1
|
Dang D, Deogharkar A, McKolay J, Smith KS, Panwalkar P, Hoffman S, Tian W, Ji S, Azambuja AP, Natarajan SK, Lum J, Bayliss J, Manzeck K, Sweha SR, Hamanishi E, Pun M, Patel D, Rau S, Animasahun O, Achreja A, Ogrodzinski MP, Diessl J, Cotter J, Hawes D, Yang F, Doherty R, Franson AT, Hanaford AR, Eberhart CG, Raabe EH, Orr BA, Wechsler-Reya RJ, Chen B, Lyssiotis CA, Shah YM, Lunt SY, Banerjee R, Judkins AR, Prensner JR, Koschmann C, Waszak SM, Nagrath D, Simoes-Costa M, Northcott PA, Venneti S. Isocitrate dehydrogenase 1 primes group-3 medulloblastomas for cuproptosis. Cancer Cell 2025:S1535-6108(25)00172-2. [PMID: 40378837 DOI: 10.1016/j.ccell.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/30/2024] [Accepted: 04/22/2025] [Indexed: 05/19/2025]
Abstract
MYC-driven group-3 medulloblastomas (MBs) are malignant pediatric brain cancers without cures. To define actionable metabolic dependencies, we identify upregulation of dihydrolipoyl transacetylase (DLAT), the E2-subunit of pyruvate dehydrogenase complex (PDC) in a subset of group-3 MB with poor prognosis. DLAT is induced by c-MYC and targeting DLAT lowers TCA cycle metabolism and glutathione synthesis. We also note upregulation of isocitrate dehydrogenase 1 (IDH1) gene expression in group-3 MB patient tumors and suppression of IDH1 epigenetically reduces c-MYC and downstream DLAT levels in multiple c-MYC amplified cancers. DLAT is a central regulator of cuproptosis (copper-dependent cell death) induced by the copper ionophore elesclomol. DLAT expression in group-3 MB cells correlates with increased sensitivity to cuproptosis. Elesclomol is brain-penetrant and suppresses tumor growth in vivo in multiple group-3 MB animal models. Our data uncover an IDH1/c-MYC dependent vulnerability that regulates DLAT levels and can be targeted to kill group-3 MB by cuproptosis.
Collapse
Affiliation(s)
- Derek Dang
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Akash Deogharkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - John McKolay
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kyle S Smith
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pooja Panwalkar
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Simon Hoffman
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Wentao Tian
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sunjong Ji
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | - Ana P Azambuja
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Siva Kumar Natarajan
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Joanna Lum
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jill Bayliss
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Katie Manzeck
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stefan R Sweha
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Hamanishi
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Diya Patel
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sagar Rau
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Olamide Animasahun
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Abhinav Achreja
- Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Jutta Diessl
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer Cotter
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Debra Hawes
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fusheng Yang
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert Doherty
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA
| | | | - Allison R Hanaford
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Division of Neuropathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Division of Neuropathology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Eric H Raabe
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Brent A Orr
- Division of Neuropathology, Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Neurology and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Brandon Chen
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexander R Judkins
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John R Prensner
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sebastian M Waszak
- Laboratory of Computational Neuro-Oncology, Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Deepak Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Laboratory for Systems Biology of Human Diseases, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marcos Simoes-Costa
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA; Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Pan Z, Bao J, Wei S. Advancing medulloblastoma therapy: strategies and survival insights. Clin Exp Med 2025; 25:119. [PMID: 40237916 PMCID: PMC12003599 DOI: 10.1007/s10238-025-01648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025]
Abstract
Medulloblastoma, the most common malignant brain tumor in children, presents unique challenges due to its molecular and histological heterogeneity. Advances in molecular profiling have refined risk stratification, enabling personalized treatment strategies and improved survival outcomes. This review synthesizes recent developments in the multimodal management of medulloblastoma, encompassing surgery, craniospinal radiation therapy, and chemotherapy, tailored to patient age and risk classification. Key highlights include subgroup-specific therapies, the role of molecular-targeted treatments, and the integration of genetic testing for germline mutations to guide clinical decision-making. Special emphasis is placed on minimizing treatment-related toxicity while preserving long-term quality of life. Additionally, this manuscript discusses the implications of novel therapeutic approaches for high-risk subgroups, including intensified regimens and systemic therapies for young children. Despite significant progress, challenges remain in addressing long-term complications such as neurocognitive impairments, endocrine dysfunction, and secondary malignancies. Future directions prioritize optimizing therapeutic efficacy while reducing morbidity, underscoring the importance of translating molecular discoveries into clinical practice.
Collapse
Affiliation(s)
- Zhenjiang Pan
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Jing Bao
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China
| | - Shepeng Wei
- Department of Neurosurgery, Shidong Hospital, No. 999, Shiguang Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
3
|
Hourfar H, Taklifi P, Razavi M, Khorsand B. Machine Learning-Driven Identification of Molecular Subgroups in Medulloblastoma via Gene Expression Profiling. Clin Oncol (R Coll Radiol) 2025; 40:103789. [PMID: 40020441 DOI: 10.1016/j.clon.2025.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/04/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
AIMS Medulloblastoma (MB) is the most prevalent malignant brain tumour in children, characterised by substantial molecular heterogeneity across its subgroups. Accurate classification is pivotal for personalised treatment strategies and prognostic assessments. In this study, we aimed to build machine learning models to classify MB subgroups. MATERIALS AND METHODS This study utilised machine learning (ML) techniques to analyse RNA sequencing data from 70 paediatric MB samples. Five classifiers-K-nearest neighbors (KNN), decision tree (DT), support vector machine (SVM), random forest (RF), and naive Bayes (NB)-were used to predict molecular subgroups based on gene expression profiles. Feature selection identified gene subsets of varying sizes (750, 75, and 25 genes) to optimise classification accuracy. RESULTS Initial analyses with the complete gene set lacked discriminative power. However, reduced feature sets significantly enhanced clustering and classification performance, particularly for group 3 and group 4 subgroups. The RF, KNN, and SVM classifiers consistently outperformed the DT and NB classifiers, achieving classification accuracies exceeding 90% in many scenarios, especially in group 3 and group 4 subgroups. CONCLUSION This study highlights the efficacy of ML algorithms in classifying MB subgroups using gene expression data. The integration of feature selection techniques substantially improves model performance, paving the way for enhanced personalised approaches in MB management.
Collapse
Affiliation(s)
- H Hourfar
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - P Taklifi
- Department of Biotechnology, College of Sciences, University of Tehran, Tehran, Iran
| | - M Razavi
- University Paris-Saclay, Paris, France
| | - B Khorsand
- Department of Neurology, University of California, Irvine, CA, 92612, USA.
| |
Collapse
|
4
|
Ni H, Reitman ZJ, Zou W, Akhtar MN, Paul R, Huang M, Zhang D, Zheng H, Zhang R, Ma R, Ngo G, Zhang L, Diffenderfer ES, Motlagh SAO, Kim MM, Minn AJ, Dorsey JF, Foster JB, Metz J, Koumenis C, Kirsch DG, Gong Y, Fan Y. FLASH radiation reprograms lipid metabolism and macrophage immunity and sensitizes medulloblastoma to CAR-T cell therapy. NATURE CANCER 2025; 6:460-473. [PMID: 39910249 DOI: 10.1038/s43018-025-00905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/07/2025] [Indexed: 02/07/2025]
Abstract
FLASH radiotherapy holds promise for treating solid tumors given the potential lower toxicity in normal tissues but its therapeutic effects on tumor immunity remain largely unknown. Using a genetically engineered mouse model of medulloblastoma, we show that FLASH radiation stimulates proinflammatory polarization in tumor macrophages. Single-cell transcriptome analysis shows that FLASH proton beam radiation skews macrophages toward proinflammatory phenotypes and increases T cell infiltration. Furthermore, FLASH radiation reduces peroxisome proliferator-activated receptor-γ (PPARγ) and arginase 1 expression and inhibits immunosuppressive macrophage polarization under stimulus-inducible conditions. Mechanistically, FLASH radiation abrogates lipid oxidase expression and oxidized low-density lipid generation to reduce PPARγ activity, while standard radiation induces reactive oxygen species-dependent PPARγ activation in macrophages. Notably, FLASH radiotherapy improves infiltration and activation of chimeric antigen receptor (CAR) T cells and sensitizes medulloblastoma to GD2 CAR-T cell therapy. Thus, FLASH radiotherapy reprograms macrophage lipid metabolism to reverse tumor immunosuppression. Combination FLASH-CAR radioimmunotherapy may offer exciting opportunities for solid tumor treatment.
Collapse
Affiliation(s)
- Haiwei Ni
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary J Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Md Naushad Akhtar
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ritama Paul
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Zheng
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruitao Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruiying Ma
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Gina Ngo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - James Metz
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Otth M, Weiser A, Lee SY, Rudolf von Rohr L, Heesen P, Guerreiro Stucklin AS, Scheinemann K. Treatment of Medulloblastoma in the Adolescent and Young Adult Population: A Systematic Review. J Adolesc Young Adult Oncol 2025; 14:18-32. [PMID: 39178158 DOI: 10.1089/jayao.2024.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024] Open
Abstract
Medulloblastoma is the most frequent high-grade tumor of the central nervous system in children but accounts for less than 1% of these tumors in adults. Adolescent and young adult (AYA) patients are between both age groups, and different approaches are used to treat medulloblastoma in this population. We performed a systematic review of studies published between 2007 and 2023 that reported treatment approaches and survival data of AYA patients with medulloblastoma, defined as 15 to 39 years of age at diagnosis. Due to the heterogeneity of data, a meta-analysis was not possible. Except for the omission of chemotherapy after radiotherapy in a few adult studies, the treatment backbone is very similar between studies starting enrolment during childhood and older adolescence or adulthood. Despite indications for a higher rate of early treatment termination due to toxicity in adults, survival data remain comparable between studies starting enrolment earlier or later in life. However, molecular subtyping was missing in most studies, so the survival data must be interpreted cautiously. Nevertheless, pediatric-inspired strategies in the AYA population are feasible, but individual dose adjustments may be necessary during treatment and should be considered upfront. Collaborative studies investigating the best treatment approach for medulloblastoma in the AYA population are needed in the future.
