1
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Guo P, Zhu B, Bai T, Guo X, Shi D, Jiang C, Kong J, Huang Q, Shi J, Shao D. Nanomaterial-Interleukin Combination for Boosting NK Cell-Based Tumor Immunotherapy. ACS Biomater Sci Eng 2025. [PMID: 40340300 DOI: 10.1021/acsbiomaterials.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The use of natural killer (NK) cell-based immunotherapy has been extensively explored in clinical trials for multiple types of tumors and has surfaced as a promising approach in tumor immunotherapy. Interleukins (ILs), a vital class of cytokines, play a crucial role in regulating several functions of NK cells, thereby becoming a focal point in the advancement of NK cell-based therapies. Nonetheless, the use of ILs as single agents is significantly constrained by their short half-life, limited efficacy, and adverse reactions. Currently, nanomaterials are being progressively employed in the delivery of ILs to enhance NK cell-based immunotherapy. However, there is currently a lack of comprehensive reviews summarizing the design of NK-cell-targeted nanomaterials and related systems for delivery of ILs. Furthermore, certain nanomaterials, either alone or in conjunction with other therapeutics, can also promote the secretion of ILs, representing a promising avenue for further exploration. Accordingly, this review begins by outlining various types of ILs and subsequently discusses the advancements in applying nanomaterials for IL delivery. It also examines the potential of nanomaterials to enhance IL secretion from other immune cells, thereby influencing the NK cell functionality. Lastly, this review addresses the challenges associated with using nanomaterials in these contexts and offers perspectives for future research. This study aims to provide valuable insights into the development of NK cell immunotherapy and innovative nanomaterial-based drug delivery systems.
Collapse
Affiliation(s)
- Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bobo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Bai
- School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaojia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dingyu Shi
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South Ninth Road, Nanshan District, Shenzhen City, 518063, P. R. China
| |
Collapse
|
3
|
Huang Z, Liu D, Zhang Y, Lu W, Hu L, Zhang J, Xie L, Chen S. PITX1 as a grading, prognostic and tumor-infiltrating immune cells marker for chondrosarcoma: a public database-based immunoassay and tissue sample analysis. Front Oncol 2025; 15:1477649. [PMID: 40342824 PMCID: PMC12060168 DOI: 10.3389/fonc.2025.1477649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background Chondrosarcoma (CHS) is a rare bone cancer originating from chondrocytes, with high-grade cases associated with high mortality rates. However, the prognostic factors and therapeutic targets for CHS have not been studied. Methods Graded gene differential analysis was conducted on 97 CHS tissues to identify genes associated with CHS grading. Additionally, we performed GO and KEGG enrichment analyses of the differentially-expressed genes (DEGs), as well as GSEA analysis, differential expression analysis, survival analysis, and univariable and multifactorial COX analysis of paired-like homology structural domain transcription factor 1 (PITX1). Furthermore, our findings investigated the relationship between tumor-infiltrating immune cells (TICs) in CHS tumors using CIBERSORT to calculate proportions and differences. Our findings also explored the associations among gene expression patterns, survival prognosis, TICs, and immune checkpoints across various cancer types. Finally, immunohistochemical staining was carried out on self-collected clinical samples to assess PITX1 expression levels and correlate them with clinical information. Results Gene differential expression analysis revealed a strong correlation between PITX1 expression and tumor grade. GO, KEGG enrichment, and GSEA analysis demonstrated the association of PITX1 with cell proliferation-related processes, such as cell cycle regulation and mitosis, and differentiation-related processes, such as RNA processing. PITX1 expression was associated with tumor stage and survival outcomes. Immunoassay indicated a positive correlation between PITX1 levels and TICs, immune checkpoints, and graded TICs. Pan-cancer analysis confirmed the differential expression of the PITX1 gene across multiple cancers, impacting survival prognosis, TIC patterns, and immune checkpoint regulation. Lastly, our 75 collection of clinical patient tissue samples exhibited varying levels of PITX1 expression across different cancer grades while also demonstrating a significant association with tumor differentiation and metastasis. Conclusion PITX1 is a novel biomarker for distinguishing between high-grade and low-grade CHS, serving as a prognostic indicator for patients with this condition and presenting a promising target for immunotherapy. These findings offer innovative insights into the treatment of CHS.
Collapse
Affiliation(s)
- Zikun Huang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Dongchen Liu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Zhang
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Clinical Research Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Weiqing Lu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lan Hu
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jinghao Zhang
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lei Xie
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shubiao Chen
- Department of Orthopaedics, First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Sport Medicine Centre, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
4
|
Zhao Y, Zhou R, Lin F, Zhang C. Higher serum vitamin B 6 is associated with lower all-cause mortality among cancer survivors in the National Health and Nutrition Examination Survey. Nutr Res 2025; 138:1-11. [PMID: 40273594 DOI: 10.1016/j.nutres.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Variations in serum concentrations of vitamin B6, vitamin B12, and folate may influence cancer development and progression. However, the association between these 3 serum B vitamins and all-cause mortality among cancer survivors remains unclear. We evaluated the potential associations between serum vitamins B6, B12, and folate and all-cause mortality among cancer survivors. Our hypothesis proposed that higher serum concentrations of vitamin B6, vitamin B12, and folate might be inversely associated with a lower risk of all-cause mortality in this population. Data from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were used. All-cause mortality was determined by linking participant data to National Death Index records till 31 December 2019. Serum vitamins B6, B12, and folate status were measured. Multivariable Cox regression analyses were applied to investigate the relationship between serum vitamins B6, B12, and folate concentrations and all-cause mortality among cancer survivors. Serum vitamin B6 was inversely associated with all-cause mortality, with a fully-adjusted HR of 0.54 (95%CI: 0.38, 0.78, Ptrend< .001). However, no statistically significant association was observed between serum vitamin B12 as well as serum folate concentration and all-cause mortality among cancer survivors (B12: fully-adjust HR = 0.90, 95%CI: 0.63, 1.27, Ptrend = .771; folate: fully-adjust HR = 0.82, 95%CI: 0.63, 1.08, Ptrend = .269). No statistically significant interaction for age, sex, and BMI was found in stratified analyses. No non-linear relationship was found except for serum folate. These results suggest that higher serum vitamin B6 may be associated with improved survival in cancer survivors.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruhua Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fangting Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Caixia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Martin Corredera M, Paillet J, Gaudeaux P, Blein T, Sadek H, Rault P, Berriche A, Roche-Naude J, Lagresle-Peyrou C, Soheili TS, André I, Moirangthem RD, Negre O. Feeder-cell-free system for ex vivo production of natural killer cells from cord blood hematopoietic stem and progenitor cells. Front Immunol 2025; 16:1531736. [PMID: 40051631 PMCID: PMC11883473 DOI: 10.3389/fimmu.2025.1531736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/23/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Natural Killer (NK) cells hold significant promise as therapeutic agents in immuno-oncology due to their ability to target and eliminate cancerous and infected cells without causing graft-versus-host disease or cytokine release syndrome. However, the limited availability of robust, scalable methods for generating clinical-grade NK cells remains a limiting factor to broader clinical application. Methods Here we report the development of a novel feeder-cell-free culture system optimized for producing NK cells from cord blood-derived CD34+ hematopoietic stem and progenitor cells (HSPCs). Our method eliminates the need for feeder cells while achieving high yields of NK cells that exhibit unique marker expression and cytotoxic functions. Cord blood CD34+ HSPCs were cultured in our established hDLL 4 culture system and generated large numbers of human T lymphoid progenitors (ProTcells) in 7 days. ProTcells were further cultured in a hDLL4-free, feeder-cell-free system for NK cell differentiation and supplemented with cytokines. Following a 7- or 14-day culture, this method produced highly pure NK cell populations (>90% CD3-CD56+). Results Flow and mass cytometric analysis confirmed the expression of activating receptors, transcription factors (ID2, T-bet) and cytotoxic molecules (perforin, granzyme A/B), all essential for ProT-NK cell functionality. These cells are in an immature state, indicated by the absence of maturation markers (CD16, KIRs). Functional assays demonstrated that these ProT-NK cells are capable of degranulation and cytokines production (TNFα) upon stimulation with K562 target cells and showed cytotoxicity against K562 cells superior to that of Peripheral Blood (PB)-NK. In NSG-Tg(hIL-15) mice, ProT-NK cells colonize bone marrow, the liver, and the spleen and persist and mature in bone marrow for at least 9 days post-injection. Compared to ProT-NK D21, ProT-NK D14 was superior in functional and homing potential. In vivo, an anti-tumor assay that uses a subcutaneous K562 model has demonstrated the anti-tumor potential of ProT-NK cells. Discussion Our ex vivo culture process supports scalable ProT-NK cell production in high yields, reducing dependency on feeder cells and mitigating contamination risks. Our findings demonstrate the feasibility of generating large, functional NK cell populations from HSPCs isolated from readily available cord blood sources and offer an efficient alternative to PB-NK cell therapies.
