1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Chu Y, Yang S, Chen X. Fibroblast growth factor receptor signaling in metabolic dysfunction-associated fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2025; 269:108844. [PMID: 40113178 DOI: 10.1016/j.pharmthera.2025.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as a significant hepatic manifestation of metabolic syndrome, with its prevalence increasing globally alongside the epidemics of obesity and diabetes. MAFLD represents a continuum of liver damage, spanning from uncomplicated steatosis to metabolic dysfunction-associated steatohepatitis (MASH). This condition can advance to more severe outcomes, including fibrosis and cirrhosis. Fibroblast growth factor receptors (FGFRs) are a family of four receptor tyrosine kinases (FGFR1-4) that interact with both paracrine and endocrine fibroblast growth factors (FGFs). This interaction activates the phosphorylation of tyrosine kinase residues, thereby triggering downstream signaling pathways, including RAS-MAPK, JAK-STAT, PI3K-AKT, and PLCγ. In the context of MAFLD, paracrine FGF-FGFR signaling is predominantly biased toward the development of liver fibrosis and carcinogenesis. In contrast, endocrine FGF-FGFR signaling is primarily biased toward regulating the metabolism of bile acids, carbohydrates, lipids, and phosphate, as well as maintaining the overall balance of energy metabolism in the body. The interplay between these biased signaling pathways significantly influences the progression of MAFLD. This review explores the critical functions of FGFR signaling in MAFLD from three perspectives: first, it examines the primary roles of FGFRs relative to their structure; second, it summarizes FGFR signaling in hepatic lipid metabolism, elucidating mechanisms underlying the occurrence and progression of MAFLD; finally, it highlights recent advancements in drug development aimed at targeting FGFR signaling for the treatment of MAFLD and its associated diseases.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Su Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Gao Q, Wang J, Zhang H, Wang J, Jing Y, Su J. Organoid Vascularization: Strategies and Applications. Adv Healthc Mater 2025:e2500301. [PMID: 40285576 DOI: 10.1002/adhm.202500301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Organoids provide 3D structures that replicate native tissues in biomedical research. The development of vascular networks within organoids enables oxygen and nutrient delivery while facilitating metabolic waste removal, which supports organoid growth and maturation. Recent studies demonstrate that vascularized organoid models offer insights into tissue interactions and promote tissue regeneration. However, the current limitations in establishing functional vascular networks affect organoid growth, viability, and clinical translation potential. This review examines the development of vascularized organoids, including the mechanisms of angiogenesis and vasculogenesis, construction strategies, and biomedical applications. The approaches are categorized into in vivo and in vitro methods, with analysis of their specific advantages and limitations. The review also discusses emerging techniques such as bioprinting and gene editing for improving vascularization and functional integration in organoid-based therapies. Current developments in organoid vascularization indicate potential applications in modeling human diseases and developing therapeutic strategies, contributing to advances in translational research.
Collapse
Affiliation(s)
- Qianmin Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Hao Zhang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Jianhua Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| | - Yingying Jing
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai, 200444, P. R. China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, P. R. China
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, P. R. China
| |
Collapse
|
4
|
Feng S, Jin Y, Ni X, Zheng H, Wu L, Xia Y, Zhou C, Liang T, Zhu Y, Xu J, Wu Q, Yang Y, Zhao L, Zhuang S, Li X. FGF1 ΔHBS ameliorates DSS-induced ulcerative colitis by reducing neutrophil recruitment through the MAPK pathway. Br J Pharmacol 2025. [PMID: 40258390 DOI: 10.1111/bph.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory bowel diseases (IBDs) constitute chronic inflammatory disease of the gastrointestinal tract, with escalating global prevalence. There is a pressing demand for safe and effective treatments for IBDs. Fibroblast growth factor 1 (FGF1) variant FGF1ΔHBS, characterised by reduced mitogenic capacity, has shown promising therapeutic potential in various inflammatory conditions, including obesity and diabetic nephropathy. Hence, exploring the therapeutic impact of FGF1ΔHBS on colitis is warranted. EXPERIMENTAL APPROACH The protective role of FGF1ΔHBS was evaluated using a dextran sulphate sodium (DSS)-induced colitis model in mice. RNA-seq analysis was performed on colonic tissues. Inflammatory factor expression was examined by quantitative real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. Flow cytometry and immunofluorescence staining were employed to confirm the inhibitory effect of FGF1ΔHBS on neutrophil recruitment. Western blotting was performed to explore the mitogen-activated protein kinase (MAPK) signalling pathway. KEY RESULTS FGF1ΔHBS significantly alleviated DSS-induced colitis, as indicated by reduced Disease Activity Index scores and less histological injury to the colon. Additionally, FGF1ΔHBS decreased the expression of pro-inflammatory factors. Mechanistically, FGF1ΔHBS inhibited neutrophil-associated chemokine expression in intestinal epithelial cells by suppressing the MAPK signalling pathway, thereby reducing neutrophil recruitment and attenuating neutrophil-mediated intestinal inflammation. CONCLUSION AND IMPLICATIONS FGF1ΔHBS protects against DSS-induced colitis in mice by inhibiting neutrophil recruitment through MAPK activity suppression, suggesting a potential therapeutic strategy for preventing IBDs.
Collapse
Affiliation(s)
- Shuang Feng
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yanyan Jin
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Xinrui Ni
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Haoxin Zheng
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Linling Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Ying Xia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Changzhi Zhou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tong Liang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yunfei Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Juyi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qijin Wu
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Yong Yang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Longwei Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Shentian Zhuang
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xianjing Li
- Institute of Translational Medicine, China Pharmaceutical University, Nanjing, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Lu Y, Cha D, Li Z, Xiao L, Liao X, Li S, Jiang X, Hu B, Yang Y, Liu H. Hypoxia-regulated miR-103-3p/FGF2 axis in adipose-derived stem cells promotes angiogenesis by vascular endothelial cells during ischemic tissue repair. Int J Cardiol 2025; 425:133004. [PMID: 39864666 DOI: 10.1016/j.ijcard.2025.133004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/19/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Identifying factors mediating adipose-derived stem cells (ADSCs)-induced endothelial cell angiogenesis in hypoxic skin flap tissue is critical for reconstruction. While the paracrine action of VEGF by adipose-derived stem cells (ADSCs) is established in promoting endothelial cell angiogenesis, the role of FGF2 and its regulatory mechanisms in ADSCs paracrine secretion remains unclear. METHODS We induced hypoxia and examined the expression level of FGF2 in ADSCs using ELISA, qRT-PCR, and western blotting. Proliferation of ADSCs under hypoxia was assessed using a CCK-8 assay. Co-culture experiments of hypoxia-induced ADSCs with vascular endothelial cells were conducted, and migration and tube formation abilities were evaluated through wound healing assays, transwell cell migration, and tube formation experiments. RESULTS Hypoxia treatment induced significant upregulation of FGF2 expression in ADSCs, along with enhanced cell proliferation. Co-culture of hypoxia-induced ADSCs with vascular endothelial cells showed increased migration and tube formation abilities of endothelial cells. Knockdown of FGF2 inhibited these processes, while overexpression of miR-103-3p mimics in ADSCs suppressed endothelial cell migration and tube formation. FGF2 is a direct target of miR-103-3p in ADSCs. miR-103-3p/FGF2 axis regulates ADSCs on the biological activity of co-cultured vascular endothelial cells. Moreover, in the ischemic skin flap nude mouse model, ADSCs injection showed increased blood vessel formation and reduced flap necrosis, with the most significant improvement observed with ADSCs of miR-103-3p inhibitor overexpressed. CONCLUSION Hypoxia induces paracrine secretion of FGF2 from ADSCs, which enhances endothelial cell angiogenesis. FGF2 expression is regulated by miR-103-3p in ADSCs. The miR-103-3p/FGF2 axis induces endothelial cell migration and angiogenesis and finally modulates ischemic skin flap repair in nude mice in vivo.
Collapse
Affiliation(s)
- Yang Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China
| | - Dingsheng Cha
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No. 613, Whampoa Avenue West, Guangzhou, Guangdong Province, China; Department of Orthopedics, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong Province 528303, China
| | - Zehua Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China; Department of Plastic and Cosmetic Surgery, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen, Guangdong, China
| | - Lilin Xiao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China
| | - Shenghong Li
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China
| | - Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China
| | - Boyong Hu
- Department of Orthopedics, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou 510050, China
| | - Yuhao Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, No. 613, Whampoa Avenue West, Guangzhou, Guangdong Province, China.
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou, Guangdong Province 510630, China.
| |
Collapse
|
6
|
Brunmaier LAE, Ozdemir T, Walker TW. Angiogenesis: Biological Mechanisms and In Vitro Models. Ann Biomed Eng 2025:10.1007/s10439-025-03721-2. [PMID: 40210793 DOI: 10.1007/s10439-025-03721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/25/2025] [Indexed: 04/12/2025]
Abstract
The translation of biomedical devices and drug research is an expensive and long process with a low probability of receiving FDA approval. Developing physiologically relevant in vitro models with human cells offers a solution to not only improving the odds of FDA approval but also to expand our ability to study complex in vivo systems in a simpler fashion. Animal models remain the standard for pre-clinical testing; however, the data from animal models is an unreliable extrapolation when anticipating a human response in clinical trials, thus contributing to the low rates of translation. In this review, we focus on in vitro vascular or angiogenic models because of the incremental role that the vascular system plays in the translation of biomedical research. The first section of this review discusses the most common angiogenic cytokines that are used in vitro to initiate angiogenesis, followed by angiogenic inhibitors where both initiators and inhibitors work to maintain vascular homeostasis. Next, we evaluate previously published in vitro models, where we evaluate capturing the physical environment for biomimetic in vitro modeling. These topics provide a foundation of parameters that must be considered to improve and achieve vascular biomimicry. Finally, we summarize these topics to suggest a path forward with the goal of engineering human in vitro models that emulate the in vivo environment and provide a platform for biomedical device and drug screening that produces data to support clinical translation.
