1
|
Tian T, Wei M, Guan Y, Rao L, Luo T, Han C, Wei W, Ma Y. Paeoniflorin-6'-O-benzene sulfonate inhibits keratinocyte proliferation by restoring GRK2-JAK1 colocalization in mouse model of psoriasis. Cell Signal 2025; 131:111706. [PMID: 40037425 DOI: 10.1016/j.cellsig.2025.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Psoriasis is chronic inflammatory skin disease mediated by interactions between Th17 cells and keratinocytes that lead to excessive proliferation of keratinocytes, suggesting that anti-inflammatory and anti-proliferation molecules may be effective for the treatment. Paeoniflorin-6'-O-benesulfonic acid (CP-25), an esterified modifier of paeoniflorin, has exhibited potent anti-inflammatory and immunomodulatory properties in arthritis animal models and experimental Sjögren's syndrome. However, the involvement of CP-25 and its target G protein-coupled receptor kinase 2 (GRK2) in the development of psoriasis has not been explored. In this study, we found that GRK2 expression was abnormally elevated in the skin tissues of both psoriasis patients and imiquimod-induced psoriasis model mice. Furthermore, its inhibitor CP-25 reduced skin damage and systemic inflammation in model mice. Mechanically, CP-25 inhibited GRK2 translocation to the cytomembrane, thus decreasing colocalization of GRK2 and the βγ subunit of G protein (Gβγ), increasing colocalization of GRK2 with Janus kinase 1 (JAK1), and downregulating the JAK1-signal transduction and activator of transcription (STAT3) signaling pathway to reduce the hyperproliferation of keratinocytes, besides, CP-25-mediated inhibition of GRK2 translocation to the cytomembrane involved the GRK2 amino acid alanine 321 in keratinocytes. Our findings indicate that targeting GRK2 with CP-25 is a promising treatment for psoriasis.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Mengzhu Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Yanling Guan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Lulu Rao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Chenchen Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Yang Ma
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
2
|
Leventoğlu E, Bakkaloğlu SA. A new era in the treatment of kidney diseases: NLRP3 inflammasome and cytokine-targeted therapies. Pediatr Nephrol 2025; 40:1515-1521. [PMID: 39485496 DOI: 10.1007/s00467-024-06578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
The kidneys are crucial for filtering blood, managing overall body water, electrolyte, and acid-base balance, and regulating blood pressure. They remove metabolic waste products, toxins, and drugs. In addition, they limit inflammation by clearing cytokines and reduce immune cell activation by removing bacterial components. Dendritic cells (DCs) in the kidney maintain peripheral tolerance. About 85% of filtered water is reabsorbed by the proximal tubule, exposing distal nephron cells to high concentrations of low molecular weight antigens. These antigens are captured by DCs, helping to inactivate potentially autoreactive T cells and maintain tolerance to circulating antigens. In kidney failure, immune function is severely compromised due to the retention of toxins and cytokines, which activate immune cells and increase systemic inflammation. The kidneys are also vulnerable to immune-mediated diseases. Loss of immune homeostasis, characterized by over- or under-activity of the immune response, can adversely affect kidney function. With advances in immunology and cellular biology, biologic therapies targeting various pathways involved in the pathophysiology of kidney diseases are being developed. In this review, the immunologic aspects of kidney diseases and focus on cytokine-based therapies that may hold promise for the treatment of kidney diseases in the future will be presented.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Konya City Hospital, Konya, Turkey.
| | - Sevcan A Bakkaloğlu
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Wang L, Wang M, Wang Z, Wang K, Zhao B, Wang Y, Zheng J, Zhang S. UBE2T is a diagnostic and prognostic biomarker for endometrial cancer. Clin Transl Oncol 2025; 27:2067-2083. [PMID: 39367897 PMCID: PMC12033108 DOI: 10.1007/s12094-024-03713-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Endometrial cancer (UCEC) is one of the most common malignant tumors in gynecology, and early diagnosis is crucial for its treatment. Currently, there is a lack of early screening tests specific to UCEC, and treatment advances are limited. It is crucial to identify more sensitive biomarkers for screening, diagnosis, and predicting UCEC. Previous studies have shown that UBE2T is involved in the development of various tumors such as breast cancer and liver cancer, but research on the role of UBE2T in UCEC is limited. METHODS Using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and UALCAN databases, we analyzed the differential expression of UBE2T mRNA and protein in endometrial cancer (UCEC), along with its clinical relevance. A total of 113 clinical samples were collected, and immunohistochemistry and Western blot analysis were employed to validate bioinformatics analysis results. Volcano plots were generated using UBE2T and its differentially expressed genes, and a protein-protein interaction (PPI) network was constructed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and immune infiltration analysis were used to predict the functional role of UBE2T in UCEC progression. Correlation between UBE2T expression and patient survival was analyzed using TCGA data, and Kaplan-Meier survival curves were plotted. RESULTS UBE2T is significantly overexpressed in UCEC and correlates with poor prognosis. Its overexpression is closely associated with mitosis, cell cycle regulation, and histological grade in UCEC patients. CONCLUSION UBE2T is highly expressed in UCEC and suppresses anti-tumor immune responses in UCEC patients. It serves as a key participant in UCEC progression, associated with a range of adverse outcomes, and holds potential as a clinical diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Longyun Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, Jilin, China
| | - Mengqi Wang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zeyu Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, Jilin, China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, Jilin, China
| | - Bowei Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, Jilin, China
| | - Yue Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, Jilin, China
| | - Jingying Zheng
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China.
| | - Shuang Zhang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
4
|
Lee Y, Ishikawa T, Lee H, Lee B, Ryu C, Davila Mejia I, Kim M, Lu G, Hong Y, Feng M, Shin H, Meloche S, Locksley RM, Koltsova E, Grivennikov SI, Heiman M, Choi GB, Huh JR. Brain-wide mapping of immune receptors uncovers a neuromodulatory role of IL-17E and the receptor IL-17RB. Cell 2025; 188:2203-2217.e17. [PMID: 40199322 DOI: 10.1016/j.cell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/17/2024] [Accepted: 03/04/2025] [Indexed: 04/10/2025]
Abstract
Cytokines interact with their receptor complexes to orchestrate diverse processes-from immune responses to behavioral modulation. Interleukin-17A (IL-17A) mediates protective immune responses by binding to IL-17 receptor A (IL-17RA) and IL-17RC subunits. IL-17A also modulates social interaction, yet the role of cytokine receptors in this process and their expression in the brain remains poorly characterized. Here, we mapped the brain-region-specific expression of all major IL-17R subunits and found that in addition to IL-17RA, IL-17RB-but not IL-17RC-plays a role in social behaviors through its expression in the cortex. We further showed that IL-17E, expressed in cortical neurons, enhances social interaction by acting on IL-17RA- and IL-17RB-expressing neurons. These findings highlight an IL-17 circuit within the cortex that modulates social behaviors. Thus, characterizing spatially restricted cytokine receptor expression can be leveraged to elucidate how cytokines function as critical messengers mediating neuroimmune interactions to shape animal behaviors.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tomoe Ishikawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyeseung Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byeongjun Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Changhyeon Ryu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Irene Davila Mejia
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minjin Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Guangqing Lu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yujin Hong
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mengyang Feng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyeyoon Shin
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer (IRIC), Montreal, QC, Canada
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ekaterina Koltsova
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sergei I Grivennikov
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Myriam Heiman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gloria B Choi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Human Biology Microbiome Quantum Research Center (Bio2Q), Keio University, Tokyo, Japan; Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA.
| |
Collapse
|
5
|
Noma K, Asano T, Taniguchi M, Ashihara K, Okada S. Anti-cytokine autoantibodies in human susceptibility to infectious diseases: insights from Inborn errors of immunity. Immunol Med 2025:1-17. [PMID: 40197228 DOI: 10.1080/25785826.2025.2488553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
The study of Inborn Errors of Immunity (IEIs) is critical for understanding the complex mechanisms of the human immune response to infectious diseases. Specific IEIs, characterized by selective susceptibility to certain pathogens, have enhanced our understanding of the key molecular pathways and cellular subsets involved in host defense against pathogens. These insights revealed that patients with anti-cytokine autoantibodies exhibit phenotypes similar to those with pathogenic mutations in genes encoding signaling molecules. This new disease concept is currently categorized as 'Phenocopies of IEI'. This category includes anti-cytokine autoantibodies targeting IL-17/IL-22, IFN-γ, IL-6, GM-CSF, and type I IFNs. Abundant anti-cytokine autoantibodies deplete corresponding cytokines, impair signaling pathways, and increase susceptibility to specific pathogens. We herein demonstrate the clinical and etiological significance of anti-cytokine autoantibodies in human immunity to pathogens. Insights from studies of rare IEIs underscore the pathological importance of cytokine-targeting autoantibodies. Simultaneously, the diverse clinical phenotype of patients with these autoantibodies suggests that the influences of cytokine dysfunction are broader than previously recognized. Furthermore, comprehensive studies prompted by the COVID-19 pandemic highlighted the substantial clinical impact of autoantibodies and their potential role in shaping the outcomes of infectious disease.
Collapse
Affiliation(s)
- Kosuke Noma
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaki Asano
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Maki Taniguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kosuke Ashihara
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Trujillo J, Calvert AE, Rink JS, Perez White BE, Sepulveda F, Biyashev D, Lu KQ, Lavker RM, Peng H, Thaxton CS. Keratinocyte SR-B1 expression and targeting in cytokine-driven skin inflammation. COMMUNICATIONS MEDICINE 2025; 5:100. [PMID: 40181097 PMCID: PMC11968926 DOI: 10.1038/s43856-025-00804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Strategies to treat inflammatory skin conditions require identifying new targets involved in interactions between overlying epithelial and underlying dermal immune cells. Scavenger receptor class B type 1 (SR-B1) is a cell surface receptor that binds high-density lipoproteins (HDL) and mediates inflammatory responses in immune and endothelial cells. The SR-B1 receptor is also expressed in keratinocytes, but its role in inflammatory skin diseases remains unexplored. METHODS To investigate keratinocyte SR-B1 in the setting of inflammation, we measured its expression in skin biopsy samples obtained from patients with psoriasis; human skin explants exposed to the inflammatory cytokine, interleukin-17A (IL-17A); and mouse skin exposed to the pro-inflammatory agent, imiquimod (IMQ). We also evaluated the effects of SR-B1 knockdown on primary keratinocyte responses to IL-17A. Finally, we employed a synthetic HDL-nanoparticle (HDL NP) to investigate the therapeutic potential of targeting SR-B1 in IL-17A-stimulated keratinocytes and in male C57BL/6 mice with IMQ-induced skin inflammation. RESULTS Our data show SR-B1 expression is increased in diseased human skin and in both human and mouse models of skin inflammation. SR-B1 knockdown in keratinocytes exacerbates the inflammatory response to IL-17A, whereas targeting SR-B1 with HDL NP attenuates this response. In the IMQ murine model, topical application of HDL NPs improves the skin phenotype, normalizes SR-B1 expression, and reduces molecular and cellular markers of inflammation. CONCLUSIONS Overall, SR-B1 plays a role in skin inflammation and HDL NP-mediated targeting of SR-B1 in keratinocytes may offer a targeted new therapy for inflammatory skin disease.
Collapse
Affiliation(s)
- Jacquelyn Trujillo
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrea E Calvert
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bethany E Perez White
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Fabiola Sepulveda
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dauren Biyashev
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kurt Q Lu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert M Lavker
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Han Peng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - C Shad Thaxton
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
7
|
Abdu S, Xia J, Yuan H, Tan TJ, Layhadi JA, Shamji MH, McKenzie ANJ, Haloob N, Hopkins C, Woszczek G, Till SJ. IL-25 Enhances B Cell Responses in Type 2 Inflammation Through IL-17RB Receptor. Allergy 2025; 80:965-975. [PMID: 39829150 PMCID: PMC11969324 DOI: 10.1111/all.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alarmin cytokine IL-25 promotes type 2 inflammatory responses in disorders such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP) and known targets include ILC2 and Th2 cells. However, other cellular targets for IL-25 remain poorly defined. OBJECTIVE To investigate induction and expression of IL-25 receptor (IL-17RB) by B cells and evaluate responsiveness of IL-17RB-expressing B cells to IL-25 in vitro. METHODS IL-17RB expression, regulation and function on B cells were evaluated in peripheral blood-derived B cells by flow cytometry and RT-PCR, including in response to IgE-inducing stimuli (anti-CD40 mAb and IL-4). Single-cell RNA sequencing was used to compare IL-17RB+ and IL-17RB-activated peripheral blood-derived B cells. To evaluate B cell IL-17RB expression within type 2 inflamed tissue, B cells were compared from nasal polyps, control turbinate tissue and matched peripheral blood. RESULTS Activation of B cells with anti-CD40 and IL-4 increased IL-17RB expression at both protein and mRNA level, which was further upregulated by IL-25. B cells induced to express IL-17RB responded to IL-25 with enhanced antibody production. Single-cell RNA-sequencing showed that IL17RB+ activated B cells expressed higher levels of IGHE, CCL17 and CCL22 compared to IL17RB- B cells. B cells from nasal polyp tissue expressed higher levels of surface IL-17RB compared with control tissue, correlating with patient-reported CRSwNP severity (SNOT-22). CONCLUSION Peripheral blood B cells activated under IgE-inducing conditions express surface IL-17RB, and tissue IL-17RB+ B cells are increased in type 2 inflammation. IL-17RB+ cells have a distinct transcriptional profile and respond to IL-25 with enhanced antibody production, highlighting the IL-25/IL-17RB pathway as a potential therapeutic target for CRSwNP and other type 2 inflammatory disorders.