Collapse
Affiliation(s)
- Marta Martin Corredera
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Juliette Paillet
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Pierre Gaudeaux
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Tifanie Blein
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Hanem Sadek
- Smart Immune, Research & Development department, Paris, France
| | - Pauline Rault
- Smart Immune, Research & Development department, Paris, France
| | - Asma Berriche
- Smart Immune, Research & Development department, Paris, France
| | | | - Chantal Lagresle-Peyrou
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, AP-HP, INSERM, Paris, France
| | | | - Isabelle André
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Ranjita Devi Moirangthem
- Smart Immune, Research & Development department, Paris, France
- Laboratory of Human Lymphohematopoieisis, Imagine Institute, INSERM UMR 1163, Université Paris Cité, Paris, France
| | - Olivier Negre
- Smart Immune, Research & Development department, Paris, France
| |
Collapse
|
6
|
Nakamura M, Tanaka Y, Hakoda K, Ohira M, Kobayashi T, Kurachi K, Tamura K, Ohdan H. Antitumor effects of natural killer cells derived from gene-engineered human-induced pluripotent stem cells on hepatocellular carcinoma. Cancer Immunol Immunother 2025; 74:99. [PMID: 39904787 PMCID: PMC11794780 DOI: 10.1007/s00262-025-03940-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/01/2025] [Indexed: 02/06/2025]
Abstract
Mortality and recurrence rates of hepatocellular carcinoma (HCC) remain high despite the use of various treatment methods. Recently, cell-based immunotherapy using natural killer (NK) cells has attracted considerable attention in cancer immunotherapy. NK cells generated from induced pluripotent stem cells (iPSCs) are a new option for use as an NK cell resource. The eNK cells (HLCN061, developed by HEALIOS K.K.) are human iPSC-derived NK cells differentiated from clinical-grade iPSCs in which IL-15, CCR2B, CCL19, CD16a, and NKG2D have been introduced. In this study, we aimed to evaluate the potential of eNK cell therapy for HCC treatment. The analysis of eNK cells for cell surface and intracellular molecules revealed that antitumor-related surface molecules (TRAIL, CD226, and CD16) and intracellular cytotoxic factors (perforin, granzyme B, TNFα, and IFNγ) were highly expressed. In addition, eNK cells exhibited high cytotoxicity against HCC cell lines (HepG2, HuH7, and SNU-423), which are sensitive to NKG2D, TRAIL, and CD226. The TRAIL and perforin/granzyme B pathways are largely involved in this cytotoxic mechanism, as indicated by the reduction in cytotoxicity induced by TRAIL inhibitory antibodies and concanamycin A, which inhibits perforin/granzyme B-mediated cytotoxicity. Our data suggest that eNK cells, whose functions have been enhanced by genetic engineering, have the potential to improve HCC treatment.
Collapse
Affiliation(s)
- Mayuna Nakamura
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Keishi Hakoda
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | | | | | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
7
|
Liu D, Liu L, Che X, Wu G. Discovery of paradoxical genes: reevaluating the prognostic impact of overexpressed genes in cancer. Front Cell Dev Biol 2025; 13:1525345. [PMID: 39911323 PMCID: PMC11794808 DOI: 10.3389/fcell.2025.1525345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oncogenes are typically overexpressed in tumor tissues and often linked to poor prognosis. However, recent advancements in bioinformatics have revealed that many highly expressed genes in tumors are associated with better patient outcomes. These genes, which act as tumor suppressors, are referred to as "paradoxical genes." Analyzing The Cancer Genome Atlas (TCGA) confirmed the widespread presence of paradoxical genes, and KEGG analysis revealed their role in regulating tumor metabolism. Mechanistically, discrepancies between gene and protein expression-affected by pre- and post-transcriptional modifications-may drive this phenomenon. Mechanisms like upstream open reading frames and alternative splicing contribute to these inconsistencies. Many paradoxical genes modulate the tumor immune microenvironment, exerting tumor-suppressive effects. Further analysis shows that the stage- and tumor-specific expression of these genes, along with their environmental sensitivity, influence their dual roles in various signaling pathways. These findings highlight the importance of paradoxical genes in resisting tumor progression and maintaining cellular homeostasis, offering new avenues for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiangyu Che
- *Correspondence: Guangzhen Wu, ; Xiangyu Che,
| | | |
Collapse
|
8
|
Rady M, Mostafa M, Dida G, Sabet F, Abou-Aisha K, Watzl C. Adoptive NK cell therapy in AML: progress and challenges. Clin Exp Med 2025; 25:41. [PMID: 39820676 PMCID: PMC11748472 DOI: 10.1007/s10238-025-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Adoptive cell therapy (ACT) using natural killer (NK) cells has emerged as a promising therapeutic strategy for acute myeloid leukemia (AML), addressing challenges such as chemotherapy resistance and high relapse rates. Over the years, clinical trials and studies have explored various sources of NK cells, including ex vivo expanded NK cell lines, CAR-NK cells, peripheral blood-derived NK cells, and umbilical cord blood-derived NK cells. These therapies have demonstrated varying degrees of therapeutic efficacy, ranging from transient anti-leukemia activity to sustained remission in select patient groups. Toxicity profiles have generally shown favorable safety outcomes, with minimal incidence of severe adverse effects such as cytokine release syndrome (CRS) or graft-versus-host disease (GVHD). However, persistent challenges remain, including limited NK cell persistence, relapse, and heterogeneity in patient responses. This review provides a comprehensive analysis of clinical outcomes and toxicity profiles provided from clinical trials, clinical studies and case reports conducted in the last 15 years to judge on the efficacy, safety and applicability of using NK cells for ACT of AML. Our review highlights the significant potential of NK cell-based therapies for AML, while addressing the technical and biological challenges that must be overcome to enhance their efficacy and safety.
Collapse
Affiliation(s)
- Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt.
- Faculty of Biotechnology, German International University, New Administrative Capital, Egypt.
| | - Maha Mostafa
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Gabriel Dida
- University of South Wales, Pontypridd, Wales, UK
- Department of Health Systems Management and Public Health, Technical University of Kenya, Nairobi, Kenya
| | - Fatima Sabet
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Khaled Abou-Aisha
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), New Cairo, Egypt
| | - Carsten Watzl
- Immunology Department, Leibniz Research Center for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
9
|
Chen J, Zhou Y, Pang Y, Fu K, Luo Q, Sun L, Wu H, Lin Q, Su G, Chen X, Zhao L, Chen H. FAP-targeted radioligand therapy with 68Ga/ 177Lu-DOTA-2P(FAPI) 2 enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy. J Immunother Cancer 2025; 13:e010212. [PMID: 39800373 PMCID: PMC11749305 DOI: 10.1136/jitc-2024-010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, 68Ga/177Lu-DOTA-2P(FAPI)2, which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining 68Ga/177Lu-DOTA-2P(FAPI)2 radioligand therapy with PD-1/PD-L1 immunotherapy. METHODS Regarding the change in PD-L1 expression and DNA double-strand breaks induced by radiopharmaceuticals, CT26-FAP tumor cells were incubated with 68Ga and 177Lu labeled DOTA-2P(FAPI)2, respectively. Monotherapy with 68Ga-DOTA-2P(FAPI)2, 177Lu-DOTA-2P(FAPI)2, and PD-L1 immunotherapy as well as combination therapy (68Ga/177Lu-DOTA-2P(FAPI)2 and PD-L1 immunotherapy) were tested and evaluated to evaluate in vivo antitumor efficacy. Furthermore, immunohistochemical staining and single-cell RNA sequencing were used to analyze changes in the tumor microenvironment (TME) and elucidate the underlying mechanisms of action of this combination therapy. RESULTS Our findings indicated that FAP-targeting radiopharmaceuticals can induce DNA double-strand breaks and upregulate PD-L1 expression, with 177Lu-DOTA-2P(FAPI)2 proving to be more effective than 68Ga-DOTA-2P(FAPI)2. Both 68Ga-DOTA-2P(FAPI)2 and 177Lu-DOTA-2P(FAPI)2 radiopharmaceuticals significantly improved therapeutic outcomes when combined with anti-PD-L1 monoclonal antibody (αPD-L1 mAb). Notably, the combination of 177Lu-DOTA-2P(FAPI)2 with αPD-L1 mAb immunotherapy eliminated tumors in mouse models. Mice treated with this regimen not only exhibited exceptional responses to the initial immune checkpoint inhibitor therapy but also showed 100% tumor rejection on subsequent tumor cell re-inoculation. Further mechanistic studies have shown that 177Lu-DOTA-2P(FAPI)2 combined with αPD-L1 mAb can reprogram the TME, enhancing antitumor intercellular communication, which activates antitumor-related intercellular contacts such as FasL-Fas interactions between T cells and NK cells with tumor cells and increasing the proportion of infiltrating CD8+ T-cells while reducing regulatory T cells and inhibiting tumor progression. Our research also demonstrates that mature neutrophils play a role in enhancing the efficacy of the combined therapy, as shown in neutrophil-blocking experiments. CONCLUSIONS Our study robustly advocates for use of FAP-targeting radiopharmaceuticals, particularly 177Lu-DOTA-2P(FAPI)2, alongside immunotherapy in treating FAP-positive tumors. This combination therapy transforms the TME and enables a translatable approach to increasing the sensitivity to PD-1/PD-L1 immunotherapy, leading to improved complete remission rates and extended overall survival.
Collapse
Affiliation(s)
- Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yangfan Zhou
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kaili Fu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Qicong Luo
- Laboratory of Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoqiang Su
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
10
|
Shinzawa Y, Sasaki SI, Iwabuchi S, Hashimoto S, Kawada M, Hayakawa Y. Protein phosphatase 2A inhibitor modulates natural killer cell homeostasis in peripheral tissues. Biochem Biophys Res Commun 2024; 741:151020. [PMID: 39577078 DOI: 10.1016/j.bbrc.2024.151020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Although natural killer (NK) cell responses to tumor and viral infection have been studied, the mechanisms underlying NK cell homeostasis in vivo remain unclear. In this study, we demonstrate the pharmacological action of cytostatin, a protein phosphatase 2A (PP2A) specific inhibitor (PP2Ai), on NK cells in regulating NK cell homeostasis in the peripheral tissues. We found that PP2Ai treatment decreased NK cell percentages in the bone marrow and secondary lymphoid tissues while increasing NK cell percentages in peripheral tissues such as the lung and liver. In the peripheral tissues of PP2Ai-treated mice, Ki-67 expression and BrdU uptake in NK cells were upregulated, and an initial increase in the pre-mature CD11bhiCD27hi NK subset was observed, followed by an increase in the terminally differentiated mature CD11bhiCD27lo NK subset. In addition, bone marrow Ki-67+ NK cells predominantly expressed CX3CR1 in the PP2Ai-treated mice and were further mobilized to the peripheral tissues. Among various target molecules of PP2A, we found that the upregulation of c-Myc pathway and its phosphorylation, along with its downstream cyclin E expression and G1/S cell cycle transition in PP2Ai-treated mice NK cells. Our results suggest that PP2Ai modulates NK cell proliferation through c-Myc and cyclin E, leading to their maturation and trafficking from the bone marrow to the peripheral tissues.
