1
|
Zhou S, Zhang Y, Belmar J, Hou C, Zhang Y, Peng C, Meng Y, Li Z, Mughal MJ, Gao Y, Seto E, Shen M, Hall MD, Ma J, Ma CX, Li S, Zhu W. Stabilization of RUNX1 Induced by O-GlcNAcylation Promotes PDGF-BB-Mediated Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancer Res 2025; 85:1708-1724. [PMID: 39937190 DOI: 10.1158/0008-5472.can-24-2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial in regulating cell-cycle progression and cancer development. Targeting CDK4/6 has shown considerable promise in treating various cancers, including breast cancer. Despite significant therapeutic efficacy, resistance to CDK4/6 inhibitors (CDK4/6i), such as palbociclib, remains a substantial hurdle in clinical practice. Using a coculture system, cytokine array, and quantitative high-throughput combinatorial screening, we discovered a mechanism by which the Runt-related transcription factor (RUNX) 1-platelet-derived growth factor (PDGF)-BB axis regulates palbociclib resistance in breast cancer cells. Specifically, RUNX1 functioned as a transcription factor to drive expression of PDGFB, leading to resistance to palbociclib by enhancing the Akt pathway and suppressing senescence. Furthermore, in resistant cells, RUNX1 was O-GlcNAcylated at serine 252 by O-GlcNAc transferase, resulting in the stabilization of RUNX1 by preventing ubiquitin-mediated degradation. Inhibition of the RUNX1-PDGF-BB axis by specific inhibitors overcame palbociclib resistance both in vitro and in vivo. Notably, the RUNX1-PDGF-BB axis was upregulated in resistant patient-derived xenograft lines and in patients with breast cancer following treatment with CDK4/6i. These findings not only unveil O-GlcNAcylation-mediated activation of a RUNX1-PDGF-BB pathway as a driver of palbociclib resistance but also provide clinical evidence supporting the repurposing of FDA-approved PDGFR inhibitors as a therapeutic strategy to treat patients with CDK4/6i-resistant breast cancer. Significance: RUNX1-PDGF-BB signaling drives resistance to CDK4/6 inhibition in breast cancer, providing the foundation to develop approaches to target the RUNX1-PDGF-BB axis to overcome CDK4/6 inhibitor resistance in breast cancer patients.
Collapse
Affiliation(s)
- Shuyan Zhou
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Julie Belmar
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Yaqin Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland
| | - Changmin Peng
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Yunxiao Meng
- Laboratory & Molecular and Genomic Pathology, Department of Laboratory and Transfusion Services, The George Washington University Hospital, Washington, District of Columbia
| | - Zhuqing Li
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Muhammad Jameel Mughal
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Yanjun Gao
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Min Shen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland
| | - Matthew D Hall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH), Rockville, Maryland
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Cynthia X Ma
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine in St Louis, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, GWU Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
2
|
Huang D, Kapadia EH, Liang Y, Shriver LP, Dai S, Patti GJ, Humbel BM, Laudet V, Parichy DM. Agouti and BMP signaling drive a naturally occurring fate conversion of melanophores to leucophores in zebrafish. Proc Natl Acad Sci U S A 2025; 122:e2424180122. [PMID: 40305763 PMCID: PMC11874323 DOI: 10.1073/pnas.2424180122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 05/02/2025] Open
Abstract
The often-distinctive pigment patterns of vertebrates are varied in form and function and depend on several types of pigment cells derived from embryonic neural crest or latent stem cells of neural crest origin. These cells and the patterns they produce have been useful for uncovering features of differentiation and morphogenesis that underlie adult phenotypes, and they offer opportunities to discover how patterns and the cell types themselves have diversified. In zebrafish, a body pattern of stripes arises by self-organizing interactions among three types of pigment cells. Yet these fish also exhibit white ornamentation on their fins that depends on the transdifferentiation of black melanophores to white cells, "melanoleucophores." To identify mechanisms underlying this conversion we used ultrastructural, transcriptomic, mutational, and other approaches. We show that melanophore-melanoleucophore transition depends on regional BMP signals transduced through noncanonical receptors (Rgmb-Neo1a-Lrig2) as well as BMP-dependent signaling by Agouti genes, asip1 and asip2b. These signals lead to expression of transcription factor genes including foxd3 and runx3 that are necessary to induce loss of melanin, curtail new melanin production, and deploy a pathway for accumulating guanine crystals that, together, confer a white phenotype. These analyses uncover an important role for positional information in specifying ornamentation in zebrafish and show how tissue environmental cues and an altered gene regulatory program have allowed terminal addition of a distinct phenotype to a preexisting cell type.
Collapse
Affiliation(s)
- Delai Huang
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Emaan H. Kapadia
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Yipeng Liang
- Department of Biology, University of Virginia, Charlottesville, VA22903
| | - Leah P. Shriver
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Shengkun Dai
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Gary J. Patti
- Department of Chemistry, Washington University, St. Louis, MO63110
- The Center for Mass Spectrometry and Isotope Tracing, Washington University, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Bruno M. Humbel
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa904-0495, Japan
| | - David M. Parichy
- Department of Biology, University of Virginia, Charlottesville, VA22903
- Department of Cell Biology, University of Virginia, Charlottesville, VA22903
| |
Collapse
|
3
|
Park BJ, Hua S, Casler KD, Cefaloni E, Ayers MC, Lake RF, Murphy KE, Vertino PM, O'Connell MR, Murphy PJ. CUT&Tag Identifies Repetitive Genomic Loci that are Excluded from ChIP Assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636299. [PMID: 39974916 PMCID: PMC11838576 DOI: 10.1101/2025.02.03.636299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Determining the genomic localization of chromatin features is an essential aspect of investigating gene expression control, and ChIP-Seq has long been the gold standard technique for interrogating chromatin landscapes. Recently, the development of alternative methods, such as CUT&Tag, have provided researchers with alternative strategies that eliminate the need for chromatin purification, and allow for in situ investigation of histone modifications and chromatin bound factors. Mindful of technical differences, we set out to investigate whether distinct chromatin modifications were equally compatible with these different chromatin interrogation techniques. We found that ChIP-Seq and CUT&Tag performed similarly for modifications known to reside at gene regulatory regions, such as promoters and enhancers, but major differences were observed when we assessed enrichment over heterochromatin-associated loci. Unlike ChIP-Seq, CUT&Tag detects robust levels of H3K9me3 at a substantial number of repetitive elements, with especially high sensitivity over evolutionarily young retrotransposons. IAPEz-int elements for example, exhibited underrepresentation in mouse ChIP-Seq datasets but strong enrichment using CUT&Tag. Additionally, we identified several euchromatin-associated proteins that co-purify with repetitive loci and are similarly depleted when applying ChIP-based methods. This study reveals that our current knowledge of chromatin states across the heterochromatin portions of the mammalian genome is extensively incomplete, largely due to limitations of ChIP-Seq. We also demonstrate that newer in situ chromatin fragmentation-based techniques, such as CUT&Tag and CUT&RUN, are more suitable for studying chromatin modifications over repetitive elements and retrotransposons.
Collapse
Affiliation(s)
- Brandon J Park
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Shan Hua
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Karli D Casler
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Eric Cefaloni
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
| | - Michael C Ayers
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Rahiim F Lake
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Kristin E Murphy
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Paula M Vertino
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
| | - Mitchell R O'Connell
- University of Rochester Medical Center, The Department of Biochemistry & Biophysics
| | - Patrick J Murphy
- University of Rochester Medical Center, Wilmot Cancer Center, Department of Biomedical Genetics
- University of Rochester, Department of Biology
- Cornell University, Department of Molecular Biology and Genetics
| |
Collapse
|
4
|
Vlachavas EI, Voutetakis K, Kosmidou V, Tsikalakis S, Roditis S, Pateas K, Kim R, Pagel K, Wolf S, Warsow G, Dimitrakopoulou-Strauss A, Zografos GN, Pintzas A, Betge J, Papadodima O, Wiemann S. Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer. Mol Oncol 2025. [PMID: 39876058 DOI: 10.1002/1878-0261.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies. We performed whole-exome sequencing and RNA-Sequencing of 28 tumors of the Athens Comprehensive Cancer Center CRC cohort, and molecularly characterized CRC patients based on their microsatellite instability (MSI) status, single-nucleotide variations (SNVs)/copy number alterations (CNAs), and pathway/transcription factor activities at the individual patient level. Variants were classified using a computational score for integrative cancer variant annotation and prioritization. Complementing this with public multi-omics datasets, we identified activation of transforming growth factor beta (TGFβ) signaling to be more strongly activated in MSS patients, whereas Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) molecular cascades were activated specifically in MSI tumors. We unraveled mechanisms consistently perturbed in the transcriptional and mutational circuits and identified Runt-related transcription factors (RUNX transcription factors) as putative biomarkers in CRC, given their role in the regulation of pathways involved in tumor progression and immune evasion. Assessing the immunogenicity of CRC tumors in the context of RAS/RAF mutations and MSI/MSS status revealed a critical impact that KRAS mutations have on immunogenicity, particularly in the MSS patient subgroup, with implications for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Spyridon Tsikalakis
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Roditis
- 3rd Surgical Department G.Gennimatas Hospital, Athens, Greece
- Surgical Department, University Hospital of North Midlands, Stoke-on-Trent, UK
| | | | | | | | - Stephan Wolf
- High-Throughput Sequencing Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Germany
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
5
|
Jia Y, Yang N, Tang S, Deng L, Wang Y, Cai X. RUNX1 promotes proliferation of cervical cancer through TGFB2-MAPK pathway. Sci Rep 2025; 15:497. [PMID: 39747496 PMCID: PMC11696507 DOI: 10.1038/s41598-024-84254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
As cervical cancer (CC) caused more than 300,000 deaths in the world, it is urgent to identify therapeutic targets to improve survival. Though RUNX1 is overexpressed in CC, its specific role and underlying molecular mechanisms remain incompletely understood. Here we presented that RUNX1 was upregulated in CC and associated with poor prognosis. Functional studies demonstrated that RUNX1 acts as an oncogene in CC, with overexpression accelerating cell cycle progression and promoting cell proliferation. Mechanistically, RUNX1 regulates the MAPK pathway by modulating TGFB2 expression, while TGFB2 inhibition impaired MAPK pathway activation and the proliferation driven by RUNX1 overexpression. Comprehensive analyses also suggested that RUNX1 may modulate the immune microenvironment in CC through TGFB2. These findings indicate that RUNX1 promotes CC progression by activating the MAPK pathway through upregulation of TGFB2. Our study provides new insights into the role of RUNX1 in CC proliferation and suggests RUNX1 as a potential therapeutic target in CC.
Collapse
Affiliation(s)
- Yongqin Jia
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Neng Yang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuai Tang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Deng
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanzhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiongwei Cai
- Department of Gynecology, Chongqing Health Center for Women and Children (Women and Children's Hospital of Chongqing Medical University), Chongqing, China.
| |
Collapse
|
6
|
Robinson E, Rodriguez I, Argueta V, Xie Y, Lou H, Milano R, Lee HJ, Burdett L, Mishra SK, Yeager M, Mirabello L, Dean M, Orozco R. Analysis of the progression of cervical cancer in a low-and-middle-income country: From pre-malignancy to invasive disease. Tumour Virus Res 2024; 19:200299. [PMID: 39672307 PMCID: PMC11729683 DOI: 10.1016/j.tvr.2024.200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024] Open
Abstract
To better understand cervical cancer progression, we analyzed RNA from 262 biopsies from women referred for colposcopy. We determined the HPV type and analyzed the expression of 51 genes. HPV31 was significantly more prevalent in precancer than stage 1 cancer and invasive cancer (p < 0.0001), and HPV16 increased in invasive disease (p < 0.0001). CCNE1, MELTF, and ULBP2 were significantly increased in HPV16-positive compared to HPV31 precancers, while NECTIN2 and HLA-E expression decreased. Markers of the innate immune system, DNA repair genes, and cell cycle genes are significantly increased during cancer progression (p = 0.0001). In contrast, the TP53 and RB1 tumor suppressor gene expression is significantly decreased in cancer cells. The T cell markers CD28 and FLT3LG expression decreased in cancer while FOXP3, IDO1, and ULBP2 expression increased. There is a significantly higher survival rate in individuals with increased expression of CD28 (p = 0.0005), FOXP3 (p = 0.0002), IDO1 (p = 0.038), FLT3LG (p = 0.026), APOBEC3B (p = 0.0011), and RUNX3 (p = 0.019), and a significantly lower survival rate in individuals with increased expression of ULBP2 (p = 0.035). These results will help us elucidate the molecular factors influencing the progression of cervical precancer to cancer. Understanding the risk of progression of specific HPV types and sublineages may aid in the triage of positive patients, and better knowledge of the immune response may aid in developing and applying immunotherapies.