Collapse
Affiliation(s)
- Maria Otth
- Division of Hematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Annette Weiser
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Seok-Yun Lee
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Lukas Rudolf von Rohr
- Division of Hematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | - Philip Heesen
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Ana S Guerreiro Stucklin
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Katrin Scheinemann
- Division of Hematology/Oncology, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
- Faculty of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
- Division of Pediatric Hematology/Oncology, McMaster Children's Hospital and McMaster University, Hamilton, Canada
| |
Collapse
|
6
|
Desterke C, Fu Y, Bonifacio-Mundaca J, Monge C, Pineau P, Mata-Garrido J, Francés R. Ferroptosis Transcriptional Regulation and Prognostic Impact in Medulloblastoma Subtypes Revealed by RNA-Seq. Antioxidants (Basel) 2025; 14:96. [PMID: 39857430 PMCID: PMC11761645 DOI: 10.3390/antiox14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, typically arising during infancy and childhood. Despite multimodal therapies achieving a response rate of 70% in children older than 3 years, treatment remains challenging. Ferroptosis, a form of regulated cell death, can be induced in medulloblastoma cells in vitro using erastin or RSL3. Using two independent medulloblastoma RNA-sequencing cohorts (MB-PBTA and MTAB-10767), we investigated the expression of ferroptosis-related molecules through multiple approaches, including Weighted Gene Co-Expression Network Analysis (WGCNA), molecular subtype stratification, protein-protein interaction (PPI) networks, and univariable and multivariable overall survival analyses. A prognostic expression score was computed based on a cross-validated ferroptosis signature. In training and validation cohorts, the regulation of the ferroptosis transcriptional program distinguished the four molecular subtypes of medulloblastoma. WGCNA identified nine gene modules in the MB tumor transcriptome; five correlated with molecular subtypes, implicating pathways related to oxidative stress, hypoxia, and trans-synaptic signaling. One module, associated with disease recurrence, included epigenetic regulators and nucleosome organizers. Univariable survival analyses identified a 45-gene ferroptosis prognostic signature associated with nutrient sensing, cysteine and methionine metabolism, and trans-sulfuration within a one-carbon metabolism. The top ten unfavorable ferroptosis genes included CCT3, SNX5, SQOR, G3BP1, CARS1, SLC39A14, FAM98A, FXR1, TFAP2C, and ATF4. Patients with a high ferroptosis score showed a worse prognosis, particularly in the G3 and SHH subtypes. The PPI network highlighted IL6 and CBS as unfavorable hub genes. In a multivariable overall survival model, which included gender, age, and the molecular subtype classification, the ferroptosis expression score was validated as an independent adverse prognostic marker (hazard ratio: 5.8; p-value = 1.04 × 10-9). This study demonstrates that the regulation of the ferroptosis transcriptional program is linked to medulloblastoma molecular subtypes and patient prognosis. A cross-validated ferroptosis signature was identified in two independent RNA-sequencing cohorts, and the ferroptosis score was confirmed as an independent and adverse prognostic factor in medulloblastoma.
Collapse
Affiliation(s)
- Christophe Desterke
- INSERM UMRS-1310, Faculté de Médecine du Kremlin Bicêtre, Université Paris-Saclay, F-94270 Le Kremlin-Bicêtre, France;
| | - Yuanji Fu
- INSERM, CNRS, Institut Necker Enfants Malades, Université Paris Cité, F-75015 Paris, France;
| | - Jenny Bonifacio-Mundaca
- National Tumor Bank, Department of Pathology, National Institute of Neoplastic Diseases, Surquillo 15038, Peru;
| | - Claudia Monge
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Pascal Pineau
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Jorge Mata-Garrido
- Unité Organisation Nucléaire et Oncogenèse, Institut Pasteur, Université Paris Cité, INSERM U993, F-75015 Paris, France; (C.M.); (P.P.)
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, F-75006 Paris, France
| |
Collapse
|
7
|
Ronsley R, Cole B, Ketterl T, Wright J, Ermoian R, Hoffman LM, Margol AS, Leary SES. Pediatric Central Nervous System Embryonal Tumors: Presentation, Diagnosis, Therapeutic Strategies, and Survivorship-A Review. Pediatr Neurol 2024; 161:237-246. [PMID: 39447443 DOI: 10.1016/j.pediatrneurol.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Central nervous system (CNS) embryonal tumors represent a diverse group of neoplasms and have a peak incidence in early childhood. These tumors can be located anywhere within the CNS, and presenting symptoms typically represent tumor location. These tumors display distinctive findings on neuroimaging and are staged using magnetic resonance imaging of the brain and spine as well as evaluation of cerebrospinal fluid. Diagnosis is made based on an integrated analysis of histologic and molecular features via tissue sampling. Risk stratification is based on integration of clinical staging and extent of resection with histologic and molecular risk factors. The therapeutic approach for these tumors is multimodal and includes surgery, chemotherapy, and radiation, tailored to the individual patient factors (including age) and specific tumor type. Comprehensive supportive care including management of nausea, nutrition support, pain, fertility preservation, and mitigation of therapy-related morbidity (including hearing protection) is imperative through treatment of CNS embryonal tumors. Despite advances in therapy and supportive care, the long-term consequences of current treatment strategies are substantial. Integration of less toxic, molecularly targeted therapies and a comprehensive, multidisciplinary approach to survivorship care are essential to improving survival and the overall quality of life for survivors.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington.
| | - Bonnie Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington; Department of Laboratories, Seattle Children's Hospital, Seattle, Washington
| | - Tyler Ketterl
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| | - Jason Wright
- Department of Radiology, University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
| | - Ralph Ermoian
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Lindsey M Hoffman
- Center for Cancer and Blood Disorder, Phoenix Childrens Hospital, Arizona
| | - Ashley S Margol
- Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, California
| | - Sarah E S Leary
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington; Division of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington; Fred Hutch Cancer Center, Seattle, Washington
| |
Collapse
|
8
|
Peterson K, Turos-Cabal M, Salvador AD, Palomo-Caturla I, Howell AJ, Vieira ME, Greiner SM, Barnoud T, Rodriguez-Blanco J. Mechanistic insights into medulloblastoma relapse. Pharmacol Ther 2024; 260:108673. [PMID: 38857789 PMCID: PMC11270902 DOI: 10.1016/j.pharmthera.2024.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Pediatric brain tumors are the leading cause of cancer-related deaths in children, with medulloblastoma (MB) being the most common type. A better understanding of these malignancies has led to their classification into four major molecular subgroups. This classification not only facilitates the stratification of clinical trials, but also the development of more effective therapies. Despite recent progress, approximately 30% of children diagnosed with MB experience tumor relapse. Recurrent disease in MB is often metastatic and responds poorly to current therapies. As a result, only a small subset of patients with recurrent MB survive beyond one year. Due to its dismal prognosis, novel therapeutic strategies aimed at preventing or managing recurrent disease are urgently needed. In this review, we summarize recent advances in our understanding of the molecular mechanisms behind treatment failure in MB, as well as those characterizing recurrent cases. We also propose avenues for how these findings can be used to better inform personalized medicine approaches for the treatment of newly diagnosed and recurrent MB. Lastly, we discuss the treatments currently being evaluated for MB patients, with special emphasis on those targeting MB by subgroup at diagnosis and relapse.
Collapse
Affiliation(s)
- Kendell Peterson
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Turos-Cabal
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - April D Salvador
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | | | - Ashley J Howell
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Megan E Vieira
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Sean M Greiner
- Department of Pediatrics, Johns Hopkins Children's Center, Baltimore, MD, USA
| | - Thibaut Barnoud
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
9
|
Sun M, Sun J, Li M. Deep learning models for predicting the survival of patients with medulloblastoma based on a surveillance, epidemiology, and end results analysis. Sci Rep 2024; 14:14490. [PMID: 38914641 PMCID: PMC11196279 DOI: 10.1038/s41598-024-65367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Medulloblastoma is a malignant neuroepithelial tumor of the central nervous system. Accurate prediction of prognosis is essential for therapeutic decisions in medulloblastoma patients. We analyzed data from 2,322 medulloblastoma patients using the SEER database and randomly divided the dataset into training and testing datasets in a 7:3 ratio. We chose three models to build, one based on neural networks (DeepSurv), one based on ensemble learning that Random Survival Forest (RSF), and a typical Cox Proportional-hazards (CoxPH) model. The DeepSurv model outperformed the RSF and classic CoxPH models with C-indexes of 0.751 and 0.763 for the training and test datasets. Additionally, the DeepSurv model showed better accuracy in predicting 1-, 3-, and 5-year survival rates (AUC: 0.767-0.793). Therefore, our prediction model based on deep learning algorithms can more accurately predict the survival rate and survival period of medulloblastoma compared to other models.
Collapse
Affiliation(s)
- Meng Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| | - Meng Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| |
Collapse
|
10
|
Ampudia-Mesias E, Cameron CS, Yoo E, Kelly M, Anderson SM, Manning R, Abrahante Lloréns JE, Moertel CL, Yim H, Odde DJ, Saydam N, Saydam O. The OTX2 Gene Induces Tumor Growth and Triggers Leptomeningeal Metastasis by Regulating the mTORC2 Signaling Pathway in Group 3 Medulloblastomas. Int J Mol Sci 2024; 25:4416. [PMID: 38674001 PMCID: PMC11050316 DOI: 10.3390/ijms25084416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Medulloblastoma (MB) encompasses diverse subgroups, and leptomeningeal disease/metastasis (LMD) plays a substantial role in associated fatalities. Despite extensive exploration of canonical genes in MB, the molecular mechanisms underlying LMD and the involvement of the orthodenticle homeobox 2 (OTX2) gene, a key driver in aggressive MB Group 3, remain insufficiently understood. Recognizing OTX2's pivotal role, we investigated its potential as a catalyst for aggressive cellular behaviors, including migration, invasion, and metastasis. OTX2 overexpression heightened cell growth, motility, and polarization in Group 3 MB cells. Orthotopic implantation of OTX2-overexpressing cells in mice led to reduced median survival, accompanied by the development of spinal cord and brain metastases. Mechanistically, OTX2 acted as a transcriptional activator of the Mechanistic Target of Rapamycin (mTOR) gene's promoter and the mTORC2 signaling pathway, correlating with upregulated downstream genes that orchestrate cell motility and migration. Knockdown of mTOR mRNA mitigated OTX2-mediated enhancements in cell motility and polarization. Analysis of human MB tumor samples (N = 952) revealed a positive correlation between OTX2 and mTOR mRNA expression, emphasizing the clinical significance of OTX2's role in the mTORC2 pathway. Our results reveal that OTX2 governs the mTORC2 signaling pathway, instigating LMD in Group 3 MBs and offering insights into potential therapeutic avenues through mTORC2 inhibition.