Collapse
Affiliation(s)
- Laura A E Brunmaier
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Tugba Ozdemir
- Nanoscience and Biomedical Engineering Department, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA
| | - Travis W Walker
- Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines & Technology, 501 E St. Joseph St., Rapid City, SD, 57701, USA.
| |
Collapse
|
7
|
Lin Q, Zhang S, Zhang J, Jin Y, Chen T, Lin R, Lv J, Xu W, Wu T, Tian S, Ying L, Li X, Huang Z, Niu J. Colonic epithelial-derived FGF1 drives intestinal stem cell commitment toward goblet cells to suppress inflammatory bowel disease. Nat Commun 2025; 16:3264. [PMID: 40188210 PMCID: PMC11972292 DOI: 10.1038/s41467-025-58644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Understanding the molecular mechanisms that regulate intestinal epithelial cell (IEC) renewal provides potential targets for inflammatory bowel disease (IBD). Growing evidence has highlighted the importance of epithelial signals in regulating intestinal stem cell (ISC) differentiation. However, it remains unclear which IEC-derived cytokines can precisely regulate ISC commitment toward specific mature cells. Here we systematically analyze all fibroblast growth factors (FGFs) expression and find that colonic FGF1 levels are inversely correlated with the severity of IBD in mouse models and patients. IEC-specific Fgf1 deletion leads to impaired goblet cell differentiation and exacerbated colitis, while pharmacological administration of recombinant FGF1 (rFGF1) alleviates colitis by enhancing goblet cell differentiation and improving colonic epithelial integrity. Mechanistic studies reveal that rFGF1 directs ISC differentiation toward goblet cells via FGFR2-TCF4-ATOH1 signaling axis. In conclusion, our study identifies an epithelial niche-derived FGF1 that regulates ISC commitment toward goblet cells, shedding light on strategies for treating IBD.
Collapse
Affiliation(s)
- Qian Lin
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Sudan Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaren Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yi Jin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Taoli Chen
- Department of Pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Ruoyu Lin
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiaxuan Lv
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenjing Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tianzhen Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shenyu Tian
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lei Ying
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaokun Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhifeng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jianlou Niu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
8
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Romaniello D, Morselli A, Marrocco I. Strategies to Overcome Resistance to Osimertinib in EGFR-Mutated Lung Cancer. Int J Mol Sci 2025; 26:2957. [PMID: 40243603 PMCID: PMC11988377 DOI: 10.3390/ijms26072957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 04/18/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) represents the most common type of lung cancer. The majority of patients with lung cancer characterized by activating mutations in the epidermal growth factor receptor (EGFR), benefit from therapies entailing tyrosine kinase inhibitors (TKIs). In this regard, osimertinib, a third-generation EGFR TKI, has greatly improved the outcome for patients with EGFR-mutated lung cancer. The AURA and FLAURA trials displayed the superiority of the third-generation TKI in both first- and second-line settings, making it the drug of choice for treating patients with EGFR-mutated lung cancer. Unfortunately, the onset of resistance is almost inevitable. On-target mechanisms of resistance include new mutations (e.g., C797S) in the kinase domain of EGFR, while among the off-target mechanisms, amplification of MET or HER2, mutations in downstream signaling molecules, oncogenic fusions, and phenotypic changes (e.g., EMT) have been described. This review focuses on the strategies that are currently being investigated, in preclinical and clinical settings, to overcome resistance to osimertinib, including the use of fourth-generation TKIs, PROTACs, bispecific antibodies, and ADCs, as monotherapy and as part of combination therapies.
Collapse
Affiliation(s)
- Donatella Romaniello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (D.R.); (A.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Alessandra Morselli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (D.R.); (A.M.)
| | - Ilaria Marrocco
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
10
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
11
|
Raigawali R, Vishweshwara SS, Anand S, Kikkeri R. Synthesis of Sulfated Carbohydrates - Glycosaminoglycans. Handb Exp Pharmacol 2025. [PMID: 40102244 DOI: 10.1007/164_2025_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Glycosaminoglycans (GAG) are polysaccharides that are ubiquitous on the surface of all mammalian cells, interacting with a multitude of proteins and orchestrating essential physiological and pathological processes. Among various GAG structures, heparan sulfate (HS) stands out for its intricate structure, positioning it as a significant cell-surface molecule capable of regulating wide range of cellular functions. Consequently, investigating the structure-activity relationships (SARs) with well-defined HS ligands emerges as an attractive avenue advancing drug discovery and biosensors. This chapter outlines a modular divergent strategy for synthesizing HS oligosaccharides to elucidate SARs. Here, we provide a literature overview on the synthesis of disaccharide building blocks, employing different orthogonal protecting groups, promoters, and optimization conditions to improve their suitability for subsequent oligosaccharide synthesis. Further, we highlight the synthesis of universal disaccharide building blocks derived from natural polysaccharides. We also provide insights of one-pot method and automated solid-phase synthesis of HS oligosaccharides. Finally, we review the status of SARs of popular heparan sulfate binding proteins (HSBPs).
Collapse
Affiliation(s)
| | | | - Saurabh Anand
- Indian Institute of Science Education and Research, Pune, India
| | | |
Collapse
|
12
|
Du P, Wang T, Wang R, Liu S, Wang H, Yin H. A Novel Recombinant Human FGF21 Analog with High Glycosylation Has a Prolonged Half-Life and Affects Glycemic and Body Weight Control. Int J Mol Sci 2025; 26:2672. [PMID: 40141314 PMCID: PMC11942484 DOI: 10.3390/ijms26062672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Fibroblast growth factor 21 (FGF21), a hormone-like protein, plays a crucial role in enhancing glucose and lipid metabolism, offering promising therapeutic avenues for conditions such as nonalcoholic steatohepatitis and severe hypertriglyceridemia. Despite its potential, this protein's limited stability and brief half-life pose significant challenges for its use in clinical settings. In this study, we created an FGF21 analog (named FGF21-164) that is a mutant of FGF21 and fused it with the tandem repeat sequence of human CD164. FGF21-164, characterized by extensive glycosylation and sialylation, exhibits enhanced pharmacokinetic properties, particularly in terms of its significantly longer half-life compared to its native form. The in vitro efficacy of FGF21-164 was evaluated using 3T3-L1-induced adipocytes. The protein demonstrated a dose-dependent increase in glucose uptake and effectively decreased lipid droplet accumulation surrounding the adipocytes. The in vivo activity of FGF21-164 was evaluated in leptin-deficient (ob/ob) and diet-induced obesity (DIO) mice. A single subcutaneous dose of FGF21-164 led to a rapid decrease in blood glucose levels and sustained normal fasting glucose levels for up to 28 days. Additionally, repeated dosing of FGF21-164 significantly curbed weight gain and reduced hepatic fat accumulation in DIO mice.
Collapse
Affiliation(s)
- Pei Du
- School of Life Science and Technology, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China; (P.D.); (R.W.); (S.L.); (H.W.)
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China;
| | - Rong Wang
- School of Life Science and Technology, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China; (P.D.); (R.W.); (S.L.); (H.W.)
| | - Shang Liu
- School of Life Science and Technology, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China; (P.D.); (R.W.); (S.L.); (H.W.)
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China; (P.D.); (R.W.); (S.L.); (H.W.)
| | - Hongping Yin
- School of Life Science and Technology, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China; (P.D.); (R.W.); (S.L.); (H.W.)
| |
Collapse
|
13
|
Kan SA, Hussain M, Jassi C, Kuo WW, Kuo CH, Pai PY, Lin SH, Lin YM, Huang CY, Lin SZ. β-sitosterol suppresses fibroblast growth factor and epidermal growth factor receptors to induce apoptosis and inhibit migration in lung cancer: an in vitro study. Am J Cancer Res 2025; 15:1109-1121. [PMID: 40226467 PMCID: PMC11982739 DOI: 10.62347/nzcg1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025] Open
Abstract
β-Sitosterol (BS), is a significant bioactive component of phytosterols found in plants, foods, and dietary supplements. Its nutritional benefits include lowering of cholesterol levels, boost immune system as well as reduce inflammation. Previous studies have demonstrated its significant anticancer effects across various human cancers. However, the specific mechanisms of action of BS in lung cancer remain unclear. This study aimed to investigate the mechanisms through which BS exerts its anticancer properties in human lung cancer cells, focusing on its anti-proliferative, apoptotic, cytotoxic, and anti-migratory effects. We conducted an in vitro study to assess the effects of BS on lung cancer cell lines A549 and H1975. We used a range of assays, including MTT, western blot, wound healing, transwell migration, immunofluorescence, TUNEL, and cell survival assays, to evaluate the impact of BS on cell proliferation, apoptosis, cytotoxicity, and migration. Our findings indicate that BS inhibits the proliferation of lung cancer cells in a time- and dose-dependent manner. It significantly promotes apoptosis and impairs both cancer cell migration and survival. Additionally, BS suppresses the expression of both fibroblast growth factor receptor-1 (FGFR1) and epidermal growth factor (EGFR), leading to the downregulation of the PI3K/AKT/mTOR/CD1 signaling pathway. BS demonstrates significant anticancer potential in lung cancer cells by inhibiting proliferation, inducing apoptosis, and reducing cell migration. These effects are likely mediated by the concurrent downregulation of FGFR1 and EGFR, leading to the inhibition of the PI3K/AKT/mTOR/CD1 signaling pathway, thereby warranting further investigation of BS as a potential therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Shun-An Kan
- Taipei Veterans General HospitalTaipei 112, Taiwan
| | - Musarat Hussain
- Department of Biological Science and Technology, China Medical UniversityTaichung 40402, Taiwan
| | - Chikondi Jassi
- Cardiovascular and Mitochondrial Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 970, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical UniversityTaichung 40402, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical UniversityTaichung 40402, Taiwan
- School of Pharmacy, China Medical UniversityTaichung 40402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of TaipeiTaipei 11153, Taiwan
- School of Physical Education and Sports Science, Soochow UniversitySuzhou 215021, Jiangsu, China
| | - Pei-Ying Pai
- School of Medicine, College of Medicine, China Medical UniversityTaichung 40402, Taiwan
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University HospitalTaichung 40447, Taiwan
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian HospitalChanghua 50094, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing UniversityTaichung 400, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and TechnologyTaichung 40601, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian HospitalChanghua 500209, Taiwan
- School of Medicine, Chung Shan Medical UniversityTaichung 402, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Diseases Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical UniversityTaichung 40402, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413305, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and TechnologyHualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical FoundationHualien 970, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualien 970, Taiwan
| |
Collapse
|
14
|
Li YX, Kang XL, Li YL, Wang XP, Yan Q, Wang JX, Zhao XF. Receptor tyrosine kinases CAD96CA and FGFR1 function as the cell membrane receptors of insect juvenile hormone. eLife 2025; 13:RP97189. [PMID: 40085503 PMCID: PMC11908783 DOI: 10.7554/elife.97189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Juvenile hormone (JH) is important to maintain insect larval status; however, its cell membrane receptor has not been identified. Using the lepidopteran insect Helicoverpa armigera (cotton bollworm), a serious agricultural pest, as a model, we determined that receptor tyrosine kinases (RTKs) cadherin 96ca (CAD96CA) and fibroblast growth factor receptor homologue (FGFR1) function as JH cell membrane receptors by their roles in JH-regulated gene expression, larval status maintaining, rapid intracellular calcium increase, phosphorylation of JH intracellular receptor MET1 and cofactor Taiman, and high affinity to JH III. Gene knockout of Cad96ca and Fgfr1 by CRISPR/Cas9 in embryo and knockdown in various insect cells, and overexpression of CAD96CA and FGFR1 in mammalian HEK-293T cells all supported CAD96CA and FGFR1 transmitting JH signal as JH cell membrane receptors.