Collapse
Affiliation(s)
- Semah Abdu
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- King's Centre for Lung HealthKing's College LondonLondonUK
| | - Jiao Xia
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- ENT Department, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Huihui Yuan
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Department of Immunology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Tiak Ju Tan
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | | | | | | - Nora Haloob
- Department of ENT SurgeryGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Claire Hopkins
- Department of ENT SurgeryGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Grzegorz Woszczek
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- King's Centre for Lung HealthKing's College LondonLondonUK
| | - Stephen J. Till
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- King's Centre for Lung HealthKing's College LondonLondonUK
| |
Collapse
|
8
|
Cheng K, Chen Q, Chen Z, Cai Y, Cai H, Wu S, Gao P, Cai Y, Wu Z, Zhou J, Peng B, Wang X. PLEK2 promotes migration and invasion in pancreatic ductal adenocarcinoma by MMP1 through IL-17 pathway. Mol Cell Biochem 2025; 480:2401-2412. [PMID: 39117976 DOI: 10.1007/s11010-024-05078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis primarily due to metastasis. Accumulating evidence suggests that PLEK2 acts as an oncogene in various tumors. This study aimed to investigate the effects of PLEK2 on PDAC. Expression analysis of PLEK2 was conducted using qRT-PCR, Western blot, and immunohistochemistry in PDAC. Wound healing and transwell assays were performed to evaluate the impact of PLEK2 on cell migration and invasion. A xenograft tumor model was employed to assess the in vivo proliferation of PLEK2. Additionally, the downstream pathway of PLEK2 was analyzed through RNA-seq and confirmed by Western blot analysis. The results demonstrated the upregulation of PLEK2 expression in tumor specimens. High PLEK2 expression was significantly associated with poor overall survival and advanced TNM stages. Correlation analyses revealed positive correlations between PLEK2 and TGF-β, EGFR, and MMP1. Wound healing and transwell assays demonstrated that PLEK2 promoted PDAC cell migration and invasion, potentially through the activation of the epithelial-to-mesenchymal transition process. The in vivo experiment further confirmed that PLEK2 knockdown suppressed tumor growth. RNA-seq analysis revealed PLEK2's regulation of MMP1 and activation of p-ERK and p-STAT3, which were verified by Western blot analysis. Overall, the present study suggests that PLEK2 may play a tumor-promoting role in PDAC. These findings provide valuable insights into the molecular mechanisms of pancreatic cancer and highlight the potential of PLEK2 as a therapeutic target.
Collapse
Affiliation(s)
- Ke Cheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiangxing Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zixin Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - He Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shangdi Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Pan Gao
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yunqiang Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhong Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bing Peng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Gautam AS, Pandey SK, Balki S, Panda ES, Singh RK. IL-17 A Exacerbated Neuroinflammatory and Neurodegenerative Biomarkers in Intranasal Amyloid-Beta Model of Alzheimer's Disease. J Neuroimmune Pharmacol 2025; 20:29. [PMID: 40163129 DOI: 10.1007/s11481-025-10192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Proinflammatory cytokines, especially interleukin-17 A (IL-17 A) have been found to be significantly associated with AD patients. IL-17 A amplifies neuroinflammation during AD pathology. This study highlighted the ability of IL-17 A to exacerbate amyloid-beta-induced pathology in animals. The AD pathology was induced with repeated intranasal administration of Aβ along with recombinant mouse IL-17 A (rmIL-17) at 1, 2 and 4 µg/kg for seven alternate days. Although, the combination of rmIL-17 and Aβ did not have severe effects on memory of the animals, but it drastically increased the IL-17 A mediated signaling, level of proinflammatory cytokines, oxidative stress and reduced antioxidants in the hippocampus and cortex regions of the animal brains. Interestingly, combining rmIL-17 with Aβ also triggered the expression of AD structural markers like pTau, amyloid-beta and BACE1 in the brain regions. Furthermore, rmIL-17 with Aβ exposure stimulated astrocytes and microglia leading to activation of proinflammatory signaling in the brain of the animals. These results showed the propensity of IL-17 A to promote severity of AD pathology and suggest IL-17 A as potent therapeutic target to control AD progression.
Collapse
Affiliation(s)
- Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Sneha Balki
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Ekta Swarnmayee Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Transit campus, Bijnour-sisendi Road, Sarojini Nagar, Raebareli, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
10
|
Yang W, Liu C, Li Z, Cui M. Exploring new drug treatment targets for immune related bone diseases using a multi omics joint analysis strategy. Sci Rep 2025; 15:10618. [PMID: 40148470 PMCID: PMC11950375 DOI: 10.1038/s41598-025-94053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
In the field of treatment and prevention of immune-related bone diseases, significant challenges persist, necessitating the urgent exploration of new and effective treatment methods. However, most existing Mendelian randomization (MR) studies are confined to a single analytical approach, which limits the comprehensive understanding of the pathogenesis and potential therapeutic targets of these diseases. In light of this, we propose the hypothesis that genetic variations in specific plasma proteins have a causal relationship with immune-related bone diseases through the MR mechanism, and that key therapeutic targets can be accurately identified using an integrated multi-omic analysis approach. This study comprehensively applied a variety of analytical methods. Firstly, the protein quantitative trait locus (pQTLs) data from two large plasma protein databases and the Genome-Wide Association Study (GWAS) data of nine immune-related bone diseases were used for Mendelian randomization (MR) analysis. At the same time, we employed the Summary-based Mendelian Randomization (SMR) method, combined with the Bayesian colocalization analysis method of coding genes, as well as the Linkage Disequilibrium Score Regression (LDSC) analysis method based on genetic correlation analysis, as methods to verify the genetic association between genes and complex diseases, thus comprehensively obtaining positive results. In addition, a Phenome-wide Association Study (PheWAS) was conducted on significantly positive genes, and their expression patterns in different tissues were also explored. Subsequently, we integrated Protein-Protein Interaction (PPI) network analysis, Gene Ontology (GO) analysis. Finally, based on the above analytical methods, drug prediction and molecular docking studies were carried out with the aim of accurately identifying key therapeutic targets. Through a comprehensive analysis using four methods, namely the Mendelian randomization (MR) analysis study, Summary-based Mendelian Randomization (SMR) analysis study, Bayesian colocalization analysis study, and Linkage Disequilibrium Score Regression (LDSC) analysis study. We found that through MR, SMR, and combined with Bayesian colocalization analysis, an association was found between rheumatoid arthritis (RA) and HDGF. Using the combination of MR and Bayesian colocalization analysis, as well as LDSC analysis, it was concluded that RA was related to CCL19 and TNFRSF14. Based on the methods of MR and Bayesian colocalization, an association was found between GPT and Crohn's disease-related arthritis, and associations were found between BTN1A1, EVI5, OGA, TNFRSF14 and multiple sclerosis (MS), and associations were found between ICAM5, CCDC50, IL17RD, UBLCP1 and psoriatic arthritis (PsA). Specifically, in the MR analysis of RA, HDGF (P_ivw = 0.0338, OR = 1.0373, 95%CI = 1.0028-1.0730), CCL19 (P_ivw = 0.0004, OR = 0.3885, 95%CI = 0.2299-0.6566), TNFRSF14 (P_ivw = 0.0007, OR = 0.6947, 95%CI = 0.5634-0.8566); in the MR analysis of MS, BTN1A1 (P_ivw = 0.0000, OR = 0.6101, 95%CI = 0.4813-0.7733), EVI5 (P_ivw = 0.0000, OR = 0.3032, 95%CI = 0.1981-0.4642), OGA (P_ivw = 0.0005, OR = 0.4599, 95%CI = 0.2966-0.7131), TNFRSF14 (P_ivw = 0.0002, OR = 0.4026, 95%CI = 0.2505-0.6471); in the MR analysis of PsA, ICAM5 (P_ivw = 0.0281, OR = 1.1742, 95%CI = 1.0174-1.3552), CCDC50 (P_ivw = 0.0092, OR = 0.7359, 95%CI = 0.5843-0.9269), IL17RD (P_ivw = 0.0006, OR = 0.7887, 95%CI = 0.6886-0.9034), UBLCP1 (P_ivw = 0.0021, OR = 0.6901, 95%CI = 0.5448-0.8741); in the MR analysis of Crohn's disease-related arthritis, GPT (P_ivw = 0.0006, OR = 0.0057, 95%CI = 0.0003-0.1111). In the Bayesian colocalization analysis of RA, HDGF (H4 = 0.8426), CCL19 (H4 = 0.9762), TNFRSF14 (H4 = 0.8016); in the Bayesian colocalization analysis of MS, BTN1A1 (H4 = 0.7660), EVI5 (H4 = 0.9800), OGA (H4 = 0.8569), TNFRSF14 (H4 = 0.8904); in the Bayesian colocalization analysis of PsA, ICAM5 (H4 = 0.9476), CCDC50 (H4 = 0.9091), IL17RD (H4 = 0.9301), UBLCP1 (H4 = 0.8862); in the Bayesian colocalization analysis of Crohn's disease-related arthritis, GPT (H4 = 0.8126). In the SMR analysis of RA, HDGF (p_SMR = 0.0338, p_HEIDI = 0.0628). In the LDSC analysis of RA, CCL19 (P = 0.0000), TNFRSF14 (P = 0.0258). By comprehensively analyzing plasma proteomic and transcriptomic data, we successfully identified key therapeutic targets for various clinical subtypes of immune-associated bone diseases. Our findings indicate that the significant positive genes associated with RA include HDGF, CCL19, and TNFRSF14; the positive gene linked to Crohn-related arthropathy is GPT; for MS, the positive genes are BTN1A1, EVI5, OGA, and TNFRSF14; and for PsA, the positive genes are ICAM5, CCDC50, IL17RD, and UBLCP1. Through this comprehensive analytical approach, we have screened potential therapeutic targets for different clinical subtypes of immune-related bone diseases. This research not only enhances our understanding of the pathogenesis of these conditions but also provides a solid theoretical foundation for subsequent drug development and clinical treatment, with the potential to yield significant advancements in the management of patients with immune-related bone diseases.
Collapse
Affiliation(s)
- Wei Yang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chenglin Liu
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhenhua Li
- Affiliated Hospital of Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Miao Cui
- Capital Medical University, No.10, Xitoutiao, You'anmenwai, Beijing, 100069, Fengtai District, China.
| |
Collapse
|
11
|
Jiang S, Jiang Y, Feng J, Hou J, Qin Z, Wang Y, Yang K, Li J. Triptolide combined with salvianolic acid B alleviates CCL 4-induced liver fibrosis by suppressing the Th17/IL-17A axis. Int Immunopharmacol 2025; 150:114300. [PMID: 39965387 DOI: 10.1016/j.intimp.2025.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Liver fibrosis represents a significant public health challenge, with immune dysregulation being a key pathological mechanism involved in its progression. The combined use of triptolide and salvianolic acid B has been demonstrated effective in ameliorating CCL4-induced liver fibrosis, but the underlying mechanism remains to be elucidated. In this study, we integrated network pharmacology and experimental validation to uncover the therapeutic mechanisms of the combined use of triptolide and salvianolic acid B. First, animal experiments demonstrated that the combination notably alleviated CCL4-induced liver injury and fibrosis. Second, network pharmacology was employed to predict the potential mechanisms, and the results highlighted Th17 cell differentiation and the IL-17 signaling pathway as the key pathways mediating the anti-fibrotic effects of the combination. Next, with the help of flow cytometry analysis, we confirmed that the combination effectively inhibited the differentiation of Th17 cells, both in vivo and in vitro, and decreased the expression of pro-inflammatory/fibrotic cytokines. Finally, to preliminary ascertain the role of IL-17 signaling in HSC activation and if the combination could affect it, we used recombinant human IL-17A protein to trigger LX-2 cells, the results suggested that IL-17A signaling did engage in HSC activation, and the combination could significantly suppress IL-17A-induced LX-2 activation partly by inhibiting the expression of IL-17RA. Taken together, those results implied that the combined use of triptolide and salvianolic acid B could attenuate CCL4-induce liver fibrosis, and this effect was related to the suppression of inflammation and hepatic stellate cell activation via Th17/IL-17A axis.