Collapse
Affiliation(s)
- Elisabet Ampudia-Mesias
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Charles S. Cameron
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Eunjae Yoo
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - Marcus Kelly
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Sarah M. Anderson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | - Riley Manning
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Christopher L. Moertel
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| | - Hyungshin Yim
- Department of Pharmacy, Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Gyeonggi-do, Republic of Korea;
| | - David J. Odde
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; (M.K.); (S.M.A.); (R.M.); (D.J.O.)
| | | | - Okay Saydam
- Division of Hematology and Oncology, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN 55454, USA; (E.A.-M.); (C.S.C.); or (E.Y.); (C.L.M.)
| |
Collapse
|
11
|
Keeling C, Davies S, Goddard J, Ramaswamy V, Schwalbe EC, Bailey S, Hicks D, Clifford SC. The clinical significance of sub-total surgical resection in childhood medulloblastoma: a multi-cohort analysis of 1100 patients. EClinicalMedicine 2024; 69:102469. [PMID: 38374970 PMCID: PMC10875250 DOI: 10.1016/j.eclinm.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Background Medulloblastoma patients with a sub-total surgical resection (STR; >1.5 cm2 primary tumour residuum post-surgery) typically receive intensified treatment. However, the association of STR with poor outcomes has not been observed consistently, questioning the validity of STR as a high-risk disease feature. Methods We collected extent of resection (EOR) data from 1110 patients (from UK CCLG centres (n = 416, collected between September 1990 and July 2014) and published (n = 694) cohorts), the largest cohort of molecularly and clinically annotated tumours assembled to specifically assess the significance of EOR. We performed association and univariable/multivariable survival analyses, assessing overall survival (OS) cohort-wide and with reference to the four consensus medulloblastoma molecular groups and clinical features. Findings STR was reported in 20% (226/1110) of patients. Non-WNT (p = 0.047), children <5 years at diagnosis (p = 0.021) and metastatic patients (p < 0.0001) were significantly more likely to have a STR. In cohort-wide analysis, STR was associated with worse survival in univariable analysis (p < 0.0001). Examination of specific disease contexts showed that STR was prognostic in univariate analysis for patients receiving cranio-spinal irradiation (CSI) and chemotherapy (p = 0.016) and for patients with Group 3 tumours receiving CSI (p = 0.039). STR was not independently prognostic in multivariable analyses; outcomes for patients who have STR as their only risk-feature are as per standard-risk disease. Specifically, STR was not prognostic in non-metastatic patients that received upfront CSI. Interpretation In a cohort of 1100 molecularly characterised medulloblastoma patients, STR (n = 226) predicted significantly lower OS in univariable analysis, but was not an independent prognostic factor. Our data suggest that maximal safe resection can continue to be carried out for patients with medulloblastoma and suggest STR should not inform patient management when observed as a sole, isolated risk-feature. Funding Cancer Research UK, Newcastle Hospitals Charity, Children's Cancer North, British Division of the International Academy of Pathology.
Collapse
Affiliation(s)
- Claire Keeling
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Simon Davies
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Jack Goddard
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Vijay Ramaswamy
- Neuro-oncology Section, Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward C. Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Great North Children's Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Yuan M, Mahmud I, Katsushima K, Joshi K, Saulnier O, Pokhrel R, Lee B, Liyanage W, Kunhiraman H, Stapleton S, Gonzalez-Gomez I, Kannan RM, Eisemann T, Kolanthai E, Seal S, Garrett TJ, Abbasi S, Bockley K, Hanes J, Chapagain P, Jallo G, Wechsler-Reya RJ, Taylor MD, Eberhart CG, Ray A, Perera RJ. miRNA-211 maintains metabolic homeostasis in medulloblastoma through its target gene long-chain acyl-CoA synthetase 4. Acta Neuropathol Commun 2023; 11:203. [PMID: 38115140 PMCID: PMC10729563 DOI: 10.1186/s40478-023-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.
Collapse
Affiliation(s)
- Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rudramani Pokhrel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Bongyong Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Haritha Kunhiraman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Ignacio Gonzalez-Gomez
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tanja Eisemann
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Timothy J Garrett
- Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Kimberly Bockley
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX, 77030, USA
- Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA.
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
13
|
Kumar D, Jain S, Coulter DW, Joshi SS, Chaturvedi NK. PRMT5 as a Potential Therapeutic Target in MYC-Amplified Medulloblastoma. Cancers (Basel) 2023; 15:5855. [PMID: 38136401 PMCID: PMC10741595 DOI: 10.3390/cancers15245855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
MYC amplification or overexpression is most common in Group 3 medulloblastomas and is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase 5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of using them in medulloblastoma therapy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Stuti Jain
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
| | - Don W. Coulter
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| | - Shantaram S. Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 69198, USA;
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, Division of Hematology and Oncology, University of Nebraska Medical Center, Omaha, NE 69198, USA; (D.K.); (S.J.); (D.W.C.)
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 69198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 69198, USA
| |
Collapse
|
14
|
Li X, Gong J. Survival nomogram for medulloblastoma and multi-center external validation cohort. Front Pharmacol 2023; 14:1247812. [PMID: 38026968 PMCID: PMC10651750 DOI: 10.3389/fphar.2023.1247812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Medulloblastoma (MB) is a highly malignant neuroepithelial tumor occurring in the central nervous system. The objective of this study was to establish an effective prognostic nomogram to predict the overall survival (OS) of MB patients. Materials and methods: The nomogram was developed using data from a retrospective cohort of 280 medulloblastoma patients (aged 3-18 years) identified from Beijing Tiantan Hospital between 2016 and 2021 as the training cohort. To validate the performance of the nomogram, collaborations were formed with eight leading pediatric oncology centers across different regions of China. A total of 162 medulloblastoma patients meeting the inclusion criteria were enrolled from these collaborating centers. Cox regression analysis, best subsets regression, and Lasso regression were employed to select independent prognostic factors. The nomogram's prognostic effectiveness for overall survival was assessed using the concordance index, receiver operating characteristic curve, and calibration curve. Results: In the training cohort, the selected variables through COX regression, best subsets regression, and Lasso regression, along with their clinical significance, included age, molecular subtype, histological type, radiotherapy, chemotherapy, metastasis, and hydrocephalus. The internally and externally validated C-indexes were 0.907 and 0.793, respectively. Calibration curves demonstrated the precise prediction of 1-, 3-, and 5-year OS for MB patients using the nomogram. Conclusion: This study developed a nomogram that incorporates clinical and molecular factors to predict OS prognosis in medulloblastoma patients. The nomogram exhibited improved predictive accuracy compared to previous studies and demonstrated good performance in the external validation cohort. By considering multiple factors, clinicians can utilize this nomogram as a valuable tool for individualized prognosis prediction and treatment decision-making in medulloblastoma patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Gong
- Department of Pediatric Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Wang JX, Li Y, Reddick WE, Conklin HM, Glass JO, Onar-Thomas A, Gajjar A, Cheng C, Lu ZH. A high-dimensional mediation model for a neuroimaging mediator: Integrating clinical, neuroimaging, and neurocognitive data to mitigate late effects in pediatric cancer. Biometrics 2023; 79:2430-2443. [PMID: 35962595 DOI: 10.1111/biom.13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Pediatric cancer treatment, especially for brain tumors, can have profound and complicated late effects. With the survival rates increasing because of improved detection and treatment, a more comprehensive understanding of the impact of current treatments on neurocognitive function and brain structure is critically needed. A frontline medulloblastoma clinical trial (SJMB03) has collected data, including treatment, clinical, neuroimaging, and cognitive variables. Advanced methods for modeling and integrating these data are critically needed to understand the mediation pathway from the treatment through brain structure to neurocognitive outcomes. We propose an integrative Bayesian mediation analysis approach to model jointly a treatment exposure, a high-dimensional structural neuroimaging mediator, and a neurocognitive outcome and to uncover the mediation pathway. The high-dimensional imaging-related coefficients are modeled via a binary Ising-Gaussian Markov random field prior (BI-GMRF), addressing the sparsity, spatial dependency, and smoothness and increasing the power to detect brain regions with mediation effects. Numerical simulations demonstrate the estimation accuracy, power, and robustness. For the SJMB03 study, the BI-GMRF method has identified white matter microstructure that is damaged by cancer-directed treatment and impacts late neurocognitive outcomes. The results provide guidance on improving treatment planning to minimize long-term cognitive sequela for pediatric brain tumor patients.
Collapse
Affiliation(s)
- Jade Xiaoqing Wang
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yimei Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather M Conklin
- Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John O Glass
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Amar Gajjar
- Department of Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zhao-Hua Lu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
16
|
Karabacak M, Ozkara BB, Ozturk A, Kaya B, Cirak Z, Orak E, Ozcan Z. Radiomics-based machine learning models for prediction of medulloblastoma subgroups: a systematic review and meta-analysis of the diagnostic test performance. Acta Radiol 2023; 64:1994-2003. [PMID: 36510435 DOI: 10.1177/02841851221143496] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Medulloblastomas are a major cause of cancer-related mortality in the pediatric population. Four molecular groups have been identified, and these molecular groups drive risk stratification, prognostic modeling, and the development of novel treatment modalities. It has been demonstrated that radiomics-based machine learning (ML) models are effective at predicting the diagnosis, molecular class, and grades of CNS tumors. PURPOSE To assess radiomics-based ML models' diagnostic performance in predicting medulloblastoma subgroups and the methodological quality of the studies. MATERIAL AND METHODS A comprehensive literature search was performed on PubMed; the last search was conducted on 1 May 2022. Studies that predicted all four medulloblastoma subgroups in patients with histopathologically confirmed medulloblastoma and reporting area under the curve (AUC) values were included in the study. The quality assessments were conducted according to the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Checklist for Artificial Intelligence in Medical Imaging (CLAIM). A meta-analysis of radiomics-based ML studies' diagnostic performance for the preoperative evaluation of medulloblastoma subgrouping was performed. RESULTS Five studies were included in this meta-analysis. Regarding patient selection, two studies indicated an unclear risk of bias according to the QUADAS-2. The five studies had an average CLAIM score and compliance score of 23.2 and 0.57, respectively. The meta-analysis showed pooled AUCs of 0.88, 0.82, 0.83, and 0.88 for WNT, SHH, group 3, and group 4 for classification, respectively. CONCLUSION Radiomics-based ML studies have good classification performance in predicting medulloblastoma subgroups, with AUCs >0.80 in every subgroup. To be applied to clinical practice, they need methodological quality improvement and stability.