Collapse
Affiliation(s)
- Emma Robinson
- HLA Immunogenetics, Basic Science Program, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Isabel Rodriguez
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Victor Argueta
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | - Yi Xie
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Hong Lou
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Rose Milano
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Hyo Jung Lee
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Laurie Burdett
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Sambit K Mishra
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Meredith Yeager
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Lisa Mirabello
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA
| | - Michael Dean
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Gaithersburg, MD, USA.
| | - Roberto Orozco
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| |
Collapse
|
7
|
Wang J, Fendler NL, Shukla A, Wu SY, Challa A, Lee J, Joachimiak LA, Minna JD, Chiang CM, Vos SM, D'Orso I. ARF alters PAF1 complex integrity to selectively repress oncogenic transcription programs upon p53 loss. Mol Cell 2024; 84:4538-4557.e12. [PMID: 39532099 PMCID: PMC12001331 DOI: 10.1016/j.molcel.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The polymerase associated factor 1 (PAF1) complex (PAF1c) promotes RNA polymerase II (RNA Pol II) transcription at the elongation step; however, how PAF1c transcription activity is selectively regulated during cell fate transitions remains poorly understood. Here, we reveal that the alternative reading frame (ARF) tumor suppressor operates at two levels to restrain PAF1c-dependent oncogenic transcriptional programs upon p53 loss in mouse cells. First, ARF assembles into homo-oligomers to bind the PAF1 subunit to promote PAF1c disassembly, consequently dampening PAF1c interaction with RNA Pol II and PAF1c-dependent transcription. Second, ARF targets the RUNX family transcription factor 1 (RUNX1) to selectively tune gene transcription. Consistently, ARF loss triggers RUNX1- and PAF1c-dependent transcriptional activation of pro-growth ligands (growth differentiation factor/bone morphogenetic protein [GDF/BMP]), promoting a cell-intrinsic GDF/BMP-Smad1/5 axis that aberrantly induce cell growth. Notably, pharmacologic inactivation of GDF/BMP signaling and genetic perturbation of RUNX1 significantly attenuate cell proliferation mediated by dual p53 and ARF loss, offering therapeutic utility. Our data underscore the significance of selective ARF-mediated tumor-suppressive functions through a universal transcriptional regulator.
Collapse
Affiliation(s)
- Jinli Wang
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nikole L Fendler
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA
| | - Ashutosh Shukla
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwini Challa
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeon Lee
- Lydia Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lukasz A Joachimiak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Fontecha-Barriuso M, Villar-Gomez N, Guerrero-Mauvecin J, Martinez-Moreno JM, Carrasco S, Martin-Sanchez D, Rodríguez-Laguna M, Gómez MJ, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. Runt-related transcription factor 1 (RUNX1) is a mediator of acute kidney injury. J Pathol 2024; 264:396-410. [PMID: 39472111 DOI: 10.1002/path.6355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 11/09/2024]
Abstract
Treatment for acute kidney injury (AKI) is suboptimal. A better understanding of the pathogenesis of AKI may lead to new therapeutic approaches. Kidney transcriptomics of folic acid-induced AKI (FA-AKI) in mice identified Runx1 as the most upregulated RUNX family gene. We then examined the expression of RUNX1 in FA-AKI, in bacterial lipopolysaccharide (LPS)-induced cytokine storm-AKI (CS-AKI), and in human AKI. In cultured mouse tubule cells, we explored the expression and role of RUNX1 in response to the cytokine TWEAK or LPS. A chemical inhibitor of RUNX1 (Ro5-3335) was used in animal models of AKI to test its potential as a therapeutic target. RUNX1 overexpression in FA-AKI was validated at the mRNA and protein levels and localized mainly to tubule cell nuclei. CS-AKI also upregulated kidney RUNX1. Increased tubule and interstitial RUNX1 expression were also observed in human AKI. In cultured mouse tubule cells, the pro-inflammatory cytokine TWEAK and LPS increased RUNX1 and IL-6 expression. Mechanistically, RUNX1 bound to the Il6 gene promoter and RUNX1 targeting with the chemical inhibitor Ro5-3335, or a specific small interfering RNA (siRNA), prevented the TWEAK- and LPS-induced upregulation of IL6 through a RUNX1/NFκB1 p50 pathway. In vivo, preventive Ro5-3335 improved kidney function and reduced inflammation in FA-AKI and CS-AKI. However, Ro5-3335 administration after the insult only improved kidney function in CS-AKI. Kidney transcriptomics identified inflammatory genes and transcription factor mRNAs such as Yap1 and Trp53 as key targets of Ro5-3335 in CS-AKI. In conclusion, RUNX1 contributes to AKI by driving the expression of genes involved in inflammation and represents a novel therapeutic target in AKI. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Natalia Villar-Gomez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Julio M Martinez-Moreno
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Diego Martin-Sanchez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | | | - Manuel J Gómez
- Unidad de Bioinformatica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María D Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- IRSIN, Madrid, Spain
| | - Ana B Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
9
|
Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Boo HJ, Yoon SP, Hyun JW. Oxidative Stress-Mediated RUNX3 Mislocalization Occurs Via Jun Activation Domain-Binding Protein 1 and Histone Modification. Appl Biochem Biotechnol 2024; 196:8082-8095. [PMID: 38683453 PMCID: PMC11645303 DOI: 10.1007/s12010-024-04944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.
Collapse
Affiliation(s)
- Kyoung Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | - Pincha Devage Sameera Madushan Fernando
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea
| | | | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Biochemistry, Jeju National University College of Medicine, Jeju, 63243, Republic of Korea.
| |
Collapse
|
10
|
Zheng M, Li H, Sun L, Cui S, Zhang W, Gao Y, Gao R. Calcipotriol abrogates TGF-β1/pSmad3-mediated collagen 1 synthesis in pancreatic stellate cells by downregulating RUNX1. Toxicol Appl Pharmacol 2024; 491:117078. [PMID: 39214171 DOI: 10.1016/j.taap.2024.117078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
RUNX1 with CBFβ functions as an activator or repressor of critical mediators regulating cellular function. The aims of this study were to clarify the role of RUNX1 on regulating TGF-β1-induced COL1 synthesis and the mechanism of calcipotriol (Cal) on antagonizing COL1 synthesis in PSCs. RT-qPCR and Western Blot for determining the mRNAs and proteins of RUNX1 and COL1A1/1A2 in rat PSC line (RP-2 cell). Luciferase activities driven by RUNX1 or COL1A1 or COL1A2 promoter, co-immunoprecipitation and immunoblotting for pSmad3/RUNX1 or CBFβ/RUNX1, and knockdown or upregulation of Smad3 and RUNX1 were used. RUNX1 production was regulated by TGF-β1/pSmad3 signaling pathway in RP-2 cells. RUNX1 formed a coactivator with CBFβ in TGF-β1-treated RP-2 cells to regulate the transcriptions of COL1A1/1A2 mRNAs under a fashion of pSmad3/RUNX1/CBFβ complex. However, Cal effectively abrogated the levels of COL1A1/1A2 transcripts in TGF-β1-treated RP-2 cells by downregulating RUNX1 production and hindering the formation of pSmad3/RUNX1/CBFβ complexes. This study suggests that RUNX1 may be a promising antifibrotic target for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Meifang Zheng
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Hongyan Li
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Shiyuan Cui
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| | - Runping Gao
- Department of Hepatic biliary Pancreatic Medicine, First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Huang C, Zhang L, Shen P, Wu Z, Li G, Huang Y, Ao T, Luo L, Hu C, Wang N, Quzhuo R, Tian L, Huangfu C, Liao Z, Gao Y. Cannabidiol mitigates radiation-induced intestine ferroptosis via facilitating the heterodimerization of RUNX3 with CBFβ thereby promoting transactivation of GPX4. Free Radic Biol Med 2024; 222:288-303. [PMID: 38830513 DOI: 10.1016/j.freeradbiomed.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor β (CBFβ) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.
Collapse
Affiliation(s)
- Congshu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liangliang Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zekun Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yijian Huang
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Ting Ao
- College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Lin Luo
- School of Nursing, Capital Medical University, Beijing, 100069, China
| | - Changkun Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Renzeng Quzhuo
- Department of General Internal Medicine, Naqu People's Hospital, Nagqu, Xizang Autonomous Region, 852007, China
| | - Lishan Tian
- Navy Qingdao Special Service Recuperation Center, Qingdao, 266071, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Zebin Liao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
12
|
Zheng F, Wang Z, Li S, Xiong S, Yuan Y, Zeng J, Tan Y, Liu X, Xu S, Fu B. Development of a propionate metabolism-related gene-based molecular subtypes and scoring system for predicting prognosis in bladder cancer. Eur J Med Res 2024; 29:393. [PMID: 39075554 PMCID: PMC11285334 DOI: 10.1186/s40001-024-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
PURPOSE Bladder cancer (BLCA) is a prevalent malignancy. Dysregulated propionate metabolism, a key cancer factor, suggests a potential target for treating metastatic cancer. However, a complete understanding of the link between propionate metabolism-related genes (PMRGs) and bladder cancer is lacking. METHODS From the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we gathered BLCA patient data, which was classified into distinct subgroups using non-negative matrix factorization (NMF). Survival and pathway analyses were conducted between these clusters. The PMRGs model, created through univariate Cox and least absolute shrinkage and selection operator (LASSO) analyses, was assessed for prognostic significance using Kaplan-Meier and receiver operating characteristic (ROC) curves. A comprehensive evaluation included clinical, tumor microenvironment (TME), drug sensitivity, and immunotherapy analyses. Finally, the expression of HSD17B1 essential genes was confirmed via quantitative real-time polymerase chain reaction (qRT-PCR), with further validation through Transwell, wound healing, colony-formation, and EDU assays. RESULTS We discovered two distinct subcategories (CA and CB) within BLCA using NMF analysis, with CA demonstrating significantly better overall survival compared to CB. Additionally, six PMRGs emerged as critical factors associated with propionate metabolism and prognosis. Kaplan-Meier analysis revealed that high-risk PMRGs were correlated with a poorer prognosis in BLCA patients. Moreover, significant differences were observed between the two groups in terms of infiltrated immune cells, immune checkpoint expression, TME scores, and drug sensitivity. Notably, we found that suppressing HSD17B1 gene expression inhibited the invasion of bladder cancer cells. CONCLUSION Our study proposes molecular subtypes and a PMRG-based score as promising prognostic indicators in BLCA. Additionally, cellular experiments underscore the pivotal role of HSD17B1 in bladder cancer metastasis and invasion, suggesting its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Fuchun Zheng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Zhipeng Wang
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Situ Xiong
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Yuyang Yuan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Yifan Tan
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, China.
- Jiangxi Institute of Urology, Nanchang, China.
| |
Collapse
|
13
|
Wang Q, Lu W, Lu L, Wu R, Wu D. miR-575/RIPK4 axis modulates cell cycle progression and proliferation by inactivating the Wnt/β-catenin signaling pathway through inhibiting RUNX1 in colon cancer. Mol Cell Biochem 2024; 479:1747-1766. [PMID: 38480605 DOI: 10.1007/s11010-024-04938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 07/18/2024]
Abstract
Receptor interacting protein serine/threonine kinase 4 (RIPK4) is widely involved in human cancer development. Nevertheless, its role in colon cancer (COAD) has not been elucidated till now. Our research aimed at exploring the function and underlying molecular mechanism of RIPK4 in COAD progression. Through bioinformatic analyses and RT-qPCR, RIPK4 was discovered to be increased in COAD cells and tissues, and its high level predicted poor prognosis. Loss-of-function assays revealed that RIPK4 silencing suppressed COAD cell growth, induced cell cycle arrest, and enhanced cell apoptosis. In vivo experiments also proved that tumor growth was inhibited by silencing of RIPK4. Luciferase reporter assay validated that RIPK4 was targeted and negatively regulated by miR-575. Western blotting demonstrated that Wnt3a, phosphorylated (p)-GSK-3β, and cytoplasmic and nuclear β-catenin protein levels, β-catenin nuclear translocation, and Cyclin D1, CDK4, Cyclin E, and c-Myc protein levels were reduced by RIPK4 knockdown, which however was reversed by treatment with LiCl, the Wnt/β-catenin pathway activator. LiCl also offset the influence of RIPK4 knockdown on COAD cell growth, cell cycle process, and apoptosis. Finally, RIPK4 downregulation reduced RUNX1 level, which was upregulated in COAD and its high level predicted poor prognosis. RIPK4 is positively associated with RUNX1 in COAD. Overexpressing RUNX1 antagonized the suppression of RIPK4 knockdown on RUNX1, Wnt3a, p-GSK-3β, cytoplasmic β-catenin, nuclear β-catenin, Cyclin D1, CDK4, Cyclin E, and c-Myc levels. Collectively, miR-575/RIPK4 axis repressed COAD progression via inactivating the Wnt/β-catenin pathway through downregulating RUNX1.
