1
|
Höppner J, Firat D, Parvez-Khan M, Reyes M, Hanna P, Yadav PS, Dean T, Ramos-Torres KM, Brugarolas P, Collins MT, Wein MN, Liu S, Gellman SH, Schipani E, Kronenberg HM, Gardella TJ, Jüppner H. A mouse model of Jansen's metaphyseal chondrodysplasia for investigating disease mechanisms and candidate therapeutics. Proc Natl Acad Sci U S A 2025; 122:e2500176122. [PMID: 40455993 DOI: 10.1073/pnas.2500176122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/23/2025] [Indexed: 06/18/2025] Open
Abstract
Jansen's metaphyseal chondrodysplasia (JMC) is a rare disorder caused by activating mutations in the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTH1R). Patients exhibit short stature, dysmorphic bones, and severe growth plate abnormalities, as well as hypercalcemia, hypercalciuria, hypophosphatemia, and reduced plasma PTH levels. Humanized PTH1R (hPTH1R) mice expressing the H223R-hPTH1R JMC mutation die early without breeding. We therefore generated and characterized a stable mouse line expressing the T410R-hPTH1R allele, which confers a milder disease phenotype in patients. Mutant mice show near-normal longevity and reproductive capacity yet exhibit a profound skeletal phenotype characteristic of the disease. The long bones of T410R mice are markedly misshapen and have expanded metaphyses with disarrayed chondrocyte zones in growth plates and reduced primary spongiosa. PET/CT scanning revealed diminished uptake of [18F]-sodium fluoride in the growth plate area, consistent with reduced mineralization and vascularization. Genetic ablation of Hdac4 rescued the growth plate abnormalities in T410R mice, thereby establishing the PTH1R-Gαs-cAMP-PKA-SIK3-HDAC4/5 pathway as the main mediator of growth plate abnormalities in JMC. Serum calcium was elevated and endogenous PTH was suppressed in T410R mice, and both parameters could be normalized by acute injection of an optimized PTH inverse agonist peptide. The T410R mouse thus represents a stable animal model of JMC that recapitulates the abnormalities in skeletal development and mineral ion homeostasis which characterize this disease. The mice should help efforts to further define the cellular and molecular mechanisms underlying the JMC phenotype and to develop a potential mode of therapy.
Collapse
Affiliation(s)
- Jakob Höppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Developmental Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen 45141, Germany
| | - Damla Firat
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Mohd Parvez-Khan
- Department of Orthopedic Surgery, University of Pennsylvania, Perelman Medical School, Philadelphia, PA 19104
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Patrick Hanna
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Prem Swaroop Yadav
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Karla M Ramos-Torres
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Pedro Brugarolas
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Michael T Collins
- Department of Health and Human Services, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Shi Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ernestina Schipani
- Department of Orthopedic Surgery, University of Pennsylvania, Perelman Medical School, Philadelphia, PA 19104
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
2
|
Tasma Z, Garelja ML, Jamaluddin A, Alexander TI, Rees TA. Where are we now? Biased signalling of Class B G protein-coupled receptor-targeted therapeutics. Pharmacol Ther 2025; 270:108846. [PMID: 40216261 DOI: 10.1016/j.pharmthera.2025.108846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Class B G protein-coupled receptors (GPCRs) are a subfamily of 15 peptide hormone receptors with diverse roles in physiological functions and disease pathogenesis. Over the past decade, several novel therapeutics targeting these receptors have been approved for conditions like migraine, diabetes, and obesity, many of which are ground-breaking and first-in-class. Most of these therapeutics are agonist analogues with modified endogenous peptide sequences to enhance receptor activation or stability. Several small molecule and monoclonal antibody antagonists have also been approved or are in late-stage development. Differences in the sequence and structure of these therapeutic ligands lead to distinct signalling profiles, including biased behaviour or inhibition of specific pathways. Understanding this biased pharmacology offers unique development opportunities for improving therapeutic efficacy and reducing adverse effects. This review summarises current knowledge on the ligand bias of approved class B GPCR drugs, highlights strategies to refine and exploit their pharmacological profiles, and discusses key considerations related to receptor structure, localisation, and regulation for developing new therapies.
Collapse
Affiliation(s)
- Zoe Tasma
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Michael L Garelja
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, College of Medicine and Health, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Tyla I Alexander
- Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand
| | - Tayla A Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
3
|
Beaudart C, Veronese N, Douxfils J, Thiyagarajan JA, Bolzetta F, Albanese P, Voltan G, Alokail M, Harvey NC, Fuggle NR, Bruyère O, Rizzoli R, Reginster JY. PTH1 receptor agonists for fracture risk: a systematic review and network meta-analysis. Osteoporos Int 2025; 36:951-967. [PMID: 40047881 PMCID: PMC12122650 DOI: 10.1007/s00198-025-07440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 03/21/2025]
Abstract
Osteoporosis, defined by reduced bone mineral density and macro- and micro-architectural degradation, leads to increased fracture risk, particularly in aging populations. While randomized controlled trials (RCTs) demonstrate that PTH1 receptor agonists, teriparatide and abaloparatide, are effective at reducing fracture risk, real-world evidence (RWE) remains sparse. This study reviews and compares the anti-fracture efficacy of these agents, against each other and against other osteoporosis treatments using both RCTs and RWE. We systematically searched Medline, Embase, and Cochrane up to May 2024, focusing on RCTs and RWE studies reporting reduction in vertebral, non-vertebral, hip, or all fractures as primary endpoint. A network meta-analysis (NMA) was conducted, first through pairwise meta-analyses of teriparatide versus abaloparatide, then a Bayesian NMA comparing each to other treatments. Safety assessments included adverse events classified by MedDRA, with a particular attention to hypercalcemia and cardiac events. Seventeen studies (11 RCTs, 6 RWE) met inclusion criteria. Teriparatide and abaloparatide were effective in reducing vertebral and non-vertebral fractures in all pairwise meta-analyses versus placebo. Abaloparatide showed an advantage over teriparatide for non-vertebral fractures (OR: 0.87, 95% CI: 0.80-0.95) and hip fractures (OR: 0.81, 95% CI: 0.71-0.93). In the NMA model, teriparatide and abaloparatide were superior to placebo, raloxifene, and calcitonin in reducing vertebral fracture while teriparatide was further superior to denosumab and risedronate. For non-vertebral fracture, abaloparatide was better than any other treatment while teriparatide was only superior to alendronate or placebo. PTH1 analogs were better than placebo at reducing all fractures while no difference was observed for the risk of hip fracture. Both abaloparatide and teriparatide demonstrate comparable safety to other osteoporosis treatments, with no increased cardiovascular risk. This review highlights that PTH1 receptor agonists effectively reduce fracture risk, with abaloparatide offering enhanced benefits for non-vertebral and hip fractures compared to teriparatide. Both agents exhibit acceptable safety profiles, suggesting their valuable role in managing osteoporosis, particularly for high-risk patients.
Collapse
Affiliation(s)
- Charlotte Beaudart
- World Health Organization (WHO) Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium.
- Public Health Aging Research & Epidemiology (PHARE) Group, Research Unit in Clinical, Pharmacology and Toxicology (URPC), Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium.
| | - Nicola Veronese
- World Health Organization (WHO) Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, Palermo, Italy
| | - Jonathan Douxfils
- Research Unit in Clinical Pharmacology and Toxicology (URPC), Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Namur, Belgium
- QUALIresearch, QUALIblood S.a., Liège, Belgium
- Department of Biological Hematology, Centre Hospitalier Universitaire Clermont-Ferrand, Hôpital Estaing, Clermont-Ferrand, France
| | | | - Francesco Bolzetta
- Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima", 30174, Venice, Italy
| | - Paolo Albanese
- Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima", 30174, Venice, Italy
| | - Gianpaolo Voltan
- Azienda ULSS (Unità Locale Socio Sanitaria) 3 "Serenissima", 30174, Venice, Italy
| | - Majed Alokail
- Protein Research Chair, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Nicholas C Harvey
- World Health Organization (WHO) Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
| | - Nicholas R Fuggle
- World Health Organization (WHO) Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton, SO16 6YD, UK
| | - Olivier Bruyère
- World Health Organization (WHO) Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium
- Research Unit in Public Health, Epidemiology and Health Economics, University of Liege, Liege, Belgium
| | - René Rizzoli
- World Health Organization (WHO) Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium
- Service of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva 14, 1211, Switzerland
| | - Jean-Yves Reginster
- World Health Organization (WHO) Collaborating Center for Epidemiology of Musculoskeletal Health and Ageing, University of Liège, Liège, Belgium
- Protein Research Chair, Biochemistry Department, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Tokavanich N, Chan B, Strauss K, Castro Andrade CD, Arai Y, Nagata M, Foretz M, Brooks DJ, Ono N, Ono W, Wein MN. Control of alveolar bone development, homeostasis, and socket healing by salt-inducible kinases. J Bone Miner Res 2025; 40:656-670. [PMID: 40057979 DOI: 10.1093/jbmr/zjaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 05/26/2025]
Abstract
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt-inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton, where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 (Ubq-creERt;Sik2f/f;Sik3f/f) deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Notably, this phenotype is the opposite of the increased trabecular bone mass observed in long bones following SIK2/SIK3 deletion. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- Harvard School of Dental Medicine, Boston, MA, 02115, United States
| | - Byron Chan
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Katelyn Strauss
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Christian D Castro Andrade
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Yuki Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Marc Foretz
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77204, United States
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States
| |
Collapse
|
5
|
Solís KH, Romero-Ávila MT, Alcántara-Hernández R, García-Sáinz JA. The many facets of biased signaling: Mechanisms and possible therapeutic implications. Pharmacol Ther 2025; 272:108877. [PMID: 40383400 DOI: 10.1016/j.pharmthera.2025.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Receptor-mediated cell activation frequently results in a plethora of effects, and interestingly, not all agonists that act on a given receptor activate all of those actions to the same extent. Biased agonism refers to this fact, i.e., the possibility to activate only a part of the receptor's signaling capabilities. It is worth mentioning that Biased Signaling is an integral concept that includes the system (organisms, isolated tissues, or cells), the individual receptor studied, and the ligands. It should be remembered that the system's genetic expression profile defines the type, abundance, and cellular localization of proteins that participate in signaling. This short review will be focused on G protein receptors, but biased signaling occurs in many other receptor types. Biased signaling can be related to the G proteins and β-arrestins available. Similarly, enzymes that catalyze receptor posttranslational modifications, such as phosphorylation, acylation, or ubiquitination, can play a role. G protein-coupled receptor signaling occurs at the plasma membrane, but it is well-established that endosomal signaling is a functional reality. Therefore, paying attention to cellular elements that participate in receptor endosomal traffic and destination (recycling to the plasma membrane/ degradation) is pertinent. There is still much to be known about these bias mechanisms, which are essential for basic knowledge of receptor drug action and for treating many pathological entities.