Collapse
Affiliation(s)
- Mert Karabacak
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Burak Berksu Ozkara
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Admir Ozturk
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Busra Kaya
- Faculty of Medicine, Istanbul Altinbas University, Bakirkoy, Istanbul, Turkey
| | - Zeynep Cirak
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Ece Orak
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| | - Zeynep Ozcan
- Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Fatih, Istanbul, Turkey
| |
Collapse
|
17
|
Kurdi M, Mulla N, Malibary H, Bamaga AK, Fadul MM, Faizo E, Hakamy S, Baeesa S. Immune microenvironment of medulloblastoma: The association between its molecular subgroups and potential targeted immunotherapeutic receptors. World J Clin Oncol 2023; 14:117-130. [PMID: 37009528 PMCID: PMC10052334 DOI: 10.5306/wjco.v14.i3.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Medulloblastoma (MB) is considered the commonest malignant brain tumor in children. Multimodal treatments consisting of surgery, radiation, and chemotherapy have improved patients’ survival. Nevertheless, the recurrence occurs in 30% of cases. The persistent mortality rates, the failure of current therapies to extend life expectancy, and the serious complications of non-targeted cytotoxic treatment indicate the need for more refined therapeutic approaches. Most MBs originating from the neurons of external granular layer line the outer surface of neocerebellum and responsible for the afferent and efferent connections. Recently, MBs have been segregated into four molecular subgroups: Wingless-activated (WNT-MB) (Group 1); Sonic-hedgehog-activated (SHH-MB) (Group 2); Group 3 and 4 MBs. These molecular alterations follow specific gene mutations and disease-risk stratifications. The current treatment protocols and ongoing clinical trials against these molecular subgroups are still using common chemotherapeutic agents by which their efficacy have improved the progression-free survival but did not change the overall survival. However, the need to explore new therapies targeting specific receptors in MB microenvironment became essential. The immune microenvironment of MBs consists of distinctive cellular heterogeneities including immune cells and none-immune cells. Tumour associate macrophage and tumour infiltrating lymphocyte are considered the main principal cells in tumour microenvironment, and their role are still under investigation. In this review, we discuss the mechanism of interaction between MB cells and immune cells in the microenvironment, with an overview of the recent investigations and clinical trials
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
- Neuromuscular Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina 213733, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Sahar Hakamy
- Neurmuscular Unit, Center of Excellence of Genomic Medicine, Jeddah 21423, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Nanomedicine approaches for medulloblastoma therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Kling MJ, Kesherwani V, Mishra NK, Alexander G, McIntyre EM, Ray S, Challagundla KB, Joshi SS, Coulter DW, Chaturvedi NK. A novel dual epigenetic approach targeting BET proteins and HDACs in Group 3 (MYC-driven) Medulloblastoma. J Exp Clin Cancer Res 2022; 41:321. [DOI: 10.1186/s13046-022-02530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Medulloblastoma (MB) patients with MYC oncogene amplification or overexpression exhibit extremely poor clinical outcomes and respond poorly to current therapies. Epigenetic deregulation is very common in MYC-driven MB. The bromodomain extra-terminal (BET) proteins and histone deacetylases (HDACs) are epigenetic regulators of MYC transcription and its associated tumorigenic programs. This study aimed to investigate the therapeutic potential of inhibiting the BET proteins and HDACs together in MB.
Methods
Using clinically relevant BET inhibitors (JQ1 or OTX015) and a pan-HDAC inhibitor (panobinostat), we evaluated the effects of combined inhibition on cell growth/survival in MYC-amplified MB cell lines and xenografts and examined underlying molecular mechanism(s).
Results
Co-treatment of JQ1 or OTX015 with panobinostat synergistically suppressed growth/survival of MYC-amplified MB cells by inducing G2 cell cycle arrest and apoptosis. Mechanistic investigation using RNA-seq revealed that co-treatment of JQ1 with panobinostat synergistically modulated global gene expression including MYC/HDAC targets. SYK and MSI1 oncogenes were among the top 50 genes synergistically downregulated by JQ1 and panobinostat. RT-PCR and western blot analyses confirmed that JQ1 and panobinostat synergistically inhibited the mRNA and protein expression of MSI1/SYK along with MYC expression. Reduced SYK/MSI expression after BET (specifically, BRD4) gene-knockdown further confirmed the epigenetic regulation of SYK and MSI1 genes. In addition, the combination of OTX015 and panobinostat significantly inhibited tumor growth in MYC-amplified MB xenografted mice by downregulating expression of MYC, compared to single-agent therapy.
Conclusions
Together, our findings demonstrated that dual-inhibition of BET and HDAC proteins of the epigenetic pathway can be a novel therapeutic approach against MYC-driven MB.
Collapse
|
20
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
21
|
Immunohistochemical staining of LEF-1 is a useful marker for distinguishing WNT-activated medulloblastomas. Diagn Pathol 2022; 17:69. [PMID: 36096860 PMCID: PMC9469524 DOI: 10.1186/s13000-022-01250-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Objectives To investigate lymphoid enhancer factor 1 (LEF-1) protein expression in medulloblastomas (MBs) and its correlation with molecular grouping of MBs. Methods Expressions of LEF-1 and β-catenin were detected by immunohistochemistry, and molecular grouping was performed based on the NanoString and sequencing techniques for 30 MBs. Results By genetic defining, 3 MBs were WNT-activated, 11 were SHH-activated, 3 were in Group 3 and 13 in Group 4 respectively. Nuclear LEF-1 staining was found in 8 MBs using immunohistochemical method. Three out of 8 showed diffuse and strong nuclear LEF-1 staining which were proved to be WNT-activated genetically, while the other 5 MBs with focal staining were SHH-activated genetically. The expression of LEF-1 protein was significantly correlated with genetically defined WNT-activated MBs (P < 0.0001). We also found focal nuclear β-catenin expression ( less than 1% of tumor cells) in 5 MBs. LEF-1 positivity was significantly correlated nuclear β-catenin expression (p < 0.001). Conclusions Immunohistochemical staining of LEF-1 can be used as a supplement for β-catenin to diagnosis WNT-activated Medulloblastomas, when β-catenin is difficult to recognize for its cytoplasm/membrane staining background. Diffuse nuclear staining of LEF-1 indicates WNT-activated MB.
Collapse
|
22
|
Smith KS, Bihannic L, Gudenas BL, Haldipur P, Tao R, Gao Q, Li Y, Aldinger KA, Iskusnykh IY, Chizhikov VV, Scoggins M, Zhang S, Edwards A, Deng M, Glass IA, Overman LM, Millman J, Sjoboen AH, Hadley J, Golser J, Mankad K, Sheppard H, Onar-Thomas A, Gajjar A, Robinson GW, Hovestadt V, Orr BA, Patay Z, Millen KJ, Northcott PA. Unified rhombic lip origins of group 3 and group 4 medulloblastoma. Nature 2022; 609:1012-1020. [PMID: 36131015 PMCID: PMC9748853 DOI: 10.1038/s41586-022-05208-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/08/2022] [Indexed: 02/01/2023]
Abstract
Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.
Collapse
Affiliation(s)
- Kyle S Smith
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Laure Bihannic
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brian L Gudenas
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ran Tao
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, USA
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, TN, USA
| | - Matthew Scoggins
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Silu Zhang
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Angela Edwards
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mei Deng
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Lynne M Overman
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jake Millman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Alexandria H Sjoboen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jennifer Hadley
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Golser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Heather Sheppard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Zoltán Patay
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Vagvala S, Guenette JP, Jaimes C, Huang RY. Imaging diagnosis and treatment selection for brain tumors in the era of molecular therapeutics. Cancer Imaging 2022; 22:19. [PMID: 35436952 PMCID: PMC9014574 DOI: 10.1186/s40644-022-00455-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/29/2022] [Indexed: 01/12/2023] Open
Abstract
Currently, most CNS tumors require tissue sampling to discern their molecular/genomic landscape. However, growing research has shown the powerful role imaging can play in non-invasively and accurately detecting the molecular signature of these tumors. The overarching theme of this review article is to provide neuroradiologists and neurooncologists with a framework of several important molecular markers, their associated imaging features and the accuracy of those features. A particular emphasis is placed on those tumors and mutations that have specific or promising imaging correlates as well as their respective therapeutic potentials.
Collapse
Affiliation(s)
- Saivenkat Vagvala
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA
| | - Camilo Jaimes
- Division of Neuroradiology, Boston Children's, 300 Longwood Ave., 2nd floor, Main Building, Boston, MA, 02115, USA
| | - Raymond Y Huang
- Division of Neuroradiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, 75 Francis St, Boston, MA, 02115, USA.
| |
Collapse
|
24
|
Liu XC, Wang FC, Wang JH, Zhao JY, Ye SY. The Circular RNA circSKA3 Facilitates the Malignant Biological Behaviors of Medulloblastoma via miR-520 h/CDK6 Pathway. Mol Biotechnol 2022; 64:1022-1033. [DOI: 10.1007/s12033-022-00466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
|
25
|
Medulloblastoma: Immune microenvironment and targeted nano-therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Harreld J, Zou P, Sabin N, Edwards A, Han Y, Li Y, Bieri O, Khan R, Gajjar A, Robinson G, Merchant T. Pretreatment Normal WM Magnetization Transfer Ratio Predicts Risk of Radiation Necrosis in Patients with Medulloblastoma. AJNR Am J Neuroradiol 2022; 43:299-303. [PMID: 35058296 PMCID: PMC8985672 DOI: 10.3174/ajnr.a7393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Radiation necrosis, for which abnormal WM enhancement is a hallmark, is an uncommon complication of craniospinal irradiation in children with medulloblastoma. The magnetization transfer ratio measures macromolecular content, dominated by myelin in the WM. We investigated whether the pretreatment supratentorial (nonsurgical) WM magnetization transfer ratio could predict patients at risk for radiation necrosis after radiation therapy for medulloblastoma. MATERIALS AND METHODS Ninety-five eligible patients with medulloblastoma (41% female; mean age, 11.0 [SD, 5.4] years) had baseline balanced steady-state free precession MR imaging before proton or photon radiation therapy. Associations among baseline supratentorial magnetization transfer ratio, radiation necrosis (spontaneously resolving/improving parenchymal enhancement within the radiation field)3, age, and the presence of visible brain metastases were explored by logistic regression and parametric/nonparametric techniques as appropriate. RESULTS Twenty-three of 95 (24.2%) children (44% female; mean age, 10.7 [SD, 6.7] years) developed radiation necrosis after radiation therapy (19 infratentorial, 1 supratentorial, 3 both). The mean pretreatment supratentorial WM magnetization transfer ratio was significantly lower in these children (43.18 versus 43.50, P = .03). There was no association between the supratentorial WM magnetization transfer ratio and age, sex, risk/treatment stratum, or the presence of visible brain metastases. CONCLUSIONS A lower baseline supratentorial WM magnetization transfer ratio may indicate underlying structural WM susceptibility to radiation necrosis and may identify children at risk for developing radiation necrosis after craniospinal irradiation for medulloblastoma.