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, 430079, China.
| | - Weijun Lu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
| | - Li Lu
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Ruopu Wu
- Tianjin Medical University, Tianjin, 300070, China
| | - Dongde Wu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
14
|
Tian W, Zhao J, Zhang X, Li P, Li X, Hong Y, Li S. RUNX1 regulates MCM2/CDC20 to promote COAD progression modified by deubiquitination of USP31. Sci Rep 2024; 14:13906. [PMID: 38886545 PMCID: PMC11183096 DOI: 10.1038/s41598-024-64726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Xuening Li
- Dalian Medical University, Dalian, China
| | - Yuan Hong
- Clinical Laboratory Center, Dalian Municipal Central Hospital, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
15
|
Hirose Y, Sato S, Hashiya K, Ooga M, Bando T, Sugiyama H. Chb-M', an Inhibitor of the RUNX Family Binding to DNA, Induces Apoptosis in p53-Mutated Non-Small Cell Lung Cancer and Inhibits Tumor Growth and Repopulation In Vivo. J Med Chem 2024; 67:9165-9172. [PMID: 38803164 DOI: 10.1021/acs.jmedchem.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Runt-related transcription factor (RUNX) proteins are considered to play various roles in cancer. Here, we evaluated the anticancer activity of Chb-M', a compound that specifically and covalently binds to the consensus sequence for RUNX family proteins, in p53-mutated non-small cell lung cancer cells. Chb-M' killed the cancer cells by inducing apoptosis. The compound showed an anticancer effect comparable to that of the clinically used drugs alectinib and ceritinib in vivo. Notably, Chb-M' extended the cancer-free survival of mice after ending treatment more effectively than did the other two drugs. The results presented here suggest that Chb-M' is an attractive candidate as an anticancer drug applicable to the treatment of non-small cell lung cancer and various other types of cancers.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Mitsuharu Ooga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Chen H, Wang S, Zhang X, Hua X, Liu M, Wang Y, Wu S, He W. Pharmacological inhibition of RUNX1 reduces infarct size after acute myocardial infarction in rats and underlying mechanism revealed by proteomics implicates repressed cathepsin levels. Funct Integr Genomics 2024; 24:113. [PMID: 38862712 PMCID: PMC11166773 DOI: 10.1007/s10142-024-01391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Myocardial infarction (MI) results in prolonged ischemia and the subsequent cell death leads to heart failure which is linked to increased deaths or hospitalizations. New therapeutic targets are urgently needed to prevent cell death and reduce infarct size among patients with MI. Runt-related transcription factor-1 (RUNX1) is a master-regulator transcription factor intensively studied in the hematopoietic field. Recent evidence showed that RUNX1 has a critical role in cardiomyocytes post-MI. The increased RUNX1 expression in the border zone of the infarct heart contributes to decreased cardiac contractile function and can be therapeutically targeted to protect against adverse cardiac remodelling. This study sought to investigate whether pharmacological inhibition of RUNX1 function has an impact on infarct size following MI. In this work we demonstrate that inhibiting RUNX1 with a small molecule inhibitor (Ro5-3335) reduces infarct size in an in vivo rat model of acute MI. Proteomics study using data-independent acquisition method identified increased cathepsin levels in the border zone myocardium following MI, whereas heart samples treated by RUNX1 inhibitor present decreased cathepsin levels. Cathepsins are lysosomal proteases which have been shown to orchestrate multiple cell death pathways. Our data illustrate that inhibition of RUNX1 leads to reduced infarct size which is associated with the suppression of cathepsin expression. This study demonstrates that pharmacologically antagonizing RUNX1 reduces infarct size in a rat model of acute MI and unveils a link between RUNX1 and cathepsin-mediated cell death, suggesting that RUNX1 is a novel therapeutic target that could be exploited clinically to limit infarct size after an acute MI.
Collapse
Affiliation(s)
- Hengshu Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Hua
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Simiao Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
17
|
Jiang Z, Jiang C, Teng X, Hou Y, Dai S, Liu C, Tuo Z, Bi L, Yang C, Wang J. Exploring the crosstalk of immune cells: The impact of dysregulated RUNX family genes in kidney renal clear cell carcinoma. Heliyon 2024; 10:e29870. [PMID: 38707395 PMCID: PMC11066633 DOI: 10.1016/j.heliyon.2024.e29870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Abnormally expressed Runt-associated transcription factor (RUNX) family has been reported in multiple tumors. Nevertheless, the immunological role of RUNX family in kidney renal clear cell carcinoma (KIRC) remains unknown. METHODS We studied the RNA-seq data regarding tumor and healthy subjects from several public databases in detail for evaluating the prognostic and immunological functions owned by three RUNX genes in cancer patients. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemical (IHC) staining served for detecting their expressions in tumor and normal samples. RESULTS We observed that KIRC patients presented high expressions of RUNX1, RUNX2, and RUNX3. The expressions of three genes were validated by qRT-PCR, which was same as bioinformatical results. Prognostic analysis indicated that the overexpression of RUNX1 and RUNX2 negatively affects the outcomes in patients with KIRC. Related functional predictions indicated that the RUNXs and co-expression genes were significantly related to the immune response pathway. Moreover, three RUNX members were associated with immune infiltration cells and their related gene markers. The expression of RUNX family in several immune cells is positively or negatively correlated, and its dysregulation is obviously associated with the differential distribution of immune cells. RUNX family genes were abnormally expressed in KIRC patients, and were closely related to the crosstalk of immune cells. CONCLUSIONS Our findings may help to understand the pathogenesis and immunologic roles of the RUNX family in KIRC patients from new perspectives.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiangyu Teng
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yidong Hou
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shuxin Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chang Liu
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chao Yang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
18
|
Rooper LM, Agaimy A, Bell D, Gagan J, Gallia GL, Jo VY, Lewis JS, London NR, Nishino M, Stoehr R, Thompson LDR, Din NU, Wenig BM, Westra WH, Bishop JA. Recurrent Wnt Pathway and ARID1A Alterations in Sinonasal Olfactory Carcinoma. Mod Pathol 2024; 37:100448. [PMID: 38369189 DOI: 10.1016/j.modpat.2024.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Sinonasal tumors with neuroepithelial differentiation, defined by neuroectodermal elements reminiscent of olfactory neuroblastoma (ONB) and epithelial features such as keratin expression or gland formation, are a diagnostically challenging group that has never been formally included in sinonasal tumor classifications. Recently, we documented that most of these neuroepithelial neoplasms have distinctive histologic and immunohistochemical findings and proposed the term "olfactory carcinoma" to describe these tumors. However, the molecular characteristics of olfactory carcinoma have not yet been evaluated. In this study, we performed targeted molecular profiling of 23 sinonasal olfactory carcinomas to further clarify their pathogenesis and classification. All tumors included in this study were composed of high-grade neuroectodermal cells that were positive for pankeratin and at least 1 specific neuroendocrine marker. A significant subset of cases also displayed rosettes and neurofibrillary matrix, intermixed glands with variable cilia, peripheral p63/p40 expression, and S100 protein-positive sustentacular cells. Recurrent oncogenic molecular alterations were identified in 20 tumors, including Wnt pathway alterations affecting CTNNB1 (n = 8) and PPP2R1A (n = 2), ARID1A inactivation (n = 5), RUNX1 mutations (n = 3), and IDH2 hotspot mutations (n = 2). Overall, these findings do demonstrate the presence of recurrent molecular alterations in olfactory carcinoma, although this group of tumors does not appear to be defined by any single mutation. Minimal overlap with alterations previously reported in ONB also adds to histologic and immunohistochemical separation between ONB and olfactory carcinoma. Conversely, these molecular findings enhance the overlap between olfactory carcinoma and sinonasal neuroendocrine carcinomas. A small subset of neuroepithelial tumors might better fit into the superseding molecular category of IDH2-mutant sinonasal carcinoma. At this point, sinonasal neuroendocrine and neuroepithelial tumors may best be regarded as a histologic and molecular spectrum that includes core groups of ONB, olfactory carcinoma, neuroendocrine carcinoma, and IDH2-mutant sinonasal carcinoma.
Collapse
Affiliation(s)
- Lisa M Rooper
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Diana Bell
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gary L Gallia
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vickie Y Jo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - James S Lewis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nyall R London
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michiya Nishino
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Robert Stoehr
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | | | - Nasir Ud Din
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Bruce M Wenig
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - William H Westra
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
19
|
Toriseva M, Björkgren I, Junnila A, Mehmood A, Mattsson J, Raimoranta I, Kim B, Laiho A, Nees M, Elo L, Poutanen M, Breton S, Sipilä P. RUNX transcription factors are essential in maintaining epididymal epithelial differentiation. Cell Mol Life Sci 2024; 81:183. [PMID: 38630262 PMCID: PMC11023966 DOI: 10.1007/s00018-024-05211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Apart from the androgen receptor, transcription factors (TFs) that are required for the development and formation of the different segments of the epididymis have remained unknown. We identified TF families expressed in the developing epididymides, of which many showed segment specificity. From these TFs, down-regulation of runt related transcription factors (RUNXs) 1 and 2 expression coincides with epithelial regression in Dicer1 cKO mice. Concomitant deletion of both Runx1 and Runx2 in a mouse epididymal epithelial cell line affected cell morphology, adhesion and mobility in vitro. Furthermore, lack of functional RUNXs severely disturbed the formation of 3D epididymal organoid-like structures. Transcriptomic analysis of the epididymal cell organoid-like structures indicated that RUNX1 and RUNX2 are involved in the regulation of MAPK signaling, NOTCH pathway activity, and EMT-related gene expression. This suggests that RUNXs are master regulators of several essential signaling pathways, and necessary for the maintenance of proper differentiation of the epididymal epithelium.
Collapse
Affiliation(s)
- Mervi Toriseva
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Ida Björkgren
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Arttu Junnila
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Arfa Mehmood
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jesse Mattsson
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Inka Raimoranta
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Bongki Kim
- Program in Membrane Biology/Division of Nephrology, Massachusetts General Hospital, Simches Research Center, Boston, MA, 02114, USA
- Department of Animal Resources Science, Kongju National University, Chungcheongnam-do, Yesan, 32439, Republic of Korea
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matthias Nees
- Institute of Biomedicine, Cancer Research Unit and FICAN West Cancer Centre Laboratory, University of Turku and Turku University Hospital, Turku, Finland
| | - Laura Elo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
- Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, Göteborg, Sweden
| | - Sylvie Breton
- Program in Membrane Biology/Division of Nephrology, Massachusetts General Hospital, Simches Research Center, Boston, MA, 02114, USA
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Medicine, Research Center-CHU de Québec, Université Laval, Québec, QC, Canada
| | - Petra Sipilä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
20
|
Afaloniati H, Aindelis G, Spyridopoulou K, Lagou MK, Tsingotjidou A, Chlichlia K, Erdman SE, Poutahidis T, Angelopoulou K. Peri-weaning cholera toxin consumption suppresses chemically-induced carcinogenesis in mice. Int J Cancer 2024; 154:1097-1110. [PMID: 38095490 DOI: 10.1002/ijc.34816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024]
Abstract
Gastrointestinal bacteria are known to have an impact on local and systemic immunity, and consequently either promote or suppress cancer development. Following the notion that perinatal bacterial exposure might confer immune system competency for life, we investigated whether early-life administration of cholera-toxin (CT), a protein exotoxin of the small intestine pathogenic bacterium Vibrio cholerae, may shape local and systemic immunity to impart a protective effect against tumor development in epithelia distantly located from the gut. For that, newborn mice were orally treated with low non-pathogenic doses of CT and later challenged with the carcinogen 7,12-dimethylbenzanthracene (DMBA), known to cause mainly mammary, but also skin, lung and stomach cancer. Our results revealed that CT suppressed the overall incidence and multiplicity of tumors, with varying efficiencies among cancer types, and promoted survival. Harvesting mouse tissues at an earlier time-point (105 instead of 294 days), showed that CT does not prevent preneoplastic lesions per se but it rather hinders their evolution into tumors. CT pretreatment universally increased apoptosis in the cancer-prone mammary, lung and nonglandular stomach, and altered the expression of several cancer-related molecules. Moreover, CT had a long-term effect on immune system cells and factors, the most prominent being the systemic neutrophil decrease. Finally, CT treatment significantly affected gut bacterial flora composition, leading among others to a major shift from Clostridia to Bacilli class abundance. Overall, these results support the notion that early-life CT consumption is able to affect host's immune, microbiome and gene expression profiles toward the prevention of cancer.