Collapse
Affiliation(s)
- Yui Shinzawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - So-Ichiro Sasaki
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan.
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, 811-1, Kimiidera, Wakayama-shi, Wakayama 641-8509, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan.
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, 2630, Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| |
Collapse
|
11
|
Shinzawa Y, Hara D, Shinguryo Y, Yokoyama S, Kawada M, Hayakawa Y. PP2A negatively regulates NK cell T-bet expression and anti-tumor effector function. Int Immunol 2024; 37:97-107. [PMID: 39404747 DOI: 10.1093/intimm/dxae057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
The transcription factor T-bet is essential for the anti-tumor effector function of natural killer (NK) cells, but the mechanism regulating its expression in NK cells remains unclear. In this study, we aimed to identify an NK cell-intrinsic regulator that controls T-bet expression. Using T-bet-luciferase reporter assay screening, we identified a protein phosphatase inhibitor as a potential activator of T-bet expression. A series of protein phosphatase 2A (PP2A)-specific inhibitors (PP2Ai) or PP2A siRNA induced the expression of T-bet. In PP2Ai-treated mice, the expression of T-bet and its downstream effector molecules, granzyme B and IFN-γ, was also upregulated in NK cells. Mechanistically, PP2Ai increased the phosphorylation of mTOR and ribosomal protein S6 in NK cells, and mTOR inhibitor canceled the effects of PP2Ai in NK cells. Importantly, NK cells isolated from PP2Ai-treated mice showed higher cytotoxicity and IFN-γ production; therefore, they increased the anti-tumor effector function of NK cells. Accordingly, PP2Ai treatment inhibited lung metastasis of B16 melanoma by NK cell- and mTOR-dependent mechanisms. These results suggest that PP2A negatively regulates NK cell T-bet expression and effector function by an mTOR-dependent mechanism.
Collapse
Affiliation(s)
- Yui Shinzawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Daisuke Hara
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yuki Shinguryo
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Satoru Yokoyama
- Department of Cancer Cell Biology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Yoshihiro Hayakawa
- Section of Host Defences, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
12
|
Bida M, Miya TV, Hull R, Dlamini Z. Tumor-infiltrating lymphocytes in melanoma: from prognostic assessment to therapeutic applications. Front Immunol 2024; 15:1497522. [PMID: 39712007 PMCID: PMC11659259 DOI: 10.3389/fimmu.2024.1497522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/04/2024] [Indexed: 12/24/2024] Open
Abstract
Malignant melanoma, the most aggressive form of skin cancer, is characterized by unpredictable growth patterns, and its mortality rate has remained alarmingly high over recent decades, despite various treatment approaches. One promising strategy for improving outcomes in melanoma patients lies in the early use of biomarkers to predict prognosis. Biomarkers offer a way to gauge patient outlook early in the disease course, facilitating timely, targeted intervention. In recent years, considerable attention has been given to the immune response's role in melanoma, given the tumor's high immunogenicity and potential responsiveness to immunologic treatments. Researchers are focusing on identifying predictive biomarkers by examining both cancer cell biology and immune interactions within the tumor microenvironment (TME). This approach has shed light on tumor-infiltrating lymphocytes (TILs), a type of immune cell found within the tumor. TILs have emerged as a promising area of study for their potential to serve as both a prognostic indicator and therapeutic target in melanoma. The presence of TILs in melanoma tissue can often signal a positive immune response to the cancer, with numerous studies suggesting that TILs may improve patient prognosis. This review delves into the prognostic value of TILs in melanoma, assessing how these immune cells influence patient outcomes. It explores the mechanisms through which TILs interact with melanoma cells and the potential clinical applications of leveraging TILs in treatment strategies. While TILs present a hopeful avenue for prognostication and treatment, there are still challenges. These include understanding the full extent of TIL dynamics within the TME and overcoming limitations in TIL-based therapies. Advancements in TIL characterization methods are also critical to refining TIL-based approaches. By addressing these hurdles, TIL-focused research may pave the way for improved diagnostic and therapeutic options, ultimately offering better outcomes for melanoma patients.
Collapse
Affiliation(s)
- Meshack Bida
- Division of Anatomical Pathology, National Health Laboratory Service, University of Pretoria, Hatfield, South Africa
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Thabiso Victor Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, South Africa
| |
Collapse
|
13
|
Guo X, Zhang F, Hao G. Causal relationship between folic acid and prostate cancer risk: Insights from Mendelian randomization analysis. Int J Urol 2024; 31:1356-1364. [PMID: 39306731 DOI: 10.1111/iju.15565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/14/2024] [Indexed: 12/06/2024]
Abstract
OBJECTIVE Folic acid is a commonly used dietary supplement of trace element, but it may increase the risk of prostate cancer (PCa). The aim of this study was to investigate the causal relationship between PCa and folic acid supplementation, as well as dietary folate equivalents, using Mendelian randomization (MR) analysis. METHODS The Genome-Wide Association Study (GWAS) data of folic acid supplementation and dietary folate equivalents were selected from UK Biobank. Meta-analysis of GWASs of PCa was obtained from PCa Association Group to Investigate Cancer-Associated Alterations in the Genome consortium. MR analysis was performed with inverse variance weighted (IVW) method, MR-Egger regression, simple mode, weighted median, and weighted mode analysis. Heterogeneity and horizontal pleiotropy tests and reverse MR analysis were conducted to assess the robustness and reliability of the causal inference. RESULTS Six single nucleotide polymorphisms (SNPs) associated with folic acid supplementation and five SNPs associated with dietary folate equivalents were identified as instrumental variables. Genetically predicted folic acid supplementation was associated with an increased risk of PCa (OR 1.200, p < 0.001, by IVW method), and there was no evidence of heterogeneity, horizontal pleiotropy, or significant reverse causality (all p > 0.05). In contrast, dietary folate equivalents showed no significant correlation with PCa (p > 0.05 for all five MR methods). CONCLUSION This study demonstrated an association between increased risk of PCa and folic acid supplementation, but not with dietary folate equivalents. These findings have implications for public health interventions and personalized preventive strategies for PCa.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| | - Fengbo Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| | - Gangyue Hao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Beijing Municipal Health Commission, Beijing, China
| |
Collapse
|
14
|
Oh H, Cho AR, Jeon JH, Suh E, Moon J, Cho BH, Lee YK. Association between resting heart rate and low natural killer cell activity: a cross-sectional study. Front Immunol 2024; 15:1465953. [PMID: 39399484 PMCID: PMC11466811 DOI: 10.3389/fimmu.2024.1465953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Resting heart rate (RHR), a simple physiological indicator, has been demonstrated to be associated with inflammation and even metabolic disorders. This study aimed to investigate whether RHR is associated with natural killer cell activity (NKA) in a large population of healthy adults using a novel assay to measure NKA. This cross-sectional study included 7,500 subjects in the final analysis. NKA was estimated by measuring the amount of interferon-gamma (IFN-γ) released by activated natural killer cells; low NKA was defined as IFN-γ level <500 pg/mL. Subjects were categorized into four groups according to RHR as follows: C1 (≤ 60 bpm), C2 (60-70 bpm), C3 (70-80 bpm), and C4 (≥ 80 bpm). Individuals with higher RHR exhibited poorer metabolic and inflammatory profiles, with the prevalence of low NKA being highest in the highest RHR category. Compared with C1 as reference, the fully adjusted odd ratios (ORs) [95% confidence intervals (CIs)] for low NKA were significantly higher in C3 (OR: 1.37, 95% CI: 1.08-1.75) and C4 (OR: 1.55, 95% CI: 1.20-2.00). In addition, RHR was shown to exert indirect effects on NKA upon consideration of the mediation effect of serum cortisol in path analysis. Our findings confirm a significant link between elevated RHR and low NKA, and suggest the usefulness of RHR, a simple indicator reflecting increased sympathetic nervous system activity and stress, in predicting reduced immune function.
Collapse
Affiliation(s)
- Hyoju Oh
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - A-Ra Cho
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joo-Hwan Jeon
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Eunkyung Suh
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| | - Junhyung Moon
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Baek Hwan Cho
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Yun-Kyong Lee
- Chaum Life Center, CHA University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Liu J, He C, Tan W, Zheng JH. Path to bacteriotherapy: From bacterial engineering to therapeutic perspectives. Life Sci 2024; 352:122897. [PMID: 38971366 DOI: 10.1016/j.lfs.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The major reason for the failure of conventional therapies is the heterogeneity and complexity of tumor microenvironments (TMEs). Many malignant tumors reprogram their surface antigens to evade the immune surveillance, leading to reduced antigen-presenting cells and hindered T-cell activation. Bacteria-mediated cancer immunotherapy has been extensively investigated in recent years. Scientists have ingeniously modified bacteria using synthetic biology and nanotechnology to enhance their biosafety with high tumor specificity, resulting in robust anticancer immune responses. To enhance the antitumor efficacy, therapeutic proteins, cytokines, nanoparticles, and chemotherapeutic drugs have been efficiently delivered using engineered bacteria. This review provides a comprehensive understanding of oncolytic bacterial therapies, covering bacterial design and the intricate interactions within TMEs. Additionally, it offers an in-depth comparison of the current techniques used for bacterial modification, both internally and externally, to maximize their therapeutic effectiveness. Finally, we outlined the challenges and opportunities ahead in the clinical application of oncolytic bacterial therapies.