Collapse
Affiliation(s)
- Shiyuan Jiang
- Traditional Chinese Medicine (Zhongjing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China; Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Zhengzhou 450046, China
| | - Yanling Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Feng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Junlin Hou
- Traditional Chinese Medicine (Zhongjing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhongpeng Qin
- Traditional Chinese Medicine (Zhongjing) School, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yijiao Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Zhengzhou 450046, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kang Yang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, Zhengzhou 450046, China; Department of Nephrology, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
12
|
Zhang J, Shen M. The Role of IL-17 in Systemic Autoinflammatory Diseases: Mechanisms and Therapeutic Perspectives. Clin Rev Allergy Immunol 2025; 68:27. [PMID: 40074883 DOI: 10.1007/s12016-025-09042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Interleukin (IL)-17, a pro-inflammatory cytokine, plays a pivotal role in immune regulation by bridging innate and adaptive responses. Beyond its canonical involvement in T helper-17 cells-mediated immunity, IL-17 contributes significantly to the pathogenesis of systemic autoinflammatory diseases (SAIDs) including Familial Mediterranean Fever (FMF), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-associated autoinflammatory diseases, and synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. Dysregulated IL-17 signaling drives inflammasome activation, neutrophil recruitment, and chronic tissue inflammation. IL-17 inhibitors have demonstrated efficacy in refractory SAIDs, though challenges such as increased infection risks, paradoxical inflammatory reactions, and uncertainties regarding long-term safety persist. Currently, there is insufficient data to support the use of IL-17 inhibitors as first-line treatments, and their role in managing SAIDs is yet to be fully defined. This review highlights the mechanistic role of IL-17 in SAIDs and emerging therapeutic strategies, including IL-17-targeted monotherapies and combination approaches with IL-1 or tumor necrosis factor (TNF) inhibitors. Future research should focus on biomarker development, combination therapies, and long-term studies to optimize the safety and efficacy of IL-17-targeted therapies in SAIDs.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Min Shen
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
13
|
Yu Y, Shen H, Qin Q, Wang J, Nie Y, Wen L, Tang Y, Qu M. The investigation of peripheral inflammatory and oxidative stress biomarkers in dementia with Lewy Bodies, compared with Alzheimer's Disease, and mild cognitive impairment. Neuroscience 2025; 568:209-218. [PMID: 39800047 DOI: 10.1016/j.neuroscience.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/05/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Although inflammation and oxidative stress have been increasingly recognised as components of Alzheimer's disease (AD) and Parkinson's disease (PD) pathologies. Few studies have investigated peripheral inflammation, and none have examined oxidative stress in Dementia with Lewy bodies (DLB). The purpose of our study was to characterize and compare those biomarkers in DLB with those in AD and amnestic mild cognitive impairment (aMCI). Plasma samples were obtained from Chinese patients with DLB (n = 50), AD (n = 59), and aMCI (n = 30), and healthy controls (HCs) (n = 54). Peripheral inflammatory biomarkers, including interferon-gamma (IFN-γ), interleukins (IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12p70, IL-17A), tumor necrosis factor-alpha (TNF-α), and C-reactive protein (CRP). Oxidative stress markers, such as superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px), were also assessed. The findings revealed that DLB patients had higher IL-6 levels than AD and HCs and elevated IL-10 and IL-17A levels compared to HCs. In terms of oxidative stress, the levels of SOD were significantly lower and MDA were significantly higher in the DLB and AD compared with HCs. Significant positive correlations were found between Unified Parkinson's Disease Rating Scale (UPDRS) scores and CRP levels. Our study identifies a unique peripheral immune and oxidative stress profile in DLB, characterized by elevated IL-6, MDA, and reduced SOD levels, distinguishing it from AD. These findings, linked to α-synuclein (α-Syn) pathology, provide novel insights into DLB mechanisms and highlight potential biomarkers for disease monitoring, targeted therapies, and future clinical trials.
Collapse
Affiliation(s)
- Yueyi Yu
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huixin Shen
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Yuting Nie
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Lulu Wen
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Miao Qu
- Departments of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
14
|
Norouzi MA, Jahantigh D, Forghani F, Rezaei M, Ghazaey Zidanloo S. Interleukin 17 RA and RC gene polymorphisms and increased preeclampsia risk: Single and combined genetic analysis. Hum Immunol 2025; 86:111250. [PMID: 39908641 DOI: 10.1016/j.humimm.2025.111250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Preeclampsia is a major pregnancy complication characterized by hypertension and systemic dysfunction, significantly impacting maternal health. The study highlights the complex immune responses triggered during pregnancy, particularly focusing on the interleukin 17 signaling pathway in PE pathogenesis. This study examines the association between two genetic variants-IL-17RA rs4819554 and IL-17RC rs708567-and the risk of preeclampsia. METHODS In this case-control study, a cohort of 470 women including 240 diagnosed with PE and 230 control women were examined utilizing polymerase chain reaction-restriction fragment length polymorphism techniques (PCR-RFLP). Additionally, a new computational study was conducted to prediction the possible roles of these polymorphisms. RESULTS The research found significant correlations between the AG and GG genotypes of IL-17 RA rs4819554 and the TT genotype of IL-17RC rs708567 with increased preeclampsia risk, particularly severe cases. Notably, combining these polymorphisms further elevated the risk, with the IL-17 RA rs4819554 GG/ IL-17RC rs708567 CC genotype associated with a six-fold increase in late-onset PE risk. These findings underscore the potential of IL-17 receptor gene variants as biomarkers for preeclampsia susceptibility and suggest a complex interplay of genetic factors influencing inflammation during pregnancy. The IL-17RA rs4819554 gene polymorphism may result in differential allelic expression, according to in-silico study. Additionally, bioinformatics study revealed that the IL-17RC rs708567 SNP will result in a notable change to its secondary structure and physicochemical characteristics. CONCLUSIONS This study provides significant insights into the genetic mechanisms underlying preeclampsia, highlighting the necessity for further investigation into these genetic variants and their implications for pregnancy outcomes.
Collapse
Affiliation(s)
- Mohammad Amin Norouzi
- Department of Biology Faculty of Science University of Sistan and Baluchestan Zahedan Iran
| | - Danial Jahantigh
- Department of Biology Faculty of Science University of Sistan and Baluchestan Zahedan Iran.
| | - Forough Forghani
- Department of Obstetrics and Gynecology Zahedan University of Medical Sciences Zahedan Iran.
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | | |
Collapse
|
15
|
Song Z, Li J, Gong X. Dahuang chuanxiong decoction against contrast-induced nephropathy: Multi-omics, crosstalk between BNIP3-mediated mitophagy and IL-17 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156416. [PMID: 39889489 DOI: 10.1016/j.phymed.2025.156416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Contrast-induced nephropathy (CIN), also known as contrast-induced acute kidney injury (CI-AKI), represents a prevalent form of hospital-acquired renal injury. However, the mechanisms underlying its pathogenesis remain unclear. Based on our previous research findings, the Dahuang Chuanxiong decoction (DCH), composed of Radix et Rhizoma Rhei (DH) and Rhizoma Chuanxiong (CX), has demonstrated efficacy for inhibiting CI-AKI by attenuating oxidative stress and apoptosis in renal tubular epithelial cells. Despite these findings, the detailed mechanisms underlying the renoprotective actions have not been thoroughly clarified. PURPOSE The objective of this study was to screen potential targets and signaling pathways involved in inhibition of CI-AKI by DCH using multi-omics analysis and to verify whether the renoprotective mechanism of DCH is related to these identified targets or pathways through in vivo and in vitro experiments. METHODS Initially, we identified the components of DCH using UPLC-Q-TOF-MS. Transcriptomics and proteomics, combined with experimental validation, were used to further elucidate the molecular mechanisms of the herbal pair in CI-AKI treatment. A CI-AKI rat model was established, and the expression levels of proteins related to mitophagy and the IL-17 signaling pathway were detected in renal tissues using immunofluorescence, immunohistochemistry, and western blotting analysis to elucidate the nephroprotective effects of DCH. Additionally, siRNA was used in the HK-2 cell model to investigate the crosstalk between the mitophagy and IL-17 signaling pathways and the impact on apoptosis when these pathways were inhibited. RESULTS Multi-omics results revealed that the crucial signaling pathways involved were mitophagy, the MAPK signaling pathway, and the IL-17 signaling pathway. In vivo experiments indicated that contrast media (CM) led to an increase in AKI biomarkers, with upregulated expression of Parkin, BNIP3, IL-17, and p-NF-κB. Notably, pretreatment with DCH markedly reversed the expression of these proteins. Furthermore, we confirmed the importance of IL-17-mediated inflammation in the pathogenesis of CIN in vitro. We stimulated HK-2 cells with human IL-17 recombinant protein and observed an increase in the expression of p-NF-κB. Conversely, knockdown of IL-17 receptor A (IL-17RA) on the cell membrane reduced the expression of p-NF-κB and BNIP-3 under IL-17 stimulation. Additionally, the results revealed that BNIP3 knockdown reduced p-NF-κB production and alleviated the inflammation triggered by CM. The crosstalk between the two signaling pathways was initially explored. CONCLUSION In conclusion, these findings suggested that DCH may exert ameliorative effects on CI-AKI through a multifaceted approach, including inhibition of BNIP3-mediated mitophagy and IL-17-mediated inflammation. This study elucidated the renoprotective mechanism of DCH through transcriptomics, proteomics, and experimental validation, providing evidence for the therapeutic potential of this agent in the clinical treatment of CI-AKI.
Collapse
Affiliation(s)
- Zhiyong Song
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Li
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuezhong Gong
- Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
16
|
Nashtahosseini Z, Eslami M, Paraandavaji E, Haraj A, Dowlat BF, Hosseinzadeh E, Oksenych V, Naderian R. Cytokine Signaling in Diabetic Neuropathy: A Key Player in Peripheral Nerve Damage. Biomedicines 2025; 13:589. [PMID: 40149566 PMCID: PMC11940495 DOI: 10.3390/biomedicines13030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a debilitating complication of diabetes mellitus, characterized by progressive nerve damage driven by chronic hyperglycemia and systemic inflammation. The pathophysiology of DPN is significantly influenced by pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α. These cytokines promote oxidative stress, vascular dysfunction, and neuronal degeneration by activating important signaling pathways including NF-κB and MAPK. While IL-6 promotes a pro-inflammatory microenvironment, increasing neuronal damage and neuropathic pain, TNF-α and IL-1β worsen Schwann cell failure by compromising axonal support and causing demyelination. Immune cell infiltration and TLR activation increase the inflammatory cascade in DPN, resulting in a persistent neuroinflammatory state that sustains peripheral nerve injury. The main characteristics of DPN are axonal degeneration, decreased neurotrophic support, and Schwann cell dysfunction, which weaken nerve transmission and increase susceptibility to damage. Advanced glycation end-products, TNF-α, and CXCL10 are examples of biomarkers that may be used for early diagnosis and disease progression monitoring. Additionally, crucial molecular targets have been found using proteomic and transcriptome techniques, enabling precision medicine for the treatment of DPN. This review emphasizes the importance of cytokine signaling in the pathogenesis of DPN and how cytokine-targeted treatments might reduce inflammation, restore nerve function, and improve clinical outcomes for diabetic patients.
Collapse
Affiliation(s)
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan 35147-99442, Iran;
| | - Elham Paraandavaji
- Clinical Research Development Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran 13399-73111, Iran
| | - Alireza Haraj
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Bahram Fadaee Dowlat
- Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-1453, Iran
| | - Ehsan Hosseinzadeh
- Department of Surgery, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Ramtin Naderian
- Clinical Research Development Unit, Kowsar Educational, Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| |
Collapse
|
17
|
Han X, Su X, Che M, Liu L, Nie P, Wang S. Identification and Expression Analyses of IL-17/IL-17R Gene Family in Snakehead ( Channa argus) Following Nocardia seriolae Infection. Genes (Basel) 2025; 16:253. [PMID: 40149405 PMCID: PMC11942210 DOI: 10.3390/genes16030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES The interleukin 17 (IL-17) family, known for its proinflammatory properties, is important in immune responses against bacterial and fungal infections. To exert its immune function, the IL-17 family typically binds to IL-17 receptor (IL-17R) to facilitate signal transduction. METHODS This study identified, cloned and analyzed seven IL-17 and nine IL-17R family members in snakeheads. RESULTS A duplication event occurred in snakehead IL-17s and IL-17Rs, but bioinformatics analyses indicated that these genes were conserved in both protein domains and evolutionary processes. Tissue distribution analysis revealed that IL-17s/IL-17Rs were widely distributed in the detected tissues, with relatively high expression levels in immune tissues. Upon Nocardia seriolae stimulation, most members were expressed, particularly IL-17C2, IL-17D, IL-17N, IL-17RA1, IL-17RA2, IL-17RC1, and IL-17RE1, which were significantly upregulated in gill and intestine. CONCLUSIONS These results suggested that IL-17s and IL-17Rs played a crucial role in mucosal immunity against bacterial infection, providing insights into immunoprophylactic strategies for bacterial diseases in aquaculture.