Collapse
Affiliation(s)
- Hara Afaloniati
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis, Greece
| | - Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis, Greece
| | - Maria K Lagou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, Alexandroupolis, Greece
| | - Suzan E Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Angelopoulou
- Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
21
|
Chen X, Wang L, Yang M, Zhao W, Tu J, Liu B, Yuan X. RUNX transcription factors: biological functions and implications in cancer. Clin Exp Med 2024; 24:50. [PMID: 38430423 PMCID: PMC10908630 DOI: 10.1007/s10238-023-01281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/10/2023] [Indexed: 03/03/2024]
Abstract
Runt-related transcription factors (RUNX) are a family of transcription factors that are essential for normal and malignant hematopoietic processes. Their most widely recognized role in malignancy is to promote the occurrence and development of acute myeloid leukemia. However, it is worth noting that during the last decade, studies of RUNX proteins in solid tumors have made considerable progress, suggesting that these proteins are directly involved in different stages of tumor development, including tumor initiation, progression, and invasion. RUNX proteins also play a role in tumor angiogenesis, the maintenance of tumor cell stemness, and resistance to antitumor drugs. These findings have led to the consideration of RUNX as a tumor biomarker. All RUNX proteins are involved in the occurrence and development of solid tumors, but the role of each RUNX protein in different tumors and the major signaling pathways involved are complicated by tumor heterogeneity and the interacting tumor microenvironment. Understanding how the dysregulation of RUNX in tumors affects normal biological processes is important to elucidate the molecular mechanisms by which RUNX affects malignant tumors.
Collapse
Affiliation(s)
- Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Mu Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Road 1095, Wuhan, Hubei Province, China.
| |
Collapse
|
22
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
23
|
Guo X, Zhang H, He C, Qin K, Lai Q, Fang Y, Chen Q, Li W, Wang Y, Wang X, Li A, Liu S, Li Q. RUNX1 promotes angiogenesis in colorectal cancer by regulating the crosstalk between tumor cells and tumor associated macrophages. Biomark Res 2024; 12:29. [PMID: 38419056 PMCID: PMC10903076 DOI: 10.1186/s40364-024-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Colorectal cancer (CRC) is a common malignancy worldwide. Angiogenesis and metastasis are the critical hallmarks of malignant tumor. Runt-related transcription factor 1 (RUNX1), an efficient transcription factor, facilitates CRC proliferation, metastasis and chemotherapy resistance. We aimed to investigate the RUNX1 mediated crosstalk between tumor cells and M2 polarized tumor associated macrophages (TAMs) in CRC, as well as its relationship with neoplastic angiogenesis. We found that RUNX1 recruited macrophages and induced M2 polarized TAMs in CRC by promoting the production of chemokine 2 (CCL2) and the activation of Hedgehog pathway. In addition, we found that the M2 macrophage-specific generated cytokine, platelet-derived growth factor (PDGF)-BB, promoted vessel formation both in vitro and vivo. PDGF-BB was also found to enhance the expression of RUNX1 in CRC cell lines, and promote its migration and invasion in vitro. A positive feedback loop of RUNX1 and PDGF-BB was thus formed. In conclusion, our data suggest that RUNX1 promotes CRC angiogenesis by regulating M2 macrophages during the complex crosstalk between tumor cells and TAMs. This observation provides a potential combined therapy strategy targeting RUNX1 and TAMs-related PDGF-BB in CRC.
Collapse
Affiliation(s)
- Xuxue Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haonan Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kaiwen Qin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weize Li
- The First School of Clinical Medicine), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiqing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
- Pazhou Lab, Guangzhou, Guangdong, China.
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
24
|
Suda K, Okabe A, Matsuo J, Chuang LSH, Li Y, Jangphattananont N, Mon NN, Myint KN, Yamamura A, So JBY, Voon DCC, Yang H, Yeoh KG, Kaneda A, Ito Y. Aberrant Upregulation of RUNX3 Activates Developmental Genes to Drive Metastasis in Gastric Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:279-292. [PMID: 38240752 PMCID: PMC10836196 DOI: 10.1158/2767-9764.crc-22-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/08/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Gastric cancer metastasis is a major cause of mortality worldwide. Inhibition of RUNX3 in gastric cancer cell lines reduced migration, invasion, and anchorage-independent growth in vitro. Following splenic inoculation, CRISPR-mediated RUNX3-knockout HGC-27 cells show suppression of xenograft growth and liver metastasis. We interrogated the potential of RUNX3 as a metastasis driver in gastric cancer by profiling its target genes. Transcriptomic analysis revealed strong involvement of RUNX3 in the regulation of multiple developmental pathways, consistent with the notion that Runt domain transcription factor (RUNX) family genes are master regulators of development. RUNX3 promoted "cell migration" and "extracellular matrix" programs, which are necessary for metastasis. Of note, we found pro-metastatic genes WNT5A, CD44, and VIM among the top differentially expressed genes in RUNX3 knockout versus control cells. Chromatin immunoprecipitation sequencing and HiChIP analyses revealed that RUNX3 bound to the enhancers and promoters of these genes, suggesting that they are under direct transcriptional control by RUNX3. We show that RUNX3 promoted metastasis in part through its upregulation of WNT5A to promote migration, invasion, and anchorage-independent growth in various malignancies. Our study therefore reveals the RUNX3-WNT5A axis as a key targetable mechanism for gastric cancer metastasis. SIGNIFICANCE Subversion of RUNX3 developmental gene targets to metastasis program indicates the oncogenic nature of inappropriate RUNX3 regulation in gastric cancer.
Collapse
Affiliation(s)
- Kazuto Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Ying Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Naing Naing Mon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khine Nyein Myint
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Akihiro Yamamura
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jimmy Bok-Yan So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dominic Chih-Cheng Voon
- Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Japan
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
25
|
Leblay N, Ahn S, Tilmont R, Poorebrahim M, Maity R, Lee H, Barakat E, Alberge JB, Sinha S, Jaffer A, Barwick BG, Boise LH, Bahlis N, Neri P. Integrated epigenetic and transcriptional single-cell analysis of t(11;14) multiple myeloma and its BCL2 dependency. Blood 2024; 143:42-56. [PMID: 37729611 PMCID: PMC10797556 DOI: 10.1182/blood.2023020276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
ABSTRACT The translocation t(11;14) occurs in 20% of patients with multiple myeloma (MM) and results in the upregulation of CCND1. Nearly two-thirds of t(11;14) MM cells are BCL2 primed and highly responsive to the oral BCL2 inhibitor venetoclax. Although it is evident that this unique sensitivity to venetoclax depends on the Bcl-2 homology domain 3- proapoptotic protein priming of BCL2, the biology underlying t(11;14) MM dependency on BCL2 is poorly defined. Importantly, the epigenetic regulation of t(11;14) transcriptomes and its impact on gene regulation and clinical response to venetoclax remain elusive. In this study, by integrating assay for transposase-accessible chromatin by sequencing (ATAC-seq) and RNA-seq at the single-cell level in primary MM samples, we have defined the epigenetic regulome and transcriptome associated with t(11;14) MM. A B-cell-like epigenetic signature was enriched in t(11;14) MM, confirming its phylogeny link to B-cell rather than plasma cell biology. Of note, a loss of a B-cell-like epigenetic signature with a gain of canonical plasma cell transcription factors was observed at the time of resistance to venetoclax. In addition, MCL1 and BCL2L1 copy number gains and structural rearrangements were linked to venetoclax resistance in patients with t(11;14) MM. To date, this is the first study in which both single-cell (sc) ATAC-seq and scRNA-seq analysis are integrated into primary MM cells to obtain a deeper resolution of the epigenetic regulome and transcriptome associated with t(11;14) MM biology and venetoclax resistance.
Collapse
Affiliation(s)
- Noémie Leblay
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Sungwoo Ahn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Rémi Tilmont
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Mansour Poorebrahim
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Ranjan Maity
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Holly Lee
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Elie Barakat
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | | | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA
- Winship Cancer Institute, Emory University, Atlanta, GA
| | - Nizar Bahlis
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Chen Y, He Z, Yang S, Chen C, Xiong W, He Y, Liu S. RUNX1 knockdown induced apoptosis and impaired EMT in high-grade serous ovarian cancer cells. J Transl Med 2023; 21:886. [PMID: 38057816 PMCID: PMC10702124 DOI: 10.1186/s12967-023-04762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023] Open
Abstract
Ovarian cancer is the leading cause of death from gynecologic illnesses worldwide. High-grade serous ovarian cancer (HGSOC) is a gynecological tumor that accounts for roughly 70% of ovarian cancer deaths in women. Runt-related transcription factor 1(RUNX1) proteins were identified with overexpression in the HGSOC. However, the roles of RUNX1 in the development of HGSOC are poorly understood. In this study, combined with whole-transcriptome analysis and multiple research methods, RUNX1 was identified as vital in developing HGSOC. RUNX1 knockdown inhibits the physiological function of ovarian cancer cells and regulates apoptosis through the FOXO1-Bcl2 axis. Down-regulated RUNX1 impairs EMT function through the EGFR-AKT-STAT3 axis signaling. In addition, RUNX1 knockdown can significantly increase the sensitivity to clinical drug therapy for ovarian cancer. It is strongly suggested that RUNX1 work as a potential diagnostic and therapeutic target for HGSOC patients with better prognoses and treatment options. It is possible to generate novel potential targeted therapy strategies and translational applications for serous ovarian carcinoma patients with better clinical outcomes.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhicheng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuting Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- School of Life Science, Yunnan University, Kunming, China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China
| | - YingYing He
- School of Chemical Science & Technology, Yunnan University, Kunming, 650091, Yunnan, China.
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, #132 Lanhei Road, Panlong District, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Pedraz-Valdunciel C, Ito M, Giannoukakos S, Giménez-Capitán A, Molina-Vila MÁ, Rosell R. Brief Report: circRUNX1 as Potential Biomarker for Cancer Recurrence in EGFR Mutation-Positive Surgically Resected NSCLC. JTO Clin Res Rep 2023; 4:100604. [PMID: 38162176 PMCID: PMC10757026 DOI: 10.1016/j.jtocrr.2023.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction As recently evidenced by the ADAURA trial, most patients with stages IB to IIIA of resected EGFR-mutant lung adenocarcinoma benefit from osimertinib as adjuvant therapy. Nevertheless, predictive markers of response and recurrence are still an unmet need for more than 10% of these patients. Some circular RNAs (circRNAs) have been reported to play a role in tumor growth and proliferation. In this project, we studied circRNA expression levels in formalin-fixed, paraffin-embedded lung tumor samples to explore their biomarker potential and develop a machine learning (ML)-based signature that could predict the benefit of adjuvant EGFR tyrosine kinase inhibitors in patients with EGFR-mutant NSCLC. Methods Patients with surgically resected EGFR mutant-positive, stages I to IIIB NSCLC were recruited from February 2007 to December 2015. Formalin-fixed, paraffin-embedded tumor samples were retrospectively collected from those patients with a follow-up period of more than or equal to 36 months (N = 76). Clinicopathologic features were annotated. Total RNA was purified and quantified prior nCounter processing with our circRNA custom panel. Data analysis and ML were performed taking into consideration circRNA expression levels and recurrence-free survival (RFS). RFS was defined from the day of surgery to the day when recurrence was detected radiologically or the death owing to any cause. Results Of the 76 patients with EGFR mutation-positive NSCLC included in the study, 34 relapsed within 3 years after resection. The median age of the relapsing cohort was 71.5 (range: 49-89) years. Most patients were nonsmokers (n = 21; 61.8%) and of female sex (n = 21; 61.8%). Most cases (n = 17; 50%) presented an exon 21 mutation, whereas 15 and four patients had an exon 19 and exon 18 mutation, respectively. Differential expression analysis revealed that circRUNX1, along with circFUT8 and circAASDH, was up-regulated in relapsing patients (p < 0.05 and >2 fold-change). A ML-based circRNA signature predictive of recurrence in patients with EGFR mutation-positive NSCLC, comprising circRUNX1, was developed. Our final model including selected 6-circRNA signature with random forest algorithm was able to classify relapsing patients with an accuracy of 83% and an area under the receiver operating characteristic curve of 0.91.RFS was significantly shorter not only for the subgroup of patients with high versus low circRUNX1 expression but also for the group classified as recurrent by the ML circRNA signature when compared with those classified as nonrecurrent. Conclusions Our findings suggest that circRUNX1 and the presented ML-developed signature could be novel tools to predict the benefit of adjuvant EGFR tyrosine kinase inhibitors with regard to RFS in patients with EGFR-mutant NSCLC. The training and validation phases of our ML signature will be conducted including bigger independent cohorts.