Collapse
Affiliation(s)
- Jinling Liu
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China; College of Biology, Hunan University, Changsha 410082, China
| | - Chongsheng He
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenzhi Tan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan 410114, China.
| | - Jin Hai Zheng
- The Affiliated Xiangtan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, China.
| |
Collapse
|
16
|
Won EJ, Lee M, Lee EK, Baek SH, Yoon TJ. Lipid-Based Nanoparticles Fused with Natural Killer Cell Plasma Membrane Proteins for Triple-Negative Breast Cancer Therapy. Pharmaceutics 2024; 16:1142. [PMID: 39339179 PMCID: PMC11434974 DOI: 10.3390/pharmaceutics16091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Immunotherapy combined with chemicals and genetic engineering tools is emerging as a promising strategy to treat triple-negative breast cancer (TNBC), which is more aggressive with poorer progress than other breast cancer subtypes. In this study, lipid-based nanoparticles (LNPs) possessed an NK cell-like function that could deliver tumor-specific therapeutics and inhibit tumor growth. LNPs fused with an NK cell membrane protein system (NK-LNP) have three main features: (i) hydrophilic plasmid DNA can inhibit TNBC metastasis when encapsulated within LNPs and delivered to cells; (ii) the lipid composition of LNPs, including C18 ceramide, exhibits anticancer effects; (iii) NK cell membrane proteins are immobilized on the LNP surface, enabling targeted delivery to TNBC cells. These particles facilitate the targeted delivery of HIC1 plasmid DNA and the modulation of immune cell functions. Delivered therapeutic genes can inhibit metastasis of TNBC and then induce apoptotic cell death while targeting macrophages to promote cytokine release. The anticancer effect is expected to be applied in treating various difficult-to-treat cancers with LNP fused with NK cell plasma membrane proteins, which can simultaneously deliver therapeutic chemicals and genes.
Collapse
Affiliation(s)
- Eun-Jeong Won
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Nucleic Acid Therapeutics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang, Cheongwon, Cheongju 28116, Republic of Korea
| | - Myungchul Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 31065, Republic of Korea
| | - Eui-Kyung Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 31065, Republic of Korea
| | - Seung-Hoon Baek
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Tae-Jong Yoon
- Research Institute of Pharmaceutical Science and Technology (RIPST), Department of Pharmacy, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Department of BioHealth Regulatory Science, Graduate School of Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Moogene Medi Institute, 25, Misagangbyeonjungang-ro 7beonan-gil, Hanam 12939, Republic of Korea
| |
Collapse
|
17
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
18
|
Dekojová T, Gmucová H, Macečková D, Klieber R, Ostašov P, Leba M, Vlas T, Jungová A, Caputo VS, Čedíková M, Lysák D, Jindra P, Holubová M. Lymphocyte profile in peripheral blood of patients with multiple myeloma. Ann Hematol 2024:10.1007/s00277-024-05820-x. [PMID: 38832999 DOI: 10.1007/s00277-024-05820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Multiple myeloma (MM) is a disease which remains incurable. One of the main reasons is a weakened immune system that allows MM cells to survive. Therefore, the current research is focused on the study of immune system imbalance in MM to find the most effective immunotherapy strategies. Aiming to identify the key points of immune failure in MM patients, we analysed peripheral lymphocytes subsets from MM patients (n = 57) at various stages of the disease course and healthy individuals (HI, n = 15) focusing on T, NK, iNKT, B cells and NK-cell cytokines. Our analysis revealed that MM patients exhibited immune alterations in all studied immune subsets. Compared to HI, MM patients had a significantly lower proportion of CD4 + T cells (19.55% vs. 40.85%; p < 0.001) and CD4 + iNKT cells (18.8% vs. 40%; p < 0.001), within B cells an increased proportion of CD21LCD38L subset (4.5% vs. 0.4%; p < 0.01) and decreased level of memory cells (unswitched 6.1% vs. 14.7%; p < 0.001 and switched 7.8% vs. 11.2%; NS), NK cells displaying signs of activation and exhaustion characterised by a more than 2-fold increase in SLAMF7 MFI (p < 0.001), decreased expression of NKG2D (MFI) and NKp46 (%) on CD16 + 56 + and CD16 + 56- subset respectively (p < 0.05), Effective immunotherapy needs to consider these immune defects and monitoring of the immune status of MM patients is essential to define better interventions in the future.
Collapse
Affiliation(s)
- Tereza Dekojová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Hana Gmucová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Diana Macečková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Robin Klieber
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Pavel Ostašov
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, 323 00, Czech Republic
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Martin Leba
- Faculty of Applied Science, University of West Bohemia, Pilsen, 301 00, Czech Republic
| | - Tomáš Vlas
- Institute of Allergology and Immunology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Alexandra Jungová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Valentina S Caputo
- Cancer Biology and Therapy laboratory, School of Applied Sciences, London South Bank University, London, UK
| | - Miroslava Čedíková
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Daniel Lysák
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic
| | - Monika Holubová
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, 323 00, Czech Republic.
- Laboratory of Tumor Biology and Immunotherapy, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
| |
Collapse
|
19
|
Chung DC, Elford AR, Jacquelot N. Characterizing tumor-infiltrating group 1 innate lymphoid cells in PyMT breast tumors. Methods Cell Biol 2024; 192:1-15. [PMID: 39863384 DOI: 10.1016/bs.mcb.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Breast cancer is the most common cancer in women and continues to have a significant impact in cancer-associated deaths worldwide. Investigating the complex roles of infiltrating immune subsets within the tumor microenvironment (TME) will enable a better understanding of disease progression and reveal novel therapeutic strategies for patients with breast cancer. The mammary-specific expression of polyomavirus middle T oncoprotein (MMTV-PyMT) was first established in 1992 by William Muller and is the most commonly used genetically engineered mouse model (GEMM) for breast cancer research. Innate lymphoid cells (ILCs) are composed of a diverse family of effector cells known to play important roles in defense against pathogens, tissue homeostasis, and tumor immunity. In mice, group 1 ILCs are composed of NK cells and ILC1s, which have been shown to have differential roles within the TME. Here, we provide a detailed methodology in characterizing tumor-infiltrating NK cells and ILC1s in MMTV-PyMT breast tumor model.
Collapse
Affiliation(s)
- Douglas C Chung
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Tumor immunotherapy program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alisha R Elford
- Tumor immunotherapy program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Arnie Charbonneau Cancer Research Institute, Calgary, AB, Canada.
| |
Collapse
|
20
|
Lee M, Kwon S. Enhanced cytotoxic activity of natural killer cells from increased calcium influx induced by electrical stimulation. PLoS One 2024; 19:e0302406. [PMID: 38635551 PMCID: PMC11025832 DOI: 10.1371/journal.pone.0302406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in immunosurveillance independent of antigen presentation, which is regulated by signal balance via activating and inhibitory receptors. The anti-tumor activity of NK cells is largely dependent on signaling from target recognition to cytolytic degranulation; however, the underlying mechanism remains unclear, and NK cell cytotoxicity is readily impaired by tumor cells. Understanding the activation mechanism is necessary to overcome the immune evasion mechanism, which remains an obstacle in immunotherapy. Because calcium ions are important activators of NK cells, we hypothesized that electrical stimulation could induce changes in intracellular Ca2+ levels, thereby improving the functional potential of NK cells. In this study, we designed an electrical stimulation system and observed a correlation between elevated Ca2+ flux induced by electrical stimulation and NK cell activation. Breast cancer MCF-7 cells co-cultured with electrically stimulated KHYG-1 cells showed a 1.27-fold (0.5 V/cm) and 1.55-fold (1.0 V/cm) higher cytotoxicity, respectively. Electrically stimulated KHYG-1 cells exhibited a minor increase in Ca2+ level (1.31-fold (0.5 V/cm) and 1.11-fold (1.0 V/cm) higher), which also led to increased gene expression of granzyme B (GZMB) by 1.36-fold (0.5 V/cm) and 1.58-fold (1.0 V/cm) by activating Ca2+-dependent nuclear factor of activated T cell 1 (NFAT1). In addition, chelating Ca2+ influx with 5 μM BAPTA-AM suppressed the gene expression of Ca2+ signaling and lytic granule (granzyme B) proteins by neutralizing the effects of electrical stimulation. This study suggests a promising immunotherapeutic approach without genetic modifications and elucidates the correlation between cytolytic effector function and intracellular Ca2+ levels in electrically stimulated NK cells.
Collapse
Affiliation(s)
- Minseon Lee
- Department of Biological Engineering, Inha University, Incheon, Korea
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| | - Soonjo Kwon
- Department of Biological Engineering, Inha University, Incheon, Korea
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Korea
| |
Collapse
|
21
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
22
|
Morimoto T, Nakazawa T, Matsuda R, Maeoka R, Nishimura F, Nakamura M, Yamada S, Park YS, Tsujimura T, Nakagawa I. Antitumor Effects of Intravenous Natural Killer Cell Infusion in an Orthotopic Glioblastoma Xenograft Murine Model and Gene Expression Profile Analysis. Int J Mol Sci 2024; 25:2435. [PMID: 38397112 PMCID: PMC10889440 DOI: 10.3390/ijms25042435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Despite standard multimodality treatment, containing maximum safety resection, temozolomide, radiotherapy, and a tumor-treating field, patients with glioblastoma (GBM) present with a dismal prognosis. Natural killer cell (NKC)-based immunotherapy would play a critical role in GBM treatment. We have previously reported highly activated and ex vivo expanded NK cells derived from human peripheral blood, which exhibited anti-tumor effect against GBM cells. Here, we performed preclinical evaluation of the NK cells using an in vivo orthotopic xenograft model, the U87MG cell-derived brain tumor in NOD/Shi-scid, IL-2RɤKO (NOG) mouse. In the orthotopic xenograft model, the retro-orbital venous injection of NK cells prolonged overall survival of the NOG mouse, indirectly indicating the growth-inhibition effect of NK cells. In addition, we comprehensively summarized the differentially expressed genes, especially focusing on the expression of the NKC-activating receptors' ligands, inhibitory receptors' ligands, chemokines, and chemokine receptors, between murine brain tumor treated with NKCs and with no agents, by using microarray. Furthermore, we also performed differentially expressed gene analysis between an internal and external brain tumor in the orthotopic xenograft model. Our findings could provide pivotal information for the NK-cell-based immunotherapy for patients with GBM.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Nara, Japan
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Nara, Japan;
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Nara, Japan;
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| |
Collapse
|
23
|
Erin N, Akdeniz Ö. ADAM10 and Neprilysin level decreases in immune cells of mice bearing metastatic breast carcinoma: Possible role in cancer inflammatory response. Int Immunopharmacol 2024; 127:111384. [PMID: 38141405 DOI: 10.1016/j.intimp.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE AND DESIGN ADAM10 and Neprilysin, proteases, play critical role in inflammatory disease, however their role in cancer immune response is not clear. We here evaluated changes in immune response using an experimental model for breast cancer. MATERIAL AND METHOD Highly metastatic breast cancer cells (4T1-derived) were injected orthotopically (mammary-pad of Balb-c mice) to induce tumors. Changes in enzyme level and activity as well as alterations in inflammatory cytokine release in the presence or absence of ADAM10 and NEP activity was determined using specific inhibitors and recombinant proteins. Cytokine response was evaluated using mix leucocyte cultures obtained from control and tumor-bearing mice. ANOVA with Dunnett's posttest was used for statistical analysis. RESULTS ADAM10 and NEP expression was decreased markedly in lymph nodes and spleens of tumor-bearing mice. ADAM10 activity was reduced together with apparent alterations of ADAM10 processing. ADAM10 and NEP activity decreased TNF-α, IL-6 and IFN-ɣ secretion. Suppression of these inflammatory cytokines were more prominent in cultures obtained from control mice demonstrating counteracting factors that are exist in tumor-bearing mice. CONCLUSION Loss of ADAM10 and NEP activity in immune cells during breast cancer metastasis might be one of the main factors involved in induction of chronic inflammation by tumors.
