1
|
Gerekci Yeşi Lyurt S, Koyun D, Toprak SK, Özcan M, Özen C. A predictive metabolomic model for FLT3 and NPM1 mutations in Acute Myeloid Leukemia patients. J Pharm Biomed Anal 2025; 260:116789. [PMID: 40081307 DOI: 10.1016/j.jpba.2025.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/16/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Cytogenetic abnormalities and gene mutations are essential for planning AML treatment. However, in Turkey, test results typically take 14-30 days. This delay emphasizes a critical need for rapid methods to deliver clinical data in urgent cases requiring immediate treatment decisions. To address this need, our objective was to develop a quick prediction method for NPM1 (Nucleophosmin-1) and FLT3 (FMS-like tyrosine kinase 3) mutations using LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry) targeted metabolomics to detect these common and clinically important mutations in de novo AML patients (n = 42) through patient groups and a healthy group. We analyzed metabolic patterns using LC-MS/MS measurements of amino acids and acyl carnitines, key components critical to AML prognosis. The data were then subjected to multivariate analysis techniques. Principal Component Analysis (PCA) revealed that the model explained 79 % of the total variance among the sample groups. To further enhance class discrimination, we conducted Partial Least Squares-Discriminant Analysis (PLS-DA), resulting in R2Y and Q2 values of 0.845 and 0.619, respectively. Using the PLS-DA model, VIP (Variable Importance Projection) identified key metabolites with scores > 1.5, including C0 carnitine, glutamic acid, aspartic acid, tryptophan, histidine, isoleucine, and alpha-aminobutyric acid, respectively, highlighting their potential significance in distinguishing mutation groups. To ensure the validity of the PLS-DA model and evaluate potential overestimation, we validated the model using cross-validation and permutation test, demonstrating its robustness and reliability. Our preliminary model, developed through a targeted metabolomics approach, shows strong fit and predictive capability in determining the mutation status of NPM1 and FLT3 in AML patients.
Collapse
Affiliation(s)
- Selin Gerekci Yeşi Lyurt
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, Çankaya, Ankara 06800, Turkey; JTC Diagnosemittel GmbH, Vöhl, Hessen 34516, Germany.
| | - Derya Koyun
- Ankara University School of Medicine, Hematology Department, Ankara, Turkey
| | | | - Muhit Özcan
- Ankara University School of Medicine, Hematology Department, Ankara, Turkey
| | - Can Özen
- Middle East Technical University, Biochemistry Graduate Program, Üniversiteler Mahallesi, Dumlupınar Bulvarı No:1, Çankaya, Ankara 06800, Turkey.
| |
Collapse
|
2
|
Wang H, Xu F, Wang C. Metabolic reprogramming of tumor microenviroment by engineered bacteria. Semin Cancer Biol 2025; 112:58-70. [PMID: 40157514 DOI: 10.1016/j.semcancer.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The tumor microenvironment (TME) is a complex ecosystem that plays a crucial role in tumor progression and response to therapy. The metabolic characteristics of the TME are fundamental to its function, influencing not only cancer cell proliferation and survival but also the behavior of immune cells within the tumor. Metabolic reprogramming-where cancer cells adapt their metabolic pathways to support rapid growth and immune evasion-has emerged as a key factor in cancer immunotherapy. Recently, the potential of engineered bacteria in cancer immunotherapy has gained increasing recognition, offering a novel strategy to modulate TME metabolism and enhance antitumor immunity. This review summarizes the metabolic properties and adaptations of tumor and immune cells within the TME and summarizes the strategies by which engineered bacteria regulate tumor metabolism. We discuss how engineered bacteria can overcome the immunosuppressive TME by reprogramming its metabolism to improve antitumor therapy. Furthermore, we examine the advantages, potential challenges, and future clinical translation of engineered bacteria in reshaping TME metabolism.
Collapse
Affiliation(s)
- Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
3
|
Aoyama K, Yoriki K, Aoki K, Okamura A, Tarumi Y, Kataoka H, Kokabu T, Mori T. Glucose deprivation induces cisplatin resistance through upregulation of SLC7A11 (xCT) expression in endometrial cancer cells. Biochem Biophys Res Commun 2025; 766:151887. [PMID: 40306166 DOI: 10.1016/j.bbrc.2025.151887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Cisplatin resistance poses a substantial barrier to the successful treatment of advanced endometrial cancer. Glucose deprivation in the tumor microenvironment, resulting from inadequate vascularization and rapid proliferation of cancer cells, may promote chemoresistance by modifying cellular metabolism and survival pathways. This study aimed to elucidate how glucose deprivation induces cisplatin resistance in endometrial cancer cells, focusing on the role of solute carrier family 7 member 11 (SLC7A11, xCT). The endometrial cancer cell lines HEC-1A and AN3CA were cultured under glucose-deprived and glucose-supplemented conditions. Cisplatin half-maximal inhibitory concentration (IC50) values, SLC7A11 expression, and reactive oxygen species (ROS) levels were assessed using cell proliferation assays, real-time PCR, Western blotting, and fluorescence assays. SLC7A11 was inhibited using small interfering RNA (siRNA) knockdown and the selective inhibitor HG106. Cisplatin-resistant cell lines were generated to evaluate the effect of SLC7A11 inhibition. Glucose deprivation significantly decreased cisplatin sensitivity and increased cisplatin IC50 values (P < 0.05). This reduction in sensitivity was accompanied by upregulation of SLC7A11 expression and decreased ROS levels (P < 0.05). Inhibition of SLC7A11, either by siRNA or HG106, increased cisplatin sensitivity and ROS production, even in cisplatin-resistant cells (P < 0.05). This effect was reversible with the antioxidant N-acetylcysteine. These findings demonstrate that glucose deprivation induces cisplatin resistance in endometrial cancer cells by upregulating SLC7A11, leading to reduced ROS levels and enhanced cell survival. Targeting SLC7A11 restores cisplatin sensitivity by elevating ROS production, even in cisplatin-resistant cells. The findings suggest that SLC7A11 is a promising therapeutic target for overcoming chemoresistance in endometrial cancer, potentially improving treatment outcomes and patient survival.
Collapse
Affiliation(s)
- Kohei Aoyama
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kaori Yoriki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Kota Aoki
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ayaka Okamura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Kokabu
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Teng H, Hang Q, Zheng C, Yan Y, Liu S, Zhao Y, Deng Y, Nie L, Wu W, Sheldon M, Yu Z, Shi W, Gao J, Meng C, Martinez C, Zhang J, Yao F, Sun Y, Zhao D, Gan B, Meng T, Ma L. In vivo CRISPR activation screen identifies acyl-CoA-binding protein as a driver of bone metastasis. Sci Transl Med 2025; 17:eado7225. [PMID: 40397713 DOI: 10.1126/scitranslmed.ado7225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 12/03/2024] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
One of the most common sites of cancer metastasis is to the bone. Bone metastasis is associated with substantial morbidity and mortality, and current therapeutic interventions remain largely palliative. Metastasizing tumor cells need to reprogram their metabolic states to adapt to the nutrient environment of distant organs; however, the role and translational relevance of lipid metabolism in bone metastasis remain unclear. Here, we used an in vivo CRISPR activation screening system coupled with positive selection to identify acyl-coenzyme A (CoA) binding protein (ACBP) as a bone metastasis driver. In nonmetastatic and weakly metastatic cancer cells, overexpression of wild-type ACBP, but not the acyl-CoA-binding deficient mutant, stimulated fatty acid oxidation (FAO) and bone metastasis. Conversely, knockout of ACBP in highly bone metastatic cancer cells abrogated metastatic bone colonization. Mechanistically, ACBP-mediated FAO increased ATP and NADPH production, reduced reactive oxygen species, and inhibited lipid peroxidation and ferroptosis. We found that ACBP expression correlated with metabolic signaling, bone metastatic ability, and poor clinical outcomes. In mouse models, pharmacological blockade of FAO or treatment with a ferroptosis inducer inhibited bone metastasis. Together, our findings reveal the role of lipid metabolism in tumor cells adapting and thriving in the bone and identify ACBP as a key regulator of this process. Agents that target FAO or induce ferroptosis represent a promising therapeutic approach for treating bone metastases.
Collapse
Affiliation(s)
- Hongqi Teng
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caishang Zheng
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shaomin Liu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yalan Deng
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiche Wu
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zachary Yu
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Wei Shi
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianxuan Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| | - Chenling Meng
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fan Yao
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Di Zhao
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200080, China
| | - Li Ma
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
5
|
Tu DY, Peng R, Jin SJ, Su BB, Fan SS, Zhang JH, Wang SY, Miao YY, Jiang GQ, Zhang C, Cao J, Bai DS. MARCH8 suppresses hepatocellular carcinoma by promoting SREBP1 degradation and modulating fatty acid de novo synthesis. Cell Death Dis 2025; 16:391. [PMID: 40379644 DOI: 10.1038/s41419-025-07707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/16/2025] [Accepted: 05/01/2025] [Indexed: 05/19/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors of the digestive system, and its prevalence is currently increasing. The current study aims to elucidate the mechanism by which membrane-associated RING-CH8 (MARCH8) impedes the progression of HCC. MARCH8 was identified as a distinct prognostic marker for recurrence-free survival (RFS) and overall survival (OS) in patients with HCC. This study shows that MARCH8 hinders lipid deposition by suppressing the expression of key enzymes for the de novo synthesis of fatty acids (FAs) via RNA sequencing, untargeted metabolomics, and a series of in vivo and in vitro experiments. Further experimental validation demonstrated that MARCH8 was a novel E3 ligase of sterol regulatory element binding protein 1 (SREBP1). And, it primarily promoted the degradation of SREBP1, thereby suppressing the expression of key enzymes involved in the de novo synthesis of FAs. In conclusion, this study has identified MARCH8 as a key "switch" that can be targeted to prevent de novo FA synthesis in HCC cells. This finding may have substantial implications for discovering innovative therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Dao-Yuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Sheng-Jie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China
| | - Bing-Bing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Song-Song Fan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jia-Hao Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Shun-Yi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Yang-Yang Miao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Guo-Qing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China.
| | - Dou-Sheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- General Surgery Institute of Northern Jiangsu People's Hospital, Yangzhou, China.
| |
Collapse
|
6
|
Hasan SK, Jayakumar S, Espina Barroso E, Jha A, Catalano G, Sandur SK, Noguera NI. Molecular Targets of Oxidative Stress: Focus on Nuclear Factor Erythroid 2-Related Factor 2 Function in Leukemia and Other Cancers. Cells 2025; 14:713. [PMID: 40422216 DOI: 10.3390/cells14100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that plays a central role in regulating cellular responses to oxidative stress. It governs the expression of a broad range of genes involved in antioxidant defense, detoxification, metabolism, and other cytoprotective pathways. In normal cells, the transient activation of Nrf2 serves as a protective mechanism to maintain redox homeostasis. However, the persistent or aberrant activation of Nrf2 in cancer cells has been implicated in tumor progression, metabolic reprogramming, and resistance to chemotherapy and radiotherapy. These dual roles underscore the complexity of Nrf2 signaling and its potential as a therapeutic target. A deeper understanding of Nrf2 regulation in both normal and malignant contexts is essential for the development of effective Nrf2-targeted therapies. This review provides a comprehensive overview of Nrf2 regulation and function, highlighting its unique features in cancer biology, particularly its role in metabolic adaptation and drug resistance. Special attention is given to the current knowledge of Nrf2's involvement in leukemia and emerging strategies for its therapeutic modulation.