Collapse
Affiliation(s)
| | - Masaoki Ito
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | | | | | - Rafael Rosell
- Pangaea Oncology, Dexeus University Hospital, Barcelona, Spain
- Germans Trias i Pujol Health Sciences Institute and Hospital (IGTP), Badalona, Spain
| |
Collapse
|
28
|
Zhang YX, Bai JY, Pu X, Lv J, Dai EL. An integrated bioinformatics approach to identify key biomarkers in the tubulointerstitium of patients with focal segmental glomerulosclerosis and construction of mRNA-miRNA-lncRNA/circRNA networks. Ren Fail 2023; 45:2284212. [PMID: 38013448 PMCID: PMC11001368 DOI: 10.1080/0886022x.2023.2284212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE The purpose of this study was to identify potential biomarkers in the tubulointerstitium of focal segmental glomerulosclerosis (FSGS) and comprehensively analyze its mRNA-miRNA-lncRNA/circRNA network. METHODS The expression data (GSE108112 and GSE200818) were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/). Identification and enrichment analysis of differentially expressed genes (DEGs) were performed. the PPI networks of the DEGs were constructed and classified using the Cytoscape molecular complex detection (MCODE) plugin. Weighted gene coexpression network analysis (WGCNA) was used to identify critical gene modules. Least absolute shrinkage and selection operator regression analysis were used to screen for key biomarkers of the tubulointerstitium in FSGS, and the receiver operating characteristic curve was used to determine their diagnostic accuracy. The screening results were verified by quantitative real-time-PCR (qRT-PCR) and Western blot. The transcription factors (TFs) affecting the hub genes were identified by Cytoscape iRegulon. The mRNA-miRNA-lncRNA/circRNA network for identifying potential biomarkers was based on the starBase database. RESULTS A total of 535 DEGs were identified. MCODE obtained eight modules. The green module of WGCNA had the greatest association with the tubulointerstitium in FSGS. PPARG coactivator 1 alpha (PPARGC1A) was screened as a potential tubulointerstitial biomarker for FSGS and verified by qRT-PCR and Western blot. The TFs FOXO4 and FOXO1 had a regulatory effect on PPARGC1A. The ceRNA network yielded 17 miRNAs, 32 lncRNAs, and 50 circRNAs. CONCLUSIONS PPARGC1A may be a potential biomarker in the tubulointerstitium of FSGS. The ceRNA network contributes to the comprehensive elucidation of the mechanisms of tubulointerstitial lesions in FSGS.
Collapse
Affiliation(s)
- Yun Xia Zhang
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jun Yuan Bai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - XiaoWei Pu
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Juan Lv
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - En Lai Dai
- College of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
29
|
Rahmawati M, Stadler KM, Lopez-Biladeau B, Hoisington TM, Law NC. Core binding factor subunit β plays diverse and essential roles in the male germline. Front Cell Dev Biol 2023; 11:1284184. [PMID: 38020932 PMCID: PMC10653448 DOI: 10.3389/fcell.2023.1284184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Much of the foundation for lifelong spermatogenesis is established prior to puberty, and disruptions during this developmental window negatively impact fertility long into adulthood. However, the factors that coordinate prepubertal germline development are incompletely understood. Here, we report that core-binding factor subunit-β (CBFβ) plays critical roles in prepubertal development and the onset of spermatogenesis. Using a mouse conditional knockout (cKO) approach, inactivation of Cbfb in the male germline resulted in rapid degeneration of the germline during the onset of spermatogenesis, impaired overall sperm production, and adult infertility. Utilizing a different Cre driver to generate another Cbfb cKO model, we determined that the function of CBFβ in the male germline is likely limited to undifferentiated spermatogonia despite expression in other germ cell types. Within undifferentiated spermatogonia, CBFβ regulates proliferation, survival, and overall maintenance of the undifferentiated spermatogonia population. Paradoxically, we discovered that CBFβ also distally regulates meiotic progression and spermatid formation but only with Cbfb cKO within undifferentiated spermatogonia. Spatial transcriptomics revealed that CBFβ modulates cell cycle checkpoint control genes associated with both proliferation and meiosis. Taken together, our findings demonstrate that core programs established within the prepubertal undifferentiated spermatogonia population are necessary for both germline maintenance and sperm production.
Collapse
Affiliation(s)
- Mustika Rahmawati
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Kassie M. Stadler
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Blanca Lopez-Biladeau
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
| | - Tia M. Hoisington
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Nathan C. Law
- Department of Animal Sciences, College of Agricultural, Human, and Natural Resources Sciences, Washington State University, Pullman, WA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
30
|
Ji W, Sun Z, Yang Y, Hu M, Zhang Q, Fu J, Chen J, Huang Y, Cheng Y. Downregulation of RUNX1-Activated Osteopontin Facilitates Burn Wound Healing by Activating the MAPK Pathways. J Burn Care Res 2023; 44:1371-1381. [PMID: 36913234 DOI: 10.1093/jbcr/irad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 03/14/2023]
Abstract
Burn wounds require intervention to ensure timely progression to reduce morbidity and mortality. The migrative and proliferative capabilities of keratinocytes are impaired in wounds. Matrix metalloproteinases (MMPs) can degrade the extracellular matrix (ECM), allowing epithelial cells to migrate. As reported, osteopontin can regulate cell migration, cell adhesion, and ECM invasion in endothelial and epithelial cells, and its expression is significantly increased in chronic wounds. Therefore, this study investigates the biological functions of osteopontin and its related mechanisms involved in burn wounds. We established cellular and animal models of burn injury. Levels of osteopontin, RUNX1, MMPs, collagen I, CK19, PCNA, and pathway-associated proteins were measured by RT-qPCR, western blotting, and immunofluorescence staining. Cell viability and migration were examined by CCK-8 and wound scratch assays. Histological changes were analyzed by hematoxylin and eosin staining and Masson's trichrome staining. For in vitro analysis, osteopontin silencing facilitated the growth and migration of HaCaT cells and promoted ECM degradation in HaCaT cells. Mechanistically, RUNX1 bound to osteopontin promoter, and RUNX1 upregulation attenuated the promoting efficacy of osteopontin silencing on cell growth and migration and ECM degradation. Additionally, RUNX1-activated osteopontin inactivated the MAPK signaling pathway. For in vivo analysis, osteopontin depletion facilitated burn wound healing by promoting reepithelialization and ECM degradation. In conclusion, RUNX1 activates the osteopontin expression at the transcriptional level and osteopontin depletion facilitates the recovery of burn wounds by promoting the migration of keratinocytes and reepithelization and ECM degradation by activating the MAPK pathway.
Collapse
Affiliation(s)
- Wei Ji
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Zhibo Sun
- Department of Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanqing Yang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Meng Hu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Qian Zhang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Jie Fu
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - JunWei Chen
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yan Huang
- Department of Plastic surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan 430060, China
| | - Yanyang Cheng
- Department of Paediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
31
|
Gong S, Zhang Y, Pang L, Wang L, He W. A novel CircRNA Circ_0001722 regulates proliferation and invasion of osteosarcoma cells through targeting miR-204-5p/RUNX2 axis. J Cancer Res Clin Oncol 2023; 149:12779-12790. [PMID: 37453970 PMCID: PMC10587032 DOI: 10.1007/s00432-023-05166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is the most prevalent primary fatal bone neoplasm in adolescents and children owing to limited therapeutic methods. Circular RNAs (circRNAs) are identified as vital regulators in a variety of cancers. However, the roles of circRNAs in OS are still unclear. METHODS Firstly, we evaluate the differentially expressed circRNAs in 3 paired OS and corresponding adjacent nontumor tissue samples by circRNA microarray assay, finding a novel circRNA, circ_001722, significantly upregulated in OS tissues and cells. The circular structure of candidate circRNA was confirmed through Sanger sequencing, divergent primer PCR, and RNase R treatments. Proliferation of OS cells was evaluated in vitro and in vivo. The microRNA (miRNA) sponge mechanism of circRNAs was verified by dual-luciferase assay and RNA immunoprecipitation assay. RESULTS A novel circRNA, circ_001722, is significantly upregulated in OS tissues and cells. Downregulation of circ_0001722 can suppress proliferation and invasion of human OS cells in vitro and in vivo. Computational algorithms predict miR-204-5p can bind with circ_0001722 and RUNX2 mRNA 3'UTR, which is verified by Dual-luciferase assay and RNA immunoprecipitation assay. Further functional experiments show that circ_0001722 competitively binds to miR-204-5p and prevents it to decrease the level of RUNX2, which upregulates proliferation and invasion of human OS cells. CONCLUSION Circ_001722 is a novel tumor promotor in OS, and promotes the progression of OS via miR-204-5p/RUNX2 axis.
Collapse
Affiliation(s)
- Shuai Gong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| | - Yi Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan Province China
| | - Lina Pang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| | - Liye Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| | - Wei He
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 of Jianshe Road, Er-Qi District, Zhengzhou City, 450052 Henan Province China
| |
Collapse
|
32
|
Yonezawa T, Takahashi H, Hao Y, Furukawa C, Tsuchiya A, Zhang W, Fukushima T, Fukuyama T, Sawasaki T, Kitamura T, Goyama S. The E3 ligase DTX2 inhibits RUNX1 function by binding its C terminus and prevents the growth of RUNX1-dependent leukemia cells. FEBS J 2023; 290:5141-5157. [PMID: 37500075 DOI: 10.1111/febs.16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/25/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Transcription factor RUNX1 plays important roles in hematopoiesis and leukemogenesis. RUNX1 function is tightly controlled through posttranslational modifications, including ubiquitination and acetylation. However, its regulation via ubiquitination, especially proteasome-independent ubiquitination, is poorly understood. We previously identified DTX2 as a RUNX1-interacting E3 ligase using a cell-free AlphaScreen assay. In this study, we examined whether DTX2 is involved in the regulation of RUNX1 using in vitro and ex vivo analyses. DTX2 bound to RUNX1 and other RUNX family members RUNX2 and RUNX3 through their C-terminal region. DTX2-induced RUNX1 ubiquitination did not result in RUNX1 protein degradation. Instead, we found that the acetylation of RUNX1, which is known to enhance the transcriptional activity of RUNX1, was inhibited in the presence of DTX2. Concomitantly, DTX2 reduced the RUNX1-induced activation of an MCSFR luciferase reporter. We also found that DTX2 induced RUNX1 cytoplasmic mislocalization. Moreover, DTX2 overexpression showed a substantial growth-inhibitory effect in RUNX1-dependent leukemia cell lines. Thus, our findings indicate a novel aspect of the ubiquitination and acetylation of RUNX1 that is modulated by DTX2 in a proteosome-independent manner.