Collapse
Affiliation(s)
- Xiufeng Han
- School of Marine Science and Engineering, Qingdao Agricultural University, 700 Greatwall Road, Qingdao 266109, China; (X.H.); (X.S.); (M.C.); (L.L.)
| | - Xue Su
- School of Marine Science and Engineering, Qingdao Agricultural University, 700 Greatwall Road, Qingdao 266109, China; (X.H.); (X.S.); (M.C.); (L.L.)
| | - Mingyue Che
- School of Marine Science and Engineering, Qingdao Agricultural University, 700 Greatwall Road, Qingdao 266109, China; (X.H.); (X.S.); (M.C.); (L.L.)
| | - Lanhao Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, 700 Greatwall Road, Qingdao 266109, China; (X.H.); (X.S.); (M.C.); (L.L.)
| | - Pin Nie
- School of Marine Science and Engineering, Qingdao Agricultural University, 700 Greatwall Road, Qingdao 266109, China; (X.H.); (X.S.); (M.C.); (L.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Su Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, 700 Greatwall Road, Qingdao 266109, China; (X.H.); (X.S.); (M.C.); (L.L.)
| |
Collapse
|
18
|
Miao M, Yan J, Sun Y, Liu J, Guo S. Psoriasis: Unraveling Disease Mechanisms and Advancing Pharmacological and Nanotechnological Treatments. J Inflamm Res 2025; 18:2045-2072. [PMID: 39959643 PMCID: PMC11827491 DOI: 10.2147/jir.s506103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Research into the pathogenesis of inflammatory skin diseases, including dermatitis and psoriasis, has yielded significant advancements in the last decades. The identification of age, gender, and genetic factors contributing to these complex conditions has been pivotal in developing novel pharmacological and technological treatments. This review delves into the molecular underpinnings of psoriasis, examining current therapies and promising investigational agents. We highlight the potential of nanotechnology to enhance drug delivery to affected skin areas, with microneedles emerging as a promising platform for psoriasis and other chronic inflammatory skin diseases.
Collapse
Affiliation(s)
- Miao Miao
- Outpatient Department, Disease Prevention and Control Center of Tongshan District, Xuzhou, People’s Republic of China
| | - Jiong Yan
- Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Yujin Sun
- Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jia Liu
- Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Shun Guo
- Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
19
|
Natura G, Vazquez E, Richter F, Segond von Banchet G, Ebbinghaus M, Ebersberger A, König C, Maltritz J, Gajda M, Schmidt-Hieber C, Schaible HG. Antinociceptive interactions between excitatory interferon-γ and interleukin-17 in sensory neurons. Brain Behav Immun 2025; 124:55-73. [PMID: 39566665 DOI: 10.1016/j.bbi.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
Interferon-γ (IFNγ) and interleukin-17 (IL-17) are master regulators of innate and adaptive immunity. Here we asked whether these cytokines also regulate pain. Both cytokines increased the excitability of isolated small- to medium-sized sensory neurons, suggesting a pronociceptive effect. However, in vivo IL-17 was pronociceptive, whereas IFNγ was antinociceptive. Co-administration of IFNγ and IL-17 in vivo resulted in antinociception. Pre-incubation with IFNγ also eliminated the increase in excitability by interleukin-17A in isolated sensory neurons, demonstrating that the excitatory membrane effects of IFNγ can interfere with the excitatory membrane effects of IL-17, resulting in neuronal inhibition. IFNγ increased TTX-sensitive Na+ currents, while IL-17 increased TTX-resistant Na+ currents. Blocking TTX-sensitive Na+ currents eliminated the inhibition of the IL-17 effect by IFNγ. We propose a novel form of inhibition in sensory neurons that allows the intrinsically excitatory IFNγ to attenuate pro-nociceptive effects of cytokines such as IL-17 through interactions with voltage-gated Na+ currents.
Collapse
Affiliation(s)
- Gabriel Natura
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Enrique Vazquez
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Frank Richter
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Gisela Segond von Banchet
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Matthias Ebbinghaus
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Christian König
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Jakob Maltritz
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Mieczyslaw Gajda
- Institute of Legal Medicine, Section Pathology, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany
| | - Christoph Schmidt-Hieber
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Hans-Georg Schaible
- Institute of Physiology 1/Neurophysiology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
20
|
Rodríguez‐Montaño R, Alarcón‐Sánchez MA, Lomelí‐Martínez SM, Martínez‐Bugarin CH, Heboyan A. Genetic Variants of the IL-23/IL-17 Axis and Its Association With Periodontal Disease: A Systematic Review. Immun Inflamm Dis 2025; 13:e70147. [PMID: 39887950 PMCID: PMC11783687 DOI: 10.1002/iid3.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The objective of this systematic review was to identify genetic variants of the IL-23, IL-17, IL-23R and IL-17R genes and isoforms and its possible association with increased development of periodontitis and peri-implantitis. METHODS A systematic review was prepared according to the guidelines, registered in the OSF database with the registration number: 10.17605/OSF. IO/X95ZC. The electronic search was performed in four databases: PubMed, Scopus, Web of Science, and Google Scholar from 1984 until March 15th, 2024. The JBI Critical Appraisal Checklist for Case-Control Studies was used to assess the quality of included studies. RESULTS Eighteen papers with a case-control design were those that ultimately met the eligibility criteria. A total of 3904 individuals (2315 with periodontitis and 90 with peri-implantitis), and 1589 healthy subjects) were studied. The age range of the study population was 14-70 years, with a mean age ± (SD) of 40.43 ± 6.33 years. A total of 28 genetic variants corresponding to the IL-17A (rs 2275913, rs 3819024, rs 10484879) IL-17F (rs 763780), IL-17R (rs 879576) and IL-23R (rs 11209026) genes were analyzed in this study. Six (33.3%) studies found an association between the IL-17A 197 G/A (rs 2275913) genetic variant and peri-implantitis and periodontitis. One study (5.5%) found an association between the IL-17A rs10484879 variant and peri-implantitis and periodontitis. CONCLUSION Six polymorphisms were evaluated, highlighting rs 2275913 of the cytokine IL-17A in patients with periodontitis or peri-implantitis. Only 50% of studies found an association despite having a small sample. This suggests that other factors such as the degree of disease, systemic diseases and ethnic groups studied may play a role.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Montaño
- Department of Health and Illness as an Individual and Collective ProcessUniversity Center of Tlajomulco, University of Guadalajara (CUTLAJO‐UdeG)Tlajomulco de ZuñigaMexico
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of GuadalajaraGuadalajaraMexico
| | - Mario Alberto Alarcón‐Sánchez
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of GuadalajaraGuadalajaraMexico
- Molecular Biology Department, University Center of Health SciencesUniversity of GuadalajaraGuadalajaraMexico
| | | | - Cristina Hermila Martínez‐Bugarin
- Institute of Research in Dentistry, Department of Integral Dental ClinicsUniversity Center of Health Sciences, University of GuadalajaraGuadalajaraMexico
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Department of Prosthodontics, Faculty of StomatologyYerevan State Medical University after Mkhitar HeratsiYerevanArmenia
- Department of Prosthodontics, School of DentistryTehran University of Medical SciencesNorth Karegar StTehranIran
| |
Collapse
|
21
|
Dai ZQ, Guo ZQ, Zhang T, Chu YF, Yan Y, Gao F, Li SL, Gu YH, Jiao JY, Lin YX, Zhao SW, Xu B, Lei HM. Integrating network pharmacology and transcriptomics to study the potential mechanism of Jingzhi Niuhuang Jiedu tablet in rats with accumulation of heat in the lungs and stomach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118890. [PMID: 39366495 DOI: 10.1016/j.jep.2024.118890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Accumulation of heat in the lungs and stomach (AHLS) is an important syndrome within the realm of traditional Chinese medicine (TCM). It is the fundamental reason behind numerous illnesses, including mouth ulcers, dermatological conditions, acne, and pharyngitis. Jingzhi Niuhuang Jiedu tablet (JN) serves as the representative prescription for treatment of AHLS clinically. However, the effective components and mechanism of JN's impact on AHLS remain unexplored. AIM OF THE STUDY The objective of this research was to analyze the effective components of JN and investigate the therapeutic effect and potential mechanism of JN on AHLS. MATERIALS AND METHODS The effective compounds of JN extract were analyzed and identified using UHPLC-Q-Exactive/HRMS. Utilizing network pharmacology to investigate JN's multi-target, multi-pathway process in treating AHLS. Subsequently, anti-inflammatory activities of JN extract were evaluated in the RAW264.7 cells stimulated by lipopolysaccharide (LPS). In addition, a rat AHLS model induced by LPS and dried ginger was established. Pathological changes in rat lung and stomach tissues observed by HE staining and Masson's trichrome staining. Additionally, the expression of TNF-α, IL-6, and IL-1β in bronchoalveolar lavage fluid (BALF) was identified through the ELISA assay. For a deeper understanding of how JN might affect AHLS, transcriptomics was utilized to examine differential genes and their underlying mechanisms. Concurrently, techniques like quantitative polymerase chain reaction (q-PCR), immunofluorescence, and western blotting (WB) were employed to confirm various mRNA and protein expression, including Il17ra, Il17re, IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1. RESULTS We identified 178 potential effective components in the JN extract. Network pharmacology analysis showed that the 144 components in JN act on 200 key targets for the treatment of AHLS by suppressing inflammation, regulating energy metabolism, and gastric function. In addition, JN suppressed the LPS-stimulated generation of NO, TNF-α, IL-1β, and IL-6 in RAW264.7 cells. And JN treatment effectively alleviated lung and stomach injury and reduced inflammation in rats. Analysis of RNA-seq from lung tissues revealed JN's substantial control over crucial genes in the IL-17 signaling pathway, including Il1b and Il17ra. Likewise, RNA sequencing of stomach tissues revealed that JN markedly decreased crucial genes in the Thermogenesis pathway, including Ppargc1a and Ppara. Additional experimental findings confirmed that treatment with JN significantly reduced the expression levels of mRNA (Il17ra, Il17re, Il1b, Ppargc1a and Ucp1), and the expression levels of protein (IL-17A, IL-1β, IL-6, PPARγ, PGC1-α and UCP1). CONCLUSION This study not only analyzes the effective components of JN but also reveals that JN could effectively ameliorate AHLS by inhibiting IL-17 signaling pathway and Thermogenesis pathway, which provides evidence for subsequent clinical studies and drug development.
Collapse
Affiliation(s)
- Zi-Qi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Zhuo-Qian Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Ya-Fen Chu
- Beijing Tongrentang Science and Technology Development Co. Technology Development Co., Ltd., Beijing, 100079, China
| | - Ying Yan
- Beijing Tongrentang Science and Technology Development Co. Technology Development Co., Ltd., Beijing, 100079, China
| | - Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shan-Lan Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yu-Hao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jing-Yi Jiao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yi-Xuan Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shu-Wu Zhao
- Beijing Tongrentang Science and Technology Development Co. Technology Development Co., Ltd., Beijing, 100079, China.
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hai-Min Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
22
|
Saran A, Nishizaki D, Lippman SM, Kato S, Kurzrock R. Interleukin-17: A pleiotropic cytokine implicated in inflammatory, infectious, and malignant disorders. Cytokine Growth Factor Rev 2025:S1359-6101(25)00002-4. [PMID: 39875232 DOI: 10.1016/j.cytogfr.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
IL-17A, referred to as IL-17, is the founding member of a family of pro-inflammatory cytokines, including IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F, which act via receptors IL-17RA to IL-17RE, and elicit potent cellular responses that impact diverse diseases. IL-17's interactions with various cytokines include forming a heterodimer with IL-17F and being stimulated by IL-23's activation of Th17 cells, which can lead to inflammation and autoimmunity. IL-17 is implicated in infectious diseases and inflammatory disorders such as rheumatoid arthritis and psoriasis, promoting neutrophil recruitment and anti-bacterial immunity, but potentially exacerbating fungal and viral infections, revealing its dual role as protective and pathologic. IL-17 is also involved in various cancers, including breast, colon, cervical, prostate, and skin cancer, contributing to proliferation, immune invasion, and metastases, but also playing a protective role in certain instances. Four FDA-approved drugs-secukinumab (for ankylosing spondylitis, enthesitis-related arthritis, hidradenitis suppurativa, non-radiographic axial spondyloarthritis, plaque psoriasis, and psoriatic arthritis), ixekizumab (for ankylosing spondylitis, non-radiographic axial spondyloarthritis, plaque psoriasis, and psoriatic arthritis), brodalumab (for plaque psoriasis), and bimekizumab (for plaque psoriasis)-suppress the IL-17 pathway, with more in development, including netakimab, sonelokimab, izokibep, and CJM112. These agents and others are being studied across a spectrum of disorders. Understanding the complicated interplay between IL-17 and other immune mediators may yield new treatments for inflammatory/autoimmune conditions and malignancies.