Collapse
Affiliation(s)
- K Helivier Solís
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico.
| | - Rocío Alcántara-Hernández
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico.
| | - J Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria. Ap. Postal 70-600, Ciudad de México 04510. Mexico.
| |
Collapse
|
6
|
Höppner J, Noda H, Anitha AK, Cheloha RW, Dean T, Bruce M, Brooks DJ, Mannstadt M, Bouxsein ML, Gellman SH, Khatri A, Jüppner H, Gardella TJ. Prolonging parathyroid hormone analog action in vitro and in vivo through peptide lipidation. Nat Commun 2025; 16:4487. [PMID: 40368898 PMCID: PMC12078793 DOI: 10.1038/s41467-025-59665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/30/2025] [Indexed: 05/16/2025] Open
Abstract
Parathyroid hormone (PTH) analogs with improved actions in vivo could lead to optimized treatments for bone and mineral ion diseases. Rapid clearance from the circulation and short dwell times on the PTH receptor limit the efficacies of conventional PTH peptides currently in medical use. Here, we seek to enhance PTH peptide efficacy using two distinct peptide lipidation strategies. First, we append a lipid chain to the peptide's C-terminus in a fashion to promote binding to serum albumin and hence prolong the peptide's circulation half-life in vivo. Second, we append a lipid chain to a lysine side chain in a fashion designed to anchor the peptide to the cell membrane as the ligand is bound to the receptor and hence increase its dwell time on the receptor. We find that both strategies of lipidation can profoundly enhance the efficacy of PTH peptides in vitro and in mice. Our results could lead to the development of modified PTH analogs with optimized therapeutic utility.
Collapse
Affiliation(s)
- Jakob Höppner
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Hiroshi Noda
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Chugai Pharmaceutical Co., Ltd., Yokohama, Japan
| | - Anju Krishnan Anitha
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Ross W Cheloha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Laboratory of Bioorganic Chemistry; National Institutes of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health, Bethesda, MD, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Michael Bruce
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
- Pediatric Nephrology Unit, MassGeneral for Children, and Harvard Medical School, Boston, MA, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Till NA, Ramanathan M, Bertozzi CR. Induced proximity at the cell surface. Nat Biotechnol 2025; 43:702-711. [PMID: 40140559 DOI: 10.1038/s41587-025-02592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Molecular proximity is a governing principle of biology that is essential to normal and disease-related biochemical pathways. At the cell surface, protein-protein proximity regulates receptor activation, inhibition and protein recycling and degradation. Induced proximity is a molecular engineering principle in which bifunctional molecules are designed to bring two protein targets into close contact, inducing a desired biological outcome. Researchers use this engineering principle for therapeutic purposes and to interrogate fundamental biological mechanisms. This Review focuses on the use of induced proximity at the cell surface for diverse applications, such as targeted protein degradation, receptor inhibition and activating intracellular signaling cascades. We see a rich future for proximity-based modulation of cell surface protein activity both in basic and translational science.
Collapse
Affiliation(s)
- Nicholas A Till
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Muthukumar Ramanathan
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Xu C, Qiu S, Yuan Z, Qiu C, Xu W, Guo J, Wen G, Liu S, Yan W, Xu H, Hou H, Yang D. Biomimetic Microstructured Scaffold with Release of Re-Modified Teriparatide for Osteoporotic Tendon-to-Bone Regeneration via Balancing Bone Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500144. [PMID: 40091692 PMCID: PMC12079530 DOI: 10.1002/advs.202500144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/11/2025] [Indexed: 03/19/2025]
Abstract
Osteoporotic tendon-to-bone interface healing is challenging, with a high surgical repair failure rate of up to 68%. Conventional tissue engineering approaches have primarily focused on promoting interface healing by stimulating regeneration in either the tendon or bone. However, these methods often fall short of achieving optimal therapeutic outcomes due to their neglect of balancing bone homeostasis and remodeling the microstructure at the osteoporotic tendon-to-bone interface. Herein, a series of site-specific functional modifications are carried out on teriparatide to develop recombinant human parathyroid hormone (R-PTH). A biomimetic microstructured reconstruction scaffold (BMRP) is constructed using a decalcified mussel shell scaffold, pre-gel, and R-PTH. The BMRP mimics the microstructures of the native tendon-to-bone interface and restores the original structure of the interface tissue by repairing injured cells, balancing bone homeostasis, and remodeling the microstructure of the osteoporotic tendon-to-bone interface. In an osteoporotic rotator cuff tear model, BMRP is in situ implanted at the injured site, resulting in structural reconstruction and functional recovery. The BMRP demonstrates excellent repair effects, representing a novel therapeutical alternative for treating osteoporotic tendon-to-bone injury potential for clinical application.
Collapse
Affiliation(s)
- Chengzhong Xu
- Department of Orthopaedics‐Spine SurgeryNanfang HospitalSouthern Medical University1838 North Guangzhou AveGuangzhou510515P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Sijie Qiu
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Zhigen Yuan
- Department of Orthopaedics‐Spine SurgeryNanfang HospitalSouthern Medical University1838 North Guangzhou AveGuangzhou510515P. R. China
| | - Chongyin Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Wenyu Xu
- Department of Orthopaedics‐Spine SurgeryNanfang HospitalSouthern Medical University1838 North Guangzhou AveGuangzhou510515P. R. China
| | - Jialiang Guo
- Department of Orthopaedics‐Spine SurgeryNanfang HospitalSouthern Medical University1838 North Guangzhou AveGuangzhou510515P. R. China
| | - Gen Wen
- Department of Orthopaedics‐Spine SurgeryNanfang HospitalSouthern Medical University1838 North Guangzhou AveGuangzhou510515P. R. China
| | - Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Wenjuan Yan
- Department of StomatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515P. R. China
| | - Haibing Xu
- Guangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue EngineeringSchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515P. R. China
| | - Dehong Yang
- Department of Orthopaedics‐Spine SurgeryNanfang HospitalSouthern Medical University1838 North Guangzhou AveGuangzhou510515P. R. China
| |
Collapse
|
9
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025; 24:251-275. [PMID: 39747671 PMCID: PMC11968245 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
10
|
Zhang X, Lee JY, Pacheco J, Sutkeviciute I, Anitha AK, Liu H, Singh S, Ventura C, Savransky S, Khatri A, Zhang C, Bahar I, Vilardaga JP. Allosteric mechanism in the distinctive coupling of G q and G s to the parathyroid hormone type 1 receptor. Proc Natl Acad Sci U S A 2025; 122:e2426178122. [PMID: 40138341 PMCID: PMC12002267 DOI: 10.1073/pnas.2426178122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
The mechanism determining the preferential stimulation of one heterotrimeric G protein signaling pathway over another by a ligand remains undetermined. By reporting the cryogenic electron microscopy (cryo-EM) structure of the parathyroid hormone (PTH) type 1 receptor (PTH1R) complexed with Gq and comparing its allosteric dynamics with that of PTH1R in complex with Gs, we uncover a mechanism underlying such preferences. We show that an allosteric coupling between the ligand PTH and the C-terminal helix α5 of the Gα subunit controls the stability of the PTH1R complex with the specific G protein, Gs or Gq. Single-cell-level experiments further validate the G protein-selective effects of the PTH binding pose by demonstrating the differential, G protein-dependent residence times and affinity of this ligand at the PTH1R binding site. The findings deepen our understanding of the selective coupling of PTH1R to Gs or Gq and how it relates to the stability and kinetics of ligand binding. They explain the observed variability in the ligand-binding affinity of a GPCR when coupled to different G proteins.
Collapse
MESH Headings
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptor, Parathyroid Hormone, Type 1/chemistry
- Receptor, Parathyroid Hormone, Type 1/genetics
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- Humans
- Allosteric Regulation
- Parathyroid Hormone/metabolism
- Parathyroid Hormone/chemistry
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- Protein Binding
- Cryoelectron Microscopy
- Ligands
- HEK293 Cells
- Binding Sites
- Signal Transduction
- Kinetics
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY11794
- Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, New York, NY11794
| | - Jonathan Pacheco
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Ieva Sutkeviciute
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Anju Krishnan Anitha
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Stephanie Singh
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Carlos Ventura
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY11794
- Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, New York, NY11794
| | - Sofya Savransky
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, New York, NY11794
- Department of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, New York, NY11794
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA15261
- United States Department of Veterans Affairs, Pittsburgh Veterans Affairs Health Care System, Pittsburgh, PA15240
| |
Collapse
|
11
|
Ji RL, Tao YX. Biased signaling in drug discovery and precision medicine. Pharmacol Ther 2025; 268:108804. [PMID: 39904401 DOI: 10.1016/j.pharmthera.2025.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Receptors are crucial for converting chemical and environmental signals into cellular responses, making them prime targets in drug discovery, with about 70% of drugs targeting these receptors. Biased signaling, or functional selectivity, has revolutionized drug development by enabling precise modulation of receptor signaling pathways. This concept is more firmly established in G protein-coupled receptor and has now been applied to other receptor types, including ion channels, receptor tyrosine kinases, and nuclear receptors. Advances in structural biology have further refined our understanding of biased signaling. This targeted approach enhances therapeutic efficacy and potentially reduces side effects. Numerous biased drugs have been developed and approved as therapeutics to treat various diseases, demonstrating their significant therapeutic potential. This review provides a comprehensive overview of biased signaling in drug discovery and disease treatment, highlighting recent advancements and exploring the therapeutic potential of these innovative modulators across various diseases.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
12
|
Noh M, Che X, Jin X, Lee DK, Kim HJ, Park DR, Lee SY, Lee H, Gardella TJ, Choi JY, Lee S. Dimeric R25CPTH(1-34) activates the parathyroid hormone-1 receptor in vitro and stimulates bone formation in osteoporotic female mice. eLife 2025; 13:RP97579. [PMID: 40153305 PMCID: PMC11952747 DOI: 10.7554/elife.97579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Osteoporosis, characterized by reduced bone density and strength, increases fracture risk, pain, and limits mobility. Established therapies of parathyroid hormone (PTH) analogs effectively promote bone formation and reduce fractures in severe osteoporosis, but their use is limited by potential adverse effects. In the pursuit of safer osteoporosis treatments, we investigated R25CPTH, a PTH variant wherein the native arginine at position 25 is substituted by cysteine. These studies were prompted by our finding of high bone mineral density in a hypoparathyroidism patient with the R25C homozygous mutation, and we explored its effects on PTH type-1 receptor (PTH1R) signaling in cells and bone metabolism in mice. Our findings indicate that R25CPTH(1-84) forms dimers both intracellularly and extracellularly, and the synthetic dimeric peptide, R25CPTH(1-34), exhibits altered activity in PTH1R-mediated cyclic AMP (cAMP) response. Upon a single injection in mice, dimeric R25CPTH(1-34) induced acute calcemic and phosphaturic responses comparable to PTH(1-34). Furthermore, repeated daily injections increased calvarial bone thickness in intact mice and improved trabecular and cortical bone parameters in ovariectomized (OVX) mice, akin to PTH(1-34). The overall results reveal a capacity of a dimeric PTH peptide ligand to activate the PTH1R in vitro and in vivo as PTH, suggesting a potential path of therapeutic PTH analog development.