Collapse
Affiliation(s)
- Taishi Yonezawa
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | | | - Yangying Hao
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Chie Furukawa
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| |
Collapse
|
33
|
Ma J, He S, Li M, Peng Y, Yang X, Chen L, Jia Q, Liu Y. RUNX1 predicts poor prognosis and correlates with tumor progression in clear cell renal carcinoma. Pathol Res Pract 2023; 251:154886. [PMID: 37844486 DOI: 10.1016/j.prp.2023.154886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Runt-related transcription factor 1 (RUNX1), also called acute myeloid leukaemia 1, is a member of RUNX family of transcription factors. This family is composed of evolutionarily conserved transcription factors that function as critical lineage determinants in various tissues, however its function in cancer development and clinical significance in RCC are still unknown. METHODS We used paraffin-embedded tumor tissues from 100 patients and fresh-harvested and paired adjacent normal renal tissues from 15 RCC patients who underwent primary surgical resection in Xijing Hospital between 2018 and 2022. The expression level of RUNX1 was evaluated by immunohistochemistry and Western Blot. RUNX1 promoted tumor cells proliferation, migration and invasion were verified by CCK-8, wound-healing and transwell assays. Finally, we constructed a xenografts model of the 786-O cell lines to observe the effect of RUNX1 on tumorigenesis in vivo. RESULTS TCGA database showed higher RUNX1 expression levels in KIRC (kidney renal clear cell carcinoma). In overall survival analysis, RCC patients with higher RUNX1 expression level would have a shorter survival period than those with lower expression. Similarly, immunohistochemical results of our cohort also showed that RUNX1 was over-expression in cancer tissues than in corresponding non-cancer tissues. We also proved this result at protein level by western-blot. Meanwhile, prognostic and OS analyses of our cohort showed that the RUNX1 expression level was an individual prognostic factor in RCC patients. CCK-8, wound-healing and transwell assays proved that the overexpression of RUNX1 in Caki-1 cells promoted the proliferation, migration and invasion of the cells. Knocking down RUNX1 in 786-O cells inhibited the proliferation, migration and invasion of cells. The experimental results of xenografts model in nude mice showed that the knockdown of RUNX1 in 786-O cells slowed down the growth of tumor. CONCLUSION RUNX1 is a poor prognostic factor of clear cell renal carcinoma, which may provide a novel therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shaofei He
- Shaanxi University of Chinese Medicine, Xi'an-Xianyang New Ecomic Zone, Shaanxi Province, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yang Peng
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xinyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
34
|
Stanland LJ, Ang HX, Hoj JP, Chu Y, Tan P, Wood KC, Luftig MA. CBF-Beta Mitigates PI3K-Alpha-Specific Inhibitor Killing through PIM1 in PIK3CA-Mutant Gastric Cancer. Mol Cancer Res 2023; 21:1148-1162. [PMID: 37493631 PMCID: PMC10811747 DOI: 10.1158/1541-7786.mcr-23-0034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
PIK3CA is the second most mutated gene in cancer leading to aberrant PI3K/AKT/mTOR signaling and increased translation, proliferation, and survival. Some 4%-25% of gastric cancers display activating PIK3CA mutations, including 80% of Epstein-Barr virus-associated GCs. Small molecules, including pan-PI3K and dual PI3K/mTOR inhibitors, have shown moderate success clinically, due to broad on-target/off-tissue effects. Thus, isoform-specific and mutant selective inhibitors have been of significant interest. However, drug resistance is a problem and has affected success of new drugs. There has been a concerted effort to define mechanisms of resistance and identify potent combinations in many tumor types, though gastric cancer is comparatively understudied. In this study, we identified modulators of the response to the PI3Kα-specific inhibitor, BYL719, in PIK3CA-mutant GCs. We found that loss of NEDD9 or inhibition of BCL-XL conferred hypersensitivity to BYL719, through increased cell-cycle arrest and cell death, respectively. In addition, we discovered that loss of CBFB conferred resistance to BYL719. CBFB loss led to upregulation of the protein kinase PIM1, which can phosphorylate and activate several overlapping downstream substrates as AKT thereby maintaining pathway activity in the presence of PI3Kα inhibition. The addition of a pan-PIM inhibitor re-sensitized resistant cells to BYL719. Our data provide clear mechanistic insights into PI3Kα inhibitor response in PIK3CA-mutant gastric tumors and can inform future work as mutant-selective inhibitors are in development for diverse tumor types. IMPLICATIONS Loss of either NEDD9 or BCL-XL confers hypersensitivity to PI3K-alpha inhibition whereas loss of CBFB confers resistance through a CBFB/PIM1 signaling axis.
Collapse
Affiliation(s)
- Lyla J. Stanland
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine; Durham, NC, USA
| | - Hazel X. Ang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC, USA
| | - Jacob P. Hoj
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC, USA
| | | | - Patrick Tan
- Duke-NUS Medical School Singapore; Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research; Singapore
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine; Durham, NC, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine; Durham, NC, USA
| |
Collapse
|
35
|
Kim MK, Han SH, Park TG, Song SH, Lee JY, Lee YS, Yoo SY, Chi XZ, Kim EG, Jang JW, Lim DS, van Wijnen AJ, Lee JW, Bae SC. The TGFβ→TAK1→LATS→YAP1 Pathway Regulates the Spatiotemporal Dynamics of YAP1. Mol Cells 2023; 46:592-610. [PMID: 37706312 PMCID: PMC10590711 DOI: 10.14348/molcells.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/15/2023] Open
Abstract
The Hippo kinase cascade functions as a central hub that relays input from the "outside world" of the cell and translates it into specific cellular responses by regulating the activity of Yes-associated protein 1 (YAP1). How Hippo translates input from the extracellular signals into specific intracellular responses remains unclear. Here, we show that transforming growth factor β (TGFβ)-activated TAK1 activates LATS1/2, which then phosphorylates YAP1. Phosphorylated YAP1 (p-YAP1) associates with RUNX3, but not with TEAD4, to form a TGFβ-stimulated restriction (R)-point-associated complex which activates target chromatin loci in the nucleus. Soon after, p-YAP1 is exported to the cytoplasm. Attenuation of TGFβ signaling results in re-localization of unphosphorylated YAP1 to the nucleus, where it forms a YAP1/TEAD4/SMAD3/AP1/p300 complex. The TGFβ-stimulated spatiotemporal dynamics of YAP1 are abrogated in many cancer cells. These results identify a new pathway that integrates TGFβ signals and the Hippo pathway (TGFβ→TAK1→LATS1/2→YAP1 cascade) with a novel dynamic nuclear role for p-YAP1.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Hyun Han
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Tae-Geun Park
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Soo-Hyun Song
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Ja-Youl Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - You-Soub Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Seo-Yeong Yoo
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Xin-Zi Chi
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, College of Medicine and Medical Research Center, Chungbuk National University, Cheongju 28644, Korea
| | - Ju-Won Jang
- Department of Biomedical Science, Cheongju University, Cheongju 28503, Korea
| | - Dae Sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Jung-Won Lee
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| | - Suk-Chul Bae
- Department of Biochemistry, College of Medicine and Institute for Tumour Research, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
36
|
Yang J, Wang C, Zhang Y, Cheng S, Wu M, Gu S, Xu S, Wu Y, Sheng J, Voon DCC, Wang Y. Clinical significance and immune infiltration analyses of a novel coagulation-related signature in ovarian cancer. Cancer Cell Int 2023; 23:232. [PMID: 37803446 PMCID: PMC10559580 DOI: 10.1186/s12935-023-03040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/08/2023] Open
Abstract
Ovarian cancer (OV) is the most lethal gynecological malignancies worldwide. The coagulation cascade could induce tumor cell infiltration and contribute to OV progression. However, coagulation-related gene (CRG) signature for OV prognosis hasn't been determined yet. In this study, we evaluated the prognostic value of coagulation scores through receiver operating characteristics (ROC) analysis and K-M curves, among OV patients at our institution. Based on the transcriptome data of TCGA-OV cohort, we stratified two coagulation-related subtypes with distinct differences in prognosis and tumor immune microenvironment (p < 0.05). Moreover, from the 6406 differentially-expressed genes (DEGs) between the GTEx (n = 180) and TCGA-OV cohorts (n = 376), we identified 138 potential CRGs. Through LASSO-Cox algorithm, we finally distinguished a 3-gene signature (SERPINA10, CD38, and ZBTB16), with promising prognostic ability in both TCGA (p < 0.001) and ICGC cohorts (p = 0.040). Stepwise, we constructed a nomogram based on the clinical features and coagulation-related signature for overall survival prediction, with the C-index of 0.6761, which was evaluated by calibration curves. Especially, based on tissue microarrays analysis, Quantitative real-time fluorescence PCR (qRT-PCR), and Western Blot, we found that aberrant upregulation of CRGs was related to poor prognosis in OV at both mRNA and protein level (p < 0.05). Collectively, the coagulation-related signature was a robust prognostic biomarker, which could provide therapeutic benefits for chemotherapy/immunotherapy and assist clinical decision in OV patients.
Collapse
Affiliation(s)
- Jiani Yang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Chao Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Yue Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meixuan Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sijia Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yongsong Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jindan Sheng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| | - Dominic Chih-Cheng Voon
- Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 9201192 Japan
- Institute of Frontier Sciences Initiative, Kanazawa University, Kanazawa, Ishikawa 9201192 Japan
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092 China
| |
Collapse
|
37
|
Krajnović M, Kožik B, Božović A, Jovanović-Ćupić S. Multiple Roles of the RUNX Gene Family in Hepatocellular Carcinoma and Their Potential Clinical Implications. Cells 2023; 12:2303. [PMID: 37759525 PMCID: PMC10527445 DOI: 10.3390/cells12182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent cancers in humans, characterised by a high resistance to conventional chemotherapy, late diagnosis, and a high mortality rate. It is necessary to elucidate the molecular mechanisms involved in hepatocarcinogenesis to improve diagnosis and treatment outcomes. The Runt-related (RUNX) family of transcription factors (RUNX1, RUNX2, and RUNX3) participates in cardinal biological processes and plays paramount roles in the pathogenesis of numerous human malignancies. Their role is often controversial as they can act as oncogenes or tumour suppressors and depends on cellular context. Evidence shows that deregulated RUNX genes may be involved in hepatocarcinogenesis from the earliest to the latest stages. In this review, we summarise the topical evidence on the roles of RUNX gene family members in HCC. We discuss their possible application as non-invasive molecular markers for early diagnosis, prognosis, and development of novel treatment strategies in HCC patients.
Collapse
Affiliation(s)
| | - Bojana Kožik
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, Vinča, 11351 Belgrade, Serbia; (M.K.); (A.B.); (S.J.-Ć.)
| | | | | |
Collapse
|
38
|
Hirose Y, Sato S, Hashiya K, Bando T, Sugiyama H. Anticancer Activities of DNA-Alkylating Pyrrole-Imidazole Polyamide Analogs Targeting RUNX Transcription Factors against p53-Mutated Pancreatic Cancer PANC-1 Cells. J Med Chem 2023; 66:12059-12068. [PMID: 37606185 DOI: 10.1021/acs.jmedchem.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The runt-related transcription factor (RUNX) family is known to play important roles in the progression of cancer. Conjugate 1, which covalently binds to the RUNX-binding sequences, was reported to inhibit the binding of RUNX proteins to their target sites and suppress cancer growth. Here, we evaluated the anticancer effects of 1 and its analogs 2-4 against p53-mutated PANC-1 pancreatic cancer cells. We found that they possessed different DNA-alkylating properties in vitro. And conjugates 1-3 were shown to have anticancer effects by inducing apoptosis in PANC-1 cells. Furthermore, conjugates 2 and 3 suppressed cancer growth in PANC-1 xenograft mice, with activity equivalent to a 50-fold dose of gemcitabine. Especially, 3 showed the highest alkylation efficiency, specificity, and better anticancer effects against pancreatic cancer than 1 in vivo without significant body weight loss. Our results revealed the potential of our compounds as new candidates for cancer therapy.