Collapse
Affiliation(s)
- J.H. Harreld
- From the Department of Radiology (J.H.H.), Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire,Geisel School of Medicine (J.H.H.), Dartmouth College, Hanover, New Hampshire
| | - P. Zou
- Departments of Diagnostic Imaging (P.Z., N.D.S., A.E.)
| | - N.D. Sabin
- Departments of Diagnostic Imaging (P.Z., N.D.S., A.E.)
| | - A. Edwards
- Departments of Diagnostic Imaging (P.Z., N.D.S., A.E.)
| | - Y. Han
- Biostatistics (Y.H., Y.L.)
| | - Y. Li
- Biostatistics (Y.H., Y.L.)
| | - O. Bieri
- Department of Radiology (O.B.), Division of Radiological Physics, University Hospital Basel, Basel, Switzerland,Department of Biomedical Engineering (O.B), University of Basel, Allschwil, Switzerland
| | | | - A. Gajjar
- Department of Pediatrics, and Departments of Neuro-Oncology (A.G., G.R.)
| | - G. Robinson
- Department of Pediatrics, and Departments of Neuro-Oncology (A.G., G.R.)
| | - T.E. Merchant
- Radiation Oncology (T.E.M.), St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
27
|
Targeting the gp130/STAT3 Axis Attenuates Tumor Microenvironment Mediated Chemoresistance in Group 3 Medulloblastoma Cells. Cells 2022; 11:cells11030381. [PMID: 35159191 PMCID: PMC8834329 DOI: 10.3390/cells11030381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/04/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Of the four molecular subgroups, Group 3 MB is the most aggressive and has the worst prognosis. To understand the origins of chemoresistance involving IL-6/STAT3 signaling, we used in vitro co-culture systems to investigate the contribution of microglia as a brain tumor microenvironment cellular source of paracrine cytokines that promotes acquired drug resistance in Group 3 MB. MB cells subjected to co-culture with microglia exhibited increased expression of phosphorylated JAK1 and STAT3, which was correlated with enhanced resistance to vincristine. We found that both microglia and MB cells co-cultured with microglia secreted significant quantities of IL-6, indicating that IL-6 is a paracrine and autocrine cytokine able to initiate and sustain STAT3 activity in MB cells. Surprisingly, IL-6R−/− MB cells, which cannot respond to exogenous IL-6 stimuli, were responsive to microglia co-culture induced activation of STAT3 and chemoresistance. Subsequently, we found that MB cells conditioned in vitro with the IL-6 family cytokines, IL-6, OSM, LIF, or IL-11, exhibited enhanced JAK1/STAT3 activity and chemoresistance. Intriguingly, MB cells conditioned with any one of the IL-6 family cytokine secreted multiple IL-6 family cytokines, implicating a feedback network involving multiple cytokines. The IL-6 family cytokine receptors share a common signal transducing β-subunit, gp130, which may be targeted to mitigate tumor chemoresistance. We showed that microglia co-culture failed to induce chemoresistance of gp130−/− MB cells, and that combination treatment using gp130 inhibitors, or with the JAK inhibitor ruxolitinib, effectively overcame the observed resistance to vincristine in gp130 expressing MB cells. Our in vitro studies highlight the gp130/JAK/STAT pathway as a therapeutic target in combating acquired treatment resistance in Group 3 MB.
Collapse
|
28
|
Alaña L, Nunes-Xavier CE, Zaldumbide L, Martin-Guerrero I, Mosteiro L, Alba-Pavón P, Villate O, García-Obregón S, González-García H, Herraiz R, Astigarraga I, Pulido R, García-Ariza M. Identification and Functional Analysis of a Novel CTNNB1 Mutation in Pediatric Medulloblastoma. Cancers (Basel) 2022; 14:cancers14020421. [PMID: 35053583 PMCID: PMC8773623 DOI: 10.3390/cancers14020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary We have analyzed a panel of 88 pediatric medulloblastoma tumors for exon 3 mutations from the CTNNB1 gene and identified eight missense point-mutations and one in-frame deletion. We describe and functionally characterize a novel CTNNB1 in-frame deletion (c.109-111del, pSer37del, ΔS37) found in a pediatric patient with a classic medulloblastoma, WNT-activated grade IV (WHO 2016). To the best of our knowledge, this mutation has not been previously reported in medulloblastoma, and it is uncertain its role in the disease development and progression. Our analysis discloses gain-of-function properties for the new ΔS37 β-catenin variant. Abstract Medulloblastoma is the primary malignant tumor of the Central Nervous System (CNS) most common in pediatrics. We present here, the histological, molecular, and functional analysis of a cohort of 88 pediatric medulloblastoma tumor samples. The WNT-activated subgroup comprised 10% of our cohort, and all WNT-activated patients had exon 3 CTNNB1 mutations and were immunostained for nuclear β-catenin. One novel heterozygous CTNNB1 mutation was found, which resulted in the deletion of β-catenin Ser37 residue (ΔS37). The ΔS37 β-catenin variant ectopically expressed in U2OS human osteosarcoma cells displayed higher protein expression levels than wild-type β-catenin, and functional analysis disclosed gain-of-function properties in terms of elevated TCF/LEF transcriptional activity in cells. Our results suggest that the stabilization and nuclear accumulation of ΔS37 β-catenin contributed to early medulloblastoma tumorigenesis.
Collapse
Affiliation(s)
- Lide Alaña
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Correspondence: ; Tel.: +34-946-006-000 (ext. 2401)
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (C.E.N.-X.); (R.P.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Laura Zaldumbide
- Department of Pathology, Hospital Universitario de Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain; (L.Z.); (L.M.)
| | - Idoia Martin-Guerrero
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Department of Genetics, Physical Anthropology and Animal Pathology, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Lorena Mosteiro
- Department of Pathology, Hospital Universitario de Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain; (L.Z.); (L.M.)
| | - Piedad Alba-Pavón
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
| | - Olatz Villate
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
| | - Susana García-Obregón
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Department of Physiology, Faculty of Medicine and Nursing, Campus de Leioa, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Hermenegildo González-García
- Oncohematology Pediatric Unit, Department of Pediatrics, Hospital Universitario de Valladolid, C/Ramon y Cajal n°3, 47003 Valladolid, Spain; (H.G.-G.); (R.H.)
| | - Raquel Herraiz
- Oncohematology Pediatric Unit, Department of Pediatrics, Hospital Universitario de Valladolid, C/Ramon y Cajal n°3, 47003 Valladolid, Spain; (H.G.-G.); (R.H.)
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Pediatric Oncohematology Unit, Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain
- Pediatrics Department, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Plaza de Cruces 12, 48903 Barakaldo, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (C.E.N.-X.); (R.P.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Miguel García-Ariza
- Pediatric Oncology Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Spain; (I.M.-G.); (P.A.-P.); (O.V.); (S.G.-O.); (I.A.); (M.G.-A.)
- Pediatric Oncohematology Unit, Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Plaza de Cruces 12, 48903 Barakaldo, Spain
| |
Collapse
|
29
|
The RNA-Binding Protein Musashi1 Regulates a Network of Cell Cycle Genes in Group 4 Medulloblastoma. Cells 2021; 11:cells11010056. [PMID: 35011618 PMCID: PMC8750343 DOI: 10.3390/cells11010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Treatment with surgery, irradiation, and chemotherapy has improved survival in recent years, but patients are frequently left with devastating neurocognitive and other sequelae. Patients in molecular subgroups 3 and 4 still experience a high mortality rate. To identify new pathways contributing to medulloblastoma development and create new routes for therapy, we have been studying oncogenic RNA-binding proteins. We defined Musashi1 (Msi1) as one of the main drivers of medulloblastoma development. The high expression of Msi1 is prevalent in Group 4 and correlates with poor prognosis while its knockdown disrupted cancer-relevant phenotypes. Genomic analyses (RNA-seq and RIP-seq) indicated that cell cycle and division are the main biological categories regulated by Msi1 in Group 4 medulloblastoma. The most prominent Msi1 targets include CDK2, CDK6, CCND1, CDKN2A, and CCNA1. The inhibition of Msi1 with luteolin affected the growth of CHLA-01 and CHLA-01R Group 4 medulloblastoma cells and a synergistic effect was observed when luteolin and the mitosis inhibitor, vincristine, were combined. These findings indicate that a combined therapeutic strategy (Msi1 + cell cycle/division inhibitors) could work as an alternative to treat Group 4 medulloblastoma.
Collapse
|
30
|
Conti V, Cominelli M, Pieri V, Gallotti AL, Pagano I, Zanella M, Mazzoleni S, Pivetta F, Patanè M, Scotti GM, Piras IS, Pollo B, Falini A, Zippo A, Castellano A, Maestro R, Poliani PL, Galli R. mTORC1 promotes malignant large cell/anaplastic histology and is a targetable vulnerability in SHH-TP53 mutant medulloblastoma. JCI Insight 2021; 6:e153462. [PMID: 34673573 PMCID: PMC8675203 DOI: 10.1172/jci.insight.153462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Medulloblastoma (MB), one of the most malignant brain tumors of childhood, comprises distinct molecular subgroups, with p53 mutant sonic hedgehog-activated (SHH-activated) MB patients having a very severe outcome that is associated with unfavorable histological large cell/anaplastic (LC/A) features. To identify the molecular underpinnings of this phenotype, we analyzed a large cohort of MB developing in p53-deficient Ptch+/- SHH mice that, unexpectedly, showed LC/A traits that correlated with mTORC1 hyperactivation. Mechanistically, mTORC1 hyperactivation was mediated by a decrease in the p53-dependent expression of mTORC1 negative regulator Tsc2. Ectopic mTORC1 activation in mouse MB cancer stem cells (CSCs) promoted the in vivo acquisition of LC/A features and increased malignancy; accordingly, mTORC1 inhibition in p53-mutant Ptch+/- SHH MB and CSC-derived MB resulted in reduced tumor burden and aggressiveness. Most remarkably, mTORC1 hyperactivation was detected only in p53-mutant SHH MB patient samples, and treatment with rapamycin of a human preclinical model phenocopying this subgroup decreased tumor growth and malignancy. Thus, mTORC1 may act as a specific druggable target for this subset of SHH MB, resulting in the implementation of a stringent risk stratification and in the potentially rapid translation of this precision medicine approach into the clinical setting.
Collapse
Affiliation(s)
- Valentina Conti
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Manuela Cominelli
- Pathology Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
- Functional Neuroradiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Alberto L. Gallotti
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Pagano
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Zanella
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | | | - Flavia Pivetta
- Unit of Experimental Oncology 1, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Pordenone, Italy
| | - Monica Patanè
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico “C. Besta,” Milan, Italy
| | - Giulia M. Scotti
- Center for Omics Sciences, San Raffaele Scientific Institute, Milan, Italy
| | - Ignazio S. Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, USA
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico “C. Besta,” Milan, Italy
| | - Andrea Falini
- Functional Neuroradiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Alessio Zippo
- Istituto Nazionale di Genetica Molecolare (INGM), Milan, Italy
- Laboratory of Chromatin Biology & Epigenetics, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Antonella Castellano
- Functional Neuroradiology Unit, Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Maestro
- Unit of Experimental Oncology 1, Centro di Riferimento Oncologico (CRO), Aviano National Cancer Institute, Aviano, Pordenone, Italy
| | - Pietro L. Poliani
- Pathology Unit, Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Antonelli F, Casciati A, Belles M, Serra N, Linares-Vidal MV, Marino C, Mancuso M, Pazzaglia S. Long-Term Effects of Ionizing Radiation on the Hippocampus: Linking Effects of the Sonic Hedgehog Pathway Activation with Radiation Response. Int J Mol Sci 2021; 22:ijms222212605. [PMID: 34830484 PMCID: PMC8624704 DOI: 10.3390/ijms222212605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long-term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation-induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/-). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long-term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio-induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/- mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio-induced injury.