Collapse
Affiliation(s)
- Syed K Hasan
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Sundarraj Jayakumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | | | - Anup Jha
- Hasan Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Gianfranco Catalano
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, 00042 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00042 Rome, Italy
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Department of Life Sciences, Homi Bhabha National Institute, Mumbai 400094, India
| | - Nelida I Noguera
- Santa Lucia Foundation, I.R.C.C.S. Via del Fosso di Fiorano, 00042 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00042 Rome, Italy
| |
Collapse
|
7
|
Oh S, Sim HB, Kim H, Mun SK, Ji M, Choi B, Kim DY, Kim JJ, Paik MJ. Cellular metabolomics study in colorectal cancer cells and media following treatment with 5-fluorouracil by gas chromatography-tandem mass spectrometry. Metabolomics 2025; 21:62. [PMID: 40335841 DOI: 10.1007/s11306-025-02263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Metabolic reprogramming is a distinctive characteristic of colorectal cancer (CRC) which provides energy and nutrients for rapid proliferation. Although numerous studies have explored the rewired metabolism of CRC, the metabolic alterations occurring in CRC when the cell cycle is arrested by treatment with 5-fluorouracil (5-FU), an anticancer drug that arrests the S phase, remain unclear. METHODS A systematic profiling analysis was conducted as ethoxycarbonyl/methoxime/tert-butyldimethylsilyl derivatives using gas chromatography-tandem mass spectrometry in HT29 cells and media following 5-FU treatment in a concentration- and time-dependent manner. RESULTS In HT29 cells of 24 h after 5-FU treatment (3-100 μM) and 48 h after 5-FU treatment (1-10 μM), six amino acids, including valine, leucine, isoleucine, serine, glycine, and alanine and two organic acids, including pyruvic acid and lactic acid, were significantly increased compared to the DMSO-treated group. However, 48 h after 5-FU treatment (30-100 μM) in HT29 cells, the levels of these metabolites decreased along with an approximately 50% reduction in viability, an increase in the level of reactive oxygen species, induction of cycle arrest in the G1 phase, and the induction of apoptosis. On the other hand, the levels of fatty acids showed a continuous increase in HT29 cells 48 h after 5-FU treatment (1-100 μM). In the media, the decreased availabilities in the cellular uptake of nutrient metabolites, including valine, leucine, isoleucine, serine, and glutamine, were observed at 48 h after 5-FU treatment in a dose-dependent manner. CONCLUSION It is assumed that there is a possible shift in energy dependence from the tricarboxylic acid cycle to fatty acid metabolism. Thus, metabolic profiling analysis revealed altered energy metabolism in CRC cells following 5-FU treatment.
Collapse
Affiliation(s)
- Songjin Oh
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Moongi Ji
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Byeongchan Choi
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
| | - Doo-Young Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea
- New Drug Discovery Lab, Hyundai Pharm, Yongin, 17089, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea.
| | - Man-Jeong Paik
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungang-ro, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
8
|
Fang X, Li J, Pang H, Zheng H, Shi X, Feng L, Hu K, Zhou T. Xingxiao pills suppresses lung adenocarcinoma progression by modulating lipid metabolism and inhibiting the PLA2G4A-GLI1-SOX2 Axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156826. [PMID: 40339555 DOI: 10.1016/j.phymed.2025.156826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) remains a leading cause of cancer mortality due to resistance, metastasis, and recurrence. Unlike conventional cytotoxic therapies, Xingxiao Pills (XXP), a classic traditional Chinese medicine formula, offers a complementary approach to treating LUAD, while its non-cytotoxic anti-cancer mechanisms remain unclear. PURPOSE To investigate the effect and mechanism of XXP on LUAD progression and stemness via lipid metabolism regulation. METHOD UHPLC-MS/MS was used to analyze the chemical constituents of XXP. The effects of XXP on LUAD cell proliferation, migration, invasion, and stemness were evaluated using CCK-8, Transwell, and tumor sphere assays. A LUAD xenograft model confirmed XXP's anti-tumor effects. Transcriptomics, metabolomics, ELISA, qRT-PCR, and Western blot were used to investigate the underlying mechanisms. Kaplan-Meier (KM) survival analysis and stemness index scores were performed for LUAD patients based on the TCGA dataset. Statistical analyses were performed using Student's t-test, ANOVA, and KM survival analysis (p< 0.05 considered significant). RESULTS XXP inhibits LUAD progression in mouse and cell models by targeting lipid metabolism reprogramming. It suppresses FA synthesis, elongation, oxidation, and glycerophospholipid (GPL) metabolism while upregulating arachidonic acid (AA) metabolism. Mechanistic studies revealed that XXP attenuates tumor stemness by inhibiting PLA2G4A (cPLA2), lowering AA release, and disrupting SMO/GLI1/SOX2 signaling, an effect also observed with the cPLA2 inhibitor AACOCF3. KM analysis showed that higher PLA2G4A expression correlated with a worse 5-year prognosis in LUAD (p = 0.0047). The low GPL/high AA group (consistent with XXP's metabolic pattern) had better survival (p = 0.0028) and a lower stemness index (p< 0.0001) than the high GPL/low AA unrelated group. CONCLUSION Xingxiao Pill modulates GPL and AA metabolism and downregulates the PLA2G4A (cPLA2)-AA/SMO/GLI1/SOX2 axis. Through this mechanism, XXP effectively inhibits tumor growth and stemness by targeting lipid metabolism.
Collapse
Affiliation(s)
- Xueni Fang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - JingHua Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - HaoYue Pang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Zheng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Shi
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kaiwen Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Tian Zhou
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
9
|
Kim Y, Lim H, Cho YE, Hwang S. The SIRT6 Activator MDL-800 Inhibits PPARα and Fatty acid Oxidation-Related Gene Expression in Hepatocytes. Biomol Ther (Seoul) 2025; 33:438-446. [PMID: 40199556 PMCID: PMC12059364 DOI: 10.4062/biomolther.2024.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/10/2025] Open
Abstract
A histone deacetylase SIRT6 regulates the transcription of various genes involved in lipid metabolism. Fatty acid (FA) oxidation plays a pivotal role in maintaining hepatic lipid homeostasis, and its dysregulation significantly contributes to lipotoxicity and inflammation, driving the progression of steatotic liver disease. While SIRT6 is known to activate peroxisome proliferator-activated receptor-alpha (PPARα), a central regulator of FA oxidation, the development of SIRT6 activators capable of enhancing FA oxidation and mitigating steatotic liver disease has yet to be achieved. This study evaluated the effect of MDL-800, a selective SIRT6 activator, on the expression of PPARα and genes related to FA oxidation. In AML12 mouse hepatocytes, MDL-800 treatment activated SIRT6 but unexpectedly decreased the expression of PPARα and its FA oxidation-associated target genes. Furthermore, OSS128167, a selective SIRT6 inhibitor, did not reverse the suppressive effects of MDL-800 on PPARα, suggesting that MDL-800 downregulates PPARα and FA oxidation-related genes through a mechanism independent of SIRT6 activation. Mechanistic investigations revealed that MDL-800 increased the production of reactive oxygen species and activated stress kinases. The inhibition of PPARα by MDL-800 was reversed by co-treatment with the antioxidant N-acetylcysteine or the JNK inhibitor SP600125. In summary, MDL-800 suppresses PPARα and FA oxidation-related genes primarily through the induction of oxidative stress in hepatocytes, independent of its role as a SIRT6 activator.
Collapse
Affiliation(s)
- Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyeokjin Lim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Aqeel A, Akram A, Ali M, Iqbal M, Aslam M, Rukhma, Shah FI. Mechanistic insights into impaired β-oxidation and its role in mitochondrial dysfunction: A comprehensive review. Diabetes Res Clin Pract 2025; 223:112129. [PMID: 40132731 DOI: 10.1016/j.diabres.2025.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 03/27/2025]
Abstract
Mitochondria, also known as the powerhouse of cells, have an important role in cellular metabolism and energy production. However, during Mitochondrial Dysfunction (MD), it is known to generate reactive oxidative species and induce cellular apoptosis. A number of research findings have linked MD to various diseases, highlighting its critical role in maintaining health and contributing to disease development. In this regard, recent research has revealed that disruptions in lipid metabolism, especially in fatty acid oxidation, are significant contributors to MD. However, the precise mechanisms by which these defects lead to disease remain poorly understood. This review explores how disruptions in lipid metabolism are responsible for triggering oxidative stress, inflammation, and cellular damage, leading to impaired mitochondrial function. By examining specific fatty acid oxidation disorders, such as carnitine palmitoyltransferase deficiency, medium-chain acyl-CoA dehydrogenase deficiency, and very long-chain acyl-CoA dehydrogenase deficiency, this review aims to uncover the underlying molecular pathways connecting lipid metabolism to mitochondrial dysfunction. Furthermore, MD is a common underlying mechanism in a wide array of diseases, including neurodegenerative disorders and metabolic syndromes. Understanding the mechanisms behind mitochondrial malfunction may aid in the development of tailored therapies to restore mitochondrial health and treat intricate health conditions.
Collapse
Affiliation(s)
- Amna Aqeel
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan; University Institute of Medical Lab Technology, the University of Lahore, Pakistan.
| | - Areeba Akram
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Minahil Ali
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Maryam Iqbal
- Department of Biotechnology, Lahore College for Women University, Pakistan
| | - Mehral Aslam
- Department of Nutrition and Health Promotion, University of Home Economics Lahore, Pakistan
| | - Rukhma
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University Lahore, Pakistan
| | - Fatima Iftikhar Shah
- University Institute of Medical Lab Technology, the University of Lahore, Pakistan
| |
Collapse
|
11
|
Guo J, Li N, Liu Q, Hao Z, Zhu G, Wang X, Wang H, Pan Q, Xu B, Han Y, Zhang G, Lian Y, Zhang W, Gu Y, Lin N, Zeng X, Jin Z, Lan W, Jiang J, Gao D, Dong L, Yuan H, Liang C, Qin J. KMT2C deficiency drives transdifferentiation of double-negative prostate cancer and confer resistance to AR-targeted therapy. Cancer Cell 2025:S1535-6108(25)00139-4. [PMID: 40280125 DOI: 10.1016/j.ccell.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Double-negative prostate cancer (DNPC), characterized by an androgen receptor (AR)- and neuroendocrine-null phenotype, frequently emerges following androgen deprivation therapy (ADT). However, our understanding of the origins and regulatory mechanisms of DNPC remains limited. Here, we discover that tumors with KMT2C mutation or loss are highly susceptible to transitioning into DNPC following ADT. We clarify that DNPC primarily stems from luminal cell transdifferentiation rather than basal cell transformation. Antiandrogen treatment induces KMT2C binding at enhancers of a subset of AR-regulated genes, preserving the adenocarcinoma lineage. KMT2C maintains ASPP2 expression via enhancer-promoter communication post-AR inhibition, while its inactivation reduces ASPP2, triggering ΔNp63-dependent transdifferentiation. This DNPC transition maintains fatty acid (FA) synthesis through ΔNp63-mediated SREBP1c transactivation, fueling DNPC growth via HRAS palmitoylation and MAPK signaling activation. These findings highlight KMT2C as an epigenetic checkpoint against DNPC development and suggest the therapeutic potential of targeting fatty acid synthesis.
