbio.2021.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cell migration is essential to angiogenesis, enabling the outgrowth of new blood vessels both in physiological and pathological contexts. Migration requires the activation of several signaling pathways, the elucidation of which expands the opportunity to develop new drugs to be used in antiangiogenic therapy. In the proliferating endothelium, the interaction between the transmembrane glycoprotein CD93 and the extracellular matrix activates signaling pathways that regulate cell adhesion, migration, and vascular maturation. Here we identify a pathway, comprising CD93, the adaptor proteins Cbl and Crk, and the small GTPases Rac1, Cdc42, and RhoA, which we propose acts as a regulator of cytoskeletal movements responsible for endothelial cell migration. In this framework, phosphorylation of Cbl on tyrosine 774 leads to the interaction with Crk, which acts as a downstream integrator in the CD93-mediated signaling regulating cell polarity and migration. Moreover, confocal microscopy analyses of GTPase biosensors show that CD93 drives coordinated activation of Rho-proteins at the cell edge of migratory endothelial cells. In conclusion, together with the demonstration of the key contribution of CD93 to the migratory process in living cells, these findings suggest that the signaling triggered by CD93 converges to the activation and modulation of the Rho GTPase signaling pathways regulating cell dynamics.
Collapse
Affiliation(s)
- Stefano Barbera
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Alessia Pedalina
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, Ophthalmology Unit, University of Siena, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Maurizio Orlandini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy.
| |
Collapse
|
46
|
Zhong L, Shi W, Gan L, Liu X, Huo Y, Wu P, Zhang Z, Wu T, Peng H, Huang Y, Zhao Y, Yuan Y, Deng Z, Tang H. Human endoglin-CD3 bispecific T cell engager antibody induces anti-tumor effect in vivo. Am J Cancer Res 2021; 11:6393-6406. [PMID: 33995664 PMCID: PMC8120215 DOI: 10.7150/thno.53121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Endoglin, also known as CD105, is a homo-dimeric membrane glycoprotein required for angiogenesis and serves as a marker for cancer vasculature. In this study, we constructed a bispecific T-cell engager (BiTE) antibody that targets human endoglin and CD3 (hEND-CD3/BiTE). We examined BiTE binding to endoglin-expressing cells and its effects on the cytolytic activity of T cells and cancer development. Methods: The in vitro effects of hEND-CD3/BiTE, including binding to target cells, T-cell activation, proliferation, and cytotoxicity, were examined in endoglin-expressing 293T cells, human umbilical vascular endothelial cells, tumor-derived endothelial cells, and CD3+ T cells. An in vivo xenograft tumor model was established using A549 human lung cancer cells. The therapeutic efficacy of hEND-CD3/BiTE was assessed by monitoring tumor growth, angiogenesis, and mouse survival. Results: hEND-CD3/BiTE specifically bound to endoglin-expressing cells and CD3+ T cells in vitro and stimulated T-cell activation, proliferation, and Th1 cytokine secretion, and promoted T-cell-mediated cytolysis of endoglin-expressing cells. The hEND-CD3/BiTE in vivo caused minimal toxicity to major organs, reduced tumor neoangiogenesis, inhibited tumor growth, and significantly improved mouse survival. Conclusions: Our study demonstrated the therapeutic potential of hEND-CD3/BiTE and provided a novel approach to clinical cancer treatment.
Collapse
|
47
|
Prolyl 3-Hydroxylase 2 Is a Molecular Player of Angiogenesis. Int J Mol Sci 2021; 22:ijms22083896. [PMID: 33918807 PMCID: PMC8069486 DOI: 10.3390/ijms22083896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Prolyl 3-hydroxylase 2 (P3H2) catalyzes the post-translational formation of 3-hydroxyproline on collagens, mainly on type IV. Its activity has never been directly associated to angiogenesis. Here, we identified P3H2 gene through a deep-sequencing transcriptome analysis of human umbilical vein endothelial cells (HUVECs) stimulated with vascular endothelial growth factor A (VEGF-A). Differently from many previous studies we carried out the stimulation not on starved HUVECs, but on cells grown to maintain the best condition for their in vitro survival and propagation. We showed that P3H2 is induced by VEGF-A in two primary human endothelial cell lines and that its transcription is modulated by VEGF-A/VEGF receptor 2 (VEGFR-2) signaling pathway through p38 mitogen-activated protein kinase (MAPK). Then, we demonstrated that P3H2, through its activity on type IV Collagen, is essential for angiogenesis properties of endothelial cells in vitro by performing experiments of gain- and loss-of-function. Immunofluorescence studies showed that the overexpression of P3H2 induced a more condensed status of Collagen IV, accompanied by an alignment of the cells along the Collagen IV bundles, so towards an evident pro-angiogenic status. Finally, we found that P3H2 knockdown prevents pathological angiogenesis in vivo, in the model of laser-induced choroid neovascularization. Together these findings reveal that P3H2 is a new molecular player involved in new vessels formation and could be considered as a potential target for anti-angiogenesis therapy.