Collapse
Affiliation(s)
- Nuray Erin
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye.
| | - Özlem Akdeniz
- Akdeniz University, School of Medicine, Department of Medical Pharmacology, Antalya 07070, Turkiye
| |
Collapse
|
24
|
Park E, Mun HJ, Seo E, Hwang S, Lee JH, Song S, Sung H, Kim HY, Kwon MJ. CAR NK92 Cells Targeting BCMA Can Effectively Kill Multiple Myeloma Cells Both In Vitro and In Vivo. Biomedicines 2024; 12:248. [PMID: 38275419 PMCID: PMC10813548 DOI: 10.3390/biomedicines12010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy caused by malignant proliferation of plasma cells in bone marrow. Over the last decade, the survival outcome of patients with multiple myeloma (MM) has been substantially improved with the emergence of novel therapeutic agents. However, MM remains an incurable neoplastic plasma cell disorder. In addition, almost all MM patients inevitably relapse due to drug resistance. Chimeric antigen receptor (CAR)-modified NK cells represent a promising immunotherapeutic modality for cancer treatment. In this study, NK92 cells were engineered to express the third generation of BCMA CAR. In vitro, BCMA CAR-engineered NK92 cells displayed higher cytotoxicity and produced more cytokines such as IFN-γ and granzyme B than NK92 cells when they were co-cultured with MM cell lines. Furthermore, BCMA CAR-engineered NK92 cells released significantly higher amounts of cytokines and showed higher cytotoxicity when they were exposed to primary cells isolated from MM patients. The cytotoxicity of BCMA CAR NK92 cells was enhanced after MM cells were treated with bortezomib. Additionally, BCMA CAR NK92 cells exhibited potent antitumor activities in subcutaneous tumor models of MM. These results demonstrate that regional administration of BCMA CAR NK92 cells is a potentially promising strategy for treating MM.
Collapse
Affiliation(s)
- Eunhee Park
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Hui-jin Mun
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Eunju Seo
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Seojin Hwang
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Jae Hee Lee
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Sukgil Song
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Hyeran Sung
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Hoi-Yul Kim
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Mi-Jin Kwon
- Department of New Drug Development, Cellgentek Co., Ltd., 110-6, Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| |
Collapse
|
25
|
He C, Wang D, Shukla SK, Hu T, Thakur R, Fu X, King RJ, Kollala SS, Attri KS, Murthy D, Chaika NV, Fujii Y, Gonzalez D, Pacheco CG, Qiu Y, Singh PK, Locasale JW, Mehla K. Vitamin B6 Competition in the Tumor Microenvironment Hampers Antitumor Functions of NK Cells. Cancer Discov 2024; 14:176-193. [PMID: 37931287 PMCID: PMC10784745 DOI: 10.1158/2159-8290.cd-23-0334] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Nutritional factors play crucial roles in immune responses. The tumor-caused nutritional deficiencies are known to affect antitumor immunity. Here, we demonstrate that pancreatic ductal adenocarcinoma (PDAC) cells can suppress NK-cell cytotoxicity by restricting the accessibility of vitamin B6 (VB6). PDAC cells actively consume VB6 to support one-carbon metabolism, and thus tumor cell growth, causing VB6 deprivation in the tumor microenvironment. In comparison, NK cells require VB6 for intracellular glycogen breakdown, which serves as a critical energy source for NK-cell activation. VB6 supplementation in combination with one-carbon metabolism blockage effectively diminishes tumor burden in vivo. Our results expand the understanding of the critical role of micronutrients in regulating cancer progression and antitumor immunity, and open new avenues for developing novel therapeutic strategies against PDAC. SIGNIFICANCE The nutrient competition among the different tumor microenvironment components drives tumor growth, immune tolerance, and therapeutic resistance. PDAC cells demand a high amount of VB6, thus competitively causing NK-cell dysfunction. Supplying VB6 with blocking VB6-dependent one-carbon metabolism amplifies the NK-cell antitumor immunity and inhibits tumor growth in PDAC models. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Chunbo He
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surendra K. Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tuo Hu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Xiao Fu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Ryan J. King
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kuldeep S. Attri
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Divya Murthy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nina V. Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Daisy Gonzalez
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Camila G. Pacheco
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yudong Qiu
- Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pankaj K. Singh
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
26
|
Li N, Yu K, Huang D, Zhou H, Zeng D. Identifying a Novel Eight-NK Cell-related Gene Signature for Ovarian Cancer Prognosis Prediction. Curr Med Chem 2024; 31:1578-1594. [PMID: 37650393 DOI: 10.2174/0929867331666230831101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Ovarian cancer (OVC) is the most common and costly tumor in the world with unfavorable overall survival and prognosis. This study is aimed to explore the prognostic value of natural killer cells related genes for OVC treatment. METHODS RNA-seq and clinical information were acquired from the TCGA-OVC dataset (training dataset) and the GSE51800 dataset (validation dataset). Genes linked to NK cells were obtained from the immPort dataset. Moreover, ConsensusClusterPlus facilitated the screening of molecular subtypes. Following this, the risk model was established by LASSO analysis, and immune infiltration and immunotherapy were then detected by CIBERSORT, ssGSEA, ESTIMATE, and TIDE algorithms. RESULTS Based on 23 NK cell-related genes with prognosis, TCGA-OVC samples were classified into two clusters, namely C1 and C2. Of these, C1 had better survival outcomes as well as enhanced immune infiltration and tumor stem cells. Additionally, it was more suitable for immunotherapy and was also sensitive to traditional chemotherapy drugs. The eight-gene prognosis model was constructed and verified via the GSE51800 dataset. Additionally, a high infiltration level of immune cells was observed in low-risk patients. Low-risk samples also benefited from immunotherapy and chemotherapy drugs. Finally, a nomogram and ROC curves were applied to validate model accuracy. CONCLUSION The present study identified a RiskScore signature, which could stratify patients with different infiltration levels, immunotherapy, and chemotherapy drugs. Our study provided a basis for precisely evaluating OVC therapy and prognosis.
Collapse
Affiliation(s)
- Nan Li
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001, China
- Liuzhou Institute of Reproduction and Genetics, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001, China
- Guangxi Health Commission Key Laboratory of Birth Cohort Study in Pregnant Women of Advanced Age, Liuzhou, 545001, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Delun Huang
- Department of Physiology, Guangxi University of Chinese Medicine, Nanning, 530004, China
| | - Hui Zhou
- Department of Gynecologic Oncology, Sun Yat-Sen Memorial Hospital of Sun Yatsen University, Guangzhou, 510120, China
| | - Dingyuan Zeng
- Reproductive Medicine Center, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001, China
- Liuzhou Institute of Reproduction and Genetics, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001, China
- Guangxi Health Commission Key Laboratory of Birth Cohort Study in Pregnant Women of Advanced Age, Liuzhou, 545001, China
- The Department of Obstetrics and Gynecology, Liuzhou Maternity and Child Health Care Hospital, Liuzhou, 545001, China
| |
Collapse
|
27
|
Li Y, Guo Y, Zhang K, Zhu R, Chen X, Zhang Z, Yang W. Cell Death Pathway Regulation by Functional Nanomedicines for Robust Antitumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306580. [PMID: 37984863 PMCID: PMC10797449 DOI: 10.1002/advs.202306580] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Cancer immunotherapy has become a mainstream cancer treatment over traditional therapeutic modes. Cancer cells can undergo programmed cell death including ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis which are find to have intrinsic relationships with host antitumor immune response. However, direct use of cell death inducers or regulators may bring about severe side effects that can also be rapidly excreted and degraded with low therapeutic efficacy. Nanomaterials are able to carry them for long circulation time, high tumor accumulation and controlled release to achieve satisfactory therapeutic effect. Nowadays, a large number of studies have focused on nanomedicines-based strategies through modulating cell death modalities to potentiate antitumor immunity. Herein, immune cell types and their function are first summarized, and state-of-the-art research progresses in nanomedicines mediated cell death pathways (e.g., ferroptosis, pyroptosis, autophagy, necroptosis, apoptosis and cuproptosis) with immune response provocation are highlighted. Subsequently, the conclusion and outlook of potential research focus are discussed.