Collapse
Affiliation(s)
- Jiacheng Guo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongyao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230022, China
| | - Guanghui Zhu
- West China School of Public Health, West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610000, China
| | - Xuege Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hanling Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Beitao Xu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Guoying Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Naiheng Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xin Zeng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zige Jin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230022, China.
| | - Jun Qin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
12
|
Jiang Y, Qian Z, Wang C, Wu D, Liu L, Ning X, You Y, Mei J, Zhao X, Zhang Y. Targeting B7-H3 inhibition-induced activation of fatty acid synthesis boosts anti-B7-H3 immunotherapy in triple-negative breast cancer. J Immunother Cancer 2025; 13:e010924. [PMID: 40221152 PMCID: PMC11997833 DOI: 10.1136/jitc-2024-010924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most malignant breast cancer, highlighting the need for effective immunotherapeutic targets. The immune checkpoint molecule B7-H3 has recently gained attention as a promising therapeutic target due to its pivotal role in promoting tumorigenesis and cancer progression. However, the therapeutic impact of B7-H3 inhibitors (B7-H3i) remains unclear. METHODS Transcriptomic and metabolomic analyses were conducted to explore the underlying mechanisms of B7-H3 inhibition in TNBC. The therapeutic efficacy of the combined treatment strategy was substantiated through comprehensive phenotypic assays conducted in vitro and validated in vivo using animal models. RESULTS B7-H3 blockade induces a "primed for death" stress state in cancer cells, leading to distinct alterations in metabolic pathways. Specifically, B7-H3 knockdown activated the AKT signaling pathway and upregulated sterol regulatory element-binding protein 1 (SREBP1), which in turn elevated FASN expression. The simultaneous inhibition of both B7-H3 and FASN more effectively attenuated the malignant progression of TNBC. CONCLUSIONS Our findings propose an "immune attack-metabolic compensation" dynamic model and suggest the feasibility of a dual-targeting strategy that concurrently inhibits both B7-H3 and FASN to enhance therapeutic efficacy in TNBC patients.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhiwen Qian
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cenzhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Danping Wu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Lu Liu
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xin Ning
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yilan You
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoqian Zhao
- Department of Breast Surgery, Women's Hospital of Jiangnan University, Wuxi, China
| | - Yan Zhang
- Department of Oncology, Women's Hospital of Jiangnan University, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Gentile R, Feudi D, Sallicandro L, Biagini A. Can the Tumor Microenvironment Alter Ion Channels? Unraveling Their Role in Cancer. Cancers (Basel) 2025; 17:1244. [PMID: 40227837 PMCID: PMC11988140 DOI: 10.3390/cancers17071244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/29/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Neoplastic cells are characterized by metabolic reprogramming, known as the Warburg effect, in which glucose metabolism is predominantly directed toward aerobic glycolysis, with reduced mitochondrial oxidative phosphorylation and increased lactate production even in the presence of oxygen. This phenomenon provides cancer cells with a proliferative advantage, allowing them to rapidly produce energy (in the form of ATP) and generate metabolic intermediates necessary for the biosynthesis of macromolecules essential for cell growth. It is important to understand the role of ion channels in the tumor context since they participate in various physiological processes and in the regulation of the tumor microenvironment. These changes may contribute to the development and transformation of cancer cells, as well as affect the communication between cells and the surrounding microenvironment, including impaired or altered expression and functionality of ion channels. Therefore, the aim of this review is to elucidate the impact of the tumor microenvironment on the electrical properties of the cellular membranes in several cancers as a possible therapeutic target.
Collapse
Affiliation(s)
- Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
| | - Davide Feudi
- Department of Biostatistics, Epidemiology and Public Health, University of Padua, Via L. Loredan 18, 35131 Padova, Italy;
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06123 Perugia, Italy;
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| |
Collapse
|
14
|
Zhai J, Fu R, Luo S, Liu X, Xie Y, Cao K, Ge W, Chen Y. Lactylation-related molecular subtyping reveals the immune heterogeneity and clinical characteristics in ulcerative colitis. Biochem Biophys Res Commun 2025; 756:151584. [PMID: 40081238 DOI: 10.1016/j.bbrc.2025.151584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease linked to early-onset colorectal cancer and metabolic abnormalities. While intestinal lactate disturbances are observed in UC, the role of lactate and lactylation in its pathogenesis remains unclear. The lack of specific biomarkers reflecting these processes limits understanding of their biological significance. METHODS UC subtypes were classified using ConsensusClusterPlus and NMF based on LRGs. Immune infiltration was assessed with ssGSEA, xCell, and CIBERSORT. WGCNA identified subtype-specific gene modules, and Lasso regression pinpointed hub genes. Single-cell analysis determined cellular localization, while WB and IHC validated findings in clinical, mouse, and cell models. Prognostic machine learning models evaluated the clinical significance of these results. RESULTS LRGs distinguished UC patients from controls and stratified them into high and low immune infiltration groups. MSN and MAPRE1, strongly linked to UC, showed elevated expression in vitro and in vivo. They aid in diagnosing UC and UC-associated colorectal cancer and serve as predictors of UC severity and response to immunosuppressants. CONCLUSION Using high-throughput transcriptomic data, we identified hub LRGs and highlighted the role of lactate-mediated lactylation in UC. MSN and MAPRE1 were confirmed to be upregulated in an inflammatory environment, underscoring their potential for personalized UC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinyang Zhai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Runxi Fu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China
| | - Shangjian Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Xiaoman Liu
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Kejing Cao
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, PR China
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China.
| | - Yingwei Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; Shanghai Institute for Pediatric Research, Shanghai, 200092, PR China.
| |
Collapse
|
15
|
Yang Y, Liu Y, Williams TA, Gao M, Yan Y, Bao M, Tao J, Ma G, Wang M, Xia Z, Zhang Z, Yang T, Sun M. Metabolic phenotypes and fatty acid profiles associated with histopathology of primary aldosteronism. Hypertens Res 2025; 48:1363-1378. [PMID: 39939827 DOI: 10.1038/s41440-025-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/30/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Primary aldosteronism (PA) caused by aldosterone hypersecretion is treated by adrenalectomy or medications. Histopathologic examination of resected adrenals reveals diverse histopathologic features. This study aimed to investigate the potential association of peripheral and adrenal tissue metabolic profiles with the histopathologic features of PA. The retrospective study included 105 surgically treated and 43 medically treated patients with PA. Adrenal specimens were categorized according to the HISTALDO (HISTopathology of primary ALDOsteronism) consensus. Peripheral and adrenal tissue metabolic profiles were assessed, including adiposity, adipokines and fatty acid abundances. The distinct fatty acid, arachidonic acid, was further functionally characterized. Surgically treated patients with classical histopathologic findings (n = 71) displayed lower body mass indexes, a lower prevalence of obesity, smaller waist circumference and visceral adipose tissue areas, and lower leptin concentrations compared with operated patients with the nonclassical histopathology (n = 34). No such differences were identified between the nonclassical histopathology group and medically treated group. Distinct concentrations of 18 out of 35 peripheral venous fatty acids, including arachidonic acid, were identified among the 3 groups. Further, accumulation of arachidonic acid was demonstrated in 4 aldosterone-producing adenomas compared with paired adjacent cortex possibly linked with suppressed peroxisomal beta-oxidation. Stimulation of human adrenocortical cells with arachidonic acid or peroxisomal beta-oxidation inhibitor caused 3.8-fold (P = 0.0050) and 1.7-fold (P = 0.0328) amplification of CYP11B2 expression, respectively, which were ablated by BAPTA-AM or KN93, and induced oxidative stress and apoptosis. Our findings show metabolic heterogeneity related to histopathology and support a role for arachidonic acid in PA pathophysiology.
Collapse
Affiliation(s)
- Yuhong Yang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yuqing Liu
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Maoting Gao
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Yutong Yan
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Guodong Ma
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhiqing Xia
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Zhiheng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Gore M, Kabekkodu SP, Chakrabarty S. Exploring the metabolic alterations in cervical cancer induced by HPV oncoproteins: From mechanisms to therapeutic targets. Biochim Biophys Acta Rev Cancer 2025; 1880:189292. [PMID: 40037419 DOI: 10.1016/j.bbcan.2025.189292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
The role of human Papillomavirus (HPV) in metabolic reprogramming is implicated in the development and progression of cervical cancer. During carcinogenesis, cancer cells modify various metabolic pathways to generate energy and sustain their growth and development. Cervical cancer, one of the most prevalent malignancies affecting women globally, involves metabolic alterations such as increased glycolysis, elevated lactate production, and lipid accumulation. The oncoproteins, primarily E6 and E7, which are encoded by high-risk HPVs, facilitate the accumulation of several cancer markers, promoting not only the growth and development of cancer but also metastasis, immune evasion, and therapy resistance. HPV oncoproteins interact with cellular MYC (c-MYC), retinoblastoma protein (pRB), p53, and hypoxia-inducible factor 1α (HIF-1α), leading to the induction of metabolic reprogramming and favour the Warburg effect. Metabolic reprogramming enables HPV to persist for an extended period and accelerates the progression of cervical cancer. This review summarizes the role of HPV oncoproteins in metabolic reprogramming and their contributions to the development and progression of cervical cancer. Additionally, this review provides insights into how metabolic reprogramming opens avenues for novel therapeutic strategies, including the discovery of new and repurposed drugs that could be applied to treat cervical cancer.
Collapse
Affiliation(s)
- Mrudula Gore
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sanjiban Chakrabarty
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
17
|
Jalil AT, Al-Kazzaz HH, Hassan FA, Mohammed SH, Merza MS, Aslandook T, Elewadi A, Fadhil A, Alsalamy A. Metabolic Reprogramming of Anti-cancer T Cells: Targeting AMPK and PPAR to Optimize Cancer Immunotherapy. Indian J Clin Biochem 2025; 40:165-175. [PMID: 40123631 PMCID: PMC11928344 DOI: 10.1007/s12291-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 03/25/2025]
Abstract
Cancer treatment era has been revolutionized by the novel therapeutic methods such as immunotherapy in recent years. Immunotherapy-based approaches are considered effective and reliable methods that has brought hope to eradicate certain cancers. Nonetheless, there are some issues, considered as critical obstacles in successful cancer immunotherapy. Such issues are attributed to the ability of the tumor cells in providing a tolerant microenvironment that impairs the immune responses, and help the cancer cells evade the immunogenic cell death. It has been suggested that the re-activation and maintenance of effector immune cells may become possible by metabolic reprogramming. Several signaling pathways have been noticed with the possibility of metabolic reprogramming of tumor-specific T cells, to overcome the metabolic restrictions in the tumor microenvironment; and among them, AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPAR) have been investigated the most as the main energy sensors and regulators of mitochondrial biogenesis. The synergic effects of AMPK activators and/or PPAR agonists in cancer immunotherapy have been reported. In this review, we compare the roles of AMPK activators and PPAR agonists, and the efficacy of their combination in metabolic reprogramming of cytotoxic T cells in favoring cancer immunotherapy.