Collapse
Affiliation(s)
- Yan-Xue Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xin-Le Kang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Qiao Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong UniversityShandongChina
| |
Collapse
|
15
|
Tain YL, Lin YJ, Hsu CN. Breastfeeding and Future Cardiovascular, Kidney, and Metabolic Health-A Narrative Review. Nutrients 2025; 17:995. [PMID: 40290039 DOI: 10.3390/nu17060995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/10/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The benefits of breastfeeding for both mother and infant are generally recognized; however, the connections between breast milk, lactation, and long-term offspring health and disease remain incompletely understood. Cardiovascular-kidney-metabolic syndrome (CKMS) has become a major global public health challenge. Insufficient breast milk supply, combined with various early-life environmental factors, markedly increases the future risk of CKMS, as highlighted by the developmental origins of health and disease (DOHaD) concept. Given its richness in nutrients and bioactive components essential for infant health, this review focuses on reprogramming strategies involving breast milk to improve offspring's cardiovascular, kidney, and metabolic health. It also highlights recent experimental advances in understanding the mechanisms driving CKMS programming. Cumulatively, the evidence suggests that lactational impairment heightens the risk of CKMS development. In contrast, early interventions during the lactation period focused on animal models that leverage breast milk components in response to early-life cues show potential in improving cardiovascular, kidney, and metabolic outcomes-an area warranting further investigation and clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Beltrán-Hernández NE, Cardenas L, Jimenez-Jacinto V, Vega-Alvarado L, Rivera HM. Biological Activity of Biomarkers Associated With Metastasis in Osteosarcoma Cell Lines. Cancer Med 2025; 14:e70391. [PMID: 40079158 PMCID: PMC11904427 DOI: 10.1002/cam4.70391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 03/14/2025] Open
Abstract
INTRODUCTION Osteosarcoma, a highly aggressive bone cancer primarily affecting children and young adults, remains a significant challenge in clinical oncology. Metastasis stands as the primary cause of mortality in osteosarcoma patients. However, the mechanisms driving this process remain incompletely understood. Clarifying the molecular pathways involved in metastasis is essential for enhancing patient prognoses and facilitating the development of targeted therapeutic strategies. METHODS RNA sequencing (RNA-Seq) analysis was employed to compare three conditions, hFOB1.19 versus Saos-2, hFOB1.19 versus SJSA-1, and Saos-2 versus SJSA-1, involving non-cancer osteoblasts (hFOB1.19) and highly metastatic osteosarcoma cell lines (Saos-2 and SJSA-1). Additionally, ENA datasets of RNA-Seq from osteosarcoma biopsies were included. Differentially expressed genes (DEGs) were identified and analyzed through enrichment pathway analysis and protein-protein interaction (PPI) networks. Additionally, for gene candidates, a biochemical evaluation was performed. RESULTS DEGs associated with biological functions pertinent to migration, invasion, and metastasis in osteosarcoma were identified. Notably, matrix metalloproteinase-2 (MMP-2) emerged as a promising candidate. Both canonical or full-length (FL-mmp-2) and N-terminal truncated (NTT-mmp-2) isoforms were discerned in biopsies. Moreover, MMP-2's activity was characterized in cell lines. Additionally, mRNA expression of voltage-gated sodium channels (NaVs) and voltage-gated potassium channels (KVs) was detected, and their functional expression was validated using patch clamp techniques. Evaluation of cell line migration and invasion capacities revealed their reduction in the presence of ion channel blockers (TTX and TEA) and MMP inhibitor (GM6001). CONCLUSIONS The gene functional enrichment analysis of DEGs enabled the identification of interaction networks in osteosarcoma, thereby revealing potential biomarkers. Moreover, the elucidated co-participation of TTX-sensitive NaVs and MMP-2 in facilitating migration and invasion suggests their suitability as novel prognostic biomarkers for osteosarcoma. Additionally, this study introduces a model delineating the potential interaction mechanism among ion channels, MMP-2, and other crucial factors in the metastatic cascade of osteosarcoma.
Collapse
Affiliation(s)
| | - Luis Cardenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jimenez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Coyoacán Ciudad de México, Mexico
| | - Heriberto Manuel Rivera
- Universidad Autónoma del Estado de Morelos, Facultad de Medicina, Cuernavaca, Morelos, Mexico
| |
Collapse
|
17
|
Wang L, Dong W, Fan L, Kong H, Liang S, Huang Z, Chen J, Zhi S, Xu S, Qiu Q, Yang M, Hou Y, Hu Y, Pan T, Zheng M, Li X, Huang Z, Song L. Repression of the ERRγ-CYP2E1 pathway by FGF4 mitigates alcohol-associated liver injury. Hepatology 2025:01515467-990000000-01184. [PMID: 40009617 DOI: 10.1097/hep.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND AND AIMS Alcohol-associated liver disease (ALD) represents a critical global health challenge characterized by liver damage resulting from excessive alcohol consumption. Early detection and timely intervention are essential for optimizing patient outcomes. However, the mechanisms underlying alcohol-induced liver injury have not been fully elucidated. Fibroblast growth factor 4 (FGF4) has been implicated in the progression of various liver diseases. This study aims to elucidate the role of FGF4 in the pathogenesis of ALD. APPROACH AND RESULTS We analyzed human liver specimens and observed significant upregulation of FGF4 mRNA and protein levels in patients with ALD. Consistent findings were noted in mouse models subjected to a Lieber-DeCarli liquid diet. Importantly, hepatic FGF4 expression exhibited a positive correlation with ALD severity in both human subjects and murine models. Hepatocyte-specific deletion of Fgf4 ( Fgf4 -LKO) exacerbated alcohol-induced liver injury through increased oxidative stress, inflammation, and apoptosis. Specifically, Fgf4 -LKO mice demonstrated heightened susceptibility to ethanol plus CCl 4 -induced fibrosis and liver injury. However, treatment with the ERRγ inverse agonist GSK5182 and CYP2E1 inhibitor chlormethiazole (CMZ) mitigated the exacerbated liver injury associated with Fgf4 deficiency. Mechanistic investigations revealed that FGFR4 phosphorylates ERRγ, promoting its ubiquitination and degradation in hepatocytes. Hepatic-specific knockout of Fgfr4 intensified alcohol-induced liver injury and nullified the protective conferred of recombinant FGF4 △NT . CONCLUSIONS Our study identifies FGF4 as a stress-responsive regulator in liver pathophysiology, operating through an FGFR4-mediated ERRγ-CYP2E1 signaling pathway. These results underscore the potential of FGF4 and its downstream pathways as therapeutic targets for ALD treatment.
Collapse
Affiliation(s)
- Luyao Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenliya Dong
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Fan
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyu Liang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuobing Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Chen
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sisi Zhi
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyan Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiaoling Qiu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaomiao Yang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yushu Hou
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Hu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tongtong Pan
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minghua Zheng
- Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhifeng Huang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lintao Song
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Zhu Y, Chen P, Zhang Z, He X, Wang R, Fang Q, Xu Z, He W. aFGF gene-modified adipose-derived mesenchymal stem cells promote healing of full-thickness skin defects in diabetic rats. Stem Cell Res Ther 2025; 16:93. [PMID: 40001190 PMCID: PMC11863861 DOI: 10.1186/s13287-025-04241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Chronic diabetic wounds pose a significant clinical challenge due to the limited efficacy of current treatments. This study aimed to investigate the role and potential mechanisms of adipose-derived mesenchymal stem cells (ADSCs) overexpressing acidic fibroblast growth factor (aFGF) in diabetic wound healing in a rat model. METHODS ADSCs were genetically modified to achieve stable overexpression of aFGF. Varying doses of aFGF-ADSCs (1 × 106, 2 × 106, 3 × 106, 4 × 106) were injected into the muscular tissue surrounding diabetic rat wounds. We assessed aFGF expression and its impact on various stages of wound healing, including angiogenesis, inflammatory response, epithelialization, and collagen deposition. Transcriptomic sequencing was performed to explore the underlying mechanisms driving enhanced wound healing. RESULTS Lentiviral transduction successfully induced stable aFGF overexpression in ADSCs. In vivo experiments revealed that varying doses of aFGF-ADSCs markedly enhanced wound healing in diabetic rats in a dose-dependent manner. The dose of 3 × 10⁶ aFGF-ADSCs demonstrated the most significant effect. In the 3 × 106 aFGF-ADSCs group, expression levels of aFGF, CD31, and CD163 were significantly higher than in other groups (p < 0.05), while CD86 expression was significantly lower (p < 0.05). CONCLUSION Single doses of aFGF-ADSCs comprehensively improved various aspects of wound repair in diabetic rats, offering a potential new approach for treating chronic diabetic wounds. The mechanism of action involves promoting angiogenesis, modulating inflammatory responses, accelerating epithelialization, and optimizing collagen deposition.
Collapse
Affiliation(s)
- Yiren Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Pinhua Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Zhengchao Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - XueYi He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Ruoli Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Qi Fang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Zhixian Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China
| | - Wubing He
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350001, China.
- Department of Emergency Trauma Surgery, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, 350001, China.
- Fujian Trauma Medicine Center, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Emergency Medicine, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
19
|
Ozer EA, Keskin A, Berrak YH, Cankara F, Can F, Gursoy-Ozdemir Y, Keskin O, Gursoy A, Yapici-Eser H. Shared interactions of six neurotropic viruses with 38 human proteins: a computational and literature-based exploration of viral interactions and hijacking of human proteins in neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2025; 5:18. [PMID: 39987419 PMCID: PMC11846830 DOI: 10.1007/s44192-025-00128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025]
Abstract
INTRODUCTION Viral infections may disrupt the structural and functional integrity of the nervous system, leading to acute conditions such as encephalitis, and neuropsychiatric conditions as mood disorders, schizophrenia, and neurodegenerative diseases. Investigating viral interactions of human proteins may reveal mechanisms underlying these effects and offer insights for therapeutic interventions. This study explores molecular interactions of virus and human proteins that may be related to neuropsychiatric disorders. METHODS Herpes Simplex Virus-1 (HSV-1), Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Influenza A virus (IAV) (H1N1, H5N1), and Human Immunodeficiency Virus (HIV1&2) were selected as key viruses. Protein structures for each virus were accessed from the Protein Data Bank and analyzed using the HMI-Pred web server to detect interface mimicry between viral and human proteins. The PANTHER classification system was used to categorize viral-human protein interactions based on function and cellular localization. RESULTS Energetically favorable viral-human protein interactions were identified for HSV-1 (467), CMV (514), EBV (495), H1N1 (3331), H5N1 (3533), and HIV 1&2 (62425). Besides immune and apoptosis-related pathways, key neurodegenerative pathways, including those associated with Parkinson's and Huntington's diseases, were frequently interacted. A total of 38 human proteins, including calmodulin 2, Ras-related botulinum toxin substrate 1 (Rac1), PDGF-β, and vimentin, were found to interact with all six viruses. CONCLUSION The study indicates a substantial number of energetically favorable interactions between human proteins and selected viral proteins, underscoring the complexity and breadth of viral strategies to hijack host cellular mechanisms. Further in vivo and in vitro validation is required to understand the implications of these interactions.