Collapse
Affiliation(s)
- Minsoo Noh
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
- Department of Life Sciences, Korea UniversitySeoulRepublic of Korea
| | - Xiangguo Che
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Xian Jin
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Dong-Kyo Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Hyun-Ju Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Doo Ri Park
- Department of Life Sciences, Multitasking Macrophage Research Center, Ewha Womans UniversitySeoulRepublic of Korea
| | - Soo Young Lee
- Department of Life Sciences, Multitasking Macrophage Research Center, Ewha Womans UniversitySeoulRepublic of Korea
| | - Hunsang Lee
- Department of Life Sciences, Korea UniversitySeoulRepublic of Korea
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Je-Yong Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National UniversityDaeguRepublic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
| |
Collapse
|
13
|
Danz JC, Degen M. Selective modulation of the bone remodeling regulatory system through orthodontic tooth movement-a review. FRONTIERS IN ORAL HEALTH 2025; 6:1472711. [PMID: 40115506 PMCID: PMC11924204 DOI: 10.3389/froh.2025.1472711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025] Open
Abstract
Little is known about how tissues mediate the ability to selectively form or resorb bone, as required during orthodontic tooth movement (OTM), facial growth, continued tooth eruption and for healing after fractures, maxillofacial surgical repositioning or implant dentistry. OTM has the unique ability to selectively cause apposition, resorption or a combination of both at the alveolar periosteal surface and therefore, provides an optimal process to study the regulation of bone physiology at a tissue level. Our aim was to elucidate the mechanisms and signaling pathways of the bone remodeling regulatory system (BRRS) as well as to investigate its clinical applications in osteoporosis treatment, orthopedic surgery, fracture management and orthodontic treatment. OTM is restricted to a specific range in which the BRRS permits remodeling; however, surpassing this limit may lead to bone dehiscence. Low-intensity pulsed ultrasound, vibration or photobiomodulation with low-level laser therapy have the potential to modify BRRS with the aim of reducing bone dehiscence and apical root resorption or accelerating OTM. Unloading of bone and periodontal compression promotes resorption via receptor activator of nuclear factor κB-ligand, monocyte chemotactic protein-1, parathyroid hormone-related protein (PTHrP), and suppression of anti-resorptive mediators. Furthermore, proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-8, tumor necrosis factor-α, and prostaglandins exert a synergistic effect on bone resorption. While proinflammatory cytokines are associated with periodontal sequelae such as bone dehiscence and gingival recessions, they are not essential for OTM. Integrins mediate mechanotransduction by converting extracellular biomechanical signals into cellular responses leading to bone apposition. Active Wnt signaling allows β-catenin to translocate into the nucleus and to stimulate bone formation, consequently converging with integrin-mediated mechanotransductive signals. During OTM, periodontal fibroblasts secrete PTHrP, which inhibits sclerostin secretion in neighboring osteocytes via the PTH/PTHrP type 1 receptor interaction. The ensuing sclerostin-depleted region may enhance stem cell differentiation into osteoblasts and subperiosteal osteoid formation. OTM-mediated BRRS modulation suggests that administering sclerostin-inhibiting antibodies in combination with PTHrP may have a synergistic bone-inductive effect. This approach holds promise for enhancing osseous wound healing, treating osteoporosis, bone grafting and addressing orthodontic treatments that are linked to periodontal complications.
Collapse
Affiliation(s)
- Jan Christian Danz
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine ZMK, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Obiezu F, Almpani K, Kim HJ, Zalewski C, Chu E, Jahanmir G, Roszko KL, Boyce A, Farhadi F, Weinstein LS, Gafni RI, Ferreira CR, Jüppner H, Collins MT, Lee JS, Jha S. Jansen metaphyseal chondrodysplasia: analysis of craniofacial manifestations. JBMR Plus 2025; 9:ziae156. [PMID: 39830149 PMCID: PMC11736719 DOI: 10.1093/jbmrpl/ziae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Jansen metaphyseal chondrodysplasia (JMC) is an ultra-rare disorder caused by constitutive activation of parathyroid hormone type 1 receptor (PTH1R). We sought to characterize the craniofacial phenotype of patients with the disease. Six patients with genetically confirmed JMC underwent comprehensive craniofacial phenotyping revealing a distinct facial appearance that prompted a cephalometric analysis demonstrating a pattern of mandibular retrognathia. Oral examination was notable for flat and shallow palate, delayed eruption pattern, and impacted maxillary teeth. Subclinical and/or mild hearing loss was noted in 4 of 5 patients studied. The most common etiology was conductive, likely due to overcrowding of epitympanum which impedes the normal vibration of ossicles to sound. Paranasal sinus obliteration was noted in 5 of 6 patients. Computed tomography (CT) scan evaluation of craniofacial bones revealed bilaterally symmetric expansile lesions with predominant involvement of neural crest cell (NCC)-derived bones. Bilateral narrowing of facial nerve canals, particularly at the labyrinthine segment, was seen in 5 of 6 patients when compared to age-matched controls; 1 patient presented with progressive facial nerve palsy. Sagittal suture craniosynostosis was present in 5 of 6 patients-one of whom had a history of cranial reconstruction for pansynostosis in infancy. All patients demonstrated a significant degree of upper airway stenosis, as well as a more anterior hyoid bone displacement. Two patients had a diagnosis of obstructive sleep apnea. 18F-NaF Positron-emission tomography (PET)-CT revealed increased uptake associated with the skull base and gnathic bones in all patients. In conclusion, this first detailed systematic evaluation of the craniofacial phenotype of patients with JMC demonstrates a distinct and pronounced phenotype that predominantly affects the NCC-derived cranial bones indicating a critical role of PTH1R signaling in their development. These affects can result in significant disease-related morbidity, include hearing loss, nerve compression, craniosynostosis, dentoskeletal malocclusion, and airway compromise; all of which require close monitoring.
Collapse
Affiliation(s)
- Fiona Obiezu
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Konstantinia Almpani
- Craniofacial Anomalies and Bone Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hung Jeffrey Kim
- Audiology Unit, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christopher Zalewski
- Audiology Unit, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, MD 20892, United States
| | - Emily Chu
- Department of Biomaterials and Regenerative Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, United States
| | - Golnar Jahanmir
- NIH Dental Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kelly L Roszko
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alison Boyce
- Metabolic Bone Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Faraz Farhadi
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Rachel I Gafni
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Carlos R Ferreira
- Skeletal Genomics Unit, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Janice S Lee
- Craniofacial Anomalies and Bone Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, United States
| | - Smita Jha
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
15
|
Paredes-Villa AA, Aguilar-Arce IE, Meneses-Morales I, Cervantes-Roldán R, Valadéz-Graham V, León-Del-Río A. NHERF2 regulatory function in signal transduction pathways and control of gene expression: Implications for cellular homeostasis and breast cancer. Arch Med Res 2025; 56:103179. [PMID: 39813852 DOI: 10.1016/j.arcmed.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Na⁺/H⁺ exchanger regulatory factor 2 (NHERF2) is a nucleocytoplasmic protein initially identified as a regulator of membrane-bound sodium-hydrogen exchanger 3 (NHE3). In the cytoplasm, NHERF2 regulates the activity of G protein-coupled receptors (GPCRs), including beta-2 adrenergic receptor (2β-AR), lysophosphatidic acid receptor 2, and parathyroid hormone type 1 receptor. In the nucleus, NHERF2 acts as a coregulator of transcription factors such as sex-determining region Y protein (SRY), involved in male sex determination, and estrogen receptor alpha (ERα). ERα is a ligand-dependent transcription factor that controls mammary gland growth and differentiation during puberty and pregnancy and plays a major role in the development and progression of breast cancer tumors. Altogether, the regulatory functions of NHERF2 on ion channels, GPCRs, and nuclear transcription factors have a modulatory effect on signal transduction pathways, metabolic homeostasis, cell proliferation and differentiation, neurotransmission, muscle contraction, and renal electrolyte balance. This work highlights NHERF2 functions in the cytoplasm and nucleus and underscores the nuclear mechanisms through which NHERF2 participates in the regulation of gene expression and tumor growth and progression in breast cancer.
Collapse
Affiliation(s)
- Adrián-Alejandro Paredes-Villa
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biológicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Esaú Aguilar-Arce
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Posgrado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Iván Meneses-Morales
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Viviana Valadéz-Graham
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación de Cancer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
16
|
Zhai Y, Zhou Z, Xing X, Nuzzle M, Zhang X. Differential bone and vessel type formation at superior and dura periosteum during cranial bone defect repair. Bone Res 2025; 13:8. [PMID: 39805832 PMCID: PMC11729862 DOI: 10.1038/s41413-024-00379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/14/2024] [Accepted: 10/09/2024] [Indexed: 01/16/2025] Open
Abstract
The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide. Our results show that new bone formation along the dura surface is three times greater than that along the superior periosteal surface following injury, regardless of Teriparatide treatment. Targeted deletion of PTH receptor PTH1R via SMA-CreER and Col 1a (2.3)-CreER results in selective reduction of bone formation, suggesting different progenitor cell pools in the adult superior and dura periosteum. Consistently, analyses of microvasculature show higher vessel density and better organized arterial-venous vessel network associated with a 10-fold more osteoblast clusters at dura periosteum as compared to superior periosteum. Intermittent rhPTH treatment further enhances the arterial vessel ratio at dura periosteum and type H vessel formation in cortical bone marrow space. Taken together, our study demonstrates a site-dependent coordinated osteogenic and angiogenic response, which is determined by regional osteogenic progenitor pool as well as the coupling blood vessel network at the site of cranial defect repair.