Collapse
Affiliation(s)
| | - Hassan Hadi Al-Kazzaz
- College of Medical and Health Technology, Al-Zahraa University for Women, Karbala, Iraq
| | - Firas A. Hassan
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | | - Muna S. Merza
- Department of Prosthetic Dental Techniques, Al-Mustaqbal University College, Hillah, Iraq
| | - Tahani Aslandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| | - Ahmed Elewadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja’afar Al-Sadiq University, Al-Muthanna, 66002 Iraq
| |
Collapse
|
18
|
Lin H, Wang L, Chen H, Shen Y, Wang C, Xue Y, Zheng Z, Zhang Y, Xia D, Wu Y, Wang F, Li X, Cheng X, Wang H, Xu J, Lu W. Mitochondrial fatty acid oxidation as the target for blocking therapy-resistance and inhibiting tumor recurrence: The proof-of-principle model demonstrated for ovarian cancer cells. J Adv Res 2025:S2090-1232(25)00186-9. [PMID: 40107354 DOI: 10.1016/j.jare.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Cancer patients treated with current chemotherapeutic and targeted therapies frequently achieve partial remission, which ultimately relapse with more aggressive, drug-resistant tumor phenotypes. To a certain extent, drug-tolerant persister (DTP) cells are responsible for residual tumors after systemic anticancer therapy and the onset of acquired drug resistance. Therefore, novel therapies targeting DTP cells to prevent drug resistance and tumor recurrence are urgently needed. OBJECTIVES We aimed to investigate the traits and key vulnerabilities of drug-tolerant ovarian cancer persister cells and to seek out potential therapeutic strategies. METHODS We constructed paclitaxel-tolerant ovarian cancer persister cells by exposing ovarian cancer parental cells to a lethal dose of paclitaxel. Proteomics analysis, in vitro and in vivo assays were performed to identify biological processes that could serve as potential vulnerabilities in persister cells. RESULTS Paclitaxel-tolerant ovarian cancer persister cells were found to undergo a metabolic reprogramming through the upregulation of fatty acid oxidation (FAO). Treatment with the FAO inhibitor ST1326 suppressed FAO and increased sensitivity to paclitaxel in persister cells. Moreover, combination therapy with paclitaxel and ST1326 prevented ovarian tumor recurrence with satisfactory biosafety in a mouse model of ovarian cancer relapse, indicating that FAO disruption can improve the efficacy of paclitaxel-based therapy in ovarian cancer. Mechanistically, we found that paclitaxel treatment upregulated CEBPB, a transcription factor that induced the expression of the FAO-related enzyme HADHA and contributed to FAO elevation in persister cells. CONCLUSIONS This study revealed an upregulation of FAO in paclitaxel-tolerant ovarian cancer persister cells and provided a prospective paclitaxel-ST1326 combination therapy targeting persister cells that may prevent the development of acquired drug resistance and achieve superior long-term ovarian cancer control in the future. Our research established a conceptual framework for advancing personalized treatment approaches and enhancing patient outcomes in ovarian cancer therapy.
Collapse
Affiliation(s)
- Hui Lin
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou 310006 Zhejiang, China
| | - Lingfang Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China
| | - Hanwen Chen
- Department of Gastroenterology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009 Zhejiang, China
| | - Yuqing Shen
- Department of Endocrinology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003 Zhejiang, China
| | - Conghui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Yite Xue
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou 310022 Zhejiang, China
| | - Zhi Zheng
- Department of Obstetrics and Gynecology, Wenzhou People's Hospital, Wenzhou 325000 Zhejiang, China
| | - Yanan Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, China
| | - Dajing Xia
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Department of Toxicology, Zhejiang University School of Public Health, Hangzhou 310058 Zhejiang, China
| | - Yihua Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Department of Toxicology, Zhejiang University School of Public Health, Hangzhou 310058 Zhejiang, China
| | - Fenfen Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China
| | - Hui Wang
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China; Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou 310006 Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China.
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006 Zhejiang, China; Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou 310006 Zhejiang, China; Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou 310006 Zhejiang, China.
| |
Collapse
|
19
|
Liu Y, Zhang Y, Xiang Q, Wu S, Zhang M, Zhou H, Xiao B, Li L. Comprehensive characterization of fatty acid oxidation in triple-negative breast cancer: Focus on biological roles and drug modulation. Eur J Pharmacol 2025; 991:177343. [PMID: 39900330 DOI: 10.1016/j.ejphar.2025.177343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/11/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Triple-negative breast cancer (TNBC) presents an unmet medical challenge due to poor outcomes and limited treatment options. Metabolic signals are coupled to oncogenesis. Fatty acid oxidation (FAO) plays a crucial role in cancer initiation, progression, metastasis, and therapy resistance, but its precise functions and underlying molecular mechanisms in TNBC remain unclear. Here, we conducted a comprehensive study to investigate the biological roles and drug modulation of FAO in TNBC using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Genomics of Drug Sensitivity in Cancer (GDSC), and Connectivity Map (CMap) databases. We found that altered FAO activity was not related to patient age, clinical stage, tumor mutational burden, microsatellite instability, or homologous recombination deficiency. Nevertheless, upregulated FAO activity correlated with poor prognosis, increased stemness, accelerated cell cycle progression, altered mutation rates of several top 20 most frequently mutated genes, as well as higher activity of pathways involving oncogenic signaling, cellular metabolism, protein turnover, and so forth. Elevated FAO activity also appeared to foster an immunosuppressive microenvironment, influence microbial composition, and confer resistance to chemotherapies. What's more, we identified several compounds that may regulate FAO activity, including the HDAC inhibitor chidamide, which induced FAO activation in TNBC cells. Co-treatment with an FAO inhibitor etomoxir enhanced the combined effects of chidamide with established chemotherapy drugs, as well as their efficacy as single agents in TNBC cells. In conclusion, FAO likely exerts pleiotropic biological effects in TNBC and modulating FAO may offer a promising strategy to improve therapeutic outcomes in TNBC patients.
Collapse
Affiliation(s)
- Yunduo Liu
- School of Public Health, Dali University, Dali, Yunnan, 671003, China; Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Yanxia Zhang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China; School of Medicine, The South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Qin Xiang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shunhong Wu
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Mei Zhang
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Haochen Zhou
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Bin Xiao
- Department of Laboratory Medicine, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China.
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth School of Clinical Medicine, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
20
|
Li Y, Chen Z, Huang Z, Wang J, Wang J, Lin L, Lin R, Lai J, Zhang L, Qiu S. Causal association between blood metabolites and head and neck cancer: butyrylcarnitine identified as an associated trait for cancer risk and progression. Hereditas 2025; 162:36. [PMID: 40087718 PMCID: PMC11907814 DOI: 10.1186/s41065-025-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Blood metabolites play an important role in predicting or influencing the occurrence and development of cancers. We aimed to evaluate the relationship between blood metabolites and the occurrence of head and neck cancer (HNC). METHODS We employed a Mendelian randomization (MR) approach to investigate the role of blood metabolites in HNC predisposition. The HNC cell line HN30 was treated with butyrylcarnitine, the metabolite identified through MR analysis, and subjected to a series of cellular assays to assess its potential carcinogenic effects. RESULTS Among the 258 blood metabolites analyzed, butyrylcarnitine emerged as the only metabolite demonstrating a potential causal association with HNC risk following Bonferroni correction (inverse-variance-weighted MR method: β = 0.904, P < 0.001). Genetically predicted higher levels of butyrylcarnitine (log-transformed) were causally linked to an increased risk of HNC (OR: 2.470, 95% CI: 1.530-3.987). Sensitivity analyses, including MR-Egger regression, leave-one-out analysis, and funnel plots, confirmed the robustness of the findings, with no evidence of directional pleiotropy. In vitro experiments further demonstrated that butyrylcarnitine promoted the proliferation, migration and invasion of HN30 cells. CONCLUSIONS By employing a genetic epidemiological framework, our research assessed the impact of metabolite butyrylcarnitine on HNC susceptibility. These findings offer valuable insights into potential therapeutic targets and highlight the promise of targeted metabolic strategies for reducing HNC risk. Nevertheless, further research is required to elucidate the precise biological mechanisms underlying these findings.
Collapse
Affiliation(s)
- Ying Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Zihan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Zongwei Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Jing Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Jue Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Lanxin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Ruyu Lin
- Fujian Medical University, Fujian, China
| | - Jinghua Lai
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China
| | - Libin Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China.
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, Fujian, China.
- Fujian Key Laboratory of Translational Cancer Medicine, Fujian, China.
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian, China.
| |
Collapse
|
21
|
Wu RZ, Sun QQ, Fu Y, Yu HN, Liu WY, Wu YH, Zhang H, Pan YL, Rui X. Fatty acid metabolism-derived prognostic model for lung adenocarcinoma: unraveling the link to survival and immune response. Front Immunol 2025; 16:1507845. [PMID: 40181976 PMCID: PMC11965909 DOI: 10.3389/fimmu.2025.1507845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most common malignant tumors globally, characterized by poor prognosis and high mortality. Abnormal fatty acid metabolism plays a crucial role in LUAD progression. This study aims to develop a prognostic model based on fatty acid metabolism to improve the overall prognosis of LUAD. Materials and methods Bioinformatics analyses were performed using TCGA and GEO datasets, supplemented by cell experiments. A total of 309 fatty acid metabolism-related genes were identified from MsigDB. Differentially expressed genes were analyzed using the 'limma' R package. A prognostic model was constructed using LASSO regression and validated with survival analyses via the 'survminer', 'survival', and 'pROC' R packages. The analysis included somatic mutations, tumor mutation burden, clinical correlations, stemness analysis, cytokine correlations, and enrichment analysis. Protein interaction networks were constructed using STRING and Cytoscape, while immune cell infiltration and immunotherapy responses were evaluated with the 'oncoPredict' R package. Results were validated through cell experiments and immunohistochemistry staining of lung tissues. Results We identified 125 differentially expressed genes related to fatty acid metabolism, with 33 genes significantly associated with prognosis. Patients in the high-risk group had poorer overall survival and progression-free survival, and the risk score correlated with gender, N stage, clinical stage, and T stage. The risk score was also associated with cancer stem cells, with a significantly higher mRNAsi index in the high-risk group. Additionally, the risk score correlated with various cytokine expressions and showed significant enrichment in cell cycle pathways. Key genes like CDK1 were highly expressed in LUAD cell lines and validated in clinical samples. The low-risk group showed better responses to immune checkpoint inhibitors, with the risk score correlating with immune checkpoint gene expression. Conclusion This study successfully established a novel prognostic model based on fatty acid metabolism, which provides valuable insights for the treatment of LUAD.