Collapse
Affiliation(s)
| | - Aleyna Keskin
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Fatma Cankara
- Graduate School of Sciences and Engineering, Computational Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Fusun Can
- Department of Microbiology, School of Medicine, Koç University, Istanbul, Turkey
| | - Yasemin Gursoy-Ozdemir
- Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Science and Engineering, College of Engineering, Koç University, Istanbul, Turkey.
| | - Hale Yapici-Eser
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
20
|
Seemann E, Beeler T, Alfarra M, Cosio M, Chan C, Grant P, Chang Y. Mechanisms of nebivolol-mediated effects on bFGF-induced vascular smooth muscle cell proliferation and migration. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2025; 8:100214. [PMID: 40092223 PMCID: PMC11908610 DOI: 10.1016/j.crphar.2025.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Background Nebivolol is a β-adrenergic receptor antagonist that has intrinsic activity on β3-adrenergic receptors (β3-ARs). Previous studies suggest that nebivolol inhibits bFGF-induced vascular smooth muscle cell (VSMC) proliferation and migration and vascular injury-induced neointima formation through activation of β3-ARs. However, our recently published data shown that activation of β3-ARs produced the opposite results, suggesting that the mechanisms of nebivolol-mediated effects are not fully understood. The current project was to study the mechanisms of nebivolol's effects on bFGF-induced VSMC proliferation and migration by comparing to the selective β3-AR agonist, CL316,243. Methods VSMCs isolated from Sprague Dawley rat aortas were pretreated with nebivolol or CL316,243 followed by stimulation with bFGF. Cell proliferation and migration and phosphorylation of ERK and AKT were measured. Results We found that pretreatment of VSMCs with nebivolol produced biphasic effects on bFGF-induced VSMC proliferation, manifested as potentiation at lower concentrations and inhibition at the higher concentration. The effects of low concentrations of nebivolol on bFGF-induced VSMC proliferation was blocked by the selective β3-AR antagonist, SR59230A. Nebivolol inhibited bFGF-induced cell migration at all concentrations tested. In addition, only higher concentrations of nebivolol significantly inhibited bFGF-induced AKT phosphorylation but not ERK phosphorylation whereas CL316,243 at all concentrations tested significantly enhanced bFGF-induced VSMC proliferation and migration and higher concentrations of CL316,243 not only enhanced bFGF-induced AKT phosphorylation but also ERK phosphorylation. Conclusion Our data suggest that the effect of nebivolol on bFGF-induced cell proliferation is concentration-dependent. The enhancement on bFGF-induced cell proliferation at lower concentrations appears to be mainly mediated by activation of β3-ARs but the inhibitory effects on bFGF-mediated cell proliferation as well as migration may occur through different mechanisms. AKT signaling is only involved in high concentrations of nebivolol-mediated effects.
Collapse
Affiliation(s)
- Elaina Seemann
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Trevor Beeler
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Mohammed Alfarra
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Mark Cosio
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Charles Chan
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Peyton Grant
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| | - Yingzi Chang
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, MO, USA
| |
Collapse
|
21
|
Bano N, Khan S, Ahamad S, Dar NJ, Alanazi HH, Nazir A, Bhat SA. Microglial Autophagic Dysregulation in Traumatic Brain Injury: Molecular Insights and Therapeutic Avenues. ACS Chem Neurosci 2025; 16:543-562. [PMID: 39920904 DOI: 10.1021/acschemneuro.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex and multifaceted condition that can result in cognitive and behavioral impairments. One aspect of TBI that has received increasing attention in recent years is the role of microglia, the brain-resident immune cells, in the pathophysiology of the injury. Specifically, increasing evidence suggests that dysfunction in microglial autophagy, the process by which cells degrade and recycle their own damaged components, may contribute to the development and progression of TBI-related impairments. Here, we unravel the pathways by which microglia autophagic dysregulation predisposes the brain to secondary damage and neurological deficits following TBI. An overview of the role of autophagic dysregulation in perpetuation and worsening of the inflammatory response, neuroinflammation, and neuronal cell death in TBI follows. Further, we have evaluated several signaling pathways and processes that contribute to autophagy dysfunction-mediated inflammation, neurodegeneration, and poor outcome in TBI. Additionally, a discussion on the small molecule therapeutics employed to modulate these pathways and mechanisms to treat TBI have been presented. However, additional research is required to fully understand the processes behind these underlying pathways and uncover potential therapeutic targets for restoring microglial autophagic failure in TBI.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, California 92037, United States
| | - Hamad H Alanazi
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al Jouf University, Sakaka 77455, Saudi Arabia
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research, New Delhi 201002, India
| | | |
Collapse
|
22
|
Wang Q, Li H, Mao Y, Garg A, Park ES, Wu Y, Chow A, Peregrin J, Zhang X. Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.20.619055. [PMID: 39484547 PMCID: PMC11527007 DOI: 10.1101/2024.10.20.619055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Fibroblast growth factor (FGF) signaling elicits multiple downstream pathways, most notably the Ras/MAPK cascade facilitated by the adaptor protein Grb2. However, the mechanism by which Grb2 is recruited to the FGF signaling complex remains unresolved. Here we showed that genetic ablation of FGF signaling prevented lens induction by disrupting transcriptional regulation and actin cytoskeletal arrangements, which could be reproduced by deleting the juxtamembrane region of the FGF receptor and rescued by Kras activation. Conversely, mutations affecting the Frs2-binding site on the FGF receptor or the deletion of Frs2 and Shp2 primarily impact later stages of lens vesicle development involving lens fiber cell differentiation. Our study further revealed that the loss of Grb2 abolished MAPK signaling, resulting in a profound arrest of lens development. However, removing Grb2's putative Shp2 dephosphorylation site (Y209) neither produced a detectable phenotype nor impaired MAPK signaling during lens development. Furthermore, the catalytically inactive Shp2 mutation (C459S) only modestly impaired FGF signaling, whereas replacing Shp2's C-terminal phosphorylation sites (Y542/Y580) previously implicated in Grb2 binding only caused placental defects, perinatal lethality, and reduced lacrimal gland branching without impacting lens development, suggesting that Shp2 only partially mediates Grb2 recruitment. In contrast, we observed that FGF signaling is required for the phosphorylation of the Grb2-binding sites on Shc1 and the deletion of Shc1 exacerbates the lens vesicle defect caused by Frs2 and Shp2 deletion. These findings establish Shc1 as a critical collaborator with Frs2 and Shp2 in targeting Grb2 during FGF signaling.
Collapse
Affiliation(s)
- Qian Wang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Hongge Li
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yingyu Mao
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Ankur Garg
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Eun Sil Park
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Yihua Wu
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Alyssa Chow
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - John Peregrin
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Xin Zhang
- Department of Ophthalmology, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
23
|
Han L, Yu Y, Deng P, Wang S, Hu J, Wang S, Zheng J, Jiang J, Dang Y, Long R, Gan Z. Design, synthesis, and biological evaluation of Ponatinib-based N-Phenylpyrimidine-2-amine derivatives as novel fibroblast growth factor receptor 4 (FGFR4) selective inhibitors. Eur J Med Chem 2025; 284:117206. [PMID: 39733483 DOI: 10.1016/j.ejmech.2024.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) has been proven to be a promising target for FGFR-driven HCC therapy. Great efforts have been devoted to the discovery of FGFR4 inhibitors. In this article, a new class of Ponatinib-based N-phenylpyridine-2-amine derivatives was designed and synthesized as covalent and irreversible FGFR4 selective inhibitors through a rational drug design strategy. The representative compound 10f displayed significant FGFR4 inhibition and reasonable selectivity. Meanwhile, compound 10f strongly suppressed the proliferation of FGFR4 dependent HCC cells both in vitro and in vivo by inhibiting the FGFR4 signaling pathway. Moreover, the irreversible binding to Cys552 in FGFR4 of compound 10f was also characterized by LC-MS/MS. These results provide evidence of 10f as a potential lead compound targeting FGFR4 for anti-HCC agent development.
Collapse
Affiliation(s)
- Lei Han
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Yu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ping Deng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuai Wang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junchi Hu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shuang Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiecheng Zheng
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Junhao Jiang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yongjun Dang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Rui Long
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.
| | - Zongjie Gan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Quality Control and Safety Evaluation of APIs, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
24
|
Liu Y, Zhang H, Li X, He T, Zhang W, Ji C, Wang J. Molecular mechanisms and pathological implications of unconventional protein secretion in human disease: from cellular stress to therapeutic targeting. Mol Biol Rep 2025; 52:236. [PMID: 39955475 DOI: 10.1007/s11033-025-10316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Unconventional protein secretion (UcPS) encompasses diverse non-canonical cellular export mechanisms that operate independently of the classical secretory pathway, representing a crucial cellular response to various physiological and pathological conditions. This comprehensive review synthesizes current understanding of UcPS mechanisms, particularly focusing on their roles in disease pathogenesis and progression. Recent advances in proteomics and cellular biology have revealed that UcPS facilitates the secretion of various biomedically significant proteins, including inflammatory mediators, growth factors, and disease-associated proteins, through multiple pathways such as membrane translocation, secretory lysosomes, and membrane-bound organelles. Notably, dysregulation of UcPS mechanisms has been implicated in various pathological conditions, including chronic inflammation, neurodegenerative disorders, and malignant transformation. We critically evaluate the molecular machinery governing UcPS, its regulation under cellular stress, and its contribution to disease mechanisms. Furthermore, we examine emerging therapeutic strategies targeting UcPS pathways, highlighting both opportunities and challenges in developing novel interventional approaches.
Collapse
Affiliation(s)
- Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|
25
|
Wang S, Mu J, Wu Q, Chen L, Yin X. Circulating plasma protein identified as a therapeutic target for intracranial aneurysm through Mendelian Randomization analysis. J Clin Neurosci 2025; 132:110998. [PMID: 39721116 DOI: 10.1016/j.jocn.2024.110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Intracranial aneurysms are the main cause of subarachnoid hemorrhage (SAH), a severe stroke with devastating effects. However, there are no existing medications for intracranial aneurysms (IAs) and novel therapeutic targets are required. METHODS We performed a summary data-based Mendelian Randomization (MR) analysis to explore the causal association between circulating plasma proteins and the risk of IAs and SAH. Colocalization analysis was conducted to identify shared causal variants between circulating plasma proteins and IAs, as well as SAH. Finally, mediation MR analyses were conducted to clarify the role of potential plasma proteins in aneurysm formation. RESULTS Proteome-wide MR analysis showed that FGF5 (fibroblast growth factor 5) had a causal effect on IA and SAH risk (Pfdr < 0.05). Moreover, genetic variants affecting FGF5 expression levels showed strong evidence of colocalization with IA risk (PPH4 = 0.993) and SAH risk (PPH = 0.988), suggesting that this protein represents a potential direct target for IA intervention. Mediation analysis using two-step MR showed that systolic blood pressure and diastolic blood pressure mediate the effects of FGF5 on IA and SAH. CONCLUSION Our investigation identified a causal connection between FGF5 and IAs.