Collapse
Affiliation(s)
| | - Daisuke Nishizaki
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Scott M Lippman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA; Center for Personalized Cancer Therapy, University of California, San Diego, La Jolla, CA, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Razelle Kurzrock
- MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
23
|
Wang X, Wu L, Liu J, Ma C, Liu J, Zhang Q. The neuroimmune mechanism of pain induced depression in psoriatic arthritis and future directions. Biomed Pharmacother 2025; 182:117802. [PMID: 39742638 DOI: 10.1016/j.biopha.2024.117802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Patients suffering from psoriatic arthritis (PsA) often experience depression due to chronic joint pain, which significantly hinders their recovery process. However, the relationship between these two conditions is not well understood. Through a review of existing studies, we revealed that certain neuroendocrine hormones and neurotransmitters are involved in the neuroimmune interactions related to both PsA and depression. These include adrenocorticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH), cortisol, monoamine neurotransmitters, and brain-derived neurotrophic factor (BDNF). Notably, the signalling pathway involving CRH, MCs, and Th17 cells plays a crucial role in linking PsA with depression; thus, this pathway may help clarify their connection. In this review, we outline the inflammatory immune changes associated with PsA and depression. Additionally, we explore how neuroendocrine hormones and neurotransmitters influence inflammatory responses in these two conditions. Finally, our focus will be on potential treatment strategies for patients with PsA and depression through the targeting of the CRH-MC-Th17 pathway. This review aims to provide a theoretical framework as well as new therapeutic targets for managing PsA alongside depression.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| | - Lingjun Wu
- Shunyi Hospital of Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Jing Liu
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing 100010, China
| | - Cong Ma
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Juan Liu
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qin Zhang
- Rheumatology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
24
|
Zhao L, Wang Z, Tan Y, Ma J, Huang W, Zhang X, Jin C, Zhang T, Liu W, Yang YG. IL-17A/CEBPβ/OPN/LYVE-1 axis inhibits anti-tumor immunity by promoting tumor-associated tissue-resident macrophages. Cell Rep 2024; 43:115039. [PMID: 39643970 DOI: 10.1016/j.celrep.2024.115039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a critical component of the immunosuppressive tumor microenvironment, comprising monocyte-derived macrophages (MDM-TAMs) and tissue-resident macrophages (TRM-TAMs). Here, we discovered that TRM-TAMs mediate the pro-tumor effects of interleukin (IL)-17A and that IL-17A-driven tumor progression requires tumor cell production of osteopontin (OPN). Mechanistically, we identified CEBPβ as a transcription factor downstream of IL-17A in tumor cells and LYVE-1 as an OPN receptor on TRM-TAMs. IL-17A stimulates tumor cell production of OPN, and OPN/LYVE-1 signaling activates the JNK/c-Jun pathway, leading to the proliferation of immunosuppressive LYVE-1+ TRM-TAMs. Unlike its effect on LYVE-1+ TRM-TAMs, OPN interacts with α4β1 to promote the chemotaxis of LYVE-1- MDM-TAMs toward tumors. IL-17A neutralization, OPN inactivation in tumor cells, or LYVE-1 deletion in macrophages inhibited TAMs and enhanced anti-tumor immune responses and anti-PDL1 therapy. Thus, the IL-17A/CEBPβ/OPN/LYVE-1 axis offers a mechanism suppressing anti-tumor immune responses and, hence, an effective therapeutic target for cancer.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Zonghan Wang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Jianan Ma
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Wei Huang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Xiaoying Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Chunhui Jin
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China; Department of Pathology, The First Hospital of Jilin University, Changchun, China
| | - Ting Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China; International Center of Future Science, Jilin University, Changchun, China.
| |
Collapse
|
25
|
Liu H, Lv X, Zhao X, Yi L, Lv N, Xu W, Zhang Y. Spinal astrocyte-derived interleukin-17A promotes pain hypersensitivity in bone cancer mice. Acta Pharm Sin B 2024; 14:5249-5266. [PMID: 39807339 PMCID: PMC11725171 DOI: 10.1016/j.apsb.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Spinal microglia and astrocytes are both involved in neuropathic and inflammatory pain, which may display sexual dimorphism. Here, we demonstrate that the sustained activation of spinal astrocytes and astrocyte-derived interleukin (IL)-17A promotes the progression of mouse bone cancer pain without sex differences. Chemogenetic or pharmacological inhibition of spinal astrocytes effectively ameliorates bone cancer-induced pain-like behaviors. In contrast, chemogenetic or optogenetic activation of spinal astrocytes triggers pain hypersensitivity, implying that bone cancer-induced astrocytic activation is involved in the development of bone cancer pain. IL-17A expression predominantly in spinal astrocytes, whereas its receptor IL-17 receptor A (IL-17RA) was mainly detected in neurons expressing VGLUT2 and PAX2, and a few in astrocytes expressing GFAP. Specific knockdown of IL-17A in spinal astrocytes blocked and delayed the development of bone cancer pain. IL-17A overexpression in spinal astrocytes directly induced thermal hyperalgesia and mechanical allodynia, which could be rescued by CaMKIIα inhibitor. Moreover, selective knockdown IL-17RA in spinal Vglut2 + or Vgat +neurons, but not in astrocytes, significantly blocked the bone cancer-induced hyperalgesia. Together, our findings provide evidence for the crucial role of sex-independent astrocytic signaling in bone cancer pain. Targeting spinal astrocytes and IL-17A/IL-17RA-CaMKIIα signaling may offer new gender-inclusive therapeutic strategies for managing bone cancer pain.
Collapse
Affiliation(s)
- Huizhu Liu
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xuejing Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Lanxing Yi
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ning Lv
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Wendong Xu
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuqiu Zhang
- Department of Translational Neuroscience, Jing’an District Centre Hospital of Shanghai, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
26
|
Liu W, Wang X, Wu W. Role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer (Review). Oncol Rep 2024; 52:144. [PMID: 39219271 PMCID: PMC11378154 DOI: 10.3892/or.2024.8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Interleukin‑17 (IL‑17), an inflammatory cytokine primarily secreted by T helper 17 cells, serves a crucial role in numerous inflammatory diseases and malignancies via its receptor, IL‑17R. In addition to stimulating inflammatory responses, IL‑17 exhibits dual functions in tumors, exerting both pro‑ and antitumor effects. Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and accounts for >90% of pancreatic cancer cases. PDAC is characterized by a prominent stromal microenvironment with significant heterogeneity, which contributes to treatment resistance. IL‑17/IL‑17R signaling has a notable effect on tumorigenesis, the tumor microenvironment and treatment efficacy in various cancer types, including PDAC. However, the specific mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer remain uncertain. This review presents a brief overview of the current knowledge and recent advances in the role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer. Furthermore, the potential of IL‑17‑targeted therapeutic strategies for PDAC treatment is also discussed.
Collapse
Affiliation(s)
- Wanli Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
27
|
Huang L. The role of IL-17 family cytokines in cardiac fibrosis. Front Cardiovasc Med 2024; 11:1470362. [PMID: 39502194 PMCID: PMC11534612 DOI: 10.3389/fcvm.2024.1470362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 11/08/2024] Open
Abstract
Myocardial fibrosis is a common pathological feature in various cardiovascular diseases including myocardial infarction, heart failure, and myocarditis. Generally, persistent myocardial fibrosis correlates with poor prognosis and ranks among the leading causes of death globally. Currently, there is no effective treatment for myocardial fibrosis, partly due to its unclear pathogenic mechanism. Increasing studies have shown IL-17 family cytokines are strongly associated with the initiation and propagation of myocardial fibrosis. This review summarizes the expression, action, and signal transduction mechanisms of IL-17, focusing on its role in fibrosis associated with cardiovascular diseases such as myocardial infarction, heart failure, hypertension, diabetes, and myocarditis. It also discusses its potential as a therapeutic target, offering new insights for the clinical treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Liqing Huang
- Three Gorges University Hospital of Traditional Chinese Medicine & Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| |
Collapse
|
28
|
Bédard-Matteau J, Soulé A, Liu KY, Fourcade L, Fraser DD, Emad A, Rousseau S. Circulating IL-17F, but not IL-17A, is elevated in severe COVID-19 and leads to an ERK1/2 and p38 MAPK-dependent increase in ICAM-1 cell surface expression and neutrophil adhesion on endothelial cells. Front Immunol 2024; 15:1452788. [PMID: 39493750 PMCID: PMC11527637 DOI: 10.3389/fimmu.2024.1452788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Severe COVID-19 is associated with neutrophilic inflammation and immunothrombosis. Several members of the IL-17 cytokine family have been associated with neutrophilic inflammation and activation of the endothelium. Therefore, we investigated whether these cytokines were associated with COVID-19. Methods We investigated the association between COVID-19 and circulating plasma levels of IL-17 cytokine family members in participants to the Biobanque québécoise de la COVID-19 (BQC19), a prospective observational cohort and an independent cohort from Western University (London, Ontario). We measured the in vitro impact of IL-17F on intercellular adhesion molecule 1 (ICAM-1) cell surface expression and neutrophil adhesion on endothelial cells in culture. The contribution of two Mitogen Activated Protein Kinase (MAPK) pathways was determined using small molecule inhibitors PD184352 (a MKK1/MKK2 inhibitor) and BIRB0796 (a p38 MAPK inhibitor). Results We found increased IL-17D and IL-17F plasma levels when comparing SARS-CoV-2-positive vs negative hospitalized participants. Moreover, increased plasma levels of IL-17D, IL-17E and IL-17F were noted when comparing severe versus mild COVID-19. IL-17F, but not IL-17A, was significantly elevated in people with COVID-19 compared to healthy controls and with more severe disease. In vitro work on endothelial cells treated with IL-17F for 24h showed an increase cell surface expression of ICAM-1 accompanied by neutrophil adhesion. The introduction of two MAPK inhibitors significantly reduced the binding of neutrophils while also reducing ICAM-1 expression at the surface level of endothelial cells, but not its intracellular expression. Discussion Overall, these results have identified an association between two cytokines of the IL-17 family (IL-17D and IL-17F) with COVID-19 and disease severity. Considering that IL-17F stimulation promotes neutrophil adhesion to the endothelium in a MAPK-dependent manner, it is attractive to speculate that this pathway may contribute to pathogenic immunothrombosis in concert with other molecular effectors.
Collapse
Affiliation(s)
- Jérôme Bédard-Matteau
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Antoine Soulé
- Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada
| | - Katelyn Yixiu Liu
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Lyvia Fourcade
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Douglas D. Fraser
- Children’s Health Research Institute & Lawson Health Research Institute, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| | - Amin Emad
- Department of Electrical and Computer Engineering, McGill University, Montréal, QC, Canada
- Mila, Quebec AI Institute, Montréal, QC, Canada
| | - Simon Rousseau
- The Meakins-Christie Laboratories, Research Institute of the McGill University Heath Centre, Montréal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| |
Collapse
|
29
|
Ghasemi Noghabi P, Shahini N, Salimi Z, Ghorbani S, Bagheri Y, Derakhshanpour F. Elevated serum IL-17 A and CCL20 levels as potential biomarkers in major psychotic disorders: a case-control study. BMC Psychiatry 2024; 24:677. [PMID: 39394574 PMCID: PMC11468266 DOI: 10.1186/s12888-024-06032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/20/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Major psychotic disorders (MPD), including schizophrenia (SCZ) and schizoaffective disorder (SAD), are severe neuropsychiatric conditions with unclear causes. Understanding their pathophysiology is essential for better diagnosis, treatment, and prognosis. Recent research highlights the role of inflammation and the immune system, particularly the Interleukin 17 (IL-17) family, in these disorders. Elevated IL-17 levels have been found in MPD, and human IL-17 A antibodies are available. Changes in chemokine levels, such as CCL20, are also noted in SCZ. This study investigates the relationship between serum levels of IL-17 A and CCL20 in MPD patients and their clinical characteristics. METHOD We conducted a case-control study at the Ibn Sina Psychiatric Hospital (Mashhad, Iran) in 2023. The study involved 101 participants, of which 71 were MPD patients and 30 were healthy controls (HC). The Positive and Negative Symptom Scale (PANSS) was utilized to assess the symptoms of MPD patients. Serum levels of CCL20 and IL-17 A were measured using Enzyme-Linked Immunosorbent Assay (ELISA) kits. We also gathered data on lipid profiles and Fasting Blood Glucose (FBS). RESULTS The mean age of patients was 41.04 ± 9.93 years. The median serum levels of CCL20 and IL-17 A were significantly elevated in MPD patients compared to HC (5.8 (4.1-15.3) pg/mL and 4.2 (3-5) pg/mL, respectively; p < 0.001). Furthermore, CCL20 and IL-17 A levels showed a positive correlation with the severity of MPD. MPD patients also had significantly higher FBS, cholesterol, and Low-Density Lipoprotein (LDL) levels, and lower High-Density Lipoprotein (HDL) levels compared to HC. No significant relationship was found between PANSS components and blood levels of IL17 and CCL20. CONCLUSION The current study revealed that the serum levels of IL-17 A and CCL20 in schizophrenia patients are higher than those in the control group. Metabolic factors such as FBS, cholesterol, HDL, and LDL also showed significant differences between MPD and HC. In conclusion, the findings suggest that these two inflammatory factors could serve as potential therapeutic targets and prognostic biomarkers for schizophrenia.
Collapse
Affiliation(s)
- Parisa Ghasemi Noghabi
- Department of Psychiatry, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Najmeh Shahini
- Golestan Research Center of Psychiatry (GRCP), Golestan University of Medical Sciences, Gorgan, Iran
| | - Zanireh Salimi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Ghorbani
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Yasser Bagheri
- Clinical Research Development Unit (CRDU), Agh ghala Hospital, Golestan University of Medical Sciences, Gorgan, Iran.