Collapse
Affiliation(s)
- Yongjuan Li
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450001China
- The center of Infection and ImmunityAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Yichen Guo
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Kaixin Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Rongrong Zhu
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineering, and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| | - Weijing Yang
- School of Pharmaceutical SciencesHenan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
28
|
Imaoka Y, Ohira M, Nakayama T, Akabane M, Tajima T, Yokota S, Krams SM, Martinez OM, Esquivel CO, Sasaki K, Ohdan H. Evaluating Predictors of Quality in Liver NK Cells Among Deceased Donors. Cell Transplant 2024; 33:9636897241283289. [PMID: 39907091 DOI: 10.1177/09636897241283289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
This study investigated the substantial variability in the quality of liver natural killer (NK) cells from deceased donors (DDs). This study assessed liver nonparenchymal cells from 51 DDs for activation receptors and cytotoxicity against K562 (leukemia) and HepG2 (hepatoma) cell lines. The results indicated variability in TNF-related apoptosis-inducing ligand (TRAIL) and NK stimulatory receptor NK group 2 member D (NKG2D) expression in liver NK cells from DDs, which correlated with cytotoxicity against tumor cell lines. In addition, the white blood cell (WBC) count, aspartate aminotransferase (AST) level, body mass index (BMI), and platelet count were significantly associated with enhanced TRAIL and NKG2D expression. A predictive score integrating AST/platelet ratio index, BMI, and WBC count was developed to effectively identify DDs with high antitumor activity in liver NK cells. This score is expected to predict DDs with high-quality liver NK cells, which can be used for the purpose of immunotherapies.
Collapse
Affiliation(s)
- Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshihiro Nakayama
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Miho Akabane
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Tetsuya Tajima
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Shinichiro Yokota
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Sheri M Krams
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Olivia M Martinez
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Carlos O Esquivel
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
29
|
Hsieh MJ, Lin JT, Chuang YC, Lin CC, Lo YS, Ho HY, Chen MK. Limocitrin increases cytotoxicity of KHYG-1 cells against K562 cells by modulating MAPK pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2939-2951. [PMID: 37584500 DOI: 10.1002/tox.23929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/17/2023]
Abstract
Natural killer (NK) cells are gaining popularity in the field of cancer immunotherapy. The present study was designed to investigate the effect of a natural flavonol compound limocitrin in increasing cytotoxicity of a permanent NK leukemia cell line KHYG-1 against an aggressive leukemia cell line K562. The findings revealed that limocitrin increased the expressions of cytolytic molecules perforin, granzymes A and B, and granulysin in KHYG-1 cells by inducing phosphorylation of transcription factor CREB, leading to increased lysis of K562 cells. Mechanistically, limocitrin was found to increase the expressions of t-Bid, cleaved caspase 3, and cleaved PARP to induce K562 cell apoptosis. Moreover, limocitrin reduced the expressions of SET and Ape1 to inhibit DNA repair mechanism, leading to caspase-independent K562 cell death. At the molecular level, limocitrin was found to increase the phosphorylation of ERK, p38, and JNK to increase granzyme B expression in KHYG-1 cells. Taken together, the study indicates that limocitrin increases cytotoxicity of NK cells against a range of cancer cells.
Collapse
Affiliation(s)
- Ming-Ju Hsieh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Doctoral Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jen-Tsun Lin
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yi-Ching Chuang
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsin-Yu Ho
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Paudel S, Mishra N, Agarwal R. Phytochemicals as Immunomodulatory Molecules in Cancer Therapeutics. Pharmaceuticals (Basel) 2023; 16:1652. [PMID: 38139779 PMCID: PMC10746110 DOI: 10.3390/ph16121652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Phytochemicals are natural plant-derived products that provide significant nutrition, essential biomolecules, and flavor as part of our diet. They have long been known to confer protection against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treatment of cancer-unrestrained cell proliferation due to the loss of tight regulation on cell growth and replication-has been the focus of recent research. Particularly, the immunomodulatory role of phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been studied extensively. The immune system is a critical component of the tumor microenvironment, and it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals and their products have demonstrated immune regulation, such as macrophage migration, nitric oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmentation, and NFκB, TNF, and apoptosis regulation. There is a dearth of extensive accounts of the immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
Collapse
Affiliation(s)
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (S.P.); (N.M.)
| |
Collapse
|
31
|
Imaoka Y, Ohira M, Chogahara I, Bekki T, Imaoka K, Sato K, Doskali M, Nakano R, Yano T, Hirata F, Kuroda S, Tahara H, Ide K, Ishiyama K, Kobayashi T, Tanaka Y, Ohdan H. Impact of a new liver immune status index among patients with hepatocellular carcinoma after initial hepatectomy. Ann Gastroenterol Surg 2023; 7:987-996. [PMID: 37927921 PMCID: PMC10623950 DOI: 10.1002/ags3.12702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 11/07/2023] Open
Abstract
Aim The anti-tumor effects of natural killer (NK) cells vary among individuals. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expressed on liver NK cells is a marker of anti-tumor cytotoxicity against hepatocellular carcinoma (HCC) in immune cell therapy. This study aimed to develop a liver immune status index (LISI) that predicts low TRAIL expression and validates its ability to predict recurrence after initial hepatectomy for primary HCC. Methods A functional analysis of liver NK cells co-cultured with interleukin-2 for 3 days was performed of 40 liver transplant donors. The LISI, which predicted low TRAIL expression (25% quartile: <33%) in liver NK cells, was calculated using multiple logistic regression analysis. Next, 586 initial hepatectomy cases were analyzed based on the LISI. Results Our model was based on the Fibrosis-4 index+0.1 (odds ratio [OR], 1.33), body mass index (OR, 0.61), and albumin levels+0.1 (OR, 0.54). The area under the receiver operating characteristic curve (AUC) of the LISI for low TRAIL expression was 0.89. Stratification of the recurrence rates (RR) revealed that LISI was an independent predictive factor of RR (moderate risk: hazard ratio, 1.44; high risk: hazard ratio, 3.02). The AUC was similar for the LISI, albumin-indocyanine green evaluation grade, albumin-bilirubin score, and geriatric nutritional risk index for predicting RR. Among the vascular invasion cases, the LISI was more useful than the other indexes. Conclusion Our model facilitates the prediction of RR in high-risk patients by providing LISI to predict the anti-tumor effects of NK cells.
Collapse
Affiliation(s)
- Yuki Imaoka
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical ResearchHiroshima University HospitalHiroshimaJapan
| | - Ichiya Chogahara
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Tomoaki Bekki
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Kouki Imaoka
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Koki Sato
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Marlen Doskali
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Takuya Yano
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Fumihiro Hirata
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Hiroyuki Tahara
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Kentaro Ide
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Kohei Ishiyama
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
- Department of Renal Transplant SurgeryAichi Medical University School of MedicineNagakuteJapan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant SurgeryGraduate School of Biomedical and Health Sciences Hiroshima University, Hiroshima UniversityHiroshimaJapan
| |
Collapse
|
32
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
33
|
Corey L, Wallbillich JJ, Wu S, Farrell A, Hodges K, Xiu J, Nabhan C, Guastella A, Kheil M, Gogoi R, Winer I, Bandyopadhyay S, Huang M, Jones N, Wilhite A, Karnezis A, Thaker P, Herzog TJ, Oberley M, Korn WM, Vezina A, Morris R, Ali-Fehmi R. The Genomic Landscape of Vulvar Squamous Cell Carcinoma. Int J Gynecol Pathol 2023; 42:515-522. [PMID: 37131274 PMCID: PMC10417246 DOI: 10.1097/pgp.0000000000000950] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vulvar squamous cell cancer (VSC) accounts for 90% of vulvar cancers. Next-generation sequencing studies of VSC imply human papillomavirus (HPV) and p53 status play separate roles in carcinogenesis and prognosis. We sought to describe the genomic landscape and analyze the immunologic profiles of VSC with respect to HPV and p53 status. A total of 443 VSC tumors underwent tumor profiling. Next-generation sequencing was performed on genomic DNA isolated from formalin-fixed paraffin-embedded tumor samples. PD-L1, microsatellite instability were tested by fragment analysis, IHC, and next-generation sequencing. Tumor mutational burden-high was defined as >10 mutations per MB. HPV 16/18 positive (HPV+) status was determined using whole exome sequencing on 105 samples. Three cohorts were identified from 105 samples with known HPV: HPV+, HPV-/p53wt, and HPV-/p53mt. Where HPV and p53 status were examined, TP53 mutations were exclusive of HPV+ tumors. In all, 37% of samples were HPV+. Among the 66 HPV- tumors, 52 (78.8%) were HPV-/p53mt and 14 (21.2%) were HPV-/p53wt. The HPV-/p53wt cohort had a higher rate of mutations in the PI3KCA gene (42.9% HPV-/p53wt vs 26.3% HPV+ vs. 5.8% HPV-/p53mt, q =0.028) and alterations in the PI3K/AkT/mTOR pathway (57.1% HPV-/p53wt vs. 34.2% HPV+ vs. 7.7% HPV-/p53mt, q =0.0386) than the other 2 cohorts. Ninety-eight VSC tumors with HPV16/18 information underwent transcriptomic analysis and immune deconvolution method. No differences were observed in immune profiles. The HPV-/p53wt VSC tumors had significantly higher rates of mutations in the PI3KCA gene and alterations in the PI3K/AkT/mTOR pathway, a potential target that merits further investigation in this subgroup.
Collapse
|
34
|
Guo F, Zhang Y, Bai L, Cui J. Natural killer cell therapy targeting cancer stem cells: Old wine in a new bottle. Cancer Lett 2023; 570:216328. [PMID: 37499742 DOI: 10.1016/j.canlet.2023.216328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A small proportion of cancer cells that have stem cell-like properties are known as cancer stem cells (CSCs). They can be used to identify malignant tumor phenotypes and patients with poor prognosis. Targeting these cells has been shown to improve the effectiveness of cancer therapies. Owing to the nature of CSCs, they are resistant to conventional treatment methods such as radio- and chemotherapy. Therefore, more effective anti-CSC therapies are required. Immunotherapy, including natural killer (NK) and T cell therapy, has demonstrated the ability to eliminate CSCs. NK cells have demonstrated superior anti-CSC capabilities compared to T cells in recognizing low levels of major histocompatibility complex (MHC) class I expression. However, CSC escape also occurs during NK cell therapy. It is important to determine CSC-specific immune evasion mechanisms and find out potential solutions to optimize NK cell function. Therefore, this review discusses promising strategies that can improve the efficiency of NK cell therapy in treating CSCs, and aims to provide a reference for future research.