Collapse
Affiliation(s)
- Songquan Wang
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Jiali Mu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, PR China
| | - Quansheng Wu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
26
|
Yingfei S, Feng Y, Haoning M. Environmental high temperature induced cartilage damage through triggering programmed necrosis mediated by producing left-handed DNA. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117894. [PMID: 39955869 DOI: 10.1016/j.ecoenv.2025.117894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/29/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Amid global climate warming, rising temperatures are becoming a major challenge for public health worldwide. At present, many places in the world frequently encounter extreme high temperature weather, which directly leads to frequent occurrence of heat stroke (HS). Heat stroke may lead to significant organ damage and potentially result in death. However, the impact of heat stroke (HS) on cartilage and osteoarthritis has not been fully revealed, which is an urgent scientific issue to be explored. In the current study, we first established an in vitro chondrocyte model and then explored the toxicological effects of HS on chondrocytes. Experimental data indicate that HS significantly reduces the proliferative activity of chondrocytes. HS triggers oxidative stress and inflammation in chondrocytes. Further biochemical experiments showed that HS caused chondrocytes senescence by detecting a series of senescence marker molecules, such as p21, p16, and p53. We further studied the molecular mechanism of HS-induced cell damage. We found that HS induced genomic damage, generating substantial Z-DNA (left-handed DNA) and activating ZBP-1-mediated programmed cell necrosis, which subsequently released various inflammatory factors. In contrast, inhibition of Z-DNA-mediated activation of ZBP-1 can significantly alleviate aging damage. In in-vivo experiments using a gene-knockout mouse model, our team found that HS induced cartilage aging. Additionally, HS aggravated osteoarthritis in vivo. On this basis, we observed that the expression of FGF1 was reduced under HS conditions. Therefore, we explored the effect of FGF1 on the damage of chondrocytes caused by HS. The experimental data showed that FGF1 activates the AMPK signaling pathway, which effectively alleviating the aging caused by HS. This work lays a solid foundation for further exploration into cartilage damage induced by HS. Our study also simultaneously indicates that FGF1 may be a very promising agent for the treatment of HS causing cartilage damage.
Collapse
Affiliation(s)
| | - Yang Feng
- China-Japan Friendship Hospital, China
| | | |
Collapse
|
27
|
Lin Q, Zhang J, Qi J, Tong J, Chen S, Zhang S, Liu X, Lou H, Lv J, Lin R, Xie J, Jin Y, Wang Y, Ying L, Wu J, Niu J. Hepatocyte-Derived FGF1 Alleviates Isoniazid and Rifampicin-Induced Liver Injury by Regulating HNF4α-Mediated Bile Acids Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408688. [PMID: 39731358 PMCID: PMC11831436 DOI: 10.1002/advs.202408688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/09/2024] [Indexed: 12/29/2024]
Abstract
Isoniazid and rifampicin co-therapy are the main causes of anti-tuberculosis drug-induced liver injury (ATB-DILI) and acute liver failure, seriously threatening human health. However, its pathophysiology is not fully elucidated. Growing evidences have shown that fibroblast growth factors (FGFs) play a critical role in diverse aspects of liver pathophysiology. The aim of this study is to investigate the role of FGFs in the pathogenesis of isoniazid (INH) and rifampicin (RIF)-induced liver injury. Through systematic screening, this study finds that hepatic FGF1 expression is significantly downregulated in both mouse model and human patients challenged with INH and RIF. Hepatocyte-specific Fgf1 deficiency exacerbates INH and RIF-induced liver injury resulted from elevated bile acids (BAs) synthases and aberrant BAs accumulation. Conversely, pharmacological administration of the non-mitogenic FGF1 analog - FGF1ΔHBS significantly alleviated INH and RIF-induced liver injury via restoring BAs homeostasis. Mechanically, FGF1 repressed hepatocyte nuclear factor 4α (Hnf4α) transcription via activating FGF receptor 4 (FGFR4)-ERK1/2 signaling pathway, thus reducing BAs synthase. The findings demonstrate hepatic FGF1 functions as a negative regulator of BAs biosynthesis to protect against INH and RIF-induced liver injury via normalizing hepatic BAs homeostasis, providing novel mechanistic insights into the pathogenesis of ATB-DILI and potential therapeutic strategies for treatment of ATB-DILI.
Collapse
Affiliation(s)
- Qian Lin
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiaren Zhang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jie Qi
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jialin Tong
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Shenghuan Chen
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Sudan Zhang
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xingru Liu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Huatong Lou
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiaxuan Lv
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Ruoyu Lin
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Junjun Xie
- Department of PharmacySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310016China
| | - Yi Jin
- Department of PathologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Yang Wang
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Lei Ying
- School of Basic Medical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jiamin Wu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| | - Jianlou Niu
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiang325035China
| |
Collapse
|
28
|
Chen G, Chen L, Li X, Mohammadi M. FGF-based drug discovery: advances and challenges. Nat Rev Drug Discov 2025:10.1038/s41573-024-01125-w. [PMID: 39875570 DOI: 10.1038/s41573-024-01125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
The fibroblast growth factor (FGF) family comprises 15 paracrine-acting and 3 endocrine-acting polypeptides, which govern a multitude of processes in human development, metabolism and tissue homeostasis. Therapeutic endocrine FGFs have recently advanced in clinical trials, with FGF19 and FGF21-based therapies on the cusp of approval for the treatment of primary sclerosing cholangitis and metabolic syndrome-associated steatohepatitis, respectively. By contrast, while paracrine FGFs were once thought to be promising drug candidates for wound healing, burns, tissue repair and ischaemic ailments based on their potent mitogenic and angiogenic properties, repeated failures in clinical trials have led to the widespread perception that the development of paracrine FGF-based drugs is not feasible. However, the observation that paracrine FGFs can exert FGF hormone-like metabolic activities has restored interest in these FGFs. The recent structural elucidation of the FGF cell surface signalling machinery and the formulation of a new threshold model for FGF signalling specificity have paved the way for therapeutically harnessing paracrine FGFs for the treatment of a range of metabolic diseases.
Collapse
Affiliation(s)
- Gaozhi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Moosa Mohammadi
- Institute of Cell Growth Factor, Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health, Wenzhou, Zhejiang, China.
| |
Collapse
|
29
|
Cao Z, Deng Z, Lu J, Yuan Y. Circulating fibroblast growth factor 21 levels in gestational diabetes mellitus and preeclampsia: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2025; 25:34. [PMID: 39819596 PMCID: PMC11740615 DOI: 10.1186/s12884-025-07157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND The connection between fibroblast growth factor 21 (FGF21) and the likelihood of gestational diabetes mellitus (GDM) or preeclampsia (PE) has received more attention recently. Based on published articles, meta-analysis were conducted to explore the differences in FGF21 levels in GDM or PE compared to control groups. METHODS Articles published before April 5, 2024 were searched across four databases: PubMed, Web of Science, Embase, and Cochrane Library, and studies exploring the association of FGF21 levels and GDM or PE were collected. Additionally, ClinicalTrials.gov was also searched for completed and ongoing trials. (Prospero Registration CRD42024504738). The standardized mean differences (SMDs) and 95% confidence intervals (CIs) were utilized to determine FGF21 levels among different groups. RESULTS This analysis incorporated a total of 16 articles, with 714 GDM and 701 non-GDM in the control group. The GDM-affected pregnant women had greater levels of circulating FGF21 than the control group (SMD = 0.529, 95% CI: 0.168 ~ 0.890, p = 0.004). Moreover, the PE case group covered 120 while the control group contained 134. The findings indicated that pregnant women with PE had significantly greater levels of circulating FGF21 than healthy expectant mothers (SMD = 0.743, 95% CI: 0.527 ~ 0.958, p = 0.000). CONCLUSIONS Our study found that FGF21 has the potential to serve as a diagnostic marker for GDM or PE. However, due to the limited number of studies and the fact that most data were from the second and third trimesters of pregnancy, more large-scale prospective studies are needed to validate these conclusions, investigate the potential of FGF21 in enabling early diagnosis, and further examine the role of FGF21 in the development and progression of GDM/PE. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510260, China
| | - Zhiming Deng
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510260, China
| | - Jieyi Lu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510260, China
| | - Ying Yuan
- Department of Clinical Laboratory, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, 63 Duobao Road, Liwan District, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Song L, Hou Y, Xu D, Dai X, Luo J, Liu Y, Huang Z, Yang M, Chen J, Hu Y, Chen C, Tang Y, Rao Z, Ma J, Zheng M, Shi K, Cai C, Lu M, Tang R, Ma X, Xie C, Luo Y, Li X, Huang Z. Hepatic FXR-FGF4 is required for bile acid homeostasis via an FGFR4-LRH-1 signal node under cholestatic stress. Cell Metab 2025; 37:104-120.e9. [PMID: 39393353 DOI: 10.1016/j.cmet.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 10/13/2024]
Abstract
Bile acid (BA) homeostasis is vital for various physiological processes, whereas its disruption underlies cholestasis. The farnesoid X receptor (FXR) is a master regulator of BA homeostasis via the ileal fibroblast growth factor (FGF)15/19 endocrine pathway, responding to postprandial or abnormal transintestinal BA flux. However, the de novo paracrine signal mediator of hepatic FXR, which governs the extent of BA synthesis within the liver in non-postprandial or intrahepatic cholestatic conditions, remains unknown. We identified hepatic Fgf4 as a direct FXR target that paracrinally signals to downregulate Cyp7a1 and Cyp8b1. The effect of FXR-FGF4 is mediated by an uncharted intracellular FGF receptor 4 (FGFR4)-LRH-1 signaling node. This liver-centric pathway acts as a first-line checkpoint for intrahepatic and transhepatic BA flux upstream of the peripheral FXR-FGF15/19 pathway, which together constitutes an integral hepatoenteric control mechanism that fine-tunes BA homeostasis, counteracting cholestasis and hepatobiliary damage. Our findings shed light on potential therapeutic strategies for cholestatic diseases.