- Immunology department, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Firoozeh Derakhshanpour
- Golestan Research Center of Psychiatry (GRCP), Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
30
|
Liang J, Huang F, Hao X, Zhang P, Chen R. Nicotinamide mononucleotide supplementation rescues mitochondrial and energy metabolism functions and ameliorates inflammatory states in the ovaries of aging mice. MedComm (Beijing) 2024; 5:e727. [PMID: 39355508 PMCID: PMC11442848 DOI: 10.1002/mco2.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
Noninvasive pharmacological strategies like nicotinamide mononucleotide (NMN) supplementation can effectively address age-related ovarian infertility by maintaining or enhancing oocyte quality and quantity. This study revealed that ovarian nicotinamide adenine dinucleotide levels decline with age, but NMN administration significantly restores these levels, preventing ovarian atrophy and enhancing the quality and quantity of ovulated oocytes. Improvements in serum hormone secretion and antioxidant factors, along with decreased expression of proinflammatory factors, were observed. Additionally, a significant increase in the number of ovarian follicles in aging individuals was noted. Scanning electron microscopy data indicated that NMN significantly alters the density and morphology of lipid droplets and mitochondria in granulosa cells, suggesting potential targets and mechanisms. Transcriptomic analysis and validation experiments collectively suggested that the beneficial effects of NMN on aging ovaries are mediated through enhanced mitochondrial function, improved energy metabolism, and reduced inflammation levels. Our results suggest that NMN supplementation could improve the health status of aging ovaries and enhance ovarian reserve, offering new insights into addressing fertility challenges in older women through assisted reproductive technology.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases Beijing China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases Beijing China
| | - Xueyu Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases Beijing China
| |
Collapse
|
31
|
Deng H, Liu Q, Yu S, Zhong L, Gan L, Gu H, Wang Q, Cheng R, Liu Y, Liu L, Huang L, Xu R. Narciclasine induces colon carcinoma cell apoptosis by inhibiting the IL-17A/Act1/TRAF6/NF-κB signaling pathway. Genes Dis 2024; 11:100938. [PMID: 39071112 PMCID: PMC11282404 DOI: 10.1016/j.gendis.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/15/2023] [Indexed: 07/30/2024] Open
Abstract
IL-17 A is a promoter of colorectal cancer initiation and progression. Narciclasine is a polyhydroxy alkaloid compound isolated from Narcissus plants, which has potent anti-inflammatory and antitumor actions. The effects of narciclasine on colorectal tumors were evaluated, with a focus on IL-17 A. Narciclasine reduced the growth of HCT-116 and SW-480 colon cancer cells in vitro and in vivo in murine xenografts. The results of flow cytometry on JC-1 and Annexin V/PI revealed that narciclasine significantly reduced the mitochondrial membrane potential and induced apoptosis, findings confirmed by western blotting results of reduced Bcl-2 and enhanced Bax expression, as well as accumulation of cleaved Caspase-3, Caspase-8, Caspase-9, and cytoplasmic Cytochrome-c. After narciclasine incubation, IL-17 A, Act1, and TRAF6 were down-regulated, while p-P65 (Ser536) accumulated in the cytoplasm, a finding confirmed by laser scanning confocal microscopy. IL17A substitution could partly reverse these narciclasine effects while they were elevated by IL17A silencing. Moreover, IL-17 A, Act1, and TRAF6 were significantly expressed to greater extents in human colorectal cancer compared to normal adjacent tissue specimens and were closely linked with a poor prognosis. This study provided evidence that narciclasine may be a useful therapeutic drug for colorectal cancer treatment through its actions in down-regulating the L-17A/Act1/TRAF6/NF-κB anti-apoptotic signaling pathway.
Collapse
Affiliation(s)
- Huiming Deng
- Department of Gastrointestinal Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
- Research Center for Drug Safety Evaluation of Hainan Province, Haikou, Hainan 571199, China
| | - Qiang Liu
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Siman Yu
- Department of Pathology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong 511400, China
| | - Lifan Zhong
- Research Center for Drug Safety Evaluation of Hainan Province, Haikou, Hainan 571199, China
- Hainan Province Key Laboratory for Drug Preclinical Study of Pharmacology and Toxicology Research, Hainan Medical University, Haikou, Hainan 571199, China
| | - Lianfang Gan
- Research Center for Drug Safety Evaluation of Hainan Province, Haikou, Hainan 571199, China
- Hainan Province Key Laboratory for Drug Preclinical Study of Pharmacology and Toxicology Research, Hainan Medical University, Haikou, Hainan 571199, China
| | - Huiquan Gu
- Department of Pharmacology, Hainan Medical University, Haikou, Hainan 571199, China
| | - Qianru Wang
- Research Center for Drug Safety Evaluation of Hainan Province, Haikou, Hainan 571199, China
- Hainan Province Key Laboratory for Drug Preclinical Study of Pharmacology and Toxicology Research, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ruxin Cheng
- Research Center for Drug Safety Evaluation of Hainan Province, Haikou, Hainan 571199, China
- Hainan Province Key Laboratory for Drug Preclinical Study of Pharmacology and Toxicology Research, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yong Liu
- Department of Gastrointestinal Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Li Liu
- Department of Gastrointestinal Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Ling Huang
- Research Center for Drug Safety Evaluation of Hainan Province, Haikou, Hainan 571199, China
- Hainan Province Key Laboratory for Drug Preclinical Study of Pharmacology and Toxicology Research, Hainan Medical University, Haikou, Hainan 571199, China
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Medical Products Administration, Haikou, Hainan 570216, China
| | - Ronghua Xu
- Department of Gastrointestinal Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| |
Collapse
|
32
|
Zheng Y, Mou Z, Tan S, Wang X, Yuan J, Li H. IL-17A enhances the inflammatory response of glaucoma through Act1/TRAF6/NF-κB pathway. Neurochem Int 2024; 178:105787. [PMID: 38830510 DOI: 10.1016/j.neuint.2024.105787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVES To investigate the possible roles of Interleukin 17A (IL-17A) and IL-17A neutralizing antibodies (IL-17Ab) in glaucoma and the potential mechanisms. METHODS The two glaucoma animal models, chronic ocular hypertension (COH) and N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) damage, were established and treated with intravitreal injection of IL-17A or IL-17Ab. Intraocular pressure (IOP) was measured by a rebound tonometer. The retina and RGC injury were evaluated by HE staining, TUNLE assay and Brn3a immunofluorescence staining. The frequency of IL-17A+CD4+T cells in peripheral blood was detected by flow cytometry. The expression of glial fibrillary acidic protein (GFAP) was detected by immunofluorescence staining, Western Blot and qPCR in retina. The RNA and protein expression of Act1/TRAF6/NF-κB were detected by Western Blot and qPCR in retina. RESULTS The expression of IL-17A increased in glaucoma models. After intravitreal injection of IL-17A, in the retina, the number of RGCs decreased, the apoptosis of RGCs increased, the Müller cell gliosis was more obvious. In addition, peripheral inflammation aggravated. Whereas the intravitreal injection of IL-17Ab alleviated the relevant manifestations and peripheral inflammation, reduced the gliosis of Müller cells. In the COH model, IOP increased after the injection of IL-17A, while the intravitreal injection of IL-17Ab led to a decrease in IOP. Furthermore, IL-17A promotes the apoptosis of RGCs by binding to IL-17A receptor, activating Act1/TRAF6/NF-κB pathways. CONCLUSION IL-17A plays a role in and aggravates RGC damage in glaucoma. IL-17Ab can neutralize the pro-inflammatory effect of IL-17A and have a protective function in glaucoma. These findings reveal the importance of IL-17A in the pathogenesis of glaucoma, which will shed light on a novel direction for the prevention and treatment of glaucoma, and also provide a reference for further research on other retinal diseases.
Collapse
Affiliation(s)
- Yunfan Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Zhenni Mou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaochen Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jingchang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
33
|
Zhu S, Zhou J, Xie Z. The balance between helper T 17 and regulatory T cells in osteoimmunology and relevant research progress on bone tissue engineering. Immun Inflamm Dis 2024; 12:e70011. [PMID: 39264247 PMCID: PMC11391570 DOI: 10.1002/iid3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Bone regeneration is a well-regulated dynamic process, of which the prominent role of the immune system on bone homeostasis is more and more revealed by recent research. Before fully activation of the bone remodeling cells, the immune system needs to clean up the microenvironment in facilitating the bone repair initiation. Furthermore, this microenvironment must be maintained properly by various mechanisms over the entire bone regeneration process. OBJECTIVE This review aims to summarize the role of the T-helper 17/Regulatory T cell (Th17/Treg) balance in bone cell remodeling and discuss the relevant progress in bone tissue engineering. RESULTS The role of the immune response in the early stages of bone regeneration is crucial, especially the impact of the Th17/Treg balance on osteoclasts, mesenchymal stem cells (MSCs), and osteoblasts activity. By virtue of these knowledge advancements, innovative approaches in bone tissue engineering, such as nano-structures, hydrogel, and exosomes, are designed to influence the Th17/Treg balance and thereby augment bone repair and regeneration. CONCLUSION Targeting the Th17/Treg balance is a promising innovative strategy for developing new treatments to enhance bone regeneration, thus offering potential breakthroughs in bone injury clinics.
Collapse
Affiliation(s)
- Shuyu Zhu
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Jing Zhou
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Zhigang Xie
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| |
Collapse
|
34
|
Ivanova M, Zimba O, Dimitrov I, Angelov AK, Georgiev T. Axial Spondyloarthritis: an overview of the disease. Rheumatol Int 2024; 44:1607-1619. [PMID: 38689098 DOI: 10.1007/s00296-024-05601-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Axial Spondyloarthritis (axSpA) is a chronic, inflammatory, immune-mediated rheumatic disease that comprises two subsets, non-radiographic and radiographic axSpA, and belongs to a heterogeneous group of spondyloarthritides (SpA). Over the years, the concept of SpA has evolved significantly, as reflected in the existing classification criteria. Considerable progress has been made in understanding the genetic and immunological basis of axSpA, in studying the processes of chronic inflammation and pathological new bone formation, which are pathognomonic for the disease. As a result, new medication therapies were developed, which bring more effective ways for disease control. This review presents a brief overview of the literature related to these aspects of disease after summarising the available information on the topic that we considered relevant. Specifically, it delves into recent research illuminating the primary pathological processes of enthesitis and associated osteitis in the context of inflammation in axSpA. The exploration extends to discussion of inflammatory pathways, with a particular focus on Th1/Th17-mediated immunity and molecular signaling pathways of syndesmophyte formation. Additionally, the review sheds light on the pivotal role of cytokine dysregulation, highlighting the significance of the IL-23/17 axis and TNF-α in this intricate network of immune responses which is decisive for therapeutic approaches in the disease.
Collapse
Affiliation(s)
- Mariana Ivanova
- Medical Faculty, Medical University-Sofia, Sofia, Bulgaria.
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", 13, Urvich St., Sofia, 1612, Bulgaria.
| | - Olena Zimba
- Department of Rheumatology, Immunology and Internal Medicine, University Hospital in Krakow, Kraków, Poland
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
- Department of Internal Medicine N2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ivan Dimitrov
- Clinic of Orthopedics and Traumatology, University Hospital "Prof. Dr. St. Kirkovich", Stara Zagora, Bulgaria
- Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | | | - Tsvetoslav Georgiev
- First Department of Internal Medicine, Faculty of Medicine, Medical University-Varna, Varna, Bulgaria
- Rheumatology Clinic, St. Marina University Hospital-Varna, Varna, Bulgaria
| |
Collapse
|
35
|
Hong SM, Moon W. [Old and New Biologics and Small Molecules in Inflammatory Bowel Disease: Anti-interleukins]. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2024; 84:65-81. [PMID: 39176462 DOI: 10.4166/kjg.2024.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disease of the gastrointestinal tract. The introduction of biologics, particularly anti-interleukin (IL) agents, has revolutionized IBD treatment. This review summarizes the role of ILs in IBD pathophysiology and describes the efficacy and positioning of anti-IL therapies. We discuss the functions of key ILs in IBD and their potential as therapeutic targets. The review then discusses anti-IL therapies, focusing primarily on ustekinumab (anti-IL-12/23), risankizumab (anti-IL-23), and mirikizumab (anti-IL-23). Clinical trial data demonstrate their efficacy in inducing and maintaining remission in Crohn's disease and ulcerative colitis. The safety profiles of these agents are generally favorable. However, long-term safety data for newer agents are still limited. The review also briefly discusses emerging therapies such as guselkumab and brazikumab. Network meta-analyses suggest that anti-IL therapies perform well compared to other biological agents. These agents may be considered first- or second-line therapies for many patients, especially those with comorbidities or safety concerns. Anti-IL therapies represent a significant advancement in IBD treatment, offering effective and relatively safe options for patients with moderate to severe disease.
Collapse
Affiliation(s)
- Seung Min Hong
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Won Moon
- Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
36
|
Sun W, Zhong J, Gao B, Feng J, Ye Z, Lin Y, Zhang K, Su W, Zhu S, Li Y, Jia W. In vitro/In vivo Evaluations of Hydroxyapatite Nanoparticles with Different Geometry. Int J Nanomedicine 2024; 19:8661-8679. [PMID: 39193530 PMCID: PMC11348988 DOI: 10.2147/ijn.s469687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Purpose Hydroxyapatite-based nanoparticles have found diverse applications in drug delivery, gene carriers, diagnostics, bioimaging and tissue engineering, owing to their ability to easily enter the bloodstream and target specific sites. However, there is limited understanding of the potential adverse effects and molecular mechanisms of these nanoparticles with varying geometries upon their entry into the bloodstream. Here, we used two commercially available hydroxyapatite nanoparticles (HANPs) with different geometries (less than 100 nm in size each) to investigate this issue. Methods First, the particle size, Zeta potential, and surface morphology of nano-hydroxyapatite were characterized. Subsequently, the effects of 2~2000 μM nano-hydroxyapatite on the proliferation, migration, cell cycle distribution, and apoptosis levels of umbilical vein endothelial cells were evaluated. Additionally, the impact of nanoparticles of various shapes on the differential expression of genes was investigated using transcriptome sequencing. Additionally, we investigated the in vivo biocompatibility of HANPs through gavage administration of nanohydroxyapatite in mice. Results Our results demonstrate that while rod-shaped HANPs promote proliferation in Human Umbilical Vein Endothelial Cell (HUVEC) monolayers at 200 μM, sphere-shaped HANPs exhibit significant toxicity to these monolayers at the same concentration, inducing apoptosis/necrosis and S-phase cell cycle arrest through inflammation. Additionally, sphere-shaped HANPs enhance SULT1A3 levels relative to rod-shaped HANPs, facilitating chemical carcinogenesis-DNA adduct signaling pathways in HUVEC monolayers. In vivo experiments have shown that while HANPs can influence the number of blood cells and comprehensive metabolic indicators in blood, they do not exhibit significant toxicity. Conclusion In conclusion, this study has demonstrated that the geometry and surface area of HANPs significantly affect VEC survival status and proliferation. These findings hold significant implications for the optimization of biomaterials in cell engineering applications.