Collapse
Affiliation(s)
- Yuankun Zhai
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Zhuang Zhou
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Xiaojie Xing
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark Nuzzle
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
17
|
Yang XD, Haga CL, Phinney DG. Signaling Dynamics in Osteogenesis: Unraveling Therapeutic Targets for Bone Generation. Curr Drug Targets 2025; 26:350-366. [PMID: 39791147 DOI: 10.2174/0113894501359782241216082049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems. Consequently, the selection of an appropriate target is a complicated process despite the significant demand for novel medications to address bone diseases. Research has shown the role of various cell signaling pathways, including Wnt, PTHR1, CASR, BMPRs, OSCAR, and TWIST1, in the regulation of osteogenesis, bone remodeling, and homeostasis. Disruptions in bone homeostasis can result in decreased bone density and the onset of osteoporosis. There remains a need for the development of drugs that can enhance bone remodeling with improved side effects profiles. The exploration of promising targets to stimulate bone formation has the potential to significantly advance the field of bone-related medical care, thereby improving the quality of life for millions. Additionally, a deeper understanding of anabolic and catabolic pathway mechanisms could enable future studies to explore synergistic effects between unrelated pathways. Herein, we explore potential drug targets that may be exploited therapeutically using small molecule agonists or antagonists to promote bone remodeling and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Xue D Yang
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458, USA
| | - Christopher L Haga
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL33458, USA
| |
Collapse
|
18
|
Schlosser CS, Rozek W, Mellor RD, Manka SW, Morris CJ, Brocchini S, Williams GR. A lipid-based delivery platform for thermo-responsive delivery of teriparatide. Int J Pharm 2024; 667:124853. [PMID: 39437847 DOI: 10.1016/j.ijpharm.2024.124853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Teriparatide (and analogue peptides) are the only FDA approved anabolic treatments for osteoporosis. Current therapies are administered as a daily subcutaneous injection, which limits patient adherence and clinical efficacy. To achieve the desired anabolic effect, a controlled delivery system must ensure a pulsatile release profile over a prolonged period. Thermo-responsive formulations (e.g. liposomes) can undergo a temperature-related phase-transition which can allow active control of drug release. Herein, thermo-responsive liposomes were developed to permit control over teriparatide release rate through modulation of temperature. Entrapment of hydrophilic molecules, including peptides, within liposomes remains challenging due to the large volume of hydration. In this work, hydrophobic ion pairing was employed for the first time to enhance peptide entrapment within liposomes. The method resulted in a hydrophobic complex that achieved high teriparatide entrapment (>75 %) in sub-200 nm monodispersed liposomes. Hydrophobic ion pairing outperformed other entrapment approaches. Several liposomal formulations with transition temperatures between 38 and 50 °C were obtained by modulation of the phospholipid composition. In vitro assays demonstrated temperature-dependent release kinetics with faster rates of release observed at/above the transition temperature. The maintenance of biological activity of released teriparatide was demonstrated in a cell-based assay utilising the PTH1 receptor. Overall, this provides the first proof-of-concept of the suitability of thermo-responsive systems for pulsatile delivery of teriparatide and similar peptides.
Collapse
Affiliation(s)
- Corinna S Schlosser
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Wojciech Rozek
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ryan D Mellor
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Szymon W Manka
- MRC Prion Unit at UCL, Institute of Prion Diseases, University College London, 33 Cleveland Street, London W1W 7FF, UK
| | - Christopher J Morris
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
19
|
Schlosser CS, Morris CJ, Brocchini S, Williams GR. Hydrophobic ion pairing as a novel approach to co-axial electrospraying of peptide-PLGA particles. Int J Pharm 2024; 667:124885. [PMID: 39491655 DOI: 10.1016/j.ijpharm.2024.124885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Electrospraying is a processing technique that has gained much interest to prepare polymeric particles. The technique operates at ambient temperature, thereby avoiding heat induced degradation of labile therapeutics (e.g. peptides and proteins). Exposure to organic solvents can be minimised by co-axial electrospraying through separation of core (aqueous) and shell (organic) solvents. However, aqueous solutions are often difficult to electrospray due to high surface tension. Immiscibility between the core-shell solvents creates a further process challenge. Herein, we describe for the first time the use of hydrophobic ion pairing (HIP) to encapsulate a polypeptide into polymeric particles prepared by co-axial electrospraying. Peptide ion pairs were prepared to incorporate a model peptide - teriparatide - into an organic solvent, permitting facile electrospraying while also protecting the peptide from denaturation. Teriparatide loaded PLGA particles were generated by electrospraying from aqueous or ethanolic peptide solutions (core). A PLGA solution in chloroform (with and without co-solvents) was employed as the shell solution. The aqueous core solution led to a teriparatide encapsulation efficiency of 79.2 ± 19.8 %, which was not significantly different from the ethanolic core (57.1 ± 14.5 %). When aqueous solutions were used the process lacked reproducibility, resulting in low process yields (61.3 ± 4.0 %). In contrast, when an organic core was used a dry powder bed was achieved with a yield of 102.2 ± 8.8 %. The peptide's integrity and biological functionality were retained after electrospraying as ion pairs, as evidenced in a cell-based PTH1 receptor binding assay.
Collapse
Affiliation(s)
- Corinna S Schlosser
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Christopher J Morris
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
20
|
Saha S, Cheloha RW. Chemically Induced Dimerization via Nanobody Binding Facilitates in Situ Ligand Assembly and On-Demand GPCR Activation. JACS AU 2024; 4:4780-4789. [PMID: 39735930 PMCID: PMC11673187 DOI: 10.1021/jacsau.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024]
Abstract
Methods that enable the on-demand synthesis of biologically active molecules offer the potential for a high degree of control over the timing and context of target activation; however, such approaches often require extensive engineering to implement. Tools to restrict the localization of assembly also remain limited. Here we present a new approach for stimulus-induced ligand assembly that helps to address these challenges. This methodology relies on the high affinity and specificity recognition exhibited by antibody fragments (nanobodies, Nbs). By using Nbs that recognize short peptide epitopes to create semisynthetic conjugates, we develop a bioengineering platform termed peptide epitope dimerization (PED) in which the addition of heterodimeric peptide composed of two Nb epitopes stimulates the proximity-induced synthesis of a functional ligand for the parathyroid hormone receptor-1, a G protein-coupled receptor. We further demonstrate that high efficiency assembly can be achieved on the cell surface via Nb-based delivery of template. This approach opens the door for the on-demand generation of bioactive receptor ligands preferentially at a desired biological niche.
Collapse
Affiliation(s)
- Shubhra
Jyoti Saha
- Laboratory
of Bioorganic Chemistry, National Institutes of Diabetes, Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Ross W. Cheloha
- Laboratory
of Bioorganic Chemistry, National Institutes of Diabetes, Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
21
|
Fan Y, Lyu P, Wang J, Wei Y, Li Z, Zhang S, Ouchi T, Jing J, Yuan Q, Rosen CJ, Zhou C. Negative feedback between PTH1R and IGF1 through the Hedgehog pathway in mediating craniofacial bone remodeling. JCI Insight 2024; 10:e183684. [PMID: 39688917 PMCID: PMC11948590 DOI: 10.1172/jci.insight.183684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
Regeneration of orofacial bone defects caused by inflammation-related diseases or trauma remains an unmet challenge. Parathyroid hormone 1 receptor (PTH1R) signaling is a key mediator of bone remodeling whereas the regulatory mechanisms of PTH1R signaling in oral bone under homeostatic or inflammatory conditions have not been demonstrated by direct genetic evidence. Here, we observed that deletion of PTH1R in Gli1+ progenitors led to increased osteogenesis and osteoclastogenesis. Single-cell and bulk RNA-Seq analysis revealed that PTH1R suppressed the osteogenic potential of Gli1+ progenitors during inflammation. Moreover, we identified upregulated IGF1 expression upon PTH1R deletion. Dual deletion of IGF1 and PTH1R ameliorated the bone-remodeling phenotypes in PTH1R-deficient mice. Furthermore, in vivo evidence revealed an inverse relationship between PTH1R and Hedgehog signaling, which was responsible for the upregulated IGF1 production. Our work underscored the negative feedback between PTH1R and IGF1 in craniofacial bone turnover and revealed mechanisms modulating orofacial bone remodeling.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Pediatric Dentistry, and
| | - Yali Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Zucen Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Cariology and Endodontics
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Junjun Jing
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases
- Department of Pediatric Dentistry, and
| |
Collapse
|
22
|
Zhao D, Tu C, Zhang L, Guda T, Gu S, Jiang JX. Activation of connexin hemichannels enhances mechanosensitivity and anabolism in disused and aged bone. JCI Insight 2024; 9:e177557. [PMID: 39641271 PMCID: PMC11623949 DOI: 10.1172/jci.insight.177557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Mechanical loading, essential for bone health, promotes bone formation and remodeling. However, the positive response diminishes in cases of disuse and aging, leading to bone loss and an increased fracture risk. This study demonstrates that activating hemichannels (HCs) using a connexin 43 (Cx43) antibody, Cx43(M2), in bone osteocytes revitalizes aging and disused bones. Using a hindlimb suspension (HLS) disuse model and a tibial mechanical loading model, we found that Cx43(M2) inhibited bone loss and osteocyte apoptosis induced by unloading in 16-week-old adult mice. Additionally, it enhanced bone mass in response to tibial loading in 22-month-old aged mice. The HC opening released bone anabolic factor prostaglandin E2 (PGE2) and suppressed catabolic factor sclerostin (SOST). This suppressed the increase of cortical bone formation and reduction of bone resorption during unloading and promoted trabecular and cortical bone formation during loading. Cx43(M2)-induced HC opening, coupled with PGE2 release, effectively rescued unloading-induced bone loss and restored the diminished anabolic response of aged bones to mechanical loading. Activating HCs with the Cx43 antibody holds promise as a de novo therapeutic approach, as it can overcome the limitations of existing treatment regimens for treating bone loss and osteoporosis associated with aging and disuse.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- School of Medicine, Northwest University, Xi’an, China
| | - Chao Tu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lidan Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, USA
| |
Collapse
|
23
|
Shin JO, Lee JB, Lee S, Kim JW. Enhancing bone regeneration and osseointegration using rhPTH(1-34) and dimeric R25CPTH(1-34) in an osteoporotic beagle model. eLife 2024; 13:RP93830. [PMID: 39625374 PMCID: PMC11614385 DOI: 10.7554/elife.93830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
This study investigates the effects of two parathyroid hormone (PTH) analogs, rhPTH(1-34) and dimeric R25CPTH(1-34), on bone regeneration and osseointegration in a postmenopausal osteoporosis model using beagle dogs. Twelve osteoporotic female beagles were subjected to implant surgeries and assigned to one of three groups: control, rhPTH(1-34), or dimeric R25CPTH(1-34). Bone regeneration and osseointegration were evaluated after 10 weeks using micro-computed tomographic (micro-CT), histological analyses, and serum biochemical assays. Results showed that the rhPTH(1-34) group demonstrated superior improvements in bone mineral density, trabecular architecture, and osseointegration compared to controls, while the dimeric R25CPTH(1-34) group exhibited similar, though slightly less pronounced, anabolic effects. Histological and TRAP assays indicated both PTH analogs significantly enhanced bone regeneration, especially in artificially created bone defects. The findings suggest that both rhPTH(1-34) and dimeric R25CPTH(1-34) hold potential as therapeutic agents for promoting bone regeneration and improving osseointegration around implants in osteoporotic conditions, with implications for their use in bone-related pathologies and reconstructive surgeries.