Collapse
Affiliation(s)
- Rui-Ze Wu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Qian-Qian Sun
- School of Public Health, Harbin Medical University, Harbin, China
| | - Yao Fu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Han-Nong Yu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Wei-Yang Liu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Yong-Hui Wu
- School of Public Health, Harbin Medical University, Harbin, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu-Lin Pan
- School of Public Health, Harbin Medical University, Harbin, China
| | - Xin Rui
- School of Medicine and Health, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
22
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
23
|
Wan Y, Li G, Cui G, Duan S, Chang S. Reprogramming of Thyroid Cancer Metabolism: from Mechanism to Therapeutic Strategy. Mol Cancer 2025; 24:74. [PMID: 40069775 PMCID: PMC11895238 DOI: 10.1186/s12943-025-02263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Thyroid cancer as one of the most prevalent malignancies of endocrine system, has raised public concern and more research on its mechanism and treatment. And metabolism-based therapies have advanced rapidly, for the exclusive metabolic profiling of thyroid cancer. In thyroid cancer cells, plenty of metabolic pathways are reprogrammed to accommodate tumor microenvironment. In this review, we initiatively summarize recent progress in the full-scale thyroid cancer metabolic rewiring and the interconnection of various metabolites. We also discuss the efficacy and prospect of metabolic targeted detection as well as therapy. Comprehending metabolic mechanism and characteristics of thyroid cancer roundly will be highly beneficial to managing individual patients.
Collapse
Affiliation(s)
- Yuxuan Wan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Guoqing Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gaoyuan Cui
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Saili Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
24
|
Zhang Y, Zhang D, Xie Z, Xia T, Zou L, Wang T, Zhong L, Zeng Z, Wang L, Chen G, Liang X. Integrated transcriptomic and metabolomic analysis reveals the effects of EMMPRIN on nucleotide metabolism and 1C metabolism in AS mouse BMDMs. Front Mol Biosci 2025; 11:1460186. [PMID: 40125455 PMCID: PMC11927532 DOI: 10.3389/fmolb.2024.1460186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/27/2024] [Indexed: 03/25/2025] Open
Abstract
Background Extracellular matrix metalloproteinase inducer (EMMPRIN) has been considered as a key promoting factor in atherosclerosis (AS). Some studies have shown that regulating EMMPRIN expression in bone marrow-derived macrophages (BMDMs) of ApoE-/- mice can affect plaque stability, but the mechanism was not clear. Methods AS model mice were built from high-fat-feeding ApoE -/- mice, and were divided into siE group and CON group. The BMDMs and aortas from AS mice were harvested following in vivo treatment with either EMMPRIN short interfering (si)RNA (siEMMPRIN) or negative control siRNA. Transcriptomic and metabolomic profiles were analyzed using RNA-sequencing and Liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. The efficacy of siEMMPRIN was assessed through real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting (WB). Immunofluorescence staining was employed to measure EMMPRIN expression within aortic atherosclerotic plaques. Cell proliferation was monitored using the Cell Counting Kit-8 (CCK8), while flow cytometry was utilized to analyze the cell cycle. Additionally, seahorse analysis and oil red O staining were conducted to verify glucose and lipid metabolism, respectively. Results A total of 3,282 differentially expressed metabolites (DEMs) and 16,138 differentially expressed genes (DEGs) were identified between the CON group and siE group. The nucleotide metabolism and one-carbon (1C) metabolism were identified as major altered pathways at both the transcriptional and metabolic levels. Metabolomic results identified increased levels of glycine, serine, betaine and S-adenosyl-L-methionine (SAM) to S-adenosyl-L-homocysteine (SAH) ratio and decreased levels of dimethylglycine (DMG) and SAH in 1C metabolism, accompanied by the accumulation of nucleotides, nucleosides, and bases in nucleotide metabolism. Transcriptomics results shown that Dnmt, Mthfd2 and Dhfr were downregulated, while Mthfr were upregulated in 1C metabolism. And numerous genes involved in de novo nucleotide synthesis, pentose phosphate pathway (PPP) and dNTP production were significantly inhibited, which may be associated with decreased BMDMs proliferation and cell cycle arrest in the G0/G1 phase in siE group. Multi-omics results also showed changes in glucose and lipid metabolism. Seahorse assay confirmed reduced glycolysis and oxidative phosphorylation (OXPHOS) levels and the Oil Red O staining confirmed the decrease of lipid droplets in siE group. Conclusion The integrated metabolomic and transcriptomic analysis suggested that nucleotide metabolism and 1C metabolism may be major metabolic pathways affected by siEMMPRIN in AS mouse BMDMs. Our study contributes to a better understanding of the role of EMMPRIN in AS development.
Collapse
Affiliation(s)
- Yun Zhang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Diyuan Zhang
- Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Xia
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Zou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuo Zeng
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Lingying Wang
- First Clinical College, Chongqing Medical University, Chongqing, China
| | - Guozhu Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xing Liang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Wan M, Pan S, Shan B, Diao H, Jin H, Wang Z, Wang W, Han S, Liu W, He J, Zheng Z, Pan Y, Han X, Zhang J. Lipid metabolic reprograming: the unsung hero in breast cancer progression and tumor microenvironment. Mol Cancer 2025; 24:61. [PMID: 40025508 PMCID: PMC11874147 DOI: 10.1186/s12943-025-02258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/02/2025] [Indexed: 03/04/2025] Open
Abstract
Aberrant lipid metabolism is a well-recognized hallmark of cancer. Notably, breast cancer (BC) arises from a lipid-rich microenvironment and depends significantly on lipid metabolic reprogramming to fulfill its developmental requirements. In this review, we revisit the pivotal role of lipid metabolism in BC, underscoring its impact on the progression and tumor microenvironment. Firstly, we delineate the overall landscape of lipid metabolism in BC, highlighting its roles in tumor progression and patient prognosis. Given that lipids can also act as signaling molecules, we next describe the lipid signaling exchanges between BC cells and other cellular components in the tumor microenvironment. Additionally, we summarize the therapeutic potential of targeting lipid metabolism from the aspects of lipid metabolism processes, lipid-related transcription factors and immunotherapy in BC. Finally, we discuss the possibilities and problems associated with clinical applications of lipid‑targeted therapy in BC, and propose new research directions with advances in spatiotemporal multi-omics.
Collapse
Affiliation(s)
- Mengting Wan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuaikang Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Benjie Shan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haizhou Diao
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongwei Jin
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Ziqi Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Wan Nan Medical College, Wuhu, Anhui, China
| | - Shuya Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Wan Liu
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiaying He
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Graduate School of Bengbu Medical University, Bengbu, Anhui Province, China
| | - Zihan Zheng
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- School of Medical Oncology, Anhui Medical University, Hefei, China
| | - Yueyin Pan
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xinghua Han
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Jinguo Zhang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
26
|
Winkelkotte AM, Al-Shami K, Chaves-Filho AB, Vogel FCE, Schulze A. Interactions of Fatty Acid and Cholesterol Metabolism with Cellular Stress Response Pathways in Cancer. Cold Spring Harb Perspect Med 2025; 15:a041548. [PMID: 38951029 PMCID: PMC11875093 DOI: 10.1101/cshperspect.a041548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Lipids have essential functions as structural components of cellular membranes, as efficient energy storage molecules, and as precursors of signaling mediators. While deregulated glucose and amino acid metabolism in cancer have received substantial attention, the roles of lipids in the metabolic reprogramming of cancer cells are less well understood. However, since the first description of de novo fatty acid biosynthesis in cancer tissues almost 70 years ago, numerous studies have investigated the complex functions of altered lipid metabolism in cancer. Here, we will summarize the mechanisms by which oncogenic signaling pathways regulate fatty acid and cholesterol metabolism to drive rapid proliferation and protect cancer cells from environmental stress. The review also discusses the role of fatty acid metabolism in metabolic plasticity required for the adaptation to changing microenvironments during cancer progression and the connections between fatty acid and cholesterol metabolism and ferroptosis.
Collapse
Affiliation(s)
- Alina M Winkelkotte
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kamal Al-Shami
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Adriano B Chaves-Filho
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Chemistry, University of São Paulo, 05508000 São Paulo, Brazil
| | - Felix C E Vogel
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Almut Schulze
- Division of Tumor Metabolism and Microenvironment, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
28
|
Xu M, Xie P, Liu S, Gao X, Yang S, Hu Z, Zhao Y, Yi Y, Dong Q, Bruns C, Kong X, Hung MC, Ren N, Zhou C. LCAT deficiency promotes hepatocellular carcinoma progression and lenvatinib resistance by promoting triglyceride catabolism and fatty acid oxidation. Cancer Lett 2025; 612:217469. [PMID: 39842501 DOI: 10.1016/j.canlet.2025.217469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Lecithin cholesterol acyltransferase (LCAT), a crucial enzyme in lipid metabolism, plays important yet poorly understood roles in tumours, especially in hepatocellular carcinoma (HCC). In this study, our investigation revealed that LCAT is a key downregulated metabolic gene and an independent risk factor for poor prognosis in patients with HCC. Functional experiments showed that LCAT inhibited HCC cell proliferation, migration and invasion. Mechanistically, LCAT interacts with caveolin-1 (CAV1) to promote the binding of CAV1 to PRKACA and inhibit its phosphorylation, thereby inhibiting triglyceride (TAG) catabolism. On the other hand, LCAT inhibits fatty acid oxidation (FAO) by interacting with CPT1A to promote its ubiquitination and degradation. These events result in an inadequate supply of raw materials and energy and inhibit the malignant behaviours of HCC cells. In addition, LCAT is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients, and the inhibition of FAO can increase lenvatinib sensitivity in patients with LCATlow HCC. This study revealed that LCAT plays a critical role in the regulation of lipid metabolic reprogramming and is a reliable predictive biomarker for the efficacy of lenvatinib treatment in HCC patients.
Collapse
Affiliation(s)
- Min Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Peiyi Xie
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shaoqing Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China; Department of Breast Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Shiguang Yang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Zhiqiu Hu
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China; Department of Hepatobiliary and Pancreatic Surgery, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199, PR China; Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199, PR China
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, PR China.
| |
Collapse
|
29
|
Ramu D, Kim E. Exosomal Lipids in Cancer Progression and Metastasis. Cancer Med 2025; 14:e70687. [PMID: 40111100 PMCID: PMC11924287 DOI: 10.1002/cam4.70687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Metastasis is the primary cause of cancer mortality. It is responsible for 90% of all cancer-related deaths. Intercellular communication is a crucial feature underlying cancer metastasis and progression. Cancerous tumors secrete membrane-derived small extracellular vesicles (30-150 nm) into their extracellular milieu. These tiny organelles, known as exosomes, facilitate intercellular communication by transferring bioactive molecules. These exosomes harbor different cargos, such as proteins, nucleic acids, and lipids, that mediate multifaceted functions in various oncogenic processes. Of note, the amount of lipids in exosomes is multifold higher than that of other cargos. Most studies have investigated the role of exosomes' protein and nucleic acid content in various oncogenic processes, while the role of lipid cargo in cancer pathophysiology remains largely obscure. MATERIALS AND METHODS We conducted an extensive literature review on the role of exosomes and lipids in cancer progression, specifically addressing the topic of exosomal lipids and their involvement in cancer metastasis and progression. CONCLUSIONS This review aims to shed light on the lipid contents of exosomes in cancer metastasis. In this context, the role of exosomal lipids in signaling pathways, immunomodulation, and energy production for cancer cell survival provides insights into overcoming cancer progression and metastasis.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| | - Eunjoo Kim
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| |
Collapse
|
30
|
Cheng YC, Chen MY, Yadav VK, Pikatan NW, Fong IH, Kuo KT, Yeh CT, Tsai JT. Targeting FABP4/UCP2 axis to overcome cetuximab resistance in obesity-driven CRC with drug-tolerant persister cells. Transl Oncol 2025; 53:102274. [PMID: 39823981 PMCID: PMC11787020 DOI: 10.1016/j.tranon.2025.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/24/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025] Open
Abstract
Colorectal cancer (CRC) is closely linked to obesity, a condition that significantly impacts tumor progression and therapeutic resistance. Although cetuximab, an EGFR-targeting monoclonal antibody, is a cornerstone in metastatic CRC treatment, resistance often emerges, leading to poor outcomes. This study investigated the role of drug-tolerant persister (DTP) cells and their metabolic interactions within the tumor microenvironment (TME) in cetuximab resistance. Using patient-derived organoids and in vivo models, we identified the FABP4/UCP2 axis as a critical mediator of resistance. Organoids derived from cetuximab non-responders revealed upregulated FABP4 and UCP2 expression post-treatment. Coculture experiments with adipocytes showed that FABP4 and UCP2 promote lipid metabolic reprogramming, facilitating cancer cell survival in a dormant state. CRISPR/Cas9 mediated inhibition of FABP4 disrupted this metabolic interaction, sensitising resistant cells to cetuximab. In vivo, the FABP4 inhibitor BMS309403, either alone or in combination with cetuximab, significantly reduced tumor growth in resistant CRC models, highlighting its therapeutic potential. These findings establish the FABP4/UCP2 axis as a pivotal driver of cetuximab resistance in obesity-associated CRC and suggest that targeting this metabolic pathway could improve outcomes in DTP-resistant CRC patients.