Collapse
Affiliation(s)
- Francesca Antonelli
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| | - Arianna Casciati
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Montserrat Belles
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Noemi Serra
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Maria Victoria Linares-Vidal
- Physiology Unit, School of Medicine, Rovira I Virgili University (URV), 43007 Reus, Spain; (M.B.); (N.S.); (M.V.L.-V.)
| | - Carmela Marino
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
| | - Simonetta Pazzaglia
- Division of Health Protection Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (A.C.); (C.M.); (M.M.)
- Correspondence: (F.A.); (S.P.)
| |
Collapse
|
32
|
Bibbò F, Sorice C, Ferrucci V, Zollo M. Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors. Front Oncol 2021; 11:758146. [PMID: 34745995 PMCID: PMC8569853 DOI: 10.3389/fonc.2021.758146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
We analyze the fundamental functions of Prune_1 in brain pathophysiology. We discuss the importance and maintenance of the function of Prune_1 and how its perturbation influences both brain pathological conditions, neurodevelopmental disorder with microcephaly, hypotonia, and variable brain anomalies (NMIHBA; OMIM: 617481), and tumorigenesis of medulloblastoma (MB) with functional correlations to other tumors. A therapeutic view underlying recent discoveries identified small molecules and cell penetrating peptides to impair the interaction of Prune_1 with protein partners (e.g., Nm23-H1), thus further impairing intracellular and extracellular signaling (i.e., canonical Wnt and TGF-β pathways). Identifying the mechanism of action of Prune_1 as responsible for neurodevelopmental disorders (NDDs), we have recognized other genes which are found overexpressed in brain tumors (e.g., MB) with functional implications in neurodevelopmental processes, as mainly linked to changes in mitotic cell cycle processes. Thus, with Prune_1 being a significant target in NDDs, we discuss how its network of action can be dysregulated during brain development, thus generating cancer and metastatic dissemination.
Collapse
Affiliation(s)
- Francesca Bibbò
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Carmen Sorice
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Veronica Ferrucci
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Massimo Zollo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), ‘Federico II’ University of Naples, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
33
|
Aldrich KD, Horne VE, Bielamowicz K, Sonabend RY, Scheurer ME, Paulino AC, Mahajan A, Chintagumpala M, Okcu MF, Brown AL. Comparison of hypothyroidism, growth hormone deficiency, and adrenal insufficiency following proton and photon radiotherapy in children with medulloblastoma. J Neurooncol 2021; 155:93-100. [PMID: 34596831 DOI: 10.1007/s11060-021-03847-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Endocrine deficiencies are common following Craniospinal irradiation (CSI) in children with brain tumors, but empirical data comparing outcomes following proton (PRT) and photon radiation therapy (XRT) are limited. METHODS This retrospective chart review compared the incidence of hypothyroidism, Growth hormone deficiency (GHD), and Adrenal insufficiency (AI) in patients with medulloblastoma treated with XRT and PRT between 1997 and 2016. All patients received CSI and had routine endocrine screening labs to evaluate for thyroid dysfunction, GHD, and AI. We used proportional hazards regression to calculate hazard ratios (HR) and 95% confidence intervals (CI) comparing the development of hypothyroidism, AI, and GHD between radiation modalities, adjusting for age at diagnosis, sex, race/ethnicity, and CSI dose. RESULTS We identified 118 patients with medulloblastoma who were followed for a median of 5.6 years from the end of radiotherapy. Thirty-five (31%) patients developed hypothyroidism, 71 (66%) GHD, and 20 (18%) AI. Compared to PRT, XRT was associated with a higher incidence of primary hypothyroidism (28% vs. 6%; HR = 4.61, 95% CI 1.2-17.7, p = 0.03). Central hypothyroidism, GHD, and AI incidence rates were similar between the groups. CONCLUSIONS Primary hypothyroidism occurs less often after PRT CSI, compared to XRT CSI. This suggests that the thyroid and pituitary glands receive less radiation after spine and posterior fossa boost RT, respectively, using PRT.
Collapse
Affiliation(s)
| | - Vincent E Horne
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Bielamowicz
- Department of Pediatrics, The University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rona Y Sonabend
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Arnold C Paulino
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Mehmet F Okcu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Austin L Brown
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Zhao YN, Li K, Han XS, Pan YW. The mechanism of non-coding RNAs in medulloblastoma. Oncol Lett 2021; 22:758. [PMID: 34539862 PMCID: PMC8436364 DOI: 10.3892/ol.2021.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common malignant tumors of the central nervous system in children. Although surgery, radiotherapy and chemotherapy have resulted in considerable progress in the treatment of this disease, the prognosis of patients with MB remains very poor. Therefore, highly specific molecular targeted treatment, which can improve the therapeutic efficacy and reduce the side effects of MB, has become a research hotspot. In recent years, non-coding RNAs (ncRNAs), which were initially considered to be transcriptional noise, have been shown to possess regulatory functions. A series of ncRNAs have been identified, including microRNAs and circular RNAs, which affect the expression of specific genes in a variety of tumors. These genes lead to the formation of a specific complex of proteins or they directly participate in protein synthesis in order to regulate the occurrence and development of tumors. The aim of the present review article was to summarize the recent research studies that have explored the ability of ncRNAs to regulate the occurrence and development of MB.
Collapse
Affiliation(s)
- Ying-Nan Zhao
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Kun Li
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xing-Sheng Han
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ya-Wen Pan
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
35
|
Mutlu M, Tekin C, Ak Aksoy S, Taskapilioglu MO, Kaya S, Balcin RN, Ocak PE, Kocaeli H, Bekar A, Tolunay S, Tunca B. Long non-coding RNAs as a predictive markers of group 3 medulloblastomas. Neurol Res 2021; 44:232-241. [PMID: 34533098 DOI: 10.1080/01616412.2021.1975223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ObjectiveThe appropriate treatments for the different molecular subgroups of medulloblastomas are challenging to determine. Hence, this study aimed to examine the expression profiles of long non-coding RNAs (LncRNAs) to determine a marker that may be important for treatment selection in these subgroups.MethodsChanges in the expression of LncRNAs in the tissues of patients with medulloblastoma, which are classified into four subgroups according to their clinical characteristics and gene expression profiles, were examined via reverse transcription polymerase chain reaction. Moreover, there association with patient prognosis was evaluated.ResultsThe expression levels of MALAT1 and SNGH16 were significantly higher in patients with group 3 medulloblastoma than in those with other subtypes. Patients with high expression levels of MALAT1 and SNGH16 had a relatively shorter overall survival than those with low expression levels.ConclusionsPatients with group 3 medulloblastoma have a high MALAT1 level, which is associated with poor prognosis. Therefore, MALAT1 can be a new therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Melis Mutlu
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, Bursa, Turkey
| | | | - Seckin Kaya
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rabia Nur Balcin
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Pınar Eser Ocak
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Sahsine Tolunay
- Department of Pathology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
36
|
Schwinn S, Mokhtari Z, Thusek S, Schneider T, Sirén AL, Tiemeyer N, Caruana I, Miele E, Schlegel PG, Beilhack A, Wölfl M. Cytotoxic effects and tolerability of gemcitabine and axitinib in a xenograft model for c-myc amplified medulloblastoma. Sci Rep 2021; 11:14062. [PMID: 34234256 PMCID: PMC8263612 DOI: 10.1038/s41598-021-93586-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Medulloblastoma is the most common high-grade brain tumor in childhood. Medulloblastomas with c-myc amplification, classified as group 3, are the most aggressive among the four disease subtypes resulting in a 5-year overall survival of just above 50%. Despite current intensive therapy regimens, patients suffering from group 3 medulloblastoma urgently require new therapeutic options. Using a recently established c-myc amplified human medulloblastoma cell line, we performed an in-vitro-drug screen with single and combinatorial drugs that are either already clinically approved or agents in the advanced stage of clinical development. Candidate drugs were identified in vitro and then evaluated in vivo. Tumor growth was closely monitored by BLI. Vessel development was assessed by 3D light-sheet-fluorescence-microscopy. We identified the combination of gemcitabine and axitinib to be highly cytotoxic, requiring only low picomolar concentrations when used in combination. In the orthotopic model, gemcitabine and axitinib showed efficacy in terms of tumor control and survival. In both models, gemcitabine and axitinib were better tolerated than the standard regimen comprising of cisplatin and etoposide phosphate. 3D light-sheet-fluorescence-microscopy of intact tumors revealed thinning and rarefication of tumor vessels, providing one explanation for reduced tumor growth. Thus, the combination of the two drugs gemcitabine and axitinib has favorable effects on preventing tumor progression in an orthotopic group 3 medulloblastoma xenograft model while exhibiting a favorable toxicity profile. The combination merits further exploration as a new approach to treat high-risk group 3 medulloblastoma.