Collapse
Affiliation(s)
- Lintao Song
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Yushu Hou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Da Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xijia Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianya Luo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhuobing Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Miaomiao Yang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yue Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuchu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuli Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiheng Rao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianjia Ma
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chao Cai
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mingqin Lu
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongde Luo
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Zhifeng Huang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), National Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
31
|
Jagadale S, Damle M, Joshi MG. Bone Tissue Engineering: From Biomaterials to Clinical Trials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:73-115. [PMID: 39881051 DOI: 10.1007/5584_2024_841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response. Growth factors like bone morphogenetic proteins (BMPs), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) are utilized to accelerate bone regeneration. Clinical applications include treating nonunion and mal-union fractures, osteonecrosis, orthopedic surgery, dental applications, and spinal cord injuries. Recent advances in the field include nanotechnology, 3D printing, bioprinting techniques, gene editing technologies, and microfluidic devices for drug testing. However, challenges remain, such as standardization of protocols, large-scale biomaterial production, personalized medicine approaches, cost-effectiveness, and regulatory issues. Current clinical trials are investigating the safety and efficacy of various bone tissue engineering approaches, with the potential to modernize patient care by providing more adequate treatments for bone defects and injuries.
Collapse
Affiliation(s)
- Swapnali Jagadale
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India
| | - Mrunal Damle
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
- Stem Plus Biotech, Sangli, India.
| |
Collapse
|
32
|
Yoshida Y, Shinomiya A, Oikawa M, Shimada T, Hanaki KI, Watanabe Y. [Neonatal Malnutrition Impacts Fibroblast Growth Factor 21-induced Neurite Outgrowth and Growth Hormone-releasing Hormone Secretion in Neonatal Mouse Brain]. YAKUGAKU ZASSHI 2025; 145:183-188. [PMID: 40024730 DOI: 10.1248/yakushi.24-00177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Neonatal malnutrition has been suggested as a factor contributing to neurological and other disorders. However, the details of this mechanism remain unclear. We focused on fibroblast growth factor 21 (FGF21), an endocrine factor produced in the liver during lactation-the main source of nutrition during the neonatal period- and analyzed its role in the brain. From the RNA-seq analysis of mouse brains, we analyzed the genes whose expression was regulated by FGF21 and their respective functions. We found that FGF21 has two functions in the neonatal brain; FGF21 induces the production of growth hormone-releasing hormone (GHRH) in the hypothalamus and is involved in isoform determination of Kalirin, a Ras homologous guanine nucleotide exchange factor, and promotes neurite outgrowth in the brain. Furthermore, the above mechanism is regulated by SH2-containing tyrosine phosphatase (SHP2) activity downstream of the FGF receptor. Additionally, the conserved intron of the SHP2 gene, Ptpn11, shows altered activity in malnourished mouse brains. In summary, FGF21 functions in neurite outgrowth and GHRH production in the neonatal mouse brain, with the mechanism being regulated by SHP2. However, SHP2 activity depends on nutritional status. Our goal was to elucidate the mechanisms by which FGF21 is involved in the maintenance of the central nervous system during the neonatal period. This study provides new insights into the role of FGF21 in diseases caused by dysfunction due to malnutrition.
Collapse
Affiliation(s)
- Yuko Yoshida
- Laboratory of Biosecurity Management, Research Center for Biosafety, Laboratory Animal and Pathogen Bank, NIID
| | | | | | | | - Ken-Ichi Hanaki
- Laboratory of Biosecurity Management, Research Center for Biosafety, Laboratory Animal and Pathogen Bank, NIID
| | - Yoshifumi Watanabe
- Faculty of Pharmacy, Musashino University
- Research Institute of Pharmaceutical Sciences, Musashino University
| |
Collapse
|
33
|
Mehra A, Sangwan R. A Promising Paradigm Shift in Cancer Treatment with FGFR Inhibitors. Anticancer Agents Med Chem 2025; 25:2-23. [PMID: 39192641 DOI: 10.2174/0118715206318833240819031953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
FGFR have been demonstrated to perform a crucial role in biological processes but their overexpression has been perceived as the operator component in the occurrence and progression of different types of carcinoma. Out of all the interest around cancer, FGFR inhibitors have assembled pace over the past few years. Therefore, FGFR inhibitors are one of the main fundamental tools to reverse drug resistance, tumor growth, and angiogenesis. Currently, many FGFR inhibitors are under the development stage or have been developed. Due to great demand and hotspots, different pharmacophores were approached to access structurally diverse FGFR inhibitors. Here, we have selected to present several representative examples such as Naphthyl, Pyrimidine, Pyridazine, Indole, and Quinoline derivatives that illustrate the diversity and advances of FGFR inhibitors in medicinal chemistry. This review focuses on the SAR study of FGFR inhibitors last five years which will be a great future scope that influences the medicinal chemist to work towards more achievements in this area.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| | - Rekha Sangwan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab), 144411, India
| |
Collapse
|
34
|
Jain U, Srivastava P, Sharma A, Sinha S, Johari S. Impaired Fibroblast Growth Factor 21 (FGF21) Associated with Visceral Adiposity Leads to Insulin Resistance: The Core Defect in Diabetes Mellitus. Curr Diabetes Rev 2025; 21:e260424229342. [PMID: 38676505 DOI: 10.2174/0115733998265915231116043813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 04/29/2024]
Abstract
The Central nervous system (CNS) is the prime regulator of signaling pathways whose function includes regulation of food intake (consumption), energy expenditure, and other metabolic responses like glycolysis, gluconeogenesis, fatty acid oxidation, and thermogenesis that have been implicated in chronic inflammatory disorders. Type 2 diabetes mellitus (T2DM) and obesity are two metabolic disorders that are linked together and have become an epidemic worldwide, thus raising significant public health concerns. Fibroblast growth factor 21 (FGF21) is an endocrine hormone with pleiotropic metabolic effects that increase insulin sensitivity and energy expenditure by elevating thermogenesis in brown or beige adipocytes, thus reducing body weight and sugar intake. In contrast, during starvation conditions, FGF21 induces its expression in the liver to initiate glucose homeostasis. Insulin resistance is one of the main anomalies caused by impaired FGF21 signaling, which also causes abnormal regulation of other signaling pathways. Tumor necrosis factor alpha (TNF-α), the cytokine released by adipocytes and inflammatory cells in response to chronic inflammation, is regarded major factor that reduces the expression of FGF21 and modulates underlying insulin resistance that causes imbalanced glucose homeostasis. This review aims to shed light on the mechanisms underlying the development of insulin resistance in obese individuals as well as the fundamental flaw in type 2 diabetes, which is malfunctioning obese adipose tissue.
Collapse
Affiliation(s)
- Unnati Jain
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Priyanka Srivastava
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| | - Ashwani Sharma
- Insight BioSolutions, Rue Joseph Colin, 35000 Rennes, France
| | - Subrata Sinha
- Centre of Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Surabhi Johari
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
35
|
Han S, Chen Q, Zhu Q, Han W. Circulating inflammatory cytokines and the risk of cerebral small vessel disease: a bidirectional Mendelian randomization analysis. J Stroke Cerebrovasc Dis 2025; 34:108163. [PMID: 39637729 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND A correlation between inflammation and cerebral small vessel disease (CSVD) has been hypothesized by earlier observational research, while this correlation has not been well established. Considering the significant clinical value of this causality determination, Mendelian randomization (MR) was implemented to investigate the causality between inflammatory cytokines and CSVD radiological lesions. METHODS Using the publicly available Genome-Wide Association Study (GWAS) datasets, a bidirectional two-sample MR analysis was employed to infer causality between 91 inflammatory cytokines and CSVD phenotypes [white matter hyperintensity (WHM), fractional anisotropy (FA), mean diffusivity (MD), cerebral microbleeds (CMBs), and lacunar stroke]. A set of methods was used for sensitivity analysis, including Cochran's Q test, MR-Egger intercept method, and MR pleiotropy residual sum and outlier (MR-PRESSO) global test. Furthermore, the strength of causality was assessed using the Bonferroni correction. RESULTS Our research discovered a mutually predictive bidirectional link between CSVD phenotypes and inflammatory cytokines. Following the application of the Bonferroni correction, fibroblast growth factor 21 (FGF-21) was significantly inversely correlated with an increased risk of CMBs (OR = 0.579, 95 % CI = 0.425-0.789, P = 0.00055). Using sensitivity analysis, heterogeneity, and horizontal pleiotropy were not detected. CONCLUSION In this investigation, we established the causality between CSVD and inflammatory cytokines, with FGF-21 in particular significantly reducing the risk of CMBs. With further validation, these findings may provide new targets for the prevention, detection, and intervention of CSVD.
Collapse
Affiliation(s)
- Shasha Han
- Department of Neurology, Jiaozhou Central Hosptital of Qingdao, Qingdao 266300, Shandong, China.
| | - Qiong Chen
- Department of Neurology, Jiaozhou Central Hosptital of Qingdao, Qingdao 266300, Shandong, China.
| | - Qiang Zhu
- Department of Emergency, Jiaozhou Central Hosptital of Qingdao, Qingdao 266300, Shandong, China.
| | - Wenxiu Han
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining 272000, Shandong, China; Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, Shandong, China.
| |
Collapse
|
36
|
Forget A, Shastri VP. Sulfated and Phosphorylated Agarose as Biomaterials for a Biomimetic Paradigm for FGF-2 Release. Biomimetics (Basel) 2024; 10:12. [PMID: 39851728 PMCID: PMC11761575 DOI: 10.3390/biomimetics10010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
Cardiovascular diseases such as myocardial infarction or limb ischemia are characterized by regression of blood vessels. Local delivery of growth factors (GFs) involved in angiogenesis such as fibroblast blast growth factor-2 (FGF-2) has been shown to trigger collateral neovasculature and might lead to a therapeutic strategy. In vivo, heparin, a sulfated polysaccharide present in abundance in the extracellular matrix (ECM), has been shown to function as a local reservoir for FGF-2 by binding FGF-2 and other morphogens and it plays a role in the evolution of GF gradients. To access injectable biomaterials that can mimic such natural electrostatic interactions between soluble signals and macromolecules and mechanically tunable environments, the backbone of agarose, a thermogelling marine-algae-derived polysaccharide, was modified with sulfate, phosphate, and carboxylic moieties and the interaction and release of FGF-2 from these functionalized hydrogels was assessed by ELISA in vitro and CAM assay in ovo. Our findings show that FGF-2 remains active after release, and FGF-2 release profiles can be influenced by sulfated and phosphorylated agarose, and in turn, promote varied blood vessel formation kinetics. These modified agaroses offer a simple approach to mimicking electrostatic interactions experienced by GFs in the extracellular environment and provide a platform to probe the role of these interactions in the modulation of growth factor activity and may find utility as an injectable gel for promoting angiogenesis and as bioinks in 3D bioprinting.