Collapse
Affiliation(s)
- Feifei Guo
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yi Zhang
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Ling Bai
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
35
|
Wang J, Ben-David R, Mehrazin R, Yang W, Tewari AK, Kyprianou N. Novel signatures of prostate cancer progression and therapeutic resistance. Expert Opin Ther Targets 2023; 27:1195-1206. [PMID: 38108262 DOI: 10.1080/14728222.2023.2293757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The extensive heterogeneity of prostate cancer (PCa) and multilayered complexity of progression to castration-resistant prostate cancer (CRPC) have contributed to the challenges of accurately monitoring advanced disease. Profiling of the tumor microenvironment with large-scale transcriptomic studies have identified gene signatures that predict biochemical recurrence, lymph node invasion, metastases, and development of therapeutic resistance through critical determinants driving CRPC. AREAS COVERED This review encompasses understanding of the role of different molecular determinants of PCa progression to lethal disease including the phenotypic dynamic of cell plasticity, EMT-MET interconversion, and signaling-pathways driving PCa cells to advance and metastasize. The value of liquid biopsies encompassing circulating tumor cells and extracellular vesicles to detect disease progression and emergence of therapeutic resistance in patients progressing to lethal disease is discussed. Relevant literature was added from PubMed portal. EXPERT OPINION Despite progress in the tumor-targeted therapeutics and biomarker discovery, distant metastasis and therapeutic resistance remain the major cause of mortality in patients with advanced CRPC. No single signature can encompass the tremendous phenotypic and genomic heterogeneity of PCa, but rather multi-threaded omics-derived and phenotypic markers tailored and validated into a multimodal signature.
Collapse
Affiliation(s)
- Jason Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Yang
- Department of Pathology, Stony Brook University, New York, NY, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
36
|
Liao Z, Li M, Wen G, Wang K, Yao D, Chen E, Liang Y, Xing T, Su K, Liang C, Che Z, Ning Q, Tang J, Yan W, Li Y, Huang L. Comprehensive analysis of angiogenesis pattern and related immune landscape for individual treatment in osteosarcoma. NPJ Precis Oncol 2023; 7:62. [PMID: 37386055 DOI: 10.1038/s41698-023-00415-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Postoperative recurrence and metastasis are the main reasons for the poor prognosis of osteosarcoma (OS). Currently, an ideal predictor for not only prognosis but also drug sensitivity and immunotherapy responses in OS patients is urgently needed. Angiogenesis plays a crucial role in tumour progression, which suggests its immense potential for predicting prognosis and responses to immunotherapy for OS. Angiogenesis patterns in OS were explored in depth in this study to construct a prognostic model called ANGscore and clarify the underlying mechanism involved in the immune microenvironment. The efficacy and robustness of the model were validated in multiple datasets, including bulk RNA-seq datasets (TARGET-OS, GSE21257), a single-cell RNA-seq dataset (GSE152048) and immunotherapy-related datasets (GSE91061, GSE173839). OS patients with a high ANGscore had a worse prognosis, accompanied by the immune desert phenotype. Pseudotime and cellular communication analyses in scRNA-seq data revealed that as the ANGscore increased, the malignant degree of cells increased, and IFN-γ signalling was involved in tumour progression and regulation of the tumour immune microenvironment. Furthermore, the ANGscore was associated with immune cell infiltration and the response rate to immunotherapy. OS patients with high ANGscore might be resistant to uprosertib, and be sensitive to VE821, AZD6738 and BMS.345541. In conclusion, we established a novel ANGscore system by comprehensively analysing the expression pattern of angiogenesis genes, which can accurately differentiate the prognosis and immune characteristics of OS populations. Additionally, the ANGscore can be used for patient stratification during immunotherapy, and guide individualized treatment strategies.
Collapse
Affiliation(s)
- Zhuangyao Liao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoming Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengbo Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Enming Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kaihui Su
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changchun Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhen Che
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Ning
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Yan
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Lin Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
37
|
Kim J, Phan MTT, Hwang I, Park J, Cho D. Comparison of the different anti-CD16 antibody clones in the activation and expansion of peripheral blood NK cells. Sci Rep 2023; 13:9493. [PMID: 37302991 DOI: 10.1038/s41598-023-36200-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Natural killer (NK) cells are promising tool for cancer treatment. Methods have been developed for large-scale NK cell expansion, including feeder cell-based methods or methods involving stimulation with NK cell activating signals, such as anti-CD16 antibodies. Different clones of anti-CD16 antibodies are available; however, a comprehensive comparison of their differential effects on inducing NK cell activation and expansion has not been conducted among these various clones under the same experimental conditions. Herein, we found that the NK cell expansion rate differed depending on the various anti-CD16 antibodies (CB16, 3G8, B73.1, and MEM-154) coated on microbeads when stimulated with genetically engineered feeder cells, K562‑membrane-bound IL‑18, and mbIL‑21 (K562‑mbIL‑18/-21). Only the CB16 clone combination caused enhanced NK cell expansion over K562‑mbIL‑18/-21 stimulation alone with similar NK cell functionality. Treatment with the CB16 clone once on the initial day of NK cell expansion was sufficient to maximize the combination effect. Overall, we developed a more enhanced NK expansion system by merging a feeder to effectively stimulate CD16 with the CB16 clone.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Minh-Trang Thi Phan
- Falcuty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | | | - Jeehun Park
- Soft Foundry Institute, Seoul National University, Seoul, Korea.
| | - Duck Cho
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, South Korea.
- Cell and Gene Therapy Institute (CGTI), Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
38
|
Mu J, Gong J, Shi M, Zhang Y. Analysis and validation of aging-related genes in prognosis and immune function of glioblastoma. BMC Med Genomics 2023; 16:109. [PMID: 37208656 DOI: 10.1186/s12920-023-01538-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a common malignant brain tumor with poor prognosis and high mortality. Numerous reports have identified the correlation between aging and the prognosis of patients with GBM. The purpose of this study was to establish a prognostic model for GBM patients based on aging-related gene (ARG) to help determine the prognosis of GBM patients. METHODS 143 patients with GBM from The Cancer Genomic Atlas (TCGA), 218 patients with GBM from the Chinese Glioma Genomic Atlas (CGGA) of China and 50 patients from Gene Expression Omnibus (GEO) were included in the study. R software (V4.2.1) and bioinformatics statistical methods were used to develop prognostic models and study immune infiltration and mutation characteristics. RESULTS Thirteen genes were screened out and used to establish the prognostic model finally, and the risk scores of the prognostic model was an independent factor (P < 0.001), which indicated a good prediction ability. In addition, there are significant differences in immune infiltration and mutation characteristics between the two groups with high and low risk scores. CONCLUSION The prognostic model of GBM patients based on ARGs can predict the prognosis of GBM patients. However, this signature requires further investigation and validation in larger cohort studies.
Collapse
Affiliation(s)
- Jianhua Mu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yinian Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
40
|
Roszkowski S. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules 2023; 28:molecules28104080. [PMID: 37241819 DOI: 10.3390/molecules28104080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The use of naturally derived drugs in anti-cancer therapies has grown exponentially in recent years. Among natural compounds, polyphenols have shown potential therapeutic applications in treatment due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties, resulting in beneficial effects on human health. Building more efficient cancer therapies with fewer side effects on human health can be achieved by combining natural compounds with conventional drugs, which are typically more aggressive than natural chemicals with polyphenols. This article reviews a wide variety of studies where polyphenolic compounds can play a key role as anticancer drugs, alone or in combination with other drugs. Moreover, the future directions of applications of various polyphenols in cancer therapy are shown.
Collapse
Affiliation(s)
- Szymon Roszkowski
- Department of Geriatrics, Collegium Medicum, Nicolaus Copernicus University, Debowa St. 3, 85-626 Bydgoszcz, Poland
| |
Collapse
|
41
|
Park MD, Reyes-Torres I, LeBerichel J, Hamon P, LaMarche NM, Hegde S, Belabed M, Troncoso L, Grout JA, Magen A, Humblin E, Nair A, Molgora M, Hou J, Newman JH, Farkas AM, Leader AM, Dawson T, D'Souza D, Hamel S, Sanchez-Paulete AR, Maier B, Bhardwaj N, Martin JC, Kamphorst AO, Kenigsberg E, Casanova-Acebes M, Horowitz A, Brown BD, De Andrade LF, Colonna M, Marron TU, Merad M. TREM2 macrophages drive NK cell paucity and dysfunction in lung cancer. Nat Immunol 2023; 24:792-801. [PMID: 37081148 PMCID: PMC11088947 DOI: 10.1038/s41590-023-01475-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/23/2023] [Indexed: 04/22/2023]
Abstract
Natural killer (NK) cells are commonly reduced in human tumors, enabling many to evade surveillance. Here, we sought to identify cues that alter NK cell activity in tumors. We found that, in human lung cancer, the presence of NK cells inversely correlated with that of monocyte-derived macrophages (mo-macs). In a murine model of lung adenocarcinoma, we show that engulfment of tumor debris by mo-macs triggers a pro-tumorigenic program governed by triggering receptor expressed on myeloid cells 2 (TREM2). Genetic deletion of Trem2 rescued NK cell accumulation and enabled an NK cell-mediated regression of lung tumors. TREM2+ mo-macs reduced NK cell activity by modulating interleukin (IL)-18/IL-18BP decoy interactions and IL-15 production. Notably, TREM2 blockade synergized with an NK cell-activating agent to further inhibit tumor growth. Altogether, our findings identify a new axis, in which TREM2+ mo-macs suppress NK cell accumulation and cytolytic activity. Dual targeting of macrophages and NK cells represents a new strategy to boost antitumor immunity.
