1
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2025; 109:784-793. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4 + regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Jiang X, Wang M, Zou R, Fu M, Fan W, Wang Y, Dai C, Swapnil Z, Wang W, Wu H, Xie K, Liu L, Wang Y, Fan Z, Zhao L. Harnessing Kupffer Cell Metabolic Rewiring: Rapamycin-Gliadin Nanoparticle as a Pivotal Strategy for Immune Tolerance in Celiac Disease. ACS NANO 2025. [PMID: 40302617 DOI: 10.1021/acsnano.4c18354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Celiac disease (CeD), triggered by gliadin exposure, necessitates therapeutic strategies that establish an antigen-specific immune tolerance. This study explores the therapeutic efficacy and mechanism of rapamycin-gliadin composite nanoparticles (PLN-GR) for CeD treatment. In vivo analyses demonstrated the efficient uptake of PLN-GR by antigen-presenting cells (APCs), particularly Kupffer cells and splenic dendritic cells (DCs), driving their tolerogenic phenotypic transformation. In a murine CeD model, PLN-GR administration significantly enhanced gluten tolerance and mitigated intestinal inflammation, as indicated by reduced paw edema and improved histopathological parameters. Mechanistically, PLN-GR induced macrophage metabolic reprogramming from glycolysis to oxidative phosphorylation, concomitant with elevated serum itaconate levels. This metabolic shift potentiated interorgan immunoregulatory crosstalk, expanding PD-L1+ tolerogenic splenic