Collapse
Affiliation(s)
- Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinsuke Sato
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
39
|
She C, Wu C, Guo W, Xie Y, Li S, Liu W, Xu C, Li H, Cao P, Yang Y, Wang X, Chang A, Feng Y, Hao J. Combination of RUNX1 inhibitor and gemcitabine mitigates chemo-resistance in pancreatic ductal adenocarcinoma by modulating BiP/PERK/eIF2α-axis-mediated endoplasmic reticulum stress. J Exp Clin Cancer Res 2023; 42:238. [PMID: 37697370 PMCID: PMC10494371 DOI: 10.1186/s13046-023-02814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Gemcitabine (GEM)-based chemotherapy is the first-line option for pancreatic ductal adenocarcinoma (PDAC). However, the development of drug resistance limits its efficacy, and the specific mechanisms remain largely unknown. RUNX1, a key transcription factor in hematopoiesis, also involved in the malignant progression of PDAC, but was unclear in the chemoresistance of PDAC. METHODS Comparative analysis was performed to screen GEM-resistance related genes using our single-cell RNA sequencing(scRNA-seq) data and two public RNA-sequencing datasets (GSE223463, GSE183795) for PDAC. The expression of RUNX1 in PDAC tissues was detected by qRT-PCR, immunohistochemistry (IHC) and western blot. The clinical significance of RUNX1 in PDAC was determined by single-or multivariate analysis and survival analysis. We constructed the stably expressing cell lines with shRUNX1 and RUNX1, and successfully established GEM-resistant cell line. The role of RUNX1 in GEM resistance was determined by CCK8 assay, plate colony formation assay and apoptosis analysis in vitro and in vivo. To explore the mechanism, we performed bioinformatic analysis using the scRNA-seq data to screen for the endoplasm reticulum (ER) stress signaling that was indispensable for RUNX1 in GEM resistance. We observed the cell morphology in ER stress by transmission electron microscopy and validated RUNX1 in gemcitabine resistance depended on the BiP/PERK/eIF2α pathway by in vitro and in vivo oncogenic experiments, using ER stress inhibitor(4-PBA) and PERK inhibitor (GSK2606414). The correlation between RUNX1 and BiP expression was assessed using the scRNA-seq data and TCGA dataset, and validated by RT-PCR, immunostaining and western blot. The mechanism of RUNX1 regulation of BiP was confirmed by ChIP-PCR and dual luciferase assay. Finally, the effect of RUNX1 inhibitor on PDAC was conducted in vivo mouse models, including subcutaneous xenograft and patient-derived xenograft (PDX) mouse models. RESULTS RUNX1 was aberrant high expressed in PDAC and closely associated with GEM resistance. Silencing of RUNX1 could attenuate resistance in GEM-resistant cell line, and its inhibitor Ro5-3335 displayed an enhanced effect in inhibiting tumor growth, combined with GEM treatment, in PDX mouse models and GEM-resistant xenografts. In detail, forced expression of RUNX1 in PDAC cells suppressed apoptosis induced by GEM exposure, which was reversed by the ER stress inhibitor 4-PBA and PERK phosphorylation inhibitor GSK2606414. RUNX1 modulation of ER stress signaling mediated GEM resistance was supported by the analysis of scRNA-seq data. Consistently, silencing of RUNX1 strongly inhibited the GEM-induced activation of BiP and PERK/eIF2α signaling, one of the major pathways involved in ER stress. It was identified that RUNX1 directly bound to the promoter region of BiP, a primary ER stress sensor, and stimulated BiP expression to enhance the reserve capacity for cell adaptation, which in turn facilitated GEM resistance in PDAC cells. CONCLUSIONS This study identifies RUNX1 as a predictive biomarker for response to GEM-based chemotherapy. RUNX1 inhibition may represent an effective strategy for overcoming GEM resistance in PDAC cells.
Collapse
Affiliation(s)
- Chunhua She
- Department of Neurosurgery and Neuro-Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chao Wu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weihua Guo
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongjie Xie
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shouyi Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Weishuai Liu
- Department of Pain Management, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Chao Xu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pei Cao
- School of Medicine, Nankai University, Tianjin, 300060, China
| | - Yanfang Yang
- Second Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xiuchao Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Antao Chang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
40
|
Zhai F, Wang J, Luo X, Ye M, Jin X. Roles of NOLC1 in cancers and viral infection. J Cancer Res Clin Oncol 2023; 149:10593-10608. [PMID: 37296317 DOI: 10.1007/s00432-023-04934-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND The nucleolus is considered the center of metabolic control and an important organelle for the biogenesis of ribosomal RNA (rRNA). Nucleolar and coiled-body phosphoprotein 1(NOLC1), which was originally identified as a nuclear localization signal-binding protein is a nucleolar protein responsible for nucleolus construction and rRNA synthesis, as well as chaperone shuttling between the nucleolus and cytoplasm. NOLC1 plays an important role in a variety of cellular life activities, including ribosome biosynthesis, DNA replication, transcription regulation, RNA processing, cell cycle regulation, apoptosis, and cell regeneration. PURPOSE In this review, we introduce the structure and function of NOLC1. Then we elaborate its upstream post-translational modification and downstream regulation. Meanwhile, we describe its role in cancer development and viral infection which provide a direction for future clinical applications. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION NOLC1 plays an important role in the progression of multiple cancers and viral infection. In-depth study of NOLC1 provides a new perspective for accurate diagnosis of patients and selection of therapeutic targets.
Collapse
Affiliation(s)
- Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China
| | - Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
- The Affiliated First Hospital, Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
41
|
Roy A, Chauhan S, Bhattacharya S, Jakhmola V, Tyagi K, Sachdeva A, Wasai A, Mandal S. Runt-related transcription factors in human carcinogenesis: a friend or foe? J Cancer Res Clin Oncol 2023; 149:9409-9423. [PMID: 37081242 DOI: 10.1007/s00432-023-04769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Cancer is one of the deadliest pathologies with more than 19 million new cases and 10 million cancer-related deaths across the globe. Despite development of advanced therapeutic interventions, cancer remains as a fatal pathology due to lack of early prognostic biomarkers, therapy resistance and requires identification of novel drug targets. METHODS Runt-related transcription factors (Runx) family controls several cellular and physiological functions including osteogenesis. Recent literatures from PubMed was mined and the review was written in comprehensive manner RESULTS: Recent literature suggests that aberrant expression of Runx contributes to tumorigenesis of many organs. Conversely, cell- and tissue-specific tumor suppressor roles of Runx are also reported. In this review, we have provided the structural/functional properties of Runx isoforms and its regulation in context of human cancer. Moreover, in an urgent need to discover novel therapeutic interventions against cancer, we comprehensively discussed the reported oncogenic and tumor suppressive roles of Runx isoforms in several tumor types and discussed the discrepancies that may have risen on Runx as a driver of malignant transformation. CONCLUSION Runx may be a novel therapeutic target against a battery of deadly human cancers.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India.
| | - Shivi Chauhan
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Vibhuti Jakhmola
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Komal Tyagi
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abha Sachdeva
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Abdul Wasai
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Sector 125, Noida, Uttar Pradesh, 201303, India
| | - Supratim Mandal
- Department of Microbiology, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| |
Collapse
|
42
|
Koyama Y, Okazaki H, Shi Y, Mezawa Y, Wang Z, Sakimoto M, Ishizuka A, Ito Y, Koyama T, Daigo Y, Takano A, Miyagi Y, Yokose T, Yamashita T, Sugahara K, Hino O, Yang L, Maruyama R, Katakura A, Yasukawa T, Orimo A. Increased RUNX3 expression mediates tumor-promoting ability of human breast cancer-associated fibroblasts. Cancer Med 2023; 12:18062-18077. [PMID: 37641472 PMCID: PMC10523979 DOI: 10.1002/cam4.6421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are a major stromal component of human breast cancers and often promote tumor proliferation, progression and malignancy. We previously established an experimental CAF (exp-CAF) cell line equipped with a potent tumor-promoting ability. It was generated through prolonged incubation of immortalized human mammary fibroblasts with human breast cancer cells in a tumor xenograft mouse model. RESULTS Herein, we found that the exp-CAFs highly express Runt-related transcription factor 3 (RUNX3), while counterpart fibroblasts do not. In breast cancer patients, the proportion of RUNX3-positive stromal fibroblast-like cells tends to be higher in cancerous regions than in non-cancerous regions. These findings suggest an association of RUNX3 with CAF characteristics in human breast cancers. To investigate the functional role of RUNX3 in CAFs, the exp-CAFs with or without shRNA-directed knockdown of RUNX3 were implanted with breast cancer cells subcutaneously in immunodeficient mice. Comparison of the resulting xenograft tumors revealed that tumor growth was significantly attenuated when RUNX3 expression was suppressed in the fibroblasts. Consistently, Ki-67 and CD31 immunohistochemical staining of the tumor sections indicated reduction of cancer cell proliferation and microvessel formation in the tumors formed with the RUNX3-suppressed exp-CAFs. CONCLUSION These results suggest that increased RUNX3 expression could contribute to the tumor-promoting ability of CAFs through mediating cancer cell growth and neoangiogenesis in human breast tumors.
Collapse
Affiliation(s)
- Yu Koyama
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Hiroya Okazaki
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Yang Shi
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshihiro Mezawa
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Zixu Wang
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Mizuki Sakimoto
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Akane Ishizuka
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Yasuhiko Ito
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Present address:
Department of Immunological DiagnosisJuntendo University Graduate School of MedicineTokyoJapan
| | - Takumi Koyama
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Yataro Daigo
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research HospitalThe University of TokyoTokyoJapan
- Department of Medical Oncology and Cancer Center, and Center for Advanced Medicine against CancerShiga University of Medical ScienceOtsuJapan
| | - Atsushi Takano
- Center for Antibody and Vaccine Therapy, Institute of Medical Science, Research HospitalThe University of TokyoTokyoJapan
- Department of Medical Oncology and Cancer Center, and Center for Advanced Medicine against CancerShiga University of Medical ScienceOtsuJapan
| | - Yohei Miyagi
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteYokohamaJapan
| | | | - Toshinari Yamashita
- Department of Breast Surgery and OncologyKanagawa Cancer CenterYokohamaJapan
| | - Keisuke Sugahara
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
| | - Okio Hino
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
| | - Liying Yang
- Project for Cancer Epigenomics, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer InstituteJapanese Foundation for Cancer ResearchTokyoJapan
| | - Akira Katakura
- Department of Oral Pathobiological Science and SurgeryTokyo Dental CollegeTokyoJapan
| | - Takehiro Yasukawa
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| | - Akira Orimo
- Department of Pathology and OncologyJuntendo University Faculty of MedicineTokyoJapan
- Department of Molecular PathogenesisJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
43
|
Chen Y, He Y, Liu S. RUNX1-Regulated Signaling Pathways in Ovarian Cancer. Biomedicines 2023; 11:2357. [PMID: 37760803 PMCID: PMC10525517 DOI: 10.3390/biomedicines11092357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Ovarian cancer is the leading cause of gynecological death worldwide, and its poor prognosis and high mortality seriously affect the life of ovarian cancer patients. Runt-related transcription factor 1 (RUNX1) has been widely studied in hematological diseases and plays an important role in the occurrence and development of hematological diseases. In recent years, studies have reported the roles of RUNX1 in solid tumors, including the significantly increased expression of RUNX1 in ovarian cancer. In ovarian cancer, the dysregulation of the RUNX1 signaling pathway has been implicated in tumor progression, metastasis, and response to therapy. At the same time, the decreased expression of RUNX1 in ovarian cancer can significantly improve the sensitivity of clinical chemotherapy and provide theoretical support for the subsequent diagnosis and treatment target of ovarian cancer, providing prognosis and treatment options to patients with ovarian cancer. However, the role of RUNX1 in ovarian cancer remains unclear. Therefore, this article reviews the relationship between RUNX1 and the occurrence and development of ovarian cancer, as well as the closely regulated signaling pathways, to provide some inspiration and theoretical support for future research on RUNX1 in ovarian cancer and other diseases.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying He
- School of Chemical Science & Technology, Yunnan University, Kunming 650091, China
| | - Shubai Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Wang Y, Dai L, Huang R, Li W, Wu W. Prognosis signature for predicting the survival and immunotherapy response in esophageal carcinoma based on cellular senescence-related genes. Front Oncol 2023; 13:1203351. [PMID: 37664030 PMCID: PMC10470646 DOI: 10.3389/fonc.2023.1203351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Background Cellular senescence occurs throughout life and can play beneficial roles in a variety of physiological processes, including embryonic development, tissue repair, and tumor suppression. However, the relationship between cellular senescence-related genes (CSRGs) and immunotherapy in esophageal carcinoma (ECa) remains poorly defined. Methods The data set used in the analysis was retrieved from TCGA (Research Resource Identifier (RRID): SCR_003193), GEO (RRID: SCR_005012), and CellAge databases. Data processing, statistical analysis, and diagram formation were conducted in R software (RRID: SCR_001905) and GraphPad Prism (RRID: SCR_002798). Based on CSRGs, we used the TCGA database to construct a prognostic signature for ECa and then validated it in the GEO database. The predictive efficiency of the signature was evaluated using receiver operating characteristic (ROC) curves, Cox regression analysis, nomogram, and calibration curves. According to the median risk score derived from CSRGs, patients with ECa were divided into high- and low-risk groups. Immune infiltration and immunotherapy were also analyzed between the two risk groups. Finally, the hub genes of the differences between the two risk groups were identified by the STRING (RRID: SCR_005223) database and Cytoscape (RRID: SCR_003032) software. Results A six-gene risk signature (DEK, RUNX1, SMARCA4, SREBF1, TERT, and TOP1) was constructed in the TCGA database. Patients in the high-risk group had a worse overall survival (OS) was disclosed by survival analysis. As expected, the signature presented equally prognostic significance in the GSE53624 cohort. Next, the Area Under ROC Curve (AUC=0.854) and multivariate Cox regression analysis (HR=3.381, 2.073-5.514, P<0.001) also proved that the risk signature has a high predictive ability. Furthermore, we can more accurately predict the prognosis of patients with ECa by nomogram constructed by risk score. The result of the TIDE algorithm showed that ECa patients in the high-risk group had a greater possibility of immune escape. At last, a total of ten hub genes (APOA1, MUC5AC, GC, APOA4, AMBP, FABP1, APOA2, SOX2, MUC8, MUC17) between two risk groups with the highest interaction degrees were identified. By further analysis, four hub genes (APOA4, AMBP, FABP1, and APOA2) were related to the survival differences of ECa. Conclusions Our study reveals comprehensive clues that a novel signature based on CSRGs may provide reliable prognosis prediction and insight into new therapy for patients with ECa.