Collapse
|
48
|
Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell Oncol (Dordr) 2021; 44:715-737. [PMID: 33835425 DOI: 10.1007/s13402-021-00602-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Angiogenesis is a key and early step in tumorigenesis, and is known as a hallmark of solid tumors and a key promoter of tumor recurrence. Unlike normal tissue vessels, the architecture of the tumor vasculature is abnormal, being leaky, tortuous, fragile and blind-ended. Perivascular cells are either detached or absent, causing reduction of vascular integrity, an increase in vessel immaturity, incoherent perfusion, defective functionality and enhanced tumor dissemination and metastasis. The abnormal tumor vasculature along with the defective tumor vessel functionality finally causes bouts of hypoxia and acidity in the tumor microenvironment (TME), further reinvigorating tumor aggression. Interstitial hypertension or high interstitial fluid pressure (IFP) is an outcome of tumor hyper-permeability. High IFP can be a barrier for either effective delivery of anti-cancer drugs toward the TME or accumulation of drugs within the tumor area, thus promoting tumor resistance to therapy. Some tumors do, however, not undergo angiogenesis but instead undergo vessel co-option or vascular mimicry, thereby adding another layer of complexity to cancer development and therapy. CONCLUSIONS Combination of anti-angiogenesis therapy with chemotherapy and particularly with immune checkpoint inhibitors (ICIs) is a promising strategy for a number of advanced cancers. Among the various approaches for targeting tumor angiogenesis, vascular normalization is considered as the most desired method, which allows effective penetration of chemotherapeutics into the tumor area, thus being an appropriate adjuvant to other cancer modalities.
Collapse
Affiliation(s)
- Jamal Majidpoor
- Department of Anatomy, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
49
|
Shang P, Gao R, Zhu Y, Zhang X, Wang Y, Guo M, Peng H, Wang M, Zhang J. VEGFR2-targeted antibody fused with IFN α mut regulates the tumor microenvironment of colorectal cancer and exhibits potent anti-tumor and anti-metastasis activity. Acta Pharm Sin B 2021; 11:420-433. [PMID: 33643821 PMCID: PMC7893194 DOI: 10.1016/j.apsb.2020.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Although interferon α (IFNα) and anti-angiogenesis antibodies have shown appropriate clinical benefit in the treatment of malignant cancer, they are deficient in clinical applications. Previously, we described an anti-vascular endothelial growth factor receptor 2 (VEGFR2)-IFNα fusion protein named JZA01, which showed increased in vivo half-life and reduced side effects compared with IFNα, and it was more effective than the anti-VEGFR2 antibody against tumors. However, the affinity of the IFNα component of the fusion protein for its receptor-IFNAR1 was decreased. To address this problem, an IFNα-mutant fused with anti-VEGFR2 was designed to produce anti-VEGFR2-IFNαmut, which was used to target VEGFR2 with enhanced anti-tumor and anti-metastasis efficacy. Anti-VEGFR2-IFNαmut specifically inhibited proliferation of tumor cells and promoted apoptosis. In addition, anti-VEGFR2-IFNαmut inhibited migration of colorectal cancer cells and invasion by regulating the PI3K-AKT-GSK3β-snail signal pathway. Anti-VEGFR2-IFNαmut showed superior anti-tumor efficacy with improved tumor microenvironment (TME) by enhancing dendritic cell maturation, dendritic cell activity, and increasing tumor-infiltrating CD8+ T cells. Thus, this study provides a novel approach for the treatment of metastatic colorectal cancer, and this design may become a new approach to cancer immunotherapy.
Collapse
Affiliation(s)
- Pengzhao Shang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Gao
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yijia Zhu
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaorui Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Wang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Minji Guo
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Peng
- Department of Operational Medicine, Tianjin Institute of Environmental & Operational Medicine, Tianjin 300050, China
| | - Min Wang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
50
|
Liu SH, Chen PS, Huang CC, Hung YT, Lee MY, Lin WH, Lin YC, Lee AYL. Unlocking the Mystery of the Therapeutic Effects of Chinese Medicine on Cancer. Front Pharmacol 2021; 11:601785. [PMID: 33519464 PMCID: PMC7843369 DOI: 10.3389/fphar.2020.601785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Over the past decade, the rise of cancer immunotherapy has coincided with a remarkable breakthrough in cancer therapy, which attracted increased interests in public. The scientific community clearly showed that the emergence of immunotherapy is an inevitable outcome of a holistic approach for cancer treatment. It is well established that traditional Chinese medicine (TCM) utilizes the principle of homeostasis and balance to adjust the healthy status of body. TCM treatment toward cancer has a long history, and the diagnosis and treatment of tumors were discussed in the ancient and classical literatures of Chinese medicine, such as the Yellow Emperor’s Inner Canon. Precious heritage has laid the foundation for the innovation and development of cancer treatment with TCM. The modern study indicated that TCM facilitates the treatment of cancer and enhances the survival rate and life expectancy of patients. However, the pharmacological mechanisms underlying these effects are not yet completely understood. In addition, physicians cannot always explain why the TCM treatment is effective and the mechanism of action cannot be explained in scientific terms. Here, we attempted to provide insights into the development of TCM in the treatment and interpret how TCM practitioners treat cancer through six general principles of TCM by using modern scientific language and terms based on newly discovered evidence.
Collapse
Affiliation(s)
- Shao-Hsiang Liu
- Celgen Biotech, Taipei, Taiwan.,Taiwan Instrument Research Institute, National Applied Research Laboratories, Zhubei, Taiwan
| | | | - Chun-Chieh Huang
- Department of Chinese Medicine, Taitung Christian Hospital, Taitung, Taiwan
| | - Yi-Tu Hung
- HanPoo Chinese Medical Clinic, Taipei, Taiwan
| | - Mei-Ying Lee
- Chinese Medicine Women Doctors Association, Taipei, Taiwan
| | | | | | - Alan Yueh-Luen Lee
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|