Collapse
Affiliation(s)
- Stefanie Schwinn
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Zeinab Mokhtari
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Sina Thusek
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Theresa Schneider
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany
| | - Anna-Leena Sirén
- Department of Neurosurgery, Würzburg University Hospital, Würzburg, Germany
| | - Nicola Tiemeyer
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Ignazio Caruana
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Evelina Miele
- Department of Pediatric Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paul G Schlegel
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.,Comprehensive Cancer Center Main-Franken, Würzburg University Hospital, Würzburg, Germany
| | - Andreas Beilhack
- Department of Medicine, II, Würzburg University Hospital, Zinklesweg 10, 97078, Würzburg, Germany. .,Comprehensive Cancer Center Main-Franken, Würzburg University Hospital, Würzburg, Germany.
| | - Matthias Wölfl
- Children's Hospital, Pediatric Hematology, Oncology and Stem Cell Transplantation, Würzburg University Hospital, 31, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| |
Collapse
|
37
|
Koyama E, Mundy C, Saunders C, Chung J, Catheline SE, Rux D, Iwamoto M, Pacifici M. Premature Growth Plate Closure Caused by a Hedgehog Cancer Drug Is Preventable by Co-Administration of a Retinoid Antagonist in Mice. J Bone Miner Res 2021; 36:1387-1402. [PMID: 33724538 PMCID: PMC9661967 DOI: 10.1002/jbmr.4291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
The growth plates are key engines of skeletal development and growth and contain a top reserve zone followed by maturation zones of proliferating, prehypertrophic, and hypertrophic/mineralizing chondrocytes. Trauma or drug treatment of certain disorders can derange the growth plates and cause accelerated maturation and premature closure, one example being anti-hedgehog drugs such as LDE225 (Sonidegib) used against pediatric brain malignancies. Here we tested whether such acceleration and closure in LDE225-treated mice could be prevented by co-administration of a selective retinoid antagonist, based on previous studies showing that retinoid antagonists can slow down chondrocyte maturation rates. Treatment of juvenile mice with an experimental dose of LDE225 for 2 days (100 mg/kg by gavage) initially caused a significant shortening of long bone growth plates, with concomitant decreases in chondrocyte proliferation; expression of Indian hedgehog, Sox9, and other key genes; and surprisingly, the number of reserve progenitors. Growth plate involution followed with time, leading to impaired long bone lengthening. Mechanistically, LDE225 treatment markedly decreased the expression of retinoid catabolic enzyme Cyp26b1 within growth plate, whereas it increased and broadened the expression of retinoid synthesizing enzyme Raldh3, thus subverting normal homeostatic retinoid circuitries and in turn accelerating maturation and closure. All such severe skeletal and molecular changes were prevented when LDE-treated mice were co-administered the selective retinoid antagonist CD2665 (1.5 mg/kg/d), a drug targeting retinoid acid receptor γ, which is most abundantly expressed in growth plate. When given alone, CD2665 elicited the expected maturation delay and growth plate expansion. In vitro data showed that LDE225 acted directly to dampen chondrogenic phenotypic expression, a response fully reversed by CD2665 co-treatment. In sum, our proof-of-principle data indicate that drug-induced premature growth plate closures can be prevented or delayed by targeting a separate phenotypic regulatory mechanism in chondrocytes. The translation applicability of the findings remains to be studied. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Christina Mundy
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Cheri Saunders
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Juliet Chung
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Sarah E. Catheline
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Masahiro Iwamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
38
|
Liao C, An J, Yi S, Tan Z, Wang H, Li H, Guan X, Liu J, Wang Q. FUT8 and Protein Core Fucosylation in Tumours: From Diagnosis to Treatment. J Cancer 2021; 12:4109-4120. [PMID: 34093814 PMCID: PMC8176256 DOI: 10.7150/jca.58268] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Glycosylation changes are key molecular events in tumorigenesis, progression and glycosyltransferases play a vital role in the this process. FUT8 belongs to the fucosyltransferase family and is the key enzyme involved in N-glycan core fucosylation. FUT8 and/or core fucosylated proteins are frequently upregulated in liver, lung, colorectal, pancreas, prostate,breast, oral cavity, oesophagus, and thyroid tumours, diffuse large B-cell lymphoma, ependymoma, medulloblastoma and glioblastoma multiforme and downregulated in gastric cancer. They can be used as markers of cancer diagnosis, occurrence, progression and prognosis. Core fucosylated EGFR, TGFBR, E-cadherin, PD1/PD-L1 and α3β1 integrin are potential targets for tumour therapy. In addition, IGg1 antibody defucosylation can improve antibody affinity, which is another aspect of FUT8 that could be applied to tumour therapy.
Collapse
Affiliation(s)
- Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Suqin Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Hao Li
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Hospital of Stomatology, Zunyi Medical University, Zunyi 563000, China
| | - Jianguo Liu
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
39
|
Shireman JM, Atashi F, Lee G, Ali ES, Saathoff MR, Park CH, Savchuk S, Baisiwala S, Miska J, Lesniak MS, James CD, Stupp R, Kumthekar P, Horbinski CM, Ben-Sahra I, Ahmed AU. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain 2021; 144:1230-1246. [PMID: 33855339 DOI: 10.1093/brain/awab020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.
Collapse
Affiliation(s)
- Jack M Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Fatemeh Atashi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Gina Lee
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Miranda R Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Sol Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Priya Kumthekar
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| |
Collapse
|
40
|
Asif M, Usman M, Ayub S, Farhat S, Huma Z, Ahmed J, Kamal MA, Hussein D, Javed A, Khan I. Role of ATP-Binding Cassette Transporter Proteins in CNS Tumors: Resistance- Based Perspectives and Clinical Updates. Curr Pharm Des 2021; 26:4747-4763. [PMID: 32091329 DOI: 10.2174/1381612826666200224112141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Despite gigantic advances in medical research and development, chemotherapeutic resistance remains a major challenge in complete remission of CNS tumors. The failure of complete eradication of CNS tumors has been correlated with the existence of several factors including overexpression of transporter proteins. To date, 49 ABC-transporter proteins (ABC-TPs) have been reported in humans, and the evidence of their strong association with chemotherapeutics' influx, dissemination, and efflux in CNS tumors, is growing. Research studies on CNS tumors are implicating ABC-TPs as diagnostic, prognostic and therapeutic biomarkers that may be utilised in preclinical and clinical studies. With the current advancements in cell biology, molecular analysis of genomic and transcriptomic interplay, and protein homology-based drug-transporters interaction, our research approaches are streamlining the roles of ABC-TPs in cancer and multidrug resistance. Potential inhibitors of ABC-TP for better clinical outcomes in CNS tumors have emerged. Elacridar has shown to enhance the chemo-sensitivity of Dasatanib and Imatinib in various glioma models. Tariquidar has improved the effectiveness of Temozolomide's in CNS tumors. Although these inhibitors have been effective in preclinical settings, their clinical outcomes have not been as significant in clinical trials. Thus, to have a better understanding of the molecular evaluations of ABC-TPs, as well as drug-interactions, further research is being pursued in research labs. Our lab aims to better comprehend the biological mechanisms involved in drug resistance and to explore novel strategies to increase the clinical effectiveness of anticancer chemotherapeutics, which will ultimately improve clinical outcomes.
Collapse
Affiliation(s)
- M Asif
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - M Usman
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ayub
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan,Department of Neurosurgery, Hayatabad Medical Complex, KPK Medical Teaching Institute, Peshawar, Pakistan
| | - Sahar Farhat
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Zilli Huma
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jawad Ahmed
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,4Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Deema Hussein
- Neurooncology Translational Group, Medical Technology, College of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology,
Islamabad 44000, Pakistan,Department of Infectious diseases, Brigham and Women Hospital, Harvard Medical School, Cambridge, Boston, MA 02139, USA
| | - Ishaq Khan
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
41
|
Yan Z, Cheng M, Hu G, Wang Y, Zeng S, Huang A, Xu L, Liu Y, Shi C, Deng L, Lu Q, Rao H, Lu H, Chen YG, Luo S. Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death Dis 2021; 12:199. [PMID: 33608498 PMCID: PMC7896051 DOI: 10.1038/s41419-021-03487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Hedgehog (Hh) signaling plays a critical role in embryogenesis and tissue homeostasis, and its deregulation has been associated with tumor growth. The tumor suppressor SuFu inhibits Hh signaling by preventing the nuclear translocation of Gli and suppressing cell proliferation. Regulation of SuFu activity and stability is key to controlling Hh signaling. Here, we unveil SuFu Negating Protein 1 (SNEP1) as a novel Hh target, that enhances the ubiquitination and proteasomal degradation of SuFu and thus promotes Hh signaling. We further show that the E3 ubiquitin ligase LNX1 plays a critical role in the SNEP1-mediated degradation of SuFu. Accordingly, SNEP1 promotes colorectal cancer (CRC) cell proliferation and tumor growth. High levels of SNEP1 are detected in CRC tissues and are well correlated with poor prognosis in CRC patients. Moreover, SNEP1 overexpression reduces sensitivity to anti-Hh inhibitor in CRC cells. Altogether, our findings demonstrate that SNEP1 acts as a novel feedback regulator of Hh signaling by destabilizing SuFu and promoting tumor growth and anti-Hh resistance.
Collapse
Affiliation(s)
- Zhengwei Yan
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Guohui Hu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yao Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, 510632, Guangzhou, Guangdong, China
| | - Shaopeng Zeng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Aidi Huang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Linlin Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chao Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Libin Deng
- Basic Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Quqin Lu
- Department of Biostatistics and Epidemiology, School of Public Health, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Hai Rao
- Department of Molecular Medicine, The University of Texas Health, San Antonio, TX, 78229, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|
42
|
Medulloblastoma drugs in development: Current leads, trials and drawbacks. Eur J Med Chem 2021; 215:113268. [PMID: 33636537 DOI: 10.1016/j.ejmech.2021.113268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children. Current treatment for MB includes surgical resection, radiotherapy and chemotherapy. Despite significant progress in its management, a portion of children relapse and tumor recurrence carries a poor prognosis. Based on their molecular and clinical characteristics, MB patients are clinically classified into four groups: Wnt, Hh, Group 3, and Group 4. With our increased understanding of relevant molecular pathways disrupted in MB, the development of targeted therapies for MB has also increased. Targeted drugs have shown unique privileges over traditional cytotoxic therapies in balancing efficacy and toxicity, with many of them approved and widely used clinically. The aim of this review is to present the recent progress on targeted chemotherapies for the treatment of all classes of MB.
Collapse
|
43
|
Wang X, Xu D, Pei X, Zhang Y, Zhang Y, Gu Y, Li Y. CircSKA3 Modulates FOXM1 to Facilitate Cell Proliferation, Migration, and Invasion While Confine Apoptosis in Medulloblastoma via miR-383-5p. Cancer Manag Res 2021; 12:13415-13426. [PMID: 33408514 PMCID: PMC7779290 DOI: 10.2147/cmar.s272753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumor during childhood. Circular RNA (circSKA3) was identified to function as an oncogene in MB. However, the mechanism of circSKA3 in MB remains unclear. Methods The levels of circSKA3, microRNA-383-5p (miR-383-5p), and forkhead box M1 (FOXM1) in MB tissues were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The cell viability and apoptotic rate were assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry, respectively. The protein levels of B-cell lymphoma 2 (Bcl-2), C-Caspase3, and FOXM1 were detected via Western blot assay. Cell cycle was detected by flow cytometry. The migration and invasion abilities were monitored by Transwell assay. The dual-luciferase reporter assay was constructed to verify the interactions between miR-383-5p and circSKA3 or FOXM1. The mice model experiment was carried out to validate the effects of circSKA3 in vivo. Results The levels of circSKA3 and FOXM1 were significantly elevated, while the level of miR-383-5p was notably declined in MB tissues. CircSKA3 was validated to sponge miR-383-5p, and FOXM1 was a candidate target of miR-383-5p. CircSKA3 silencing impeded cell proliferation, migration, and invasion while promoted apoptosis by targeting miR-383-5p in vitro and retarded xenograft tumor growth in vivo. miR-383-5p suppressed cell proliferation, migration, and invasion but promoted apoptosis in MB cells by regulating FOXM1. CircSKA3 depletion decreased FOXM1 expression via miR-383-5p in MB cells. Conclusion CircSKA3 augmented MB progression partly through miR-383-5p/FOXM1 axis.