Collapse
Affiliation(s)
- Yi-Chiao Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Vijesh Kumar Yadav
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Narpati Wesa Pikatan
- Division of Urology, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Kuang-Tai Kuo
- Department of Surgery, Division of Thoracic Surgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan.
| | - Jo-Ting Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Radiology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| |
Collapse
|
31
|
Li X, Ge J, Wan M, Feng T, Li X, Zhang H, Wang Z, Gao Y, Chen M, Pan F. SLC31A1 promotes chemoresistance through inducing CPT1A-mediated fatty acid oxidation in ER-positive breast cancer. Neoplasia 2025; 61:101125. [PMID: 39904115 PMCID: PMC11847129 DOI: 10.1016/j.neo.2025.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
Over 60% of breast cancer cases are diagnosed with estrogen-receptor (ER) positive. Tamoxifen (TAM), a commonly employed medication for ER-positive breast cancer, often yields suboptimal therapeutic outcomes due to the emergence of TAM resistance, leading to the recurrence and a poor prognosis. The copper transporter, solute carrier family 31 member 1 (SLC31A1), has been associated with tumor aggressiveness and unfavorable outcomes in various types of tumors. In our current study, we found high expression of SLC31A1 that predicted poor survival in patients with breast cancer. Significantly, ER-positive breast cancer tissues in patients with recurrence post-TAM treatment exhibited considerably stronger SLC31A1 expression levels. In vitro experiments verified that TAM-resistant ER-positive breast cancer cell lines expressed notably higher SLC31A1 levels compared to the parental cell lines. Of great significance, SLC31A1 depletion notably rescued TAM sensitivity in chemoresistant ER-positive breast cancer cells, as demonstrated by the attenuated cell proliferative and invasive capabilities. Conversely, promoting SLC31A1 significantly facilitated the proliferation and invasion of wild-type breast cancer cells. Subsequently, we detected reduced copper levels in TAM-resistant breast cancer cells with SLC31A1 depletion. Mechanistically, we observed that in chemoresistant breast cancer cell lines, SLC31A1 knockdown resulted in a substantial decrease in the expression of carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme of fatty acid oxidation (FAO). RNA-Seq analysis indicated that FAO might be implicated in SLC31A1-mediated breast cancer progression. CPT1A was also overexpressed in TAM-resistant breast cancer cells, accompanied by enhanced FAO rates and ATP levels. Suppressing CPT1A significantly enhanced the chemosensitivity of TAM-resistant breast cancer cells in response to TAM treatments. Intriguingly, copper exposure dose-dependently increased CPT1A expression in chemoresistant breast cancer cells, but this could be abolished upon SLC31A1 knockdown, along with enhanced apoptosis, which elucidated that copper uptake contributed to CPT1A expression. Furthermore, SLC31A1 overexpression significantly augmented CPT1A expression in parental breast cancer cells, accompanied by facilitated copper levels, FAO rates, and ATP levels, while being notably diminished upon CPT1A suppression. Finally, our in vivo studies confirmed that SLC31A1 deficiency re-sensitized TAM-resistant breast cancer cells to TAM treatment and abolished tumor growth. Collectively, all our studies demonstrated that SLC31A1/copper suppression could enhance TAM responses for chemoresistant ER-positive breast cancer cells through constraining the CPT1A-mediated FAO process.
Collapse
Affiliation(s)
- Xudong Li
- Department of Oncology, Guangyuan Central Hospital, Guangyuan 628000, Sichuan, China
| | - Jingjing Ge
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Mengdi Wan
- Department of Medical Oncology, Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Tongtong Feng
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaoqian Li
- Department of Gastroenterology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Haibo Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhangyan Wang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institue, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Meiting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fei Pan
- Department of Breast Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
32
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
33
|
Zhang L, Sun Y, Lin Y, Li H, Huang Y, Tang N, Zhang X, Lu Y, Kovalev VA, Snezhko EV, Luo Y, Wang B. Cell calcification reverses the chemoresistance of cancer cells via the conversion of glycolipid metabolism. Biomaterials 2025; 314:122886. [PMID: 39427430 DOI: 10.1016/j.biomaterials.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Drug resistance is an inherent challenge during cancer chemotherapy. Cancer cells favor fatty acid metabolism through metabolic reprogramming to achieve therapeutic resistance. However, an effective approach to overcoming the switch from glycolysis-dependent to fatty acid beta-oxidation-dependent anabolic and energy metabolism remains elusive. Here, we developed a macromolecular drug (folate-polySia, FpSA) to induce the extracellular microcalcification of cervical cancer cells with cisplatin resistance. Microcalcification attenuated the uptake of fatty acids and the beta-oxidation of fatty acids by mitochondrial dysfunction but boosted the glycolysis pathway. Consequently, cotreatment with Pt and FpSA inhibited cisplatin-resistant tumor growth and improved tumor-bearing mice's survival rates, indicating that FpSA switched fatty acid metabolism to glycolysis to sensitize cisplatin-resistant cells further. Taken together, cancer cell calcification induced by FpSA provides a reprogramming metabolic strategy for the treatment of chemotherapy-resistant tumors.
Collapse
Affiliation(s)
- Lihong Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yandi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yindan Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanhui Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Yuqiao Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Ning Tang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Xueyun Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Vassili A Kovalev
- Biomedical Image Analysis Department, The United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, 220012, Belarus
| | - Eduard V Snezhko
- Biomedical Image Analysis Department, The United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, 220012, Belarus
| | - Yan Luo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Institute of Translational Medicine, Zhejiang University, Hangzhou, 310029, China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China; Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Hangzhou, 310029, China; Cancer Center, Zhejiang University, Hangzhou, 310029, China.
| |
Collapse
|
34
|
Zhang J, Ruan K, Chu Z, Wang X, Gu Y, Jin H, Zhang X, Liu Q, Yang J. Reprogramming of fatty acid metabolism: a hidden force regulating the occurrence and progression of cholangiocarcinoma. Cell Death Discov 2025; 11:72. [PMID: 39984452 PMCID: PMC11845788 DOI: 10.1038/s41420-025-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/22/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor that originates from the bile duct epithelium and with a poor outcome due to lack of effective early diagnostic methods. Surgical resection is the preferred method for cure, but treatment options are limited for advanced diseases, such as distant metastatic or locally progressive tumors. Therefore, it is urgent to explore other new treatment methods. As modern living standards rise, the acceptance of high-fat, high-protein, and high-carbohydrate diets is growing among the public, and the resulting metabolic abnormalities are intimately linked to the initiation and spread of tumors. Metabolic reprogramming is a key mechanism in the process of tumor development and progression and is closely related to cancer cell proliferation, metastasis and drug resistance. Fatty acid (FA) metabolism, an integral component of cancer cell metabolism, can provide an energy source for cancer cells and participate in cell signaling, the regulation of the immune response and the maintenance of homeostasis of the internal environment, which are closely linked to the development and progression of CCA. Therefore, a better understanding of FA metabolism may provide promising strategies for early diagnosis, prognostic assessment and targeted therapy for CCA patients. In this paper, we review the effects of FA metabolism on CCA development and progression, summarize related mechanisms and the existing clinical applications of targeted lipid metabolism in CCA, and explore new targets for CCA metabolic therapy.
Collapse
Affiliation(s)
- Jinglei Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Kaiyi Ruan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhuohuan Chu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
| | - Xiang Wang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Xiaofeng Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| | - Jianfeng Yang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou First People's Hospital, Hangzhou, Zhejiang Province, 310053, China.
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang Province, 310006, China.
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, 310006, China.
- Hangzhou Institute of Digestive Diseases, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
35
|
Huang X, Liu B, Shen S. Lipid Metabolism in Breast Cancer: From Basic Research to Clinical Application. Cancers (Basel) 2025; 17:650. [PMID: 40002245 PMCID: PMC11852908 DOI: 10.3390/cancers17040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Breast cancer remains the most prevalent cancer among women globally, with significant links to obesity and lipid metabolism abnormalities. This review examines the role of lipid metabolism in breast cancer progression, highlighting its multifaceted contributions to tumor biology. We discuss key metabolic processes, including fatty acid metabolism, triglyceride metabolism, phospholipid metabolism, and cholesterol metabolism, detailing the reprogramming that occurs in these pathways within breast cancer cells. Alterations in lipid metabolism are emphasized for their roles in supporting energy production, membrane biogenesis, and tumor aggressiveness. Furthermore, we examine how lipid metabolism influences immune responses in the tumor microenvironment, affecting immune cell function and therapeutic efficacy. The potential of lipid metabolism as a target for novel therapeutic strategies is also addressed, with a focus on inhibitors of key metabolic enzymes. By integrating lipid metabolism with breast cancer research, this review underscores the importance of lipid metabolism in understanding breast cancer biology and developing treatment approaches aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bowen Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
| | - Songjie Shen
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China; (X.H.); (B.L.)