Collapse
Affiliation(s)
- Jeong-Oh Shin
- Department of Anatomy, Soonchunhyang University College of MedicineCheonanRepublic of Korea
| | - Jong-Bin Lee
- Department of Periodontology and Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National UniversityGangneungRepublic of Korea
| | - Sihoon Lee
- Department of Internal Medicine and Laboratory of Genomics and Translational Medicine, Gachon University College of MedicineIncheonRepublic of Korea
| | - Jin-Woo Kim
- Department of Oral and Maxillofacial Surgery, Research Institute for Intractable Osteonecrosis of the Jaw, College of Medicine, Ewha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
24
|
Kimura A, Kato K, Nakashima A, Maruyama Y, Ohkido I, Miyazaki Y, Yokoo T. Association Between Parathyroid Hormone-Related Peptide Levels and Mortality in Patients With Malignancy. Endocr Pract 2024; 30:1119-1125. [PMID: 39265808 DOI: 10.1016/j.eprac.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
OBJECTIVE Hypercalcemia of malignancy is a risk factor for mortality in patients with malignancies. Although the parathyroid hormone-related protein (PTHrP) secreted by tumor cells induces hypercalcemia, the association between serum PTHrP levels and mortality remains unclear. This study aimed to investigate the association between serum PTHrP levels and mortality in patients with malignancies. METHODS We included patients with hypercalcemia (>10 mg/dL) and elevated PTHrP levels (>1.1 pmol/L) and analyzed mortality (overall survival after cancer diagnosis, PTHrP measurement, and 5-year survival rate). Moreover, using Cox proportional hazard model analysis, we investigated the impact of PTHrP levels on survival prognosis, assessing whether this effect varied depending on calcium concentration. RESULTS We analyzed the data of 183 patients. The median PTHrP level, corrected calcium level, and age were 5.5 (3.0-10.6) pmol/L, 12.5 (11.5-13.4) mg/dl, and 70 (61-76) years, respectively. PTHrP was significantly and linearly associated with serum calcium levels (correlation coefficient, 0.06; 95% CI: 0.039-0.081, t: 5.69; P < .001). The group with the highest PTHrP levels had significantly worse survival rates than the group with the lowest PTHrP levels (hazard ratio: 1.68, 95% CI 1.03-2.77, P = .038). CONCLUSION This study showed an association between PTHrP and mortality in patients with malignancy after adjusting for serum calcium levels.
Collapse
Affiliation(s)
- Ai Kimura
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhiko Kato
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Yukio Maruyama
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Ichiro Ohkido
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
26
|
Iwanowska M, Kochman M, Szatko A, Zgliczyński W, Glinicki P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int J Mol Sci 2024; 25:11639. [PMID: 39519190 PMCID: PMC11546563 DOI: 10.3390/ijms252111639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrinopathy, predominantly caused by a single parathyroid adenoma that is responsible for the excessive secretion of parathyroid hormone (PTH)-the hallmark of disease. Excess of this hormone causes remarkable changes in bone metabolism, including an increased level of bone remodeling with a predominance of bone resorption. Those changes lead to deterioration of bone structure and density, especially in cortical bone. The main treatment for PHPT is surgical removal of the adenoma, which normalizes PTH levels and terminates the progression of bone disease and leads to its regeneration. However, because not all the patients are suitable candidates for surgery, alternative therapies are needed. Current non-surgical treatments targeting bone disease secondary to PHPT include bisphosphonates and denosumab. Those antiresorptives prevent further bone loss, but they lack the ability to regenerate already degraded bone. There is ongoing research to find targeted drugs capable of halting resorption alongside stimulating bone formation. This review presents the advancements in understanding the molecular mechanisms responsible for bone disease in PHPT and assesses the efficacy of new potential therapeutic approaches (e.g., allosteric inhibitors of the PTH receptor, V-ATPase, or cathepsin inhibitors) aimed at mitigating bone loss and enhancing bone regeneration in affected patients.
Collapse
Affiliation(s)
- Mirella Iwanowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Magdalena Kochman
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Alicja Szatko
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Piotr Glinicki
- Department of Endocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- EndoLab Laboratory, Centre of Postgraduate Medical Education, 01-809 Warsaw, Poland
| |
Collapse
|
27
|
Zaimi M, Grapsa E. Current therapeutic approach of chronic kidney disease-mineral and bone disorder. Ther Apher Dial 2024; 28:671-689. [PMID: 38898685 DOI: 10.1111/1744-9987.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Chronic kidney disease (CKD) has emerged as one of the leading noncommunicable diseases affecting >10% of the population worldwide. Bone and mineral disorders are a common complication among patients with CKD resulting in a poor life quality, high fracture risk, increased morbidity and cardiovascular mortality. According to Kidney Disease: Improving Global Outcomes, renal osteodystrophy refers to changes in bone morphology found in bone biopsy, whereas CKD-mineral and bone disorder (CKD-MBD) defines a complex of disturbances including biochemical and hormonal alterations, disorders of bone and mineral metabolism and extraskeletal calcification. As a result, the management of CKD-MBD should focus on the aforementioned parameters, including the treatment of hyperphosphatemia, hypocalcemia, abnormal PTH and vitamin D levels. Regarding the bone fragility fractures, osteoporosis and renal osteodystrophy, which constitute the bone component of CKD-MBD, anti-osteoporotic agents constitute the mainstay of treatment. However, a thorough elucidation of the CKD-MBD pathogenesis is crucial for the ideal personalized treatment approach. In this paper, we review the pathology and management of CKD-MBD based on the current literature with special attention to recent advances.
Collapse
Affiliation(s)
- Maria Zaimi
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| | - Eirini Grapsa
- National and Kapodistrian University of Athens, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
28
|
Tokavanich N, Chan B, Strauss K, Castro Andrade CD, Arai Y, Nagata M, Foretz M, Brooks DJ, Ono N, Ono W, Wein MN. Control of alveolar bone development, homeostasis, and socket healing by salt inducible kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611228. [PMID: 39282451 PMCID: PMC11398370 DOI: 10.1101/2024.09.04.611228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Alveolar bone supports and anchors teeth. The parathyroid hormone-related protein (PTHrP) pathway plays a key role in alveolar bone biology. Salt inducible kinases (SIKs) are important downstream regulators of PTH/PTHrP signaling in the appendicular skeleton where SIK inhibition increases bone formation and trabecular bone mass. However, the function of these kinases in alveolar bone remains unknown. Here, we report a critical role for SIK2/SIK3 in alveolar bone development, homeostasis, and socket healing after tooth extraction. Inducible SIK2/SIK3 deletion led to dramatic alveolar bone defects without changes in tooth eruption. Ablating these kinases impairs alveolar bone formation due to disrupted osteoblast maturation, a finding associated with ectopic periostin expression by fibrous cells in regions of absent alveolar bone at steady state and following molar extraction. Distinct phenotypic consequences of SIK2/SIK3 deletion in appendicular versus craniofacial bones prompted us to identify a specific transcriptomic signature in alveolar versus long bone osteoblasts. Thus, SIK2/SIK3 deletion illuminates a key role for these kinases in alveolar bone biology and highlights the emerging concept that different osteoblast subsets utilize unique genetic programs. Summary statement SIK2/SIK3 deletion in alveolar bone reduces bone formation and mass by impairing osteoblast maturation, unlike in long bones, where it increases bone formation and mass.
Collapse
|
29
|
Li XX, Wang MT, Wu ZF, Sun Q, Ono N, Nagata M, Zang XL, Ono W. Etiological Mechanisms and Genetic/Biological Modulation Related to PTH1R in Primary Failure of Tooth Eruption. Calcif Tissue Int 2024; 115:101-116. [PMID: 38833001 DOI: 10.1007/s00223-024-01227-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Primary failure of eruption (PFE) is a rare disorder that is characterized by the inability of a molar tooth/teeth to erupt to the occlusal plane or to normally react to orthodontic force. This condition is related to hereditary factors and has been extensively researched over many years. However, the etiological mechanisms of pathogenesis are still not fully understood. Evidence from studies on PFE cases has shown that PFE patients may carry parathyroid hormone 1 receptor (PTH1R) gene mutations, and genetic detection can be used to diagnose PFE at an early stage. PTH1R variants can lead to altered protein structure, impaired protein function, and abnormal biological activities of the cells, which may ultimately impact the behavior of teeth, as observed in PFE. Dental follicle cells play a critical role in tooth eruption and root development and are regulated by parathyroid hormone-related peptide (PTHrP)-PTH1R signaling in their differentiation and other activities. PTHrP-PTH1R signaling also regulates the activity of osteoblasts, osteoclasts and odontoclasts during tooth development and eruption. When interference occurs in the PTHrP-PTH1R signaling pathway, the normal function of dental follicles and bone remodeling are impaired. This review provides an overview of PTH1R variants and their correlation with PFE, and highlights that a disruption of PTHrP-PTH1R signaling impairs the normal process of tooth development and eruption, thus providing insight into the underlying mechanisms related to PTH1R and its role in driving PFE.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Man-Ting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhi-Fang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiang Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Xiao-Long Zang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
30
|
Papaioannou G, Sato T, Houghton C, Kotsalidis PE, Strauss KE, Dean T, Nelson AJ, Stokes M, Gardella TJ, Wein MN. Regulation of intracellular cAMP levels in osteocytes by mechano-sensitive focal adhesion kinase via PDE8A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601153. [PMID: 38979143 PMCID: PMC11230356 DOI: 10.1101/2024.06.28.601153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Osteocytes are the primary mechano-sensitive cell type in bone. Mechanical loading is sensed across the dendritic projections of osteocytes leading to transient reductions in focal adhesion kinase (FAK) activity. Knowledge regarding the signaling pathways downstream of FAK in osteocytes is incomplete. We performed tyrosine-focused phospho-proteomic profiling in osteocyte-like Ocy454 cells to identify FAK substrates. Gsα, parathyroid hormone receptor (PTH1R), and phosphodiesterase 8A (PDE8A), all proteins associated with cAMP signaling, were found as potential FAK targets based on their reduced tyrosine phosphorylation in both FAK- deficient or FAK inhibitor treated cells. Real time monitoring of intracellular cAMP levels revealed that FAK pharmacologic inhibition or gene deletion increased basal and GPCR ligand-stimulated cAMP levels and downstream phosphorylation of protein kinase A substrates. Mutating FAK phospho-acceptor sites in Gsα and PTH1R had no effect on PTH- or FAK inhibitor-stimulated cAMP levels. Since FAK inhibitor treatment augmented cAMP levels even in the presence of forskolin, we focused on potential FAK substrates downstream of cAMP generation. Indeed, PDE8A inhibition mimicked FAK inhibition at the level of increased cAMP, PKA activity, and expression of cAMP-regulated target genes. In vitro kinase assay showed that PDE8A is directly phosphorylated by FAK while immunoprecipitation assays revealed intracellular association between FAK and PDE8A. Thus, FAK inhibition in osteocytes acts synergistically with signals that activate adenylate cyclase to increase intracellular cAMP. Mechanically-regulated FAK can modulate intracellular cAMP levels via effects on PDE8A. These data suggest a novel signal transduction mechanism that mediates crosstalk between mechanical and cAMP-linked hormonal signaling in osteocytes.