Collapse
Affiliation(s)
- Yue Wang
- Anhui No.2 Provinicial People's Hospital Clinical College of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui No.2 Provinicial People's Hospital, Hefei, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Longfei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Huang
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Weisong Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenyong Wu
- Anhui No.2 Provinicial People's Hospital Clinical College of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui No.2 Provinicial People's Hospital, Hefei, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Ye J, Cai S, Feng Y, Li J, Cai Z, Deng Y, Liu R, Zhu X, Lu J, Zhuo Y, Liang Y, Xie J, Zhang Y, He H, Han Z, Jia Z, Zhong W. Metformin escape in prostate cancer by activating the PTGR1 transcriptional program through a novel super-enhancer. Signal Transduct Target Ther 2023; 8:303. [PMID: 37582751 PMCID: PMC10427640 DOI: 10.1038/s41392-023-01516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 08/17/2023] Open
Abstract
The therapeutic efficacy of metformin in prostate cancer (PCa) appears uncertain based on various clinical trials. Metformin treatment failure may be attributed to the high frequency of transcriptional dysregulation, which leads to drug resistance. However, the underlying mechanism is still unclear. In this study, we found evidences that metformin resistance in PCa cells may be linked to cell cycle reactivation. Super-enhancers (SEs), crucial regulatory elements, have been shown to be associated with drug resistance in various cancers. Our analysis of SEs in metformin-resistant (MetR) PCa cells revealed a correlation with Prostaglandin Reductase 1 (PTGR1) expression, which was identified as significantly increased in a cluster of cells with metformin resistance through single-cell transcriptome sequencing. Our functional experiments showed that PTGR1 overexpression accelerated cell cycle progression by promoting progression from the G0/G1 to the S and G2/M phases, resulting in reduced sensitivity to metformin. Additionally, we identified key transcription factors that significantly increase PTGR1 expression, such as SRF and RUNX3, providing potential new targets to address metformin resistance in PCa. In conclusion, our study sheds new light on the cellular mechanism underlying metformin resistance and the regulation of the SE-TFs-PTGR1 axis, offering potential avenues to enhance metformin's therapeutic efficacy in PCa.
Collapse
Affiliation(s)
- Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Shanghua Cai
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China
| | - Yuanfa Feng
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Jinchuang Li
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Zhiduan Cai
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Yulin Deng
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Ren Liu
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Xuejin Zhu
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Jianming Lu
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Yingke Liang
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Jianjiang Xie
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Huichan He
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China
| | - Zhaodong Han
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92507, USA.
- Graduate Program in Genetics, Genomics & Bioinformatics, University of California, Riverside, CA, 92507, USA.
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, South China University of Technology, 510180, Guangzhou, Guangdong, China.
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong, China.
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, 999078, Macau, China.
| |
Collapse
|
46
|
Cai C, Zhu Y, Mu J, Liu S, Yang Z, Wu Z, Zhao C, Song X, Ye Y, Gu J, Sang Y, Wu X, Gong W. DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell Signal 2023; 108:110710. [PMID: 37156453 DOI: 10.1016/j.cellsig.2023.110710] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Gallbladder cancer (GBC) is a type of rare but highly aggressive cancer with a dismal prognosis. Runt-related transcription factor 3 (RUNX3), a member of the runt-domain family, and its promoter methylation have been widely observed in a variety of human malignancies. However, the biological function and underlying mechanism of RUNX3 in GBC remain elusive. In this study, bisulfate sequencing PCR (BSP), Western blot, and qPCR were applied to identify the expression level and DNA methylation level of RUNX3 in GBC tissues and cells. The transcriptional relationship between RUNX3 and Inhibitor of growth 1 (ING1) was validated by dual-luciferase reporter assay and ChIP assay. A series of gain-of-function and loss-of-function assays were performed to detect the function and the regulatory relationship of RUNX3 in vitro and in vivo. RUNX3 was aberrantly downregulated in GBC cells and tissues caused by DNA Methyltransferase 1 (DNMT1)-mediated methylation, and downregulation of RUNX3 is associated with poor prognosis of GBC patients. Functional experiments reveal that RUNX3 can induce ferroptosis of GBC cells in vitro and in vivo. Mechanistically, RUNX3 induces ferroptosis by activating ING1 transcription, thereby repressing SLC7A11 in a p53-dependent manner. In conclusion, the downregulation of RUNX3 is mediated by DNA methylation, which promotes the pathogenesis of gallbladder cancer through attenuating SLC7A11-mediated ferroptosis. This study gives novel insights into the role of RUNX3 in the ferroptosis of GBC cells, which may contribute to developing potential treatment targets for GBC.
Collapse
Affiliation(s)
- Chen Cai
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Ziyou Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Cheng Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jun Gu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Chongming Branch. No. 25 Nanmen Road, Shanghai 202150, China
| | - Yuer Sang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China.
| |
Collapse
|
47
|
Jin Y, Huang S, Wang Z. Identify and validate RUNX2 and LAMA2 as novel prognostic signatures and correlate with immune infiltrates in bladder cancer. Front Oncol 2023; 13:1191398. [PMID: 37519798 PMCID: PMC10373733 DOI: 10.3389/fonc.2023.1191398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background Muscle-invasive bladder cancer (MIBC) develops lymph node (LN) metastasis or distant metastasis, leading to recurrence and poor prognosis. The five-year survival rate of MIBC with LN or distant metastasis is only 8.1%; therefore, there is an urgent need to identify reliable biomarkers for prognosis and treatment regimen for patients with bladder cancer (BLCA). Methods SEER database was used to select important clinical characteristics for MIBC. Then, weighted gene co-expression network analysis (WGCNA) was employed to identify differentially expressed genes (DEGs) to recognize significant co-expression modules by calculating the correlation between the modules and clinical data. Furthermore, Cox regression and lasso analysis were applied to screen prognostic hub genes and establish the risk predictive model. Bladder cancer cell lines (UMUC3 and 5637) were used for experimental validation in vitro. Results Cox analysis of 122,600 MIBC patients showed that the N stage was the most important clinical factor. A total of 4,597 DEGs were calculated between N0 and N+ patients, and WGCNA with these DEGs in 368 samples revealed that expression of turquoise was positively and strongly correlated with the N stage. Eight genes were identified as important prognostic candidates using lasso regression based on Cox analysis and STRING database. Combining GEO datasets, literature, and clinical factors, we identified LAMA2 and RUNX2 as novel prognostic biomarkers. CCK8 assay showed that depletion of LAMA2 or RUNX2 significantly inhibited the proliferation of BLCA cells, and flow cytometry indicated that knockdown of LAMA2 or RUNX2 induced the apoptosis of BLCA cells. Transwell assay also showed that silencing of LAMA2 or RUNX2 weakened the migration and invasiveness of BLCA cells. Conclusions We constructed a new eight-gene risk model to provide novel prognostic biomarkers and therapeutic targets for BLCA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Siwei Huang
- School of Humanities and Management, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
48
|
Kim DM, Lee SY, Lim JC, Cho EH, Park UJ. RUNX3 regulates the susceptibility against EGFR-targeted non-small cell lung cancer therapy using 47Sc-conjugated cetuximab. BMC Cancer 2023; 23:652. [PMID: 37438719 DOI: 10.1186/s12885-023-11161-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Radioimmunotherapy with cetuximab and conjugates with various radioisotopes is a feasible treatment option for different tumor models. Scandium-47 (47Sc), one of several β--particle-emitting radioisotopes, displays favorable physical and chemical properties for conjugation to monoclonal antibodies. However, the therapeutic efficacy of 47Sc in preclinical and clinical studies is largely unknown. Given that intrinsic alterations in tumors greatly contribute to resistance to anti-epidermal growth factor receptor (EGFR)-targeted therapy, research on overcoming resistance to radioimmunotherapy using cetuximab is required. METHODS 47Sc was produced by irradiation of a CaCO3 target at the HANARO research reactor in KAERI (Korea Atomic Energy Research Institute) and prepared by chromatographic separation of the irradiated target. Cetuximab was conjugated with 47Sc using the bifunctional chelating agent DTPA. Radiochemical purity was determined using instant thin-layer chromatography. The immunoreactivity of 47Sc-DTPA-cetuximab was evaluated using the Lindmo method and an in vitro cell-binding assay. The inhibitory effects of cetuximab and 47Sc-DTPA-cetuximab were confirmed using cell growth inhibition and BrdU cell proliferation assays. Differences in protein expression levels between cetuximab- and 47Sc-DTPA-cetuximab-treated cells were confirmed using western blotting. Complex formation between RUNX3 and DNA repair components was confirmed using immunoprecipitation and western blotting. RESULTS Cetuximab induces cell cycle arrest and cell death in EGFR-overexpressing NSCLC cells. Radiolabeling of cetuximab with 47Sc led to increased therapeutic efficacy relative to cetuximab alone. Application of 47Sc-DTPA-cetuximab induced DNA damage responses, and activation of RUNX3 significantly enhanced the therapeutic efficacy of 47Sc-DTPA-cetuximab. RUNX3 mediated susceptibility to EGFR-targeted NSCLC therapy using 47Sc-DTPA-cetuximab via interaction with components of the DNA damage and repair machinery. CONCLUSIONS 47Sc-DTPA-cetuximab promoted cell death in EGFR-overexpressing NSCLC cells by targeting EGFR and inducing DNA damage as a result of β irradiation emitted from the conjugated 47Sc. Activation of RUNX3 played a key role in DNA damage and repair processes in response to the ionizing radiation and inhibited cell growth, thus leading to more effective tumor suppression. RUNX3 can potentially moderate susceptibility to 47Sc-conjugated cetuximab by modulating DNA damage and repair process mechanisms.
Collapse
Affiliation(s)
- Da-Mi Kim
- Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea.
| | - So-Young Lee
- Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Jae-Cheong Lim
- Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Eun-Ha Cho
- Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Ul-Jae Park
- Radioisotope Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| |
Collapse
|
49
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
50
|
Oei V, Chuang LSH, Matsuo J, Srivastava S, Teh M, Ito Y. RUNX3 inactivates oncogenic MYC through disruption of MYC/MAX complex and subsequent recruitment of GSK3β-FBXW7 cascade. Commun Biol 2023; 6:689. [PMID: 37400551 DOI: 10.1038/s42003-023-05037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/12/2023] [Indexed: 07/05/2023] Open
Abstract
MYC is one of the most commonly dysregulated proto-oncogenes in cancer. MYC promotes cancer initiation and maintenance by regulating multiple biological processes, such as proliferation and stem cell function. Here, we show that developmental regulator RUNX3 targets MYC protein for rapid degradation through the glycogen synthase kinase-3 beta-F-box/WD repeat-containing protein 7 (GSK3β-FBXW7) proteolytic pathway. The evolutionarily conserved Runt domain of RUNX3 interacts directly with the basic helix-loop-helix leucine zipper of MYC, resulting in the disruption of MYC/MAX and MYC/MIZ-1 interactions, enhanced GSK3β-mediated phosphorylation of MYC protein at threonine-58 and its subsequent degradation via the ubiquitin-proteasomal pathway. We therefore uncover a previously unknown mode of MYC destabilization by RUNX3 and provide an explanation as to why RUNX3 inhibits early-stage cancer development in gastrointestinal and lung mouse cancer models.
Collapse
Affiliation(s)
- Vincent Oei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Graduate School, Integrative Sciences and Engineering Programme, Singapore, Singapore
| | - Linda Shyue Huey Chuang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore, Singapore
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|