Collapse
Affiliation(s)
- Weitang Sun
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jingbin Zhong
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Buyun Gao
- School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Jieling Feng
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zijie Ye
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yueling Lin
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Kelan Zhang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wenqi Su
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
37
|
Kong B, Lai Y. IL-17 family cytokines in inflammatory or autoimmune skin diseases. Adv Immunol 2024; 163:21-49. [PMID: 39271258 DOI: 10.1016/bs.ai.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
As potent pro-inflammatory mediators, IL-17 family cytokines play crucial roles in the pathogenesis of various inflammatory and autoimmune skin disorders. Although substantial progress has been achieved in understanding the pivotal role of IL-17A signaling in psoriasis, leading to the development of highly effective biologics, the functions of other IL-17 family members in inflammatory or autoimmune skin diseases remain less explored. In this review, we provide a comprehensive overview of IL-17 family cytokines and their receptors, with a particular focus on the recent advancements in identifying cellular sources, receptors and signaling pathways regulated by these cytokines. At the end, we discuss how the aberrant functions of IL-17 family cytokines contribute to the pathogenesis of diverse inflammatory or autoimmune skin diseases.
Collapse
Affiliation(s)
- Baida Kong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
38
|
Ni Q, Li G, Chen Y, Bao C, Wang T, Li Y, Ruan X, Wang H, Sun W. LECs regulate neutrophil clearance through IL-17RC/CMTM4/NF-κB axis at sites of inflammation or infection. Mucosal Immunol 2024; 17:723-738. [PMID: 38754839 DOI: 10.1016/j.mucimm.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
The lymphatic system plays a vital role in the regulation of tissue fluid balance and the immune response to inflammation or infection. The effects of lymphatic endothelial cells (LECs) on the regulation of neutrophil migration have not been well-studied. In three murine models: imiquimod-induced skin inflammation, Staphylococcus aureus-induced skin infection, and ligature-induced periodontitis, we show that numerous neutrophils migrate from inflamed or infected tissues to the draining lymph nodes via lymphatic vessels. Moreover, inflamed or infected tissues express a high level of interleukin (IL)-17A and tumor necrosis factor (TNF)-α, simultaneously with a significant increase in the release of neutrophil attractors, including CXCL1, CXCL2, CXCL3, and CXCL5. Importantly, in vitro stimulation of LECs with IL-17A plus TNF-α synergistically promoted these chemokine secretions. Mechanistically, tetra-transmembrane protein CMTM4 directly binds to IL-17RC in LECs. IL-17A plus TNF-α stimulates CXC chemokine secretion by promoting nuclear factor-kappa B signaling. In contrast, knockdown of CMTM4 abrogates IL-17A plus TNF-α activated nuclear factor-kappa B signaling pathways. Lastly, the local administration of adeno-associated virus for CMTM4 in Prox1-CreERT2 mice, mediating LEC-specific overexpression of CMTM4, promotes the drainage of neutrophils by LECs and alleviates immune pathological responses. Thus, our findings reveal the vital role of LECs-mediated neutrophil attraction and clearance at sites of inflammation or infection.
Collapse
Affiliation(s)
- Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Gen Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyi Li
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
39
|
Elahi R, Nazari M, Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. IL-17 in type II diabetes mellitus (T2DM) immunopathogenesis and complications; molecular approaches. Mol Immunol 2024; 171:66-76. [PMID: 38795686 DOI: 10.1016/j.molimm.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 05/28/2024]
Abstract
Chronic inflammation has long been considered the characteristic feature of type II diabetes mellitus (T2DM) Immunopathogenesis. Pro-inflammatory cytokines are considered the central drivers of the inflammatory cascade leading to β-cell dysfunction and insulin resistance (IR), two major pathologic events contributing to T2DM. Analyzing the cytokine profile of T2DM patients has also introduced interleukin-17 (IL-17) as an upstream regulator of inflammation, regarding its role in inducing the nuclear factor-kappa B (NF-κB) pathway. In diabetic tissues, IL-17 induces the expression of inflammatory cytokines and chemokines. Hence, IL-17 can deteriorate insulin signaling and β-cell function by activating the JNK pathway and inducing infiltration of neutrophils into pancreatic islets, respectively. Additionally, higher levels of IL-17 expression in patients with diabetic complications compared to non-complicated individuals have also proposed a role for IL-17 in T2DM complications. Here, we highlight the role of IL-17 in the Immunopathogenesis of T2DM and corresponding pathways, recent advances in preclinical and clinical studies targeting IL-17 in T2DM, and corresponding challenges and possible solutions.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
40
|
Rehman T, Pezzulo AA, Thurman AL, Zemans RL, Welsh MJ. Epithelial responses to CFTR modulators are improved by inflammatory cytokines and impaired by antiinflammatory drugs. JCI Insight 2024; 9:e181836. [PMID: 38888974 PMCID: PMC11383177 DOI: 10.1172/jci.insight.181836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder that disrupts CF transmembrane conductance regulator (CFTR) anion channels and impairs airway host defenses. Airway inflammation is ubiquitous in CF, and suppressing it has generally been considered to improve outcomes. However, the role of inflammation in people taking CFTR modulators, small-molecule drugs that restore CFTR function, is not well understood. We previously showed that inflammation enhances the efficacy of CFTR modulators. To further elucidate this relationship, we treated human ΔF508-CF epithelia with TNF-α and IL-17, two inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 enhanced CFTR modulator-evoked anion secretion through mechanisms that raise intracellular Cl- (Na+/K+/2Cl- cotransport) and HCO3- (carbonic anhydrases and Na+/HCO3- cotransport). This enhancement required p38 MAPK signaling. Importantly, CFTR modulators did not affect CF airway surface liquid viscosity under control conditions but prevented the rise in viscosity in epithelia treated with TNF-α+IL-17. Finally, antiinflammatory drugs limited CFTR modulator responses in TNF-α+IL-17-treated epithelia. These results provide critical insights into mechanisms by which inflammation increases responses to CFTR modulators. They also suggest an equipoise between potential benefits and limitations of suppressing inflammation in people taking modulators, call into question current treatment approaches, and highlight a need for additional studies.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Alejandro A. Pezzulo
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Andrew L. Thurman
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Welsh
- Department of Internal Medicine, Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
41
|
Garcia Moreno AS, Guicciardi ME, Wixom AQ, Jessen E, Yang J, Ilyas SI, Bianchi JK, Pinto e Vairo F, Lazaridis KN, Gores GJ. IL-17 signaling in primary sclerosing cholangitis patient-derived organoids. Hepatol Commun 2024; 8:e0454. [PMID: 38829197 PMCID: PMC11150034 DOI: 10.1097/hc9.0000000000000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study, we aimed to investigate and characterize the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. METHODS Cholangiocytes obtained from patients with PSC and without PSC by endoscopic retrograde cholangiography were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing. RESULTS Unsupervised clustering of all integrated single-cell RNA sequencing data identified 8 cholangiocyte clusters that did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, as noted by an increased number of differentially expressed genes by transcriptomics and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, genome sequencing identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. CONCLUSIONS PSC and non-PSC patient-derived ECO respond differently to IL-17 stimulation, implicating this pathway in the pathogenesis of PSC.
Collapse
Affiliation(s)
- Ana S. Garcia Moreno
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria E. Guicciardi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Q. Wixom
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jackie K. Bianchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto e Vairo
- Center for Individualized Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
42
|
Jiang K, Xu Y, Wang Y, Yin N, Huang F, Chen M. Unveiling the role of IL-17: Therapeutic insights and cardiovascular implications. Cytokine Growth Factor Rev 2024; 77:91-103. [PMID: 38735805 DOI: 10.1016/j.cytogfr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Interleukin-17 (IL-17), a pivotal cytokine in immune regulation, has attracted significant attention in recent years due to its roles in various physiological and pathological processes. This review explores IL-17 in immunological context, emphasizing its structure, production, and signaling pathways. Specifically, we explore its involvement in inflammatory diseases and autoimmune diseases, with a notable focus on its emerging implications in cardiovascular system. Through an array of research insights, IL-17 displays multifaceted functions yet awaiting comprehensive discovery. Highlighting therapeutic avenues, we scrutinize the efficacy and clinical application of four marketed IL-17 mAbs along other targeted therapies, emphasizing their potential in immune-mediated disease management. Additionally, we discussed the novel IL-17D-CD93 axis, elucidating recent breakthroughs in their biological function and clinical implications, inviting prospects for transformative advancements in immunology and beyond.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yanjiani Xu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fangyang Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Maher SA, AbdAllah NB, Ageeli EA, Riad E, Kattan SW, Abdelaal S, Abdelfatah W, Ibrahim GA, Toraih EA, Awadalla GA, Fawzy MS, Ibrahim A. Impact of Interleukin-17 Receptor A Gene Variants on Asthma Susceptibility and Clinical Manifestations in Children and Adolescents. CHILDREN (BASEL, SWITZERLAND) 2024; 11:657. [PMID: 38929236 PMCID: PMC11202101 DOI: 10.3390/children11060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024]
Abstract
Several single nucleotide polymorphisms (SNPs) in multiple interleukin receptor genes could be associated with asthma risk and/or phenotype. Interleukin-17 (IL-17) has been implicated in tissue inflammation and autoimmune diseases. As no previous studies have uncovered the potential role of IL17 receptor A (RA) gene variants in asthma risk, we aimed to explore the association of four IL17RA SNPs (i.e., rs4819554A/G, rs879577C/T, rs41323645G/A, and rs4819555C/T) with asthma susceptibility/phenotype in our region. TaqMan allelic discrimination analysis was used to genotype 192 individuals. We found that the rs4819554 G/G genotype significantly reduced disease risk in the codominant (OR = 0.15, 95%CI = 0.05-0.45, p < 0.001), dominant (OR = 0.49, 95%CI = 0.26-0.93, p = 0.028), and recessive (OR = 0.18, 95%CI = 0.07-0.52, p < 0.001) models. Similarly, rs879577 showed reduced disease risk associated with the T allele across all genetic models. However, the A allele of rs41323645 was associated with increased disease risk in all models. The G/A and A/A genotypes have higher ORs of 2.47 (95%CI = 1.19-5.14) and 3.86 (95%CI = 1.62-9.18), respectively. Similar trends are observed in the dominant 2.89 (95%CI = 1.47-5.68, p = 0.002) and recessive 2.34 (95%CI = 1.10-4.98, p = 0.025) models. For the rs4819555 variant, although there was no significant association identified under any models, carriers of the rs4819554*A demonstrated an association with a positive family history of asthma (71.4% in carriers vs. 27% in non-carriers; p = 0.025) and the use of relievers for >2 weeks (52.2% of carriers vs. 28.8% of non-carriers; p = 0.047). Meanwhile, the rs4819555*C carriers displayed a significant divergence in the asthma phenotype, specifically atopic asthma (83.3% vs. 61.1%; p = 0.007), showed a higher prevalence of chest tightness (88.9% vs. 61.5%; p = 0.029), and were more likely to report comorbidities (57.7% vs. 16.7%, p = 0.003). The most frequent haplotype in the asthma group was ACAC, with a frequency of 22.87% vs. 1.36% in the controls (p < 0.001). In conclusion, the studied IL17RA variants could be essential in asthma susceptibility and phenotype in children and adolescents.
Collapse
Affiliation(s)
- Shymaa Ahmed Maher
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nouran B. AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| | - Essam Al Ageeli
- Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan 45141, Saudi Arabia;
| | - Eman Riad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (E.R.); (W.A.)