Collapse
Affiliation(s)
- Xinfang Wang
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Dong Xu
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Xin Pei
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Yingying Zhang
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Yuling Zhang
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Yaxing Gu
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| | - Ying Li
- Department of Pediatrics, Shandong Provincial Western Hospital, Jinan 250022, Shandong, People's Republic of China
| |
Collapse
|
44
|
Menyhárt O, Győrffy B. Molecular stratifications, biomarker candidates and new therapeutic options in current medulloblastoma treatment approaches. Cancer Metastasis Rev 2020; 39:211-233. [PMID: 31970590 PMCID: PMC7098941 DOI: 10.1007/s10555-020-09854-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Medulloblastoma (MB) is the most common malignant childhood tumor of the brain. Multimodal treatment consisting of surgery, radiation therapy, and chemotherapy reduced cumulative incidence of late mortality but increased the incidence of subsequent neoplasms and severe, incapacitating chronic health conditions. Present treatment strategies fail to recognize heterogeneity within patients despite wide divergence in individual responses. The persistent mortality rates and serious side effects of non-targeted cytotoxic therapies indicate a need for more refined therapeutic approaches. Advanced genomic research has led to the accumulation of an enormous amount of genetic information and resulted in a consensus distinguishing four molecular subgroups, WNT-activated, SHH-activated, and Group 3 and 4 medulloblastomas. These have distinct origin, demographics, molecular alterations, and clinical outcomes. Although subgroup affiliation does not predict response to therapy, new subgroup-specific markers of prognosis can enable a more layered risk stratification with additional subtypes within each primary subgroup. Here, we summarize subgroup-specific genetic alterations and their utility in current treatment strategies. The transition toward molecularly targeted interventions for newly diagnosed MBs remains slow, and prospective trials are needed to confirm stratifications based on molecular alterations. At the same time, numerous studies focus at fine-tuning the intensity of invasive radio- and chemotherapies to reduce intervention-related long-term morbidity. There are an increasing number of immunotherapy-based treatment strategies including immune checkpoint-inhibitors, oncolytic viruses, CAR-T therapy, and NK cells in recurrent and refractory MBs. Although most trials are in early phase, there is hope for therapeutic breakthroughs for advanced MBs within the next decade.
Collapse
Affiliation(s)
- Otília Menyhárt
- 2nd Department of Pediatrics and Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2, Budapest, H-1117, Hungary
| | - Balázs Győrffy
- 2nd Department of Pediatrics and Department of Bioinformatics, Semmelweis University, Budapest, Hungary. .,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja 2, Budapest, H-1117, Hungary.
| |
Collapse
|
45
|
Suter RK, Rodriguez-Blanco J, Ayad NG. Epigenetic pathways and plasticity in brain tumors. Neurobiol Dis 2020; 145:105060. [DOI: 10.1016/j.nbd.2020.105060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
|
46
|
Carta R, Del Baldo G, Miele E, Po A, Besharat ZM, Nazio F, Colafati GS, Piccirilli E, Agolini E, Rinelli M, Lodi M, Cacchione A, Carai A, Boccuto L, Ferretti E, Locatelli F, Mastronuzzi A. Cancer Predisposition Syndromes and Medulloblastoma in the Molecular Era. Front Oncol 2020; 10:566822. [PMID: 33194646 PMCID: PMC7658916 DOI: 10.3389/fonc.2020.566822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. In addition to sporadic cases, medulloblastoma may occur in association with cancer predisposition syndromes. This review aims to provide a complete description of inherited cancer syndromes associated with medulloblastoma. We examine their epidemiological, clinical, genetic, and diagnostic features and therapeutic approaches, including their correlation with medulloblastoma. Furthermore, according to the most recent molecular advances, we describe the association between the various molecular subgroups of medulloblastoma and each cancer predisposition syndrome. Knowledge of the aforementioned conditions can guide pediatric oncologists in performing adequate cancer surveillance. This will allow clinicians to promptly diagnose and treat medulloblastoma in syndromic children, forming a team with all specialists necessary for the correct management of the other various manifestations/symptoms related to the inherited cancer syndromes.
Collapse
Affiliation(s)
- Roberto Carta
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Francesca Nazio
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Oncological Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eleonora Piccirilli
- Department of Neuroscience, Imaging and Clinical Science, University “G.d’Annunzio” of Chieti, Chieti, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Rinelli
- Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mariachiara Lodi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Luigi Boccuto
- JC Self Research Institute, Greenwood Genetic Center, Greenwood, SC, United States
- School of Nursing, College of Behavioral, Social and Health Science, Clemson University, Clemson, SC, United States
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Maternal, Infantile, and Urological Sciences, University of Rome La Sapienza, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
47
|
Radial shock waves prevent growth retardation caused by the clinically used drug vismodegib in ex vivo cultured bones. Sci Rep 2020; 10:13400. [PMID: 32770014 PMCID: PMC7414117 DOI: 10.1038/s41598-020-69904-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
In childhood medulloblastoma patients, the hedgehog antagonist vismodegib is an effective anti-cancer treatment but unfortunately induces irreversible growth arrests and growth impairment limiting its use in skeletally immature patients. We hypothesized that radial shock wave treatment (rSWT) may protect drug-induced growth impairment owing to its osteogenic effects. Fetal rat metatarsal bones were exposed to vismodegib (day 0–5; 100 nM) and/or rSWT (single session); other bones from day 1 were continuously exposed to a Gli1 antagonist (GANT61; 10 µM) and/or rSWT (single session). Control bones were untreated. The bone length was measured at intervals; histomorphometric analysis and immunostaining for PCNA, Gli1, and Ihh were performed on the sectioned bones. Bones treated with vismodegib showed impaired bone growth, reduced height of the resting-proliferative zone and reduced hypertrophic cell size compared to control. In vismodegib treated bones, a single session of rSWT partially rescued bone growth, increased the growth velocity, hypertrophic cell size, and restored growth plate morphology. Bones exposed to GANT61 showed impaired bone growth and disorganized growth plate while when combined with rSWT these effects were partially prevented. Locally applied rSWT had a chondroprotective effect in rat metatarsal bones and suggest a novel strategy to prevent growth impairment caused by vismodegib.
Collapse
|
48
|
Fletcher EP, Burckart GJ, Robinson GW, Reaman GH, Stewart CF. The RACE to Develop New Targeted Therapies for Children With CNS Tumors. Clin Pharmacol Ther 2020; 108:434-436. [PMID: 32638364 DOI: 10.1002/cpt.1937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Elimika Pfuma Fletcher
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gregory H Reaman
- Oncology Center for Excellence, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Clinton F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
49
|
Luzzi S, Giotta Lucifero A, Brambilla I, Semeria Mantelli S, Mosconi M, Foiadelli T, Savasta S. Targeting the medulloblastoma: a molecular-based approach. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:79-100. [PMID: 32608377 PMCID: PMC7975825 DOI: 10.23750/abm.v91i7-s.9958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The lack of success of standard therapies for medulloblastoma has highlighted the need to plan a new therapeutic approach. The purpose of this article is to provide an overview of the novel treatment strategies based on the molecular characterization and risk categories of the medulloblastoma, also focusing on up-to-date relevant clinical trials and the challenges in translating tailored approaches into clinical practice. METHODS An online search of the literature was carried out on the PubMed/MEDLINE and ClinicalTrials.gov websites about molecular classification of medulloblastomas, ongoing clinical trials and new treatment strategies. Only articles in the English language and published in the last five years were selected. The research was refined based on the best match and relevance. RESULTS A total 58 articles and 51 clinical trials were analyzed. Trials were of phase I, II, and I/II in 55%, 33% and 12% of the cases, respectively. Target and adoptive immunotherapies were the treatment strategies for newly diagnosed and recurrent medulloblastoma in 71% and 29% of the cases, respectively. CONCLUSION Efforts are focused on the fine-tuning of target therapies and immunotherapies, including agents directed to specific pathways, engineered T-cells and oncoviruses. The blood-brain barrier, chemoresistance, the tumor microenvironment and cancer stem cells are the main translational challenges to be overcome in order to optimize medulloblastoma treatment, reduce the long-term morbidity and increase the overall survival.
Collapse
Affiliation(s)
- Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Ilaria Brambilla
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Simona Semeria Mantelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Mario Mosconi
- Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.
| | - Thomas Foiadelli
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| | - Salvatore Savasta
- Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy.
| |
Collapse
|
50
|
Chen X, Fan Z, Li KKW, Wu G, Yang Z, Gao X, Liu Y, Wu H, Chen H, Tang Q, Chen L, Wang Y, Mao Y, Ng HK, Shi Z, Yu J, Zhou L. Molecular subgrouping of medulloblastoma based on few-shot learning of multitasking using conventional MR images: a retrospective multicenter study. Neurooncol Adv 2020; 2:vdaa079. [PMID: 32760911 PMCID: PMC7393307 DOI: 10.1093/noajnl/vdaa079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The determination of molecular subgroups—wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4—of medulloblastomas is very important for prognostication and risk-adaptive treatment strategies. Due to the rare disease characteristics of medulloblastoma, we designed a unique multitask framework for the few-shot scenario to achieve noninvasive molecular subgrouping with high accuracy. Methods We introduced a multitask technique based on mask regional convolutional neural network (Mask-RCNN). By effectively utilizing the comprehensive information including genotyping, tumor mask, and prognosis, multitask technique, on the one hand, realized multi-purpose modeling and simultaneously, on the other hand, promoted the accuracy of the molecular subgrouping. One hundred and thirteen medulloblastoma cases were collected from 4 hospitals during the 8-year period in the retrospective study, which were divided into 3-fold cross-validation cohorts (N = 74) from 2 hospitals and independent testing cohort (N = 39) from the other 2 hospitals. Comparative experiments of different auxiliary tasks were designed to illustrate the effect of multitasking in molecular subgrouping. Results Compared to the single-task framework, the multitask framework that combined 3 tasks increased the average accuracy of molecular subgrouping from 0.84 to 0.93 in cross-validation and from 0.79 to 0.85 in independent testing. The average area under the receiver operating characteristic curves (AUCs) of molecular subgrouping were 0.97 in cross-validation and 0.92 in independent testing. The average AUCs of prognostication also reached to 0.88 in cross-validation and 0.79 in independent testing. The tumor segmentation results achieved the Dice coefficient of 0.90 in both cohorts. Conclusions The multitask Mask-RCNN is an effective method for the molecular subgrouping and prognostication of medulloblastomas with high accuracy in few-shot learning.
Collapse
Affiliation(s)
- Xi Chen
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China SAR
| | - Guoqing Wu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Zhong Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Gao
- Department of Neurosurgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Yingchao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Jinan, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China SAR
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinhua Yu
- Department of Electronic Engineering, Fudan University, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|