Collapse
Affiliation(s)
- Matthew D Park
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Reyes-Torres
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica LeBerichel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelson M LaMarche
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meriem Belabed
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanna Troncoso
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Grout
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Assaf Magen
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Achuth Nair
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jinchao Hou
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna H Newman
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam M Farkas
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew M Leader
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Travis Dawson
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Hamel
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alfonso Rodriguez Sanchez-Paulete
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara Maier
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nina Bhardwaj
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome C Martin
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- CHU Nantes, Laboratoire d'Immunologie, Center for ImmunoMonitoring Nantes-Atlantique (CIMNA), Nantes, France
| | - Alice O Kamphorst
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ephraim Kenigsberg
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Casanova-Acebes
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cancer Immunity Laboratory, Molecular Oncology Program, Spanish National Cancer Center (CNIO), Madrid, Spain
| | - Amir Horowitz
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian D Brown
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lucas Ferrari De Andrade
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas U Marron
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
42
|
Ou A, Wang Y, Zhang J, Huang Y. Living Cells and Cell-Derived Vesicles: A Trojan Horse Technique for Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15041257. [PMID: 37111742 PMCID: PMC10145830 DOI: 10.3390/pharmaceutics15041257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Brain diseases remain a significant global healthcare burden. Conventional pharmacological therapy for brain diseases encounters huge challenges because of the blood-brain barrier (BBB) limiting the delivery of therapeutics into the brain parenchyma. To address this issue, researchers have explored various types of drug delivery systems. Cells and cell derivatives have attracted increasing interest as "Trojan horse" delivery systems for brain diseases, owing to their superior biocompatibility, low immunogenicity, and BBB penetration properties. This review provided an overview of recent advancements in cell- and cell-derivative-based delivery systems for the diagnosis and treatment of brain diseases. Additionally, it discussed the challenges and potential solutions for clinical translation.
Collapse
Affiliation(s)
- Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
He L, Zhao J, Li H, Xie B, Xu L, Huang G, Liu T, Gu Z, Chen T. Metabolic Reprogramming of NK Cells by Black Phosphorus Quantum Dots Potentiates Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202519. [PMID: 36683155 PMCID: PMC10015887 DOI: 10.1002/advs.202202519] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Low persistence, metabolic dysfunction in microenvironment, and tumor-derived immunosuppression of Natural killer (NK) cells in patients are greatly limited the successful clinical application of NK cell-based cancer immunotherapy. Interestingly, herein that human serum albumin-encapsulated black phosphorus quantum dots (BPQDs@HSA) can effectively augment antitumor efficacy of clinical patients-derived NK cell immunotherapy is found. As the donor of phosphate group, BPQDs@HSA binds with the protein of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1A) and activates the downstream PI3K-Akt and mTOR signaling pathways to reprogram cell metabolism of glycolysis and further promote the oxidative phosphorylation, sequentially maintains the cell viability and immunity of NK cells. And multiomics analysis is therefore conducted to reveal the underlying immunoregulation mechanisms, and that BPQDs@HSA can interact with the Toll-like receptor (TLR) on the NK cell surface and increase the expression level of mTOR, and thus activate downstream NF-κB signalling pathways to regulate cytokine secretion and enhance immune tumoricidal is found. BPQDs@HSA can also enhance immune surveillance, relieve immune suppression, and inhibit tumor immune escape. Collectively, this study not only demonstrates a successful strategy for nanomedicine-potentiated immune-cancer therapy, but also sheds light on the understanding of interface between nanomedicine and immune cells activation.
Collapse
Affiliation(s)
- Lizhen He
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Jianfu Zhao
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical SciencesZhejiang UniversityZhejiang310000P. R. China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Bin Xie
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Ligeng Xu
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Guanning Huang
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Ting Liu
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical SciencesZhejiang UniversityZhejiang310000P. R. China
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhou311121China
| | - Tianfeng Chen
- Department of OncologyThe First Affiliated HospitalJinan UniversityGuangzhou510632P. R. China
| |
Collapse
|
45
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
46
|
Li M, Jiang P, Wei S, Wang J, Li C. The role of macrophages-mediated communications among cell compositions of tumor microenvironment in cancer progression. Front Immunol 2023; 14:1113312. [PMID: 36845095 PMCID: PMC9947507 DOI: 10.3389/fimmu.2023.1113312] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Recent studies have revealed that tumor-associated macrophages are the most abundant stromal cells in the tumor microenvironment and play an important role in tumor initiation and progression. Furthermore, the proportion of macrophages in the tumor microenvironment is associated with the prognosis of patients with cancer. Tumor-associated macrophages can polarize into anti-tumorigenic phenotype (M1) and pro-tumorigenic phenotype (M2) by the stimulation of T-helper 1 and T-helper 2 cells respectively, and then exert opposite effects on tumor progression. Besides, there also is wide communication between tumor-associated macrophages and other immune compositions, such as cytotoxic T cells, regulatory T cells, cancer-associated fibroblasts, neutrophils and so on. Furthermore, the crosstalk between tumor-associated macrophages and other immune cells greatly influences tumor development and treatment outcomes. Notably, many functional molecules and signaling pathways have been found to participate in the interactions between tumor-associated macrophages and other immune cells and can be targeted to regulate tumor progression. Therefore, regulating these interactions and CAR-M therapy are considered to be novel immunotherapeutic pathways for the treatment of malignant tumors. In this review, we summarized the interactions between tumor-associated macrophages and other immune compositions in the tumor microenvironment and the underlying molecular mechanisms and analyzed the possibility to block or eradicate cancer by regulating tumor-associated macrophage-related tumor immune microenvironment.
Collapse
Affiliation(s)
| | | | - Shuhua Wei
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| | - Chunxiao Li
- *Correspondence: Chunxiao Li, ; Junjie Wang,
| |
Collapse
|
47
|
Zafarani A, Razizadeh MH, Pashangzadeh S, Amirzargar MR, Taghavi-Farahabadi M, Mahmoudi M. Natural killer cells in COVID-19: from infection, to vaccination and therapy. Future Virol 2023:10.2217/fvl-2022-0040. [PMID: 36936055 PMCID: PMC10013930 DOI: 10.2217/fvl-2022-0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/31/2023] [Indexed: 03/15/2023]
Abstract
Natural killer (NK) cells are among the most important innate immunity members, which are the first cells that fight against infected cells. The function of these cells is impaired in patients with COVID-19 and they are not able to prevent the spread of the disease or destroy the infected cells. Few studies have evaluated the effects of COVID-19 vaccines on NK cells, though it has been demonstrated that DNA vaccines and BNT162b2 can affect NK cell response. In the present paper, the effects of SARS-CoV-2 on the NK cells during infection, the effect of vaccination on NK cells, and the NK cell-based therapies were reviewed.
Collapse
Affiliation(s)
- Alireza Zafarani
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Salar Pashangzadeh
- 3Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
- 4Immunology Today, Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Amirzargar
- 1Department of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- 5Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- 6Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Author for correspondence: Tel.: +98 936 002 0731;
| |
Collapse
|
48
|
The Role of Platelets in the Pathogenesis and Pathophysiology of Adenomyosis. J Clin Med 2023; 12:jcm12030842. [PMID: 36769489 PMCID: PMC9918158 DOI: 10.3390/jcm12030842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Widely viewed as an enigmatic disease, adenomyosis is a common gynecological disease with bewildering pathogenesis and pathophysiology. One defining hallmark of adenomyotic lesions is cyclic bleeding as in eutopic endometrium, yet bleeding is a quintessential trademark of tissue injury, which is invariably followed by tissue repair. Consequently, adenomyotic lesions resemble wounds. Following each bleeding episode, adenomyotic lesions undergo tissue repair, and, as such, platelets are the first responder that heralds the subsequent tissue repair. This repeated tissue injury and repair (ReTIAR) would elicit several key molecular events crucial for lesional progression, eventually leading to lesional fibrosis. Platelets interact with adenomyotic cells and actively participate in these events, promoting the lesional progression and fibrogenesis. Lesional fibrosis may also be propagated into their neighboring endometrial-myometrial interface and then to eutopic endometrium, impairing endometrial repair and causing heavy menstrual bleeding. Moreover, lesional progression may result in hyperinnervation and an enlarged uterus. In this review, the role of platelets in the pathogenesis, progression, and pathophysiology is reviewed, along with the therapeutic implication. In addition, I shall demonstrate how the notion of ReTIAR provides a much needed framework to tether to and piece together many seemingly unrelated findings and how it helps to make useful predictions.
Collapse
|
49
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
50
|
Wang P, Liang T, Zhan H, Zhu M, Wu M, Qian L, Zhou Y, Ni F. Unique metabolism and protein expression signature in human decidual NK cells. Front Immunol 2023; 14:1136652. [PMID: 36936959 PMCID: PMC10020942 DOI: 10.3389/fimmu.2023.1136652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Human decidual natural killer (dNK) cells are a unique type of tissue-resident NK cells at the maternal-fetal interface. dNK cells are likely to have pivotal roles during pregnancy, including in maternal-fetal immune tolerance, trophoblast invasion, and fetal development. However, detailed insights into these cells are still lacking. In this study, we performed metabolomic and proteomic analyses on human NK cells derived from decidua and peripheral blood. We found that 77 metabolites were significantly changed in dNK cells. Notably, compared to peripheral blood NK (pNK) cells, 29 metabolites involved in glycerophospholipid and glutathione metabolism were significantly decreased in dNK cells. Moreover, we found that 394 proteins were differentially expressed in dNK cells. Pathway analyses and network enrichment analyses identified 110 differentially expressed proteins involved in focal adhesion, cytoskeleton remodeling, oxidoreductase activity, and fatty acid metabolism in dNK cells. The integrated proteomic and metabolomic analyses revealed significant downregulation in glutathione metabolism in dNK cells compared to pNK cells. Our data indicate that human dNK cells have unique metabolism and protein-expression features, likely regulating their function in pregnancy and immunity.
Collapse
Affiliation(s)
- Ping Wang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Heqin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingming Zhu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Mingming Wu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Lili Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China (USTC), The Chinese Academy of Science (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
- *Correspondence: Fang Ni,
| |
Collapse
|