- Ambulatory Medical Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100032, China
| |
Collapse
|
36
|
Zeng Y, Zhao L, Zeng K, Zhan Z, Zhan Z, Li S, Zhan H, Chai P, Xie C, Ding S, Xie Y, Wang L, Li C, Chen X, Guan D, Bi E, Liao J, Deng F, Bai X, Song Y, Zhou A. TRAF3 loss protects glioblastoma cells from lipid peroxidation and immune elimination via dysregulated lipid metabolism. J Clin Invest 2025; 135:e178550. [PMID: 39932808 PMCID: PMC11957706 DOI: 10.1172/jci178550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive form of brain tumor characterized by dysregulated metabolism. Increased fatty acid oxidation (FAO) protects tumor cells from lipid peroxidation-induced cell death, although the precise mechanisms involved remain unclear. Here, we report that loss of TNF receptor-associated factor 3 (TRAF3) in GBM critically regulated lipid peroxidation and tumorigenesis by controlling the oxidation of polyunsaturated fatty acids (PUFAs). TRAF3 was frequently repressed in GBM due to promoter hypermethylation. TRAF3 interacted with enoyl-CoA hydratase 1 (ECH1), an enzyme that catalyzes the isomerization of unsaturated FAs (UFAs) and mediates K63-linked ubiquitination of ECH1 at Lys214. ECH1 ubiquitination impeded TOMM20-dependent mitochondrial translocation of ECH1, which otherwise promoted the oxidation of UFAs, preferentially the PUFAs, and limited lipid peroxidation. Overexpression of TRAF3 enhanced the sensitivity of GBM to ferroptosis and anti-programmed death-ligand 1 (anti-PD-L1) immunotherapy in mice. Thus, the TRAF3/ECH1 axis played a key role in the metabolism of PUFAs and was crucial for lipid peroxidation damage and immune elimination in GBM.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liqian Zhao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kunlin Zeng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Ziling Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengming Zhan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shangbiao Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongchao Zhan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Peng Chai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Xie
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Li Wang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Cuiying Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaoxia Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Daogang Guan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Enguang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jianyou Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Aidong Zhou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Wang G, Wang D, Xia L, Lian J, Zhang Q, Shen D, Wang Z, Dai Y. Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7478-7488. [PMID: 39871538 PMCID: PMC11803545 DOI: 10.1021/acsami.4c21028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W6+), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold. When exposed to X-rays, PPWQ induces reactive oxygen species (ROS) to cause DNA damage, while QR inhibits CD36 expression, effectively curbing fatty acid uptake and mitigating immune evasion. In a 4T1 tumor-bearing mouse model, PPWQ demonstrated significant enhancement of RT by facilitating dendritic cell activation, boosting memory cytotoxic T lymphocytes, and skewing macrophages toward a pro-immune phenotype. These results underscore the potential of PPWQ to target metabolic vulnerabilities and advance the integration of immunotherapy with radiotherapy.
Collapse
Affiliation(s)
- Guohao Wang
- Xiamen
Cell Therapy Research Center, The First Affiliated Hospital of Xiamen
University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Dongmei Wang
- Department
of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Lu Xia
- Xiamen
Cell Therapy Research Center, The First Affiliated Hospital of Xiamen
University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Jiabian Lian
- Center
for Precision Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen361000, China
- Department
of Laboratory Medicine, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen361000, China
| | - Qing Zhang
- Department
of Cardiology, The First Affiliated Hospital of Xiamen University,
School of Medicine, Xiamen University, Xiamen 361003, China
| | - Dongyan Shen
- Xiamen
Cell Therapy Research Center, The First Affiliated Hospital of Xiamen
University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Zhanxiang Wang
- Department
of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory
of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory
of Brain Center, the First Affiliated Hospital of Xiamen University,
School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yunlu Dai
- Cancer
Centre and Institute of Translational Medicine, Faculty of Health
Sciences, University of Macau, Macau SAR 999078, China
- MoE
Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| |
Collapse
|
38
|
López-Collazo E, Hurtado-Navarro L. Cell fusion as a driver of metastasis: re-evaluating an old hypothesis in the age of cancer heterogeneity. Front Immunol 2025; 16:1524781. [PMID: 39967663 PMCID: PMC11832717 DOI: 10.3389/fimmu.2025.1524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Numerous studies have investigated the molecular mechanisms and signalling pathways underlying cancer metastasis, as there is still no effective treatment for this terminal stage of the disease. However, the exact processes that enable primary cancer cells to acquire a metastatic phenotype remain unclear. Increasing attention has been focused on the fusion of cancer cells with myeloid cells, a phenomenon that may result in hybrid cells, so-called Tumour Hybrid Cells (THCs), with enhanced migratory, angiogenic, immune evasion, colonisation, and metastatic properties. This process has been shown to potentially drive tumour progression, drug resistance, and cancer recurrence. In this review, we explore the potential mechanisms that govern cancer cell fusion, the molecular mediators involved, the metastatic characteristics acquired by fusion-derived hybrids, and their clinical significance in human cancer. Additionally, we discuss emerging pharmacological strategies aimed at targeting fusogenic molecules as a means to prevent metastatic dissemination.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
- UNIE University, Madrid, Spain
| | - Laura Hurtado-Navarro
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
39
|
Frydrych A, Kulita K, Jurowski K, Piekoszewski W. Lipids in Clinical Nutrition and Health: Narrative Review and Dietary Recommendations. Foods 2025; 14:473. [PMID: 39942064 PMCID: PMC11816940 DOI: 10.3390/foods14030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Lipids are essential components of human health, serving as critical structural elements of cell membranes, energy sources, and precursors for bioactive molecules. This narrative review aims to examine the multifaceted roles of lipids in clinical nutrition and health, focusing on their impact on chronic disease prevention, management, and the potential of lipid-based therapies. A narrative review was conducted utilizing Scopus, Google Scholar, and Web of Science databases. Key terms such as lipids, dietary fats, and cholesterol were used to identify and analyze relevant studies. A total of 145 articles meeting inclusion criteria were reviewed for their insights into lipid metabolism, dietary sources, and clinical implications. The analysis highlighted the metabolic significance of various lipid classes-saturated, monounsaturated, and polyunsaturated fatty acids-along with evidence-based recommendations for their dietary intake. Lipids were shown to play a pivotal role in managing chronic diseases such as cardiovascular disease, obesity, and metabolic syndrome. Emerging therapies, including omega-3 fatty acids and medium-chain triglycerides, demonstrated potential benefits in clinical practice. By synthesizing current knowledge, this narrative review provides healthcare professionals with an updated understanding of the roles of lipids in clinical nutrition. The findings emphasize the importance of tailored dietary interventions and lipid-based therapies in optimizing health and managing chronic diseases effectively. Additionally, this review successfully presents practical dietary recommendations to guide clinical practice.
Collapse
Affiliation(s)
- Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
| | - Kamil Kulita
- Toxicological Science Club ‘Paracelsus’, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland;
| | - Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Faculty of Medicine, Medical College, University of Rzeszów, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland; (A.F.); (K.J.)
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland
| | - Wojciech Piekoszewski
- Laboratory of High Resolution of Mass Spectrometry, Faculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|
40
|
Ahmed N, Walker S, Roma A, Minden MD, Spagnuolo PA. Dietary Modulation of Fatty Acid Oxidation Imparts Stem Cell Protection in Bone Marrow. Nutr Cancer 2025; 77:530-536. [PMID: 39887185 DOI: 10.1080/01635581.2025.2459445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Hematopoietic stem cells (HSCs) maintain production of all functional blood cells and are located within the bone marrow. In pathological conditions, such as obesity or leukemia, changes in these cells contribute to disease pathophysiology. In this study, we examined the impact of metabolic modulation of stem and progenitor cells within the bone marrow during diet-induced obesity (DIO) and leukemia relapse. Avocatin B (Avo), an inhibitor of fatty acid oxidation (FAO), was provided in the diet and its impact on stem cells using two disease models was tested. In DIO, high fat diet(HFD)-induced alterations in HSC number and function were attenuated with Avo (HFD: 46.9% decrease compared to control; p < 0.001; whereas DIO + Avo: 58.8% recovery; p < 0.05). In leukemia relapse, dietary Avo delayed disease reoccurrence. Taken together, addition of Avo into the diet imparts protection in the bone marrow.
Collapse
Affiliation(s)
- Nawaz Ahmed
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Sarah Walker
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Alessia Roma
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Paul A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
41
|
Ruidas B, Choudhury N, Chaudhury SS, Sur TK, Bhowmick S, Saha A, Das P, De P, Das Mukhopadhyay C. Precision targeting of fat metabolism in triple negative breast cancer with a biotinylated copolymer. J Mater Chem B 2025; 13:1363-1371. [PMID: 39661021 DOI: 10.1039/d4tb02142h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Mitochondrial CPT1-mediated fatty acid β-oxidation (FAO) critically contributes to the accelerated metastatic expansion of triple negative breast cancer (TNBC). Hence, inhibition of FAO through active CPT1 targeting could be a promising therapeutic approach in anti-TNBC therapies. Herein, we strategically synthesized a pyrene chain end labelled copolymer bearing biotin pendants, CP4, that actively targets CPT1 and efficiently blocks FAO in metastatic TNBC. Following the comprehensive characterization and synthesis of CP4, in silico negative docking score and Ramachandran plot analyses confirmed its on-target binding potential to CPT1. As a result, CP4 disrupts mitochondrial membrane potential, generates excessive ROS, and restricts excessive ATP production by impairing mitochondrial respiration, glycolytic function, and FAO. Subsequently, CP4 suppressed FA uptake and regulated FAO-associated gene expressions, exhibiting successive metastatic growth inhibition and apoptosis induction. Also, in an animal model, CP4 demonstrated active binding to CPT1, as evidenced by the significant depletion of CPT1A expression in tumor and liver tissue, akin to the specific CPT1-targeted drug. This active targeting of CPT1 has further consolidated the healing of altered lipid and oxidative stress, resulting in remarkable tumor regression, highlighting CP4 as a promising anticancer therapy focused on mitochondrial FAO, advancing future breast cancer treatments.
Collapse
Affiliation(s)
- Bhuban Ruidas
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Neha Choudhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Tapas Kumar Sur
- Department of Pharmacology, R G Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Pritha Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
42
|
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int J Mol Sci 2025; 26:917. [PMID: 39940686 PMCID: PMC11817476 DOI: 10.3390/ijms26030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain metastases remains poor, underscoring the need for innovative diagnostic strategies. This review highlights recent advancements in imaging techniques, liquid biopsies, and artificial intelligence (AI) applications addressing current diagnostic challenges. Advanced imaging techniques, including diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), improve the differentiation of tumor progression from treatment-related changes. Additionally, novel positron emission tomography (PET) radiotracers, such as 18F-fluoropivalate, 18F-fluoroethyltyrosine, and 18F-fluluciclovine, facilitate metabolic profiling of high-grade gliomas. Liquid biopsy, a minimally invasive technique, enables real-time monitoring of biomarkers such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), circulating tumor cells (CTCs), and tumor-educated platelets (TEPs), enhancing diagnostic precision. AI-driven algorithms, such as convolutional neural networks, integrate diagnostic tools to improve accuracy, reduce interobserver variability, and accelerate clinical decision-making. These innovations advance personalized neuro-oncological care, offering new opportunities to improve outcomes for patients with central nervous system tumors. We advocate for future research integrating these tools into clinical workflows, addressing accessibility challenges, and standardizing methodologies to ensure broad applicability in neuro-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (J.R.); (N.G.); (S.K.); (A.N.-T.); (R.S.)
| |
Collapse
|
43
|
Ding Y, Li J, Zhang J, Li P, Bai H, Fang B, Fang H, Huang K, Wang G, Nowell CJ, Voelcker NH, Peng B, Li L, Huang W. Mitochondrial segmentation and function prediction in live-cell images with deep learning. Nat Commun 2025; 16:743. [PMID: 39820041 PMCID: PMC11739661 DOI: 10.1038/s41467-025-55825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025] Open
Abstract
Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis. Furthermore, MoDL predicts mitochondrial functions by employing an ensemble learning strategy, powered by an extended training dataset of over 100,000 SR images, each annotated with functional data from biochemical assays. By leveraging this large dataset alongside data fine-tuning and retraining, MoDL demonstrates the ability to precisely predict functions of heterogeneous mitochondria from unseen cell types through small sample size training. Our results highlight the MoDL's potential to significantly impact mitochondrial research and drug discovery, illustrating its utility in exploring the complex relationship between mitochondrial form and function within a wide range of biological contexts.