Collapse
|
31
|
Sachdev S, Creemer BA, Gardella TJ, Cheloha RW. Highly biased agonism for GPCR ligands via nanobody tethering. Nat Commun 2024; 15:4687. [PMID: 38824166 PMCID: PMC11144202 DOI: 10.1038/s41467-024-49068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024] Open
Abstract
Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present an approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.
Collapse
Affiliation(s)
- Shivani Sachdev
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA
| | - Brendan A Creemer
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ross W Cheloha
- Laboratory of Bioorganic Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bathesda, MD, USA.
| |
Collapse
|
32
|
Duan J, He XH, Li SJ, Xu HE. Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism. Nat Rev Endocrinol 2024; 20:349-365. [PMID: 38424377 DOI: 10.1038/s41574-024-00957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors, with many GPCRs having crucial roles in endocrinology and metabolism. Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology, particularly regarding GPCRs, over the past decade. Since the first pair of GPCR structures resolved by cryo-EM were published in 2017, the number of GPCR structures resolved by cryo-EM has surpassed the number resolved by X-ray crystallography by 30%, reaching >650, and the number has doubled every ~0.63 years for the past 6 years. At this pace, it is predicted that the structure of 90% of all human GPCRs will be completed within the next 5-7 years. This Review highlights the general structural features and principles that guide GPCR ligand recognition, receptor activation, G protein coupling, arrestin recruitment and regulation by GPCR kinases. The Review also highlights the diversity of GPCR allosteric binding sites and how allosteric ligands could dictate biased signalling that is selective for a G protein pathway or an arrestin pathway. Finally, the authors use the examples of glycoprotein hormone receptors and glucagon-like peptide 1 receptor to illustrate the effect of cryo-EM on understanding GPCR biology in endocrinology and metabolism, as well as on GPCR-related endocrine diseases and drug discovery.
Collapse
Affiliation(s)
- Jia Duan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xin-Heng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Jie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
33
|
Walker V. The Intricacies of Renal Phosphate Reabsorption-An Overview. Int J Mol Sci 2024; 25:4684. [PMID: 38731904 PMCID: PMC11083860 DOI: 10.3390/ijms25094684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
To maintain an optimal body content of phosphorus throughout postnatal life, variable phosphate absorption from food must be finely matched with urinary excretion. This amazing feat is accomplished through synchronised phosphate transport by myriads of ciliated cells lining the renal proximal tubules. These respond in real time to changes in phosphate and composition of the renal filtrate and to hormonal instructions. How they do this has stimulated decades of research. New analytical techniques, coupled with incredible advances in computer technology, have opened new avenues for investigation at a sub-cellular level. There has been a surge of research into different aspects of the process. These have verified long-held beliefs and are also dramatically extending our vision of the intense, integrated, intracellular activity which mediates phosphate absorption. Already, some have indicated new approaches for pharmacological intervention to regulate phosphate in common conditions, including chronic renal failure and osteoporosis, as well as rare inherited biochemical disorders. It is a rapidly evolving field. The aim here is to provide an overview of our current knowledge, to show where it is leading, and where there are uncertainties. Hopefully, this will raise questions and stimulate new ideas for further research.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton S016 6YD, UK
| |
Collapse
|
34
|
Aydin A, Klenk C, Nemec K, Işbilir A, Martin LM, Zauber H, Rrustemi T, Toka HR, Schuster H, Gong M, Stricker S, Bock A, Bähring S, Selbach M, Lohse MJ, Luft FC. ADAM19 cleaves the PTH receptor and associates with brachydactyly type E. Life Sci Alliance 2024; 7:e202302400. [PMID: 38331475 PMCID: PMC10853454 DOI: 10.26508/lsa.202302400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Brachydactyly type E (BDE), shortened metacarpals, metatarsals, cone-shaped epiphyses, and short stature commonly occurs as a sole phenotype. Parathyroid hormone-like protein (PTHrP) has been shown to be responsible in all forms to date, either directly or indirectly. We used linkage and then whole genome sequencing in a small pedigree, to elucidate BDE and identified a truncated disintegrin-and-metalloproteinase-19 (ADAM19) allele in all affected family members, but not in nonaffected persons. Since we had shown earlier that the extracellular domain of the parathyroid hormone receptor (PTHR1) is subject to an unidentified metalloproteinase cleavage, we tested the hypothesis that ADAM19 is a sheddase for PTHR1. WT ADAM19 cleaved PTHR1, while mutated ADAM-19 did not. We mapped the cleavage site that we verified with mass spectrometry between amino acids 64-65. ADAM-19 cleavage increased Gq and decreased Gs activation. Moreover, perturbed PTHR1 cleavage by ADAM19 increased ß-arrestin2 recruitment, while cAMP accumulation was not altered. We suggest that ADAM19 serves as a regulatory element for PTHR1 and could be responsible for BDE. This sheddase may affect other PTHrP or PTH-related functions.
Collapse
Affiliation(s)
- Atakan Aydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Christoph Klenk
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Katarina Nemec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Department of Structural Biology and Center of Excellence for Data-Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ali Işbilir
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Lisa M Martin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Henrik Zauber
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Trendelina Rrustemi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hakan R Toka
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Herbert Schuster
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Maolian Gong
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Sigmar Stricker
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Andreas Bock
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sylvia Bähring
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- ISAR Bioscience Institute, Munich, Germany
| | - Friedrich C Luft
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
35
|
Liu S, Daley EJ, My-Linh Tran L, Yu Z, Reyes M, Dean T, Khatri A, Levine PM, Balana AT, Pratt MR, Jüppner H, Gellman SH, Gardella TJ. Backbone Modification Provides a Long-Acting Inverse Agonist of Pathogenic, Constitutively Active PTH1R Variants. J Am Chem Soc 2024; 146:6522-6529. [PMID: 38417010 PMCID: PMC11162201 DOI: 10.1021/jacs.3c09694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Parathyroid hormone 1 receptor (PTH1R) plays a key role in mediating calcium homeostasis and bone development, and aberrant PTH1R activity underlies several human diseases. Peptidic PTH1R antagonists and inverse agonists have therapeutic potential in treating these diseases, but their poor pharmacokinetics and pharmacodynamics undermine their in vivo efficacy. Herein, we report the use of a backbone-modification strategy to design a peptidic PTH1R inhibitor that displays prolonged activity as an antagonist of wild-type PTH1R and an inverse agonist of the constitutively active PTH1R-H223R mutant both in vitro and in vivo. This peptide may be of interest for the future development of therapeutic agents that ameliorate PTH1R malfunction.
Collapse
Affiliation(s)
- Shi Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Eileen J Daley
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Zhen Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Monica Reyes
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Paul M Levine
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Aaron T Balana
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
36
|
Peña KA, Savransky S, Lewis B. Endosomal signaling via cAMP in parathyroid hormone (PTH) type 1 receptor biology. Mol Cell Endocrinol 2024; 581:112107. [PMID: 37981188 DOI: 10.1016/j.mce.2023.112107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Compartmentalization of GPCR signaling is an emerging topic that highlights the physiological relevance of spatial bias in signaling. The parathyroid hormone (PTH) type 1 receptor (PTH1R) was the first GPCR described to signal via heterotrimeric G-protein and cAMP from endosomes after β-arrestin mediated internalization, challenging the canonical GPCR signaling model which established that signaling is terminated by receptor internalization. More than a decade later, many other GPCRs have been shown to signal from endosomes via cAMP, and recent studies have proposed that location of cAMP generation impacts physiological outcomes of GPCR signaling. Here, we review the extensive literature regarding PTH1R endosomal signaling via cAMP, the mechanisms that regulate endosomal generation of cAMP, and the implications of spatial bias in PTH1R physiological functions.