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia;
| | - Sherouk Abdelaal
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| | - Wagdy Abdelfatah
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (E.R.); (W.A.)
| | - Gehan A. Ibrahim
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Ghada A. Awadalla
- Biochemistry Department, Animal Health Research Institute, Mansoura Branch, Giza 12618, Egypt;
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar P.O. Box 1321, Saudi Arabia
| | - Ahmed Ibrahim
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt; (N.B.A.); (S.A.); (A.I.)
| |
Collapse
|
44
|
Mu X, Gu R, Tang M, Wu X, He W, Nie X. IL-17 in wound repair: bridging acute and chronic responses. Cell Commun Signal 2024; 22:288. [PMID: 38802947 PMCID: PMC11129447 DOI: 10.1186/s12964-024-01668-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic wounds, resulting from persistent inflammation, can trigger a cascade of detrimental effects including exacerbating inflammatory cytokines, compromised blood circulation at the wound site, elevation of white blood cell count, increased reactive oxygen species, and the potential risk of bacterial infection. The interleukin-17 (IL-17) signaling pathway, which plays a crucial role in regulating immune responses, has been identified as a promising target for treating inflammatory skin diseases. This review aims to delve deeper into the potential pathological role and molecular mechanisms of the IL-17 family and its pathways in wound repair. The intricate interactions between IL-17 and other cytokines will be discussed in detail, along with the activation of various signaling pathways, to provide a comprehensive understanding of IL-17's involvement in chronic wound inflammation and repair.
Collapse
Affiliation(s)
- Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Rifang Gu
- School Medical Office, Zunyi Medical University, Zunyi, 563006, China
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, 563006, China.
- Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563006, China.
| |
Collapse
|
45
|
Kovacheva E, Gevezova M, Maes M, Sarafian V. The mast cells - Cytokines axis in Autism Spectrum Disorder. Neuropharmacology 2024; 249:109890. [PMID: 38431049 DOI: 10.1016/j.neuropharm.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disturbance, diagnosed in early childhood. It is associated with varying degrees of dysfunctional communication and social skills, repetitive and stereotypic behaviors. Regardless of the constant increase in the number of diagnosed patients, there are still no established treatment schemes in global practice. Many children with ASD have allergic symptoms, often in the absence of mast cell (MC) positive tests. Activation of MCs may release molecules related to inflammation and neurotoxicity, which contribute to the pathogenesis of ASD. The aim of the present paper is to enrich the current knowledge regarding the relationship between MCs and ASD by providing PPI network analysis-based data that reveal key molecules and immune pathways associated with MCs in the pathogenesis of autism. Network and enrichment analyzes were performed using receptor information and secreted molecules from activated MCs identified in ASD patients. Our analyses revealed cytokines and key marker molecules for MCs degranulation, molecular pathways of key mediators released during cell degranulation, as well as various receptors. Understanding the relationship between ASD and the activation of MCs, as well as the involved molecules and interactions, is important for elucidating the pathogenesis of ASD and developing effective future treatments for autistic patients by discovering new therapeutic target molecules.
Collapse
Affiliation(s)
- Eleonora Kovacheva
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Maria Gevezova
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria
| | - Michael Maes
- Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria; Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand; Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University-Plovdiv, Plovdiv, Bulgaria; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, South Korea
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria; Research Institute at Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
46
|
Liao X, Xin J, Yu Z, Yan W, Li C, Cao L, Zhang H, Wang W. Unlocking the antiviral potential of rosmarinic acid against chikungunya virus via IL-17 signaling pathway. Front Cell Infect Microbiol 2024; 14:1396279. [PMID: 38800832 PMCID: PMC11127627 DOI: 10.3389/fcimb.2024.1396279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background The Chikungunya virus is an Alphavirus that belongs to the Togaviridae family and is primarily transmitted by mosquitoes. It causes acute infection characterized by fever, headache, and arthralgia. Some patients also experience persistent chronic osteoarthritis-like symptoms. Dedicated antiviral treatments are currently unavailable for CHIKV. This study aims to explore the potential anti-CHIKV effect of rosmarinic acid using network pharmacology. Methods This study employed network pharmacology to predict and verify the molecular targets and pathways associated with ROSA in the context of CHIKV. The analysis outcomes were further validated using molecular docking and in vitro experiments. Results The analysis of CHIKV targets using the Kyoto Encyclopedia of Genes and Genomes and MCODE identified IL-17 as an important pathogenic pathway in CHIKV infection. Among the 30 targets of ROSA against CHIKV, nearly half were found to be involved in the IL-17 signaling pathway. This suggests that ROSA may help the host in resisting CHIKV invasion by modulating this pathway. Molecular docking validation results showed that ROSA can stably bind to 10 core targets out of the 30 identified targets. In an in vitro CHIKV infection model developed using 293T cells, treatment with 60 μM ROSA significantly improved the survival rate of infected cells, inhibited 50% CHIKV proliferation after CHIKV infection, and reduced the expression of TNF-α in the IL-17 signaling pathway. Conclusion This study provides the first confirmation of the efficacy of ROSA in suppressing CHIKV infection through the IL-17 signaling pathway. The findings warrant further investigation to facilitate the development of ROSA as a potential treatment for CHIKV infection.
Collapse
Affiliation(s)
- Xinfei Liao
- Wenzhou Polytechnic, Wenzhou, Zhejiang, China
| | - Jialiang Xin
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Ziping Yu
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Weiming Yan
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
| | - Chenghui Li
- College of Agriculture, Yanbian University, Yanji, Jilin, China
| | - Liang Cao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - He Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Wei Wang
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
47
|
Ren J, Zhang X, Zhou L, Cao W, Zhang L, Chen X, Li G. Comprehensive evaluation of Dragon's Blood in combination with borneol in ameliorating ischemic/reperfusion brain injury using RNA sequencing, metabolomics, and 16S rRNA sequencing. Front Pharmacol 2024; 15:1372449. [PMID: 38783945 PMCID: PMC11112420 DOI: 10.3389/fphar.2024.1372449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Ischemia/reperfusion (IR) can induce deleterious responses such as apoptosis, inflammation, and oxidative stress; however, there are currently no efficient therapeutics to treat IR brain injury. Dragon's blood (DB) plays a significant role in treating ischemic stroke in China. Borneol (B) is an upper ushering drug that guides drugs to the target organs, including the brain. Therefore, we hypothesized that the combination of DB and B (DB + B) would provide cooperative therapeutic benefits for IR brain injury. To confirm this, we first investigated the protective effect of DB + B in an IR brain injury rat model using the modified neurological severity score (mNSS), infarction size measure, HE staining, and laser speckle contrast imaging. Then, we comprehensively evaluated the mechanism of DB + B in ameliorating IR brain injury based on RNA sequencing, serum untargeted metabolomics, and 16S rRNA sequencing. We have confirmed that DB + B enhanced the efficacy of the ischemic stroke treatment compared to DB or B alone for the first time. Our study provisionally confirms that the mechanism by which DB + B prevents IR brain injury is related to the maintenance of intestinal microecological balance and regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. DB + B may effectively regulate intestinal flora including o_Pseudomonadales, s_Bacteroides_caecimuris, o_unidentified_Bacilli, f-Pseudomonadaceae, and g-Pseudomonas, mainly regulate serum metabolites including improve the protective benefit of IR brain injury lysoPCs and lysoPEs, thus inhibiting TLR4/MyD88/NF-κB and IL-17 signing pathway to reduce inflammatory reactions. hat this mechanism is associated with the maintenance of intestinal flora balance and the regulation of metabolic dysfunction, thereby suppressing inflammation and regulating immunity. This provides scientific support for the clinical translation of DB + B in the prevention and treatment of ischemic stroke and establishes a basis for further investigation of its therapeutic mechanism.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Xue Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingjuan Zhou
- Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Jinghong, China
| | - Wanyu Cao
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lixia Zhang
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Jinghong, China
| |
Collapse
|
48
|
Chen S, Fan H, Ran C, Hong Y, Feng H, Yue Z, Zhang H, Pontarotti P, Xu A, Huang S. The IL-17 pathway intertwines with neurotrophin and TLR/IL-1R pathways since its domain shuffling origin. Proc Natl Acad Sci U S A 2024; 121:e2400903121. [PMID: 38683992 PMCID: PMC11087794 DOI: 10.1073/pnas.2400903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 05/02/2024] Open
Abstract
The IL-17 pathway displays remarkably diverse functional modes between different subphyla, classes, and even orders, yet its driving factors remains elusive. Here, we demonstrate that the IL-17 pathway originated through domain shuffling between a Toll-like receptor (TLR)/IL-1R pathway and a neurotrophin-RTK (receptor-tyrosine-kinase) pathway (a Trunk-Torso pathway). Unlike other new pathways that evolve independently, the IL-17 pathway remains intertwined with its donor pathways throughout later evolution. This intertwining not only influenced the gains and losses of domains and components in the pathway but also drove the diversification of the pathway's functional modes among animal lineages. For instance, we reveal that the crustacean female sex hormone, a neurotrophin inducing sex differentiation, could interact with IL-17Rs and thus be classified as true IL-17s. Additionally, the insect prothoracicotropic hormone, a neurotrophin initiating ecdysis in Drosophila by binding to Torso, could bind to IL-17Rs in other insects. Furthermore, IL-17R and TLR/IL-1R pathways maintain crosstalk in amphioxus and zebrafish. Moreover, the loss of the Death domain in the pathway adaptor connection to IκB kinase and stress-activated protein kinase (CIKSs) dramatically reduced their abilities to activate nuclear factor-kappaB (NF-κB) and activator protein 1 (AP-1) in amphioxus and zebrafish. Reinstating this Death domain not only enhanced NF-κB/AP-1 activation but also strengthened anti-bacterial immunity in zebrafish larvae. This could explain why the mammalian IL-17 pathway, whose CIKS also lacks Death, is considered a weak signaling activator, relying on synergies with other pathways. Our findings provide insights into the functional diversity of the IL-17 pathway and unveil evolutionary principles that could govern the pathway and be used to redesign and manipulate it.
Collapse
Affiliation(s)
- Shenghui Chen
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| | - Huiping Fan
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Chenrui Ran
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Yun Hong
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Huixiong Feng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Zirui Yue
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Hao Zhang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
| | - Pierre Pontarotti
- MEPHI (Microbes, Evolution, Phylogénie et Infection), Aix Marseille Université, Marseille, France
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing100029, China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, Guangzhou510275, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
| |
Collapse
|
49
|
Liu Y, Xie W, Tang Z, Tan Z, He Y, Luo J, Wang X. A reconfigurable integrated smart device for real-time monitoring and synergistic treatment of rheumatoid arthritis. SCIENCE ADVANCES 2024; 10:eadj0604. [PMID: 38691605 PMCID: PMC11062583 DOI: 10.1126/sciadv.adj0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Rheumatoid arthritis (RA) is a global autoimmune disease that requires long-term management. Ambulatory monitoring and treatment of RA favors remission and rehabilitation. Here, we developed a wearable reconfigurable integrated smart device (ISD) for real-time inflammatory monitoring and synergistic therapy of RA. The device establishes an electrical-coupling and substance delivery interfaces with the skin through template-free conductive polymer microneedles that exhibit high capacitance, low impedance, and appropriate mechanical properties. The reconfigurable electronics drive the microneedle-skin interfaces to monitor tissue impedance and on-demand drug delivery. Studies in vitro demonstrated the anti-inflammatory effect of electrical stimulation on macrophages and revealed the molecular mechanism. In a rodent model, impedance sensing was validated to hint inflammation condition and facilitate diagnosis through machine learning model. The outcome of subsequent synergistic therapy showed notable relief of symptoms, elimination of synovial inflammation, and avoidance of bone destruction.
Collapse
Affiliation(s)
- Yu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
| | - Weichang Xie
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
| | - Zhibo Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
| | - Zhenfa Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
| | - Yizhe He
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, P. R. China
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, P. R. China
| |
Collapse
|
50
|
González-Fernández C, García-Álvarez MA, Cuesta A. Identification and functional characterization of fish IL-17 receptors suggest important roles in the response to nodavirus infection. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:252-265. [PMID: 38827125 PMCID: PMC11136934 DOI: 10.1007/s42995-024-00225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/18/2024] [Indexed: 06/04/2024]
Abstract
Th17 is a lymphocyte T helper (Th) subpopulation relevant in the control and regulation of the immune response characterized by the production of interleukin (IL)-17. This crucial cytokine family acts through their binding to the IL-17 receptors (IL-17R), having up to six members. Although the biology of fish Th17 is well-recognized, the molecular and functional characterization of IL-17 and IL-17R has been limited. Thus, our aim was to identify and characterize the IL-17R repertory and regulation in the two main Mediterranean cultured fish species, the gilthead seabream (Sparus aurata) and the European sea bass (Dicentrarchus labrax). Our in silico results showed the clear identification of six members in each fish species, from IL-17RA to IL-17RE-like, with well-conserved gene structure and protein domains with their human orthologues. All of them showed wide and constitutive transcription in naïve tissues but with highest levels in mucosal tissues, namely skin, gill or intestine. In leucocytes, T mitogens showed the strongest up-regulation in most of the il17 receptors though il17ra resulted in inhibition by most stimulants. Interestingly, in vivo nodavirus infection resulted in alterations on the transcription of il17 receptors. While nodavirus infection led to some increments in the il17ra, il17rb, il17rc and il17rd transcripts in the susceptible European sea bass, many down-regulations were observed in the resistant gilthead seabream. Our data identify the presence and conservation of six coding IL-17R in gilthead seabream and European sea bass as well as their differential regulation in vitro and upon nodavirus infection. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00225-1.
Collapse
Affiliation(s)
- Carmen González-Fernández
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
- Laboratoire d’écotoxicologie, Centre de Lyon-Villeurbanne, INRAE, UR RiverLy, 69625 Villeurbanne, France
| | - Miguel A. García-Álvarez
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|