Collapse
Affiliation(s)
- Yang Ding
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jintao Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Panpan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bin Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
- Future Display Institute in Xiamen, Xiamen, China
| | - Haixiao Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
- Future Display Institute in Xiamen, Xiamen, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, China
| | - Guangyu Wang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China
| | - Cameron J Nowell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Future Display Institute in Xiamen, Xiamen, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, China.
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Future Display Institute in Xiamen, Xiamen, China.
| |
Collapse
|
44
|
Al Subait A, Alghamdi RH, Ali R, Alsharidah A, Huwaizi S, Alkhodier RA, Almogren AS, Alzomia BA, Alaskar A, Boudjelal M. Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds. Int J Mol Sci 2025; 26:736. [PMID: 39859448 PMCID: PMC11766124 DOI: 10.3390/ijms26020736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity. Using this reporter system, we screened 240 compounds representing kinase inhibitors, epigenetic modulators, and stem cell differentiators and identified compounds that inhibit the PPARα-activated PPARE-Luciferase reporter in the KAIMRC1 cell. We selected 11 compounds (five epigenetic modulators, two stem cell differentiators, and four kinase inhibitors) that inhibited the reporter by at least 40% compared to the controls (DMSO-treated cells). We tested them in a dose-dependent manner and measured the KAIMRC1 cell viability after 48 h. All 11 compounds induced the cell killing at different IC50 values. We selected two compounds, PHA665752 and NSC3852, to dissect how they kill KAIMRC1 cells compared to the antagonist GW6741. First, molecular docking and a TR-FRET PPARα binding assay showed that compared to GW6471, these two compounds could not bind to PPARα. This means they inhibit the PPARα pathway independently rather than binding to the receptor. We further confirmed that PHA665752 and NSC3852 induce cell killing depending on the level of PPARα expression, and as such, their potency for killing the SW620 colon cancer cell line that expresses the lowest level of PPARα was less potent than for the KAIMRC1 and MDA-MB-231 cell lines. Further, using an apoptosis array and fatty acid gene expression panel, we found that both compounds regulate the PPARα pathway by controlling the genes involved in the fatty acid oxidation process. Our findings suggest that these two compounds have opposite effects involving fatty acid oxidation in the KAIMRC1 breast cancer cell line. Although we do not fully understand their mechanism of action, our data provide new insights into the potential role of these compounds in targeting breast cancer cells.
Collapse
Affiliation(s)
- Arwa Al Subait
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Raghad H. Alghamdi
- King Abdulaziz and His Companions Foundation for Giftedness and Creativity (MAWHIBA), Riyadh 11481, Saudi Arabia;
| | - Rizwan Ali
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Amani Alsharidah
- College of Science, King Saud University, Riyadh 11459, Saudi Arabia;
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Reem A. Alkhodier
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia
| | - Aljawharah Saud Almogren
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Barrak A. Alzomia
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Ahmad Alaskar
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| | - Mohamed Boudjelal
- Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia; (A.A.S.)
| |
Collapse
|
45
|
Zhang J, Xu S, Yue L, Lei H, Zhai X. A Collection of Novel Antitumor Agents That Regulate Lipid Metabolism in the Tumor Microenvironment. J Med Chem 2025; 68:49-80. [PMID: 39726379 DOI: 10.1021/acs.jmedchem.4c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Lipid metabolism disorder is the cause of one of the most significant metabolic changes in tumors. In the process of tumor occurrence and development, tumor cells choose a continuous metabolic adaptation to accommodate the changing environment to the maximum extent possible. In a variety of tumors, the uptake, production, and storage of lipids are generally upregulated. Tumor cells take advantage of lipid metabolism to access basic energy, biofilm components, and signal molecules of the tumor microenvironment required for proliferation, survival, invasion, and metastasis. This Perspective briefly uncovers the main metabolic processes and key factors involved in lipid metabolism reprogramming, mainly related to lipid uptake, de novo synthesis and storage of fatty acids, oxidation of fatty acids, cholesterol synthesis, and related regulatory factors. From a medicinal chemistry perspective, agents against related key targets are reviewed, expecting to pave the way for promising antitumor drugs with prospects for application through lipid metabolism reprogramming.
Collapse
Affiliation(s)
- Jiahao Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Sha Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Lingfeng Yue
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hongrui Lei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| |
Collapse
|
46
|
Li D, Jin P, Cai Y, Wu S, Guo X, Zhang Z, Liu K, Li P, Hu Y, Zhou Y. Clinical significance of lipid pathway-targeted therapy in breast cancer. Front Pharmacol 2025; 15:1514811. [PMID: 39834807 PMCID: PMC11743736 DOI: 10.3389/fphar.2024.1514811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Globally, breast cancer represents the most common cancer and the primary cause of death by cancer in women. Lipids are crucial in human physiology, serving as vital energy reserves, structural elements of biological membranes, and essential signaling molecules. The metabolic reprogramming of lipid pathways has emerged as a critical factor in breast cancer progression, drug resistance, and patient prognosis. In this study, we delve into the clinical implications of lipid pathway-targeted therapy in breast cancer. We highlight key enzymes and potential therapeutic targets involved in lipid metabolism reprogramming, and their associations with cancer progression and treatment outcomes. Furthermore, we detail the clinical trials exploring the anticancer and cancer chemopreventive activity of therapies targeting these molecules. However, the clinical efficacy of these therapies remains controversial, highlighting the urgent need for predictive biomarkers to identify patient subpopulations likely to benefit from such treatment. We propose the Selective Lipid Metabolism Therapy Benefit Hypothesis, emphasizing the importance of personalized medicine in optimizing lipid pathway-targeted therapy for breast cancer patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengcheng Jin
- Department of Surgical Oncology, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Yiqi Cai
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianan Guo
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyun Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Liu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panni Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Ashcroft FJ, Bourboula A, Mahammad N, Barbayianni E, Feuerherm AJ, Nguyen TT, Hayashi D, Kokotou MG, Alevizopoulos K, Dennis EA, Kokotos G, Johansen B. Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A 2 α for targeted cancer therapy. Nat Commun 2025; 16:164. [PMID: 39747052 PMCID: PMC11696576 DOI: 10.1038/s41467-024-55536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Eicosanoids are key players in inflammatory diseases and cancer. Targeting their production by inhibiting Group IVA cytosolic phospholipase A2 (cPLA2α) offers a promising approach for cancer therapy. In this study, we synthesize a second generation of thiazolyl ketone inhibitors of cPLA2α starting with compound GK470 (AVX235) and test their in vitro and cellular activities. We identify a more potent and selective lead molecule, GK420 (AVX420), which we test in parallel with AVX235 and a structurally unrelated compound, AVX002 for inhibition of cell viability across a panel of cancer cell lines. From this, we show that activity of polycomb group repressive complex 2 is a key molecular determinant of sensitivity to cPLA2α inhibition, while resistance depends on antioxidant response pathways. Consistent with these results, we show that elevated intracellular reactive oxygen species and activating transcription factor 4 target gene expression precede cell death in AVX420-sensitive T-cell acute lymphoblastic leukemia cells. Our findings imply cPLA2α may support cancer by mitigating oxidative stress and inhibiting tumor suppressor expression and suggest that AVX420 has potential for treating acute leukemias and other cancers that are susceptible to oxidative cell death.
Collapse
Affiliation(s)
- Felicity J Ashcroft
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asimina Bourboula
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Nur Mahammad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Efrosini Barbayianni
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Astrid J Feuerherm
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Thanh Thuy Nguyen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Daiki Hayashi
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Maroula G Kokotou
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Edward A Dennis
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA, USA
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - George Kokotos
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
- Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece.
| | - Berit Johansen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
48
|
Sokei J, Kanefsky J, Sykes SM. Reprogramming of Fatty Acid Metabolism in Acute Leukemia. J Cell Physiol 2025; 240:e70000. [PMID: 39835485 DOI: 10.1002/jcp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Fatty acids are essential biomolecules that support several cellular processes, such as membrane structures, energy storage and production, as well as signal transduction. Accordingly, changes in fatty acid metabolism can have a significant impact on cell behavior, such as growth, survival, proliferation, differentiation, and motility. Therefore, it is not surprising that many aspects of fatty acid metabolism are frequently dysregulated in human cancer, including in highly aggressive blood cancers such as acute leukemia. The aims of this review are to summarize the aspects of fatty acid metabolism that are specifically coopted in acute leukemia as well as current preclinical strategies for targeting fatty acid metabolism in these cancers.
Collapse
Affiliation(s)
- Judith Sokei
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| | - Joice Kanefsky
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University Health System, Philadelphia, Pennsylvania, USA
| | - Stephen M Sykes
- Division of Hematology & Oncology, Department of Pediatrics, School of Medicine, Washington University in Saint Louis, St. Louis, Missouri, USA
| |
Collapse
|
49
|
Fan L, Tang Y, Liu J, Liu Y, Xu Y, Liu J, Liu H, Pang W, Guo Y, Yao W, Zhang T, Peng Q, Zhou J. Mechanical Activation of cPLA2 Impedes Fatty Acid β-Oxidation in Vein Grafts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411559. [PMID: 39587975 PMCID: PMC11744522 DOI: 10.1002/advs.202411559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Indexed: 11/27/2024]
Abstract
High-magnitude cyclic stretch from arterial blood pressure significantly contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs), leading to neointima formation in vein grafts. However, the molecular mechanisms remain unclear. This study highlights the critical role of cytosolic Phospholipase A2 (cPLA2)/ Yin Yang 1 (YY1)/ carnitine palmitoyltransferase 1b (CPT1B) signaling in coordinating VSMC mechanical activation by inhibiting fatty acid β-oxidation. Metabolomic analysis showed that a 15%-1 Hz arterial cyclic stretch, compared to a 5%-1 Hz venous stretch, increased long-chain fatty acids in VSMCs. cPLA2, identified as a mechanoresponsive molecule, produces excessive arachidonic acid (ArAc) under the 15%-1 Hz stretch, inhibiting CPT1B expression, a key enzyme in fatty acid β-oxidation. ArAc promotes transcription factor YY1 degradation, downregulating CPT1B. Inadequate fatty acid oxidation caused by knockdown of CPT1B or YY1, or etomoxir treatment, increased nuclear membrane tension, orchestrating the activation of cPLA2. Overexpressing CPT1B or inhibiting cPLA2 reduced VSMC proliferation and migration in vein grafts, decreasing neointimal hyperplasia. This study uncovers a novel mechanism in lipid metabolic reprogramming in vein grafts, suggesting a new therapeutic target for vein graft hyperplasia.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jian Liu
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yiwei Xu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jiayu Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuxuan Guo
- Institute of Cardiovascular SciencesSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044China
| | - Qin Peng
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| |
Collapse
|
50
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2025; 480:103-118. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|