Collapse
Affiliation(s)
- Aurelien Forget
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany;
- BIOSS, Centre for Biological Signalling, Schanzelstrasse 18, 79104 Freiburg, Germany
| | - V. Prasad Shastri
- Institute for Macromolecular Chemistry, Stefan-Meier-Strasse 31, 79104 Freiburg, Germany;
- BIOSS, Centre for Biological Signalling, Schanzelstrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
37
|
Nguyen AL, Facey COB, Boman BM. The Complexity and Significance of Fibroblast Growth Factor (FGF) Signaling for FGF-Targeted Cancer Therapies. Cancers (Basel) 2024; 17:82. [PMID: 39796710 PMCID: PMC11720651 DOI: 10.3390/cancers17010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Fibroblast growth factors (FGFs) have diverse functions in the regulation of cell proliferation and differentiation in development, tissue maintenance, wound repair, and angiogenesis. The goal of this review paper is to (i) deliberate on the role of FGFs and FGF receptors (FGFRs) in different cancers, (ii) present advances in FGF-targeted cancer therapies, and (iii) explore cell signaling mechanisms that explain how FGF expression becomes dysregulated during cancer development. FGF is often mutated and overexpressed in cancer and the different FGF and FGFR isoforms have unique expression patterns and distinct roles in different cancers. Among the FGF members, the FGF 15/19 subfamily is particularly interesting because of its unique protein structure and role in endocrine function. The abnormal expression of FGFs in different cancer types (breast, colorectal, hepatobiliary, bronchogenic, and others) is examined and correlated with patient prognosis. The classification of FGF ligands based on their mode of action, whether autocrine, paracrine, endocrine, or intracrine, is illustrated, and an analysis of the binding specificity of FGFs to FGFRs is also provided. Moreover, the latest advances in cancer therapeutic strategies involving small molecules, ligand traps, and monoclonal antibody-based FGF inhibitors are presented. Lastly, we discuss how the dysregulation of FGF and FGFR expression affects FGF signaling and its role in cancer development.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA
- Department of Pharmacology & Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
38
|
Liu Y, Li J, Wu Z, Wu S, Yang X. Fibroblast Growth Factor 21 Confers Protection Against Asthma Through Inhibition of NLRP3 Inflammasome Activation. Inflammation 2024:10.1007/s10753-024-02222-z. [PMID: 39730972 DOI: 10.1007/s10753-024-02222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model. Levels of FGF21 were observed to be elevated in mice exhibiting asthmatic symptoms. FGF21 knockout (KO) mice exhibited exacerbated asthmatic pathologies, marked by heightened infiltration of inflammatory cells and elevated release of inflammatory cytokine, compared to wild-type (WT) mice with OVA challenge. Adeno-associated virus (AAV)-mediated overexpression of FGF21 significantly reversed asthmatic pathologies in both WT and FGF21 KO mice. Activated NLRP3 inflammasome was observed in WT mice following OVA challenge, and this response was intensified in FGF21 KO mice, manifested by an upregulation of NLRP3, ASC, cleaved Caspase-1, cleaved Gasdermin D (GSDMD), IL-1β, and IL-18. Pharmacological suppression of NLRP3 ameliorated the aggravated asthmatic pathologies observed in FGF21 KO mice after OVA challenge. Overall, the present work underscores the pivotal function of FGF21 in the pathogenesis of asthma and suggests that FGF21 could serve as a potential target for therapeutic interventions.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Jingxian Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Zhenyu Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Shiyu Wu
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China
| | - Xinwei Yang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
39
|
Guo Y, Bao Y, Chen Z, Rao Z, Luo Y, Ye S, Liu S. Novel FGF21 analogues through structure-based optimization for therapeutic development. Acta Biochim Biophys Sin (Shanghai) 2024; 57:582-587. [PMID: 39719877 DOI: 10.3724/abbs.2024227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a pivotal role in regulating metabolic processes and energy homeostasis, making it a promising therapeutic avenue for various obesity-related conditions. However, its therapeutic efficacy faces challenges due to its suboptimal pharmacokinetics and bioactivity. To overcome these limitations, we adapt a strategy in which key amino acid residues responsible for enhanced activity are pinpointed through sequence alignment and comparative analysis to develop long-acting FGF21 analogs. The mutant FGF21 analogs are fused with the Fc fragment. Here, we report the design, identification, and characterization of two distinct Fc-fused FGF21 analogs, Fc-FGF21(P119R) and Fc-FGF21(H125R), with significantly augmented potency. These findings hold promise for clinical applications, offering potential interventions for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Yiqing Guo
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuxuan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhichao Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
40
|
Deng Z, Iwasaki K, Peng Y, Honda Y. Mesenchymal Stem Cell Extract Promotes Skin Wound Healing. Int J Mol Sci 2024; 25:13745. [PMID: 39769505 PMCID: PMC11679360 DOI: 10.3390/ijms252413745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, it has been reported that mesenchymal stem cell (MSC)-derived humoral factors promote skin wound healing. As these humoral factors are transiently stored in cytoplasm, we collected them as part of the cell extracts from MSCs (MSC-ext). This study aimed to investigate the effects of MSC-ext on skin wound healing. We examined the effects of MSC-ext on cell proliferation and migration. Additionally, the effect of MSC-ext on skin wound healing was evaluated using a mouse skin defect model. The MSC-ext enhanced the proliferation of dermal fibroblasts, epithelial cells, and endothelial cells. It also increased the number of migrating fibroblasts and epithelial cells. The skin defects treated with MSC-ext demonstrated rapid wound closure compared to those treated with phosphate-buffered saline. The MSC-ext group exhibited a thicker dermis, larger Picrosirius red-positive areas, and a higher number of Ki67-positive cells. Our results indicate that MSC-ext promotes the proliferation and/or migration of fibroblasts, epithelial cells, and endothelial cells, and enhances skin wound healing. This suggests the therapeutic potential of MSC-ext in treating skin defects as a novel cell-free treatment modality.
Collapse
Affiliation(s)
- Zi Deng
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| | - Kengo Iwasaki
- Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka 573-1121, Japan
| | - Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, Osaka 573-1121, Japan; (Z.D.); (Y.H.)
| |
Collapse
|
41
|
Song Y, Li Y, Lu Z, Yue L, Xiao T, Yang B, Liu J, Yuan C, Guo T. FGF20 Secreted From Dermal Papilla Cells Regulate the Proliferation and Differentiation of Hair Follicle Stem Cells in Fine-Wool Sheep. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39704013 DOI: 10.1111/jpn.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/06/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
Wool traits determine the market value of fine-wool sheep, and wool fibre-breaking elongation (fibres can be stretched or elongated before they break) is one of the important wool traits. The interaction between hair follicle stem cells (HFSCs) and dermal papilla cells (DPCs) determines hair follicle development in fine wool sheep, thereby directly influencing wool traits. A genome-wide association study based on pre-sequencing data identified FGF20, which was significantly associated with wool fibre-breaking elongation. The study reveals that the regulatory mechanism of FGF20 secreted from DPCs affects the proliferation and differentiation of HFSCs through a co-culture system, to provide a new perspective for fine-wool sheep breeding. After knocking down FGF20 expression in DPCs, the results showed that the expression of fibroblast growth factor receptor 2 (FGFR2) and fibroblast growth factor receptor 3 (FGFR3) in DPCs and HFSCs was significantly decreased (p < 0.05), the number of EdU-positive cells and cell viability was significantly decreased (p < 0.01), and the apoptosis rate was significantly increased (p < 0.05). Meanwhile, the differentiation markers of SOX9, NOTCH1 and β-Catenin in HFSCs were also significantly reduced (p < 0.05). These findings indicate that FGF20-knockdown in DPCs of fine-wool sheep inhibits the proliferation and differentiation of HFSCs in the co-culture system, providing a theoretical basis for elucidating the regulatory mechanism of hair follicle self-renewal and differentiation of fine-wool sheep and providing a co-culture system for regenerative medicine.
Collapse
Affiliation(s)
- Yali Song
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tong Xiao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
42
|
Edirisinghe O, Ternier G, Alraawi Z, Suresh Kumar TK. Decoding FGF/FGFR Signaling: Insights into Biological Functions and Disease Relevance. Biomolecules 2024; 14:1622. [PMID: 39766329 PMCID: PMC11726770 DOI: 10.3390/biom14121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions. By complementing current knowledge and emerging research, this review aims to enhance the understanding of FGF-FGFR-mediated signaling and its implications for health and disease, which will be crucial for therapeutic development against FGF-related pathological conditions.
Collapse
Affiliation(s)
- Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Gaëtane Ternier
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Zeina Alraawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| | - Thallapuranam Krishnaswamy Suresh Kumar
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA;
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (G.T.); (Z.A.)
| |
Collapse
|
43
|
Hidalgo-Sánchez M, Sánchez-Guardado L, Rodríguez-León J, Francisco-Morcillo J. The role of FGF15/FGF19 in the development of the central nervous system, eyes and inner ears in vertebrates. Tissue Cell 2024; 91:102619. [PMID: 39579736 DOI: 10.1016/j.tice.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Fibroblast growth factor 19 (FGF19), and its rodent ortholog FGF15, is a member of a FGF subfamily directly involved in metabolism, acting in an endocrine way. During embryonic development, FGF15/FGF19 also functions as a paracrine or autocrine factor, regulating key events in a large number of organs. In this sense, the Fgf15/Fgf19 genes control the correct development of the brain, eye, inner ear, heart, pharyngeal pouches, tail bud and limbs, among other organs, as well as muscle growth in adulthood. These growth factors show relevant differences according to molecular structures, signalling pathway and function. Moreover, their expression patterns are highly dynamic at different stages of development, in particular in the central nervous system. The difficulty in understanding the action of these genes increases when comparing their expression patterns and regulatory mechanisms between different groups of vertebrates. The present review will address the expression patterns and functions of the Fgf15/Fgf19 genes at different stages of vertebrate embryonic development, with special attention to the regulation of the early specification, cell differentiation, and morphogenesis of the central nervous system and some sensory organs such as eye and inner ear. The most relevant anatomical aspects related to the structures analysed have also been considered in detail to provide an understandable context for the molecular and cellular studies shown.
Collapse
Affiliation(s)
- Matías Hidalgo-Sánchez
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain.
| | - Luis Sánchez-Guardado
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Joaquín Rodríguez-León
- Área de Anatomía Humana, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| | - Javier Francisco-Morcillo
- Área de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, Badajoz 06071, Spain
| |
Collapse
|
44
|
Hoshiyama J, Hayata Y, Eguchi A, Morimoto J, Ueki R, Sando S. Analysis of cell signaling profiles induced by DNA aptamer-based FGFR1 agonist. ANAL SCI 2024; 40:2251-2258. [PMID: 39249203 PMCID: PMC11588945 DOI: 10.1007/s44211-024-00660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
DNA aptamers have attracted attention as an alternative modality for biomolecules due to their excellent target binding specificity and thermal stability, and they are also expected to be applied as artificial agonists for receptor proteins. DNA aptamer agonist TD0 targeting the receptor of fibroblast growth factor (FGFR), which plays an important role in the fields of wound healing and regenerative medicine, has been reported to induce cellular responses as well as its native ligands. However, it was also noted that there were some different responses upon long-term stimulation, suggesting that the intracellular signals induced by DNA aptamer agonist TD0 are different from those of natural ligands. In this paper, we comprehensively analyzed the intracellular signals induced by DNA aptamer agonist TD0 targeting FGFR1, and compared them with those by natural protein ligand FGF2. It was found that the intracellular signals were highly similar for short-term stimulation. On the other hand, the receptor and the downstream cellular signals showed different activation behaviors for long-time stimulation. Evaluating the stability and sustained activity of DNA aptamer agonist TD0 and FGF2 in the medium suggested that ligand stability may be important in properly regulating cellular responses.
Collapse
Affiliation(s)
- Junya Hoshiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuri Hayata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akihiro Eguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ryosuke Ueki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
45
|
Yoo D, Wu S, Choi S, Huh SO, Sadra A. STK33 as the functional substrate of miR-454-3p for suppression and apoptosis in neuroblastoma. Mol Cells 2024; 47:100145. [PMID: 39515612 PMCID: PMC11863495 DOI: 10.1016/j.mocell.2024.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
miR-454-3p has been reported to be a tumor-suppressive microRNA (miRNA) in multiple cancer types. We identified the kinase STK33 mRNA, which is a high-risk factor for survival in neuroblastoma (NB) patients, as being a substrate of miR-454-3p in NB. Even though STK33 is an attractive target for several cancers, the development of inhibitors of STK33 has been challenging. For the various cell lines tested, we demonstrated reduced growth and viability with the miR-454-3p mimic. From among the candidate NB-associated miRNAs, miR-454-3p mimic and its antagonist had the most profound effect on STK33 mRNA and protein-level changes. Under various conditions of growth and external stress for the cells, the RNA levels for miR-454-3p and STK33 also negatively correlated. Luciferase reporter assays demonstrated STK33 as a substrate for miR-454-3p, and recombinant versions of STK33 resistant to miR-454-3p significantly blunted the suppressive effect of the miR-454-3p and established STK33 as the major functional substrate of miR-454-3p. Overexpression of miR-454-3p or knockdown of STK33 mRNA promoted autophagy and at the same time, increased the apoptotic markers in the tested NB cells, indicating a mechanism for the suppressive effect of the agents. Given the difficult-to-drug targets such as STK33 and the recent successes in RNA delivery methods for cancer treatment, it is thought that targeting cancer cells with a suppressive miRNA such as miR-454-3p for STK33-dependent cancer types may be an alternative means of NB therapy.
Collapse
Affiliation(s)
- Dongkwan Yoo
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon State, Republic of Korea
| | - Sichen Wu
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon State, Republic of Korea
| | - Seunghyuk Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon State, Republic of Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon State, Republic of Korea.
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon State, Republic of Korea.
| |
Collapse
|
46
|
Peng M, Deng J, Li X. Clinical advances and challenges in targeting FGF/FGFR signaling in lung cancer. Mol Cancer 2024; 23:256. [PMID: 39543657 PMCID: PMC11566285 DOI: 10.1186/s12943-024-02167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
Fibroblast growth factors (FGFs) and their receptors regulate numerous cellular processes, such as metabolism and signal transduction, but can also drive tumorigenesis. Specifically, in lung cancer, the overexpression of FGFs, as well as the amplification, mutation and fusion of FGFR genes, are closely linked to the initiation, progression and resistance of the disease, suggesting that targeting FGF/FGFR is an attractive therapeutic strategy for lung cancer treatment. Nintedanib, a multitarget tyrosine kinase inhibitor (TKI) used in combination with docetaxel, has shown some success as a second-line therapy for lung cancer. However, clinical trials evaluating other FGFR inhibitors have yielded mixed results, indicating substantial complexity in targeting aberrant FGF/FGFR signaling. In this review, we describe the aberrations in FGF/FGFR signaling in lung cancer and summarize the clinical efficacy of FGFR inhibitors, such as multitarget TKIs, selective FGFR-TKIs and biological agents. We also discuss various challenges associated with FGFR targeting in lung cancer, including precision patient selection, toxicity and resistance. Finally, we provide perspectives on future directions, namely, developing novel FGFR-targeting drugs, such as FGFR degraders and more specific FGFR-TKIs, adopting combination therapy and targeting FGFs.
Collapse
Affiliation(s)
- Mei Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
| | - Jun Deng
- Department of Pharmacy, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410000, P. R. China
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
| |
Collapse
|
47
|
Jia M, Xie M, Luo X, Wang H, Duan C, Lai W, Dai R, Wang R. Cancer-Associated Fibroblast-Derived FGF7 Promotes Clear Cell Renal Cell Carcinoma Progression and Macrophage Infiltration. Cells 2024; 13:1824. [PMID: 39594574 PMCID: PMC11593278 DOI: 10.3390/cells13221824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/28/2024] Open
Abstract
As the predominant stromal cells in the ccRCC surrounding environment, cancer-associated fibroblasts (CAFs) have been established as supportive of tumor growth. However, the detailed molecular mechanisms underlying the supporting role of CAFs in ccRCC have not been well characterized. Evidence from the clustering consensus analysis, single-cell analysis, and the experimental results illustrate that CAF-derived FGF7 plays a crucial role as a signaling mediator between CAFs and ccRCC tumor cells. Mechanistically, CAF-derived FGF7 triggers AKT activation to promote cell growth and cell invasion of ccRCC tumor cells. As a response, ccRCC tumor cells stimulate STAT3-mediated transcriptional regulation, directly increasing FGF7 expression at the chromatin level in CAFs. Moreover, there exists a positive clinical correlation between the abundance of CAFs, FGF7 expression, and the infiltration of M2 type macrophages. The RENCA in vivo mouse model also confirmed that FGF7 depletion could impede RCC development by reducing the recruitment of M2 type macrophages. Overall, this study delineates a key signaling axis governing the crosstalk between CAFs and ccRCC tumor cells, highlighting FGF7 as a promising therapeutic target of ccRCC.
Collapse
Affiliation(s)
- Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Mingyu Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xixi Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Huiping Wang
- Department of Genetics, Xuzhou Medical University, Xuzhou 221004, China
| | - Chunyan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Wanni Lai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
48
|
Giacomini A, Taranto S, Gazzaroli G, Faletti J, Capoferri D, Marcheselli R, Sciumè M, Presta M, Sacco A, Roccaro AM. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J Exp Clin Cancer Res 2024; 43:294. [PMID: 39482742 PMCID: PMC11529022 DOI: 10.1186/s13046-024-03217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Among blood cancers, multiple myeloma (MM) represents the second most common neoplasm and is characterized by the accumulation and proliferation of monoclonal plasma cells within the bone marrow. Despite the last few decades being characterized by the development of different therapeutic strategies against MM, at present such disease is still considered incurable. Although MM is highly heterogeneous in terms of genetic and molecular subtypes, about 67% of MM cases are associated with abnormal activity of the transcription factor c-Myc, which has so far revealed a protein extremely difficult to target. We have recently demonstrated that activation of fibroblast growth factor (FGF) signaling protects MM cells from oxidative stress-induced apoptosis by stabilizing the oncoprotein c-Myc. Accordingly, secretion of FGF ligands and autocrine activation of FGF receptors (FGFR) is observed in MM cells and FGFR3 genomic alterations represent some 15-20% MM cases and are associated with poor outcome. Thus, FGF/FGFR blockade may represent a promising strategy to indirectly target c-Myc in MM. On this basis, the present review aims at providing an overview of recently explored connections between the FGF/FGFR system and c-Myc oncoprotein, sustaining the therapeutic potential of targeting the FGF/FGFR/c-Myc axis in MM by using inhibitors targeting FGF ligands or FGF receptors. Importantly, the provided findings may represent the rationale for using FDA approved FGFR TK inhibitors (i.e. Pemigatinib, Futibatinib, Erdafitinib) for the treatment of MM patients presenting with an aberrant activation of this axis.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Sara Taranto
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jessica Faletti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Capoferri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Marcheselli
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Margherita Sciumè
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Antonio Sacco
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy
| | - Aldo M Roccaro
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili Di Brescia, Brescia, Italy.
| |
Collapse
|
49
|
Tosato G, Wang Y. Celebrating the 1945 JNCI pioneering contribution to antiangiogenic therapy for cancer. J Natl Cancer Inst 2024; 116:1715-1720. [PMID: 39178374 DOI: 10.1093/jnci/djae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/25/2024] Open
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuyi Wang
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Morita H, Hoshiga M. Fibroblast Growth Factors in Cardiovascular Disease. J Atheroscler Thromb 2024; 31:1496-1511. [PMID: 39168622 PMCID: PMC11537794 DOI: 10.5551/jat.rv22025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/23/2024] Open
Abstract
Despite advancements in managing traditional cardiovascular risk factors, many cardiovascular diseases (CVDs) persist. Fibroblast growth factors (FGFs) have emerged as potential diagnostic markers and therapeutic targets for CVDs. FGF1, FGF2, and FGF4 are primarily used for therapeutic angiogenesis. Clinical applications are being explored based on animal studies using approaches such as recombinant protein administration and adenovirus-mediated gene delivery, targeting patients with coronary artery disease and lower extremity arterial disease. Although promising results have been observed in animal models and early-stage clinical trials, further studies are required to assess their therapeutic potential. The FGF19 subfamily, consisting of FGF19, FGF21, and FGF23, act via endocrine signaling in various organs. FGF19, primarily expressed in the small intestine, plays important roles in glucose, lipid, and bile acid metabolism and has therapeutic potential for metabolic disorders. FGF21, found in various tissues, improves glucose metabolism and insulin sensitivity, suggesting potential for treating obesity and diabetes. FGF23, primarily secreted by osteocytes, regulates vitamin D and phosphate metabolism and serves as an important biomarker for chronic kidney disease and CVDs. Thus, FGFs holds promise for both therapeutic and diagnostic applications in metabolic and cardiovascular diseases. Understanding the mechanisms of FGF may pave the way for novel strategies to prevent and manage CVDs, potentially addressing the limitations of current treatments. This review explores the roles of FGF1, FGF2, FGF4, and the FGF19 subfamily in maintaining cardiovascular health. Further research and clinical trials are crucial to fully understand the therapeutic potential of FGFs in managing cardiovascular health.
Collapse
Affiliation(s)
- Hideaki Morita
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Masaaki Hoshiga
- Department of Cardiology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| |
Collapse
|