Collapse
Affiliation(s)
- Karina A Peña
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Sofya Savransky
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program in Molecular Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Breanna Lewis
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Mo N, Shao S, Zhuang Y, Yang Y, Cui Z, Bao C. Activation and characterization of G protein-coupled receptors for CHHs in the mud crab, Scylla paramamosain. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111563. [PMID: 38122925 DOI: 10.1016/j.cbpa.2023.111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Crustacean hyperglycemic hormone (CHH) superfamily peptides constitute a group of neurohormones, including the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and gonad-inhibiting hormone (GIH) or vitellogenesis-inhibiting hormone (VIH), which reportedly play an essential role in regulating various biological activities by binding to their receptors in crustaceans. Although bioinformatics analyses have identified G protein-coupled receptors (GPCRs) as potential CHH receptors, no validation through binding experiments has been carried out. This study employed a eukaryotic expression system, HEK293T cell transient transfection, and ligand-receptor interaction tests to identify the GPCRs of CHHs in the mud crab Scylla paramamosain. We found that four GPCRs (Sp-GPCR-A34-A37) were activated by their corresponding CHHs (Sp-CHH1-v1, Sp-MIH, Sp-VIH) in a dose-dependent manner. Of these, Sp-GPCR-A34 was exclusively activated by Sp-VIH; Sp-GPCR-A35 was activated by Sp-CHH1-v1 and Sp-VIH, respectively; Sp-GPCR-A36 was activated by Sp-CHH1-v1 and Sp-MIH; Sp-GPCR-A37 was exclusively activated by Sp-MIH. The half-maximal effective concentration (EC50) values for all CHHs/GPCRs pairs (both Ca2+ and cAMP signaling) were in the nanomolar range. Overall, our study provided hitherto undocumented evidence of the presence of G protein-coupled receptors of CHH in crustaceans, providing the foothold for further studies on the signaling pathways of CHHs and their corresponding GPCRs.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yan Zhuang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
38
|
Hong T, Xiong X, Chen Y, Wang Q, Fu X, Meng Q, Lu Y, Li X. Parathyroid hormone receptor-1 signaling aggravates hepatic fibrosis through upregulating cAMP response element-binding protein-like 2. Hepatology 2023; 78:1763-1776. [PMID: 36939197 DOI: 10.1097/hep.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/23/2023] [Indexed: 03/21/2023]
Abstract
BACKGROUND AND AIMS Parathyroid hormone receptor-1 (PTH1R) is a class B G protein-coupled receptor central to skeletal development, bone turnover, and calcium homeostasis. However, the role of PTH1R signaling in liver fibrosis is largely unknown. Here, the role of PTH1R signaling in the activation of HSCs and hepatic fibrosis was examined. APPROACH AND RESULTS PTH1R was highly expressed in activated HSCs and fibrotic liver by using human liver specimens or carbon tetrachloride (CCl 4 )-treated or methionine and choline-deficient diet (MCD)-fed C57/BL6 mice. The mRNA level of hepatic PTH1R was positively correlated to α-smooth muscle actin in patients with liver cirrhosis. Mice with HSCs-specific PTH1R deletion were protected from CCl 4 , MCD, or western diet, plus low-dose CCl 4 -induced liver fibrosis. Conversely, parathyroid hormone (PTH) aggravated liver fibrosis in CCl 4 -treated mice. Mouse primary HSCs and LX2 cell lines were used for in vitro experiments. Molecular analyses by luciferase reporter assays and chromatin immunoprecipitation assays in combination with mRNA sequencing in HSCs revealed that cAMP response element-binding protein-like 2 (Crebl2), a novel regulator in HSCs treated by PTH that interacted with mothers against decapentaplegic homolog 3 (SMAD3) and increased the transcription of TGFβ in activating HSCs and collagen deposition. In agreement, HSCs-specific Crebl2 deletion ameliorated PTH-induced liver fibrosis in CCl 4 -treated mice. CONCLUSIONS In both mouse and human models, we found that PTH1R was highly expressed in activated HSCs and fibrotic liver. PTH1R signaling regulated collagen production in the HSCs through Crebl2/SMAD3/TGFβ regulatory circuits. Blockade of PTH1R signaling in HSCs might help mitigate the development of liver fibrosis.
Collapse
Affiliation(s)
- Ting Hong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuelian Xiong
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yaqiong Chen
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiuyu Wang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Fu
- Department of General Surgery, Institute of Translational Medicine, Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qingnan Meng
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Sachdev S, Creemer BA, Gardella TJ, Cheloha RW. Highly biased agonism for GPCR ligands via nanobody tethering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561766. [PMID: 37873435 PMCID: PMC10592785 DOI: 10.1101/2023.10.10.561766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ligand-induced activation of G protein-coupled receptors (GPCRs) can initiate signaling through multiple distinct pathways with differing biological and physiological outcomes. There is intense interest in understanding how variation in GPCR ligand structure can be used to promote pathway selective signaling ("biased agonism") with the goal of promoting desirable responses and avoiding deleterious side effects. Here we present a new approach in which a conventional peptide ligand for the type 1 parathyroid hormone receptor (PTHR1) is converted from an agonist which induces signaling through all relevant pathways to a compound that is highly selective for a single pathway. This is achieved not through variation in the core structure of the agonist, but rather by linking it to a nanobody tethering agent that binds with high affinity to a separate site on the receptor not involved in signal transduction. The resulting conjugate represents the most biased agonist of PTHR1 reported to date. This approach holds promise for facile generation of pathway selective ligands for other GPCRs.
Collapse
|
40
|
Yu Z, Kreitler DF, Chiu YTT, Xu R, Bruchs AT, Bingman CA, Gellman SH. Harnessing Aromatic-Histidine Interactions through Synergistic Backbone Extension and Side Chain Modification. Angew Chem Int Ed Engl 2023; 62:e202308100. [PMID: 37587780 PMCID: PMC10668598 DOI: 10.1002/anie.202308100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
Peptide engineering efforts have delivered drugs for diverse human diseases. Side chain alteration is among the most common approaches to designing new peptides for specific applications. The peptide backbone can be modified as well, but this strategy has received relatively little attention. Here we show that new and favorable contacts between a His side chain on a target protein and an aromatic side chain on a synthetic peptide ligand can be engineered by rational and coordinated side chain modification and backbone extension. Side chain modification alone was unsuccessful. Binding measurements, high-resolution structural studies and pharmacological outcomes all support the synergy between backbone and side chain modification in engineered ligands of the parathyroid hormone receptor-1, which is targeted by osteoporosis drugs. These results should motivate other structure-based designs featuring coordinated side chain modification and backbone extension to enhance the engagement of peptide ligands with target proteins.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Yin Ting T Chiu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Ruiwen Xu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Austin T Bruchs
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
41
|
Gibadullin R, Kim TW, Tran LML, Gellman SH. Hormone Analogues with Unique Signaling Profiles from Replacement of α-Residue Triads with β/γ Diads. J Am Chem Soc 2023; 145:20539-20550. [PMID: 37697685 PMCID: PMC10588032 DOI: 10.1021/jacs.3c06703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We have applied an underexplored backbone modification strategy to generate new analogues of peptides that activate two clinically important class B1 G protein-coupled receptors (GPCRs). Most peptide modification strategies involve changing side chains or, less commonly, changing the configuration at side chain-bearing carbons (i.e., l residues replaced by d residues). In contrast, backbone modifications alter the number of backbone atoms and the identities of backbone atoms relative to a poly-α-amino acid backbone. Starting from the peptide agonists PTH(1-34) (the first 34 residues of the parathyroid hormone, used clinically as the drug teriparatide) and glucagon-like peptide-1 (7-36) (GLP-1(7-36)), we replaced native α-residue triads with a diad composed of a β-amino acid residue and a γ-amino acid residue. The β/γ diad retains the number of backbone atoms in the ααα triad. Because the β and γ residue each bear a single side chain, we implemented ααα→βγ replacements at sites that contained a Gly residue (i.e., at α-residue triads that presented only two side chains). All seven of the α/β/γ-peptides derived from PTH(1-34) or GLP-1(7-36) bind to the cognate receptor (the PTHR1 or the GLP-1R), but they vary considerably in their activity profiles. Outcomes include functional mimicry of the all-α agonist, receptor-selective agonist activity, biased agonism, or strong binding with weak activation, which could lead to antagonist development. Collectively, these findings demonstrate that ααα→βγ replacements, which are easily implemented via solid-phase synthesis, can generate peptide hormone analogues that display unique and potentially useful signaling behavior.
Collapse
Affiliation(s)
- Ruslan Gibadullin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Present address: Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tae Wook Kim
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Lauren My-Linh Tran
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Mosca MJ, He Z, Ricarte FR, Le Henaff C, Partridge NC. Differential effects of PTH (1-34), PTHrP (1-36) and abaloparatide on the murine osteoblast transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523646. [PMID: 37645806 PMCID: PMC10461920 DOI: 10.1101/2023.01.11.523646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Teriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes. There were 83 genes shared among all 3 peptides. Gene ontology analyses showed differences in Wnt signaling, cAMP-mediated signaling, bone mineralization, morphogenesis of a branching structure in biological processes; receptor ligand activity, transcription factor activity, cytokine receptor/binding activity and many other actions in molecular functions. The 3 peptides increased Vdr, Cited1 and Pde10a mRNAs in a pattern similar to Rankl , i.e., PTH(1-34) > ABL > PTHrP(1-36). mRNA abundance of other genes based on gene/pathway analyses, including Wnt4, Wnt7, Wnt11, Sfrp4, Dkk1, Kcnk10, Hdac4, Epha3, Tcf7, Crem, Fzd5, Pp2r2a , and Dvl3 showed that some genes were regulated similarly by all 3 peptides; others were not. Finally, siRNA knockdowns of SIK1/2/3 and CRTC1/2/3 in PTH(1-34)-treated cells revealed that Vdr and Wnt4 genes are regulated by SIKs and CRTCs, while others are not. Although many studies have examined PTH signaling in the osteoblast/osteocyte, ours is the first to examine the global effects of these peptides on the osteoblast transcriptome. Further delineation of which signaling events are attributable to PTH(1-34), PTHrP(1-36) or ABL exclusively and which are shared among all 3 will help improve our understanding of the effects these peptides have on the osteoblast and lead to the refinement of PTH-derived treatments for osteoporosis.
Collapse
|
43
|
Engineering of a NIR-activable hydrogel-coated mesoporous bioactive glass scaffold with dual-mode parathyroid hormone derivative release property for angiogenesis and bone regeneration. Bioact Mater 2023; 26:1-13. [PMID: 36851912 PMCID: PMC9958404 DOI: 10.1016/j.bioactmat.2023.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Osteogenesis, osteoclastogenesis, and angiogenesis play crucial roles in bone regeneration. Parathyroid hormone (PTH), an FDA-approved drug with pro-osteogenic, pro-osteoclastogenic and proangiogenic capabilities, has been employed for clinical osteoporosis treatment through systemic intermittent administration. However, the successful application of PTH for local bone defect repair generally requires the incorporation and delivery by appropriate carriers. Though several scaffolds have been developed to deliver PTH, they suffer from the weaknesses such as uncontrollable PTH release, insufficient porous structure and low mechanical strength. Herein, a novel kind of NIR-activable scaffold (CBP/MBGS/PTHrP-2) with dual-mode PTHrP-2 (a PTH derivative) release capability is developed to synergistically promote osteogenesis and angiogenesis for high-efficacy bone regeneration, which is fabricated by integrating the PTHrP-2-loaded hierarchically mesoporous bioactive glass (MBG) into the N-hydroxymethylacrylamide-modified, photothermal agent-doped, poly(N-isopropylacrylamide)-based thermosensitive hydrogels through assembly process. Upon on/off NIR irradiation, the thermoresponsive hydrogel gating undergoes a reversible phase transition to allow the precise control of on-demand pulsatile and long-term slow release of PTHrP-2 from MBG mesopores. Such NIR-activated dual-mode delivery of PTHrP-2 by this scaffold enables a well-maintained PTHrP-2 concentration at the bone defect sites to continually stimulate vascularization and promote osteoblasts to facilitate and accelerate bone remodeling. In vivo experiments confirm the significant improvement of bone reparative effect on critical-size femoral defects of rats. This work paves an avenue for the development of novel dual-mode delivery systems for effective bone regeneration.
Collapse
|
44
|
Portales-Castillo I, Dean T, Cheloha RW, Creemer BA, Vilardaga JP, Savransky S, Khatri A, Jüppner H, Gardella TJ. Altered Signaling and Desensitization Responses in PTH1R Mutants Associated with Eiken Syndrome. Commun Biol 2023; 6:599. [PMID: 37268817 PMCID: PMC10238420 DOI: 10.1038/s42003-023-04966-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
The parathyroid hormone receptor type 1 (PTH1R) is a G protein-coupled receptor that plays key roles in regulating calcium homeostasis and skeletal development via binding the ligands, PTH and PTH-related protein (PTHrP), respectively. Eiken syndrome is a rare disease of delayed bone mineralization caused by homozygous PTH1R mutations. Of the three mutations identified so far, R485X, truncates the PTH1R C-terminal tail, while E35K and Y134S alter residues in the receptor's amino-terminal extracellular domain. Here, using a variety of cell-based assays, we show that R485X increases the receptor's basal rate of cAMP signaling and decreases its capacity to recruit β-arrestin2 upon ligand stimulation. The E35K and Y134S mutations each weaken the binding of PTHrP leading to impaired β-arrestin2 recruitment and desensitization of cAMP signaling response to PTHrP but not PTH. Our findings support a critical role for interaction with β-arrestin in the mechanism by which the PTH1R regulates bone formation.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Department of Medicine, Division of Nephrology, Washington University in St. Louis, BJCIH Building, 425 South Euclid St, St. Louis, MO, 63110, USA
| | - Thomas Dean
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Ross W Cheloha
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Brendan A Creemer
- Chemical Biology in Signaling Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, Building 8, 8 Center Drive, Bethesda, MD, 20891, USA
| | - Jean-Pierre Vilardaga
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Sofya Savransky
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Thomas E. Starzl Biomedical Science Tower, 200 Lothrop St, Pittsburgh, PA, 15261, USA
| | - Ashok Khatri
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
- Pediatric Nephrology Unit, Massachusetts General Hospital, and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA
| | - Thomas J Gardella
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Thier Research Building, 50 Blossom St, Boston, MA, 02114, USA.
| |
Collapse
|
45
|
Kane JF, Johnson RW. Re-Evaluating the Role of PTHrP in Breast Cancer. Cancers (Basel) 2023; 15:2670. [PMID: 37345007 PMCID: PMC10216606 DOI: 10.3390/cancers15102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Parathyroid-hormone-related protein (PTHrP) is a protein with a long history of association with bone metastatic cancers. The paracrine signaling of PTHrP through the parathyroid hormone receptor (PTHR1) facilitates tumor-induced bone destruction, and PTHrP is known as the primary driver of humoral hypercalcemia of malignancy. In addition to paracrine signaling, PTHrP is capable of intracrine signaling independent of PTHR1 binding, which is essential for cytokine-like functions in normal physiological conditions in a variety of tissue types. Pre-clinical and clinical studies evaluating the role of PTHrP in breast cancer have yielded contradictory conclusions, in some cases indicating the protein is tumor suppressive, and in other studies, pro-growth. This review discusses the possible molecular basis for the disharmonious prognostic indications of these studies and highlights the implications of the paracrine, intracrine, and nuclear functions of the protein. This review also examines the current understanding of the functional domains of PTHrP and re-evaluates their role in the unique context of the breast cancer environment. This review will expand on the current understanding of PTHrP by attempting to reconcile the functional domains of the protein with its intracrine signaling in cancer.
Collapse
Affiliation(s)
- Jeremy F. Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
46
|
Vilardaga JP, Clark LJ, White AD, Sutkeviciute I, Lee JY, Bahar I. Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocr Rev 2023; 44:474-491. [PMID: 36503956 PMCID: PMC10461325 DOI: 10.1210/endrev/bnac032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
The classical paradigm of G protein-coupled receptor (GPCR) signaling via G proteins is grounded in a view that downstream responses are relatively transient and confined to the cell surface, but this notion has been revised in recent years following the identification of several receptors that engage in sustained signaling responses from subcellular compartments following internalization of the ligand-receptor complex. This phenomenon was initially discovered for the parathyroid hormone (PTH) type 1 receptor (PTH1R), a vital GPCR for maintaining normal calcium and phosphate levels in the body with the paradoxical ability to build or break down bone in response to PTH binding. The diverse biological processes regulated by this receptor are thought to depend on its capacity to mediate diverse modes of cyclic adenosine monophosphate (cAMP) signaling. These include transient signaling at the plasma membrane and sustained signaling from internalized PTH1R within early endosomes mediated by PTH. Here we discuss recent structural, cell signaling, and in vivo studies that unveil potential pharmacological outputs of the spatial versus temporal dimension of PTH1R signaling via cAMP. Notably, the combination of molecular dynamics simulations and elastic network model-based methods revealed how precise modulation of PTH signaling responses is achieved through structure-encoded allosteric coupling within the receptor and between the peptide hormone binding site and the G protein coupling interface. The implications of recent findings are now being explored for addressing key questions on how location bias in receptor signaling contributes to pharmacological functions, and how to drug a difficult target such as the PTH1R toward discovering nonpeptidic small molecule candidates for the treatment of metabolic bone and mineral diseases.
Collapse
Affiliation(s)
- Jean-Pierre Vilardaga
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lisa J Clark
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alex D White
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ieva Sutkeviciute
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ji Young Lee
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
47
|
Iwobi N, Sparks NR. Endocrine Disruptor-Induced Bone Damage Due to Hormone Dysregulation: A Review. Int J Mol Sci 2023; 24:ijms24098263. [PMID: 37175969 PMCID: PMC10179611 DOI: 10.3390/ijms24098263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Hormones are indispensable for bone development, growth, and maintenance. While many of the genes associated with osteogenesis are well established, it is the recent findings in endocrinology that are advancing the fields of bone biology and toxicology. Endocrine-disrupting chemicals (EDCs) are defined as chemicals that interfere with the function of the endocrine system. Here, we report recent discoveries describing key hormone pathways involved in osteogenesis and the EDCs that alter these pathways. EDCs can lead to bone morphological changes via altering hormone receptors, signaling pathways, and gene expression. The objective of this review is to highlight the recent discoveries of the harmful effects of environmental toxicants on bone formation and the pathways impacted. Understanding the mechanisms of how EDCs interfere with bone formation contributes to providing a comprehensive toxicological profile of a chemical.
Collapse
Affiliation(s)
- Nneamaka Iwobi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California, Irvine, CA 92697, USA
| | - Nicole R Sparks
- Department of Occupational and Environmental Health, University of California, Irvine, CA 92697, USA
| |
Collapse
|
48
|
Cary BP, Gerrard EJ, Belousoff MJ, Fletcher MM, Jiang Y, Russell IC, Piper SJ, Wootten D, Sexton PM. Molecular insights into peptide agonist engagement with the PTH receptor. Structure 2023:S0969-2126(23)00125-9. [PMID: 37148874 DOI: 10.1016/j.str.2023.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/30/2022] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
The parathyroid hormone (PTH) 1 receptor (PTH1R) is a G protein-coupled receptor (GPCR) that regulates skeletal development and calcium homeostasis. Here, we describe cryo-EM structures of the PTH1R in complex with fragments of the two hormones, PTH and PTH-related protein, the drug abaloparatide, as well as the engineered tool compounds, long-acting PTH (LA-PTH) and the truncated peptide, M-PTH(1-14). We found that the critical N terminus of each agonist engages the transmembrane bundle in a topologically similar fashion, reflecting similarities in measures of Gαs activation. The full-length peptides induce subtly different extracellular domain (ECD) orientations relative to the transmembrane domain. In the structure bound to M-PTH, the ECD is unresolved, demonstrating that the ECD is highly dynamic when unconstrained by a peptide. High resolutions enabled identification of water molecules near peptide and G protein binding sites. Our results illuminate the action of orthosteric agonists of the PTH1R.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Elliot J Gerrard
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Yan Jiang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Isabella C Russell
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Sarah J Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
49
|
Martonová D, Lavaill M, Forwood MR, Robling A, Cooper DML, Leyendecker S, Pivonka P. Effects of PTH glandular and external dosing patterns on bone cell activity using a two-state receptor model-Implications for bone disease progression and treatment. PLoS One 2023; 18:e0283544. [PMID: 36996072 PMCID: PMC10062658 DOI: 10.1371/journal.pone.0283544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
Temporal aspects of ligand specificity have been shown to play a significant role in the case of pulsatile hormone secretion, as exemplified by parathyroid hormone (PTH) binding to its receptor (PTH1R), a G-protein-coupled receptor expressed on surfaces of osteoblasts and osteocytes. The latter binding reaction regulates intracellular signalling and subsequently modulates skeletal homeostasis via bone remodelling. PTH glandular secretion patterns dictate bone cellular activity. In healthy humans, 70% of PTH is secreted in a tonic fashion, whereas 30% is secreted in low-amplitude and high-frequency bursts occurring every 10-20 min, superimposed on the tonic secretion. Changes in the PTH secretion patterns have been associated with various bone diseases. In this paper, we analyse PTH glandular secretion patterns for healthy and pathological states and their link to bone cellular responsiveness (αR). We utilise a two-state receptor ligand binding model of PTH to PTH1R together with a cellular activity function which is able to distinguish various aspects of the stimulation signal including peak dose, time of ligand exposure, and exposure period. Formulating and solving several constrained optimisation problems, we investigate the potential of pharmacological manipulation of the diseased glandular secretion and via clinical approved external PTH injections to restore healthy bone cellular responsiveness. Based on the mean experimentally reported data, our simulation results indicate cellular responsiveness in healthy subjects is sensitive to the tonic baseline stimulus and it is 28% of the computed maximum responsiveness. Simulation results for pathological cases of glucocorticoid-induced osteoporosis, hyperparathyroidism, initial and steady state hypocalcemia clamp tests indicate αR values significantly larger than the healthy baseline (1.7, 2.2, 4.9 and 1.9-times, respectively). Manipulation of the pulsatile glandular secretion pattern, while keeping the mean PTH concentration constant, allowed restoration of healthy baseline values from these catabolic bone diseases. Conversely, PTH glandular diseases that led to maximum bone cellular responsiveness below the healthy baseline value can't be restored to baseline via glandular manipulation. However, external PTH injections allowed restoration of these latter cases.
Collapse
Affiliation(s)
- Denisa Martonová
- Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maxence Lavaill
- Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mark R. Forwood
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Alexander Robling
- Anatomy, Cell Biology & Physiology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - David M. L. Cooper
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, Canada
| | - Sigrid Leyendecker
- Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
- Institute of Applied Dynamics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Pivonka
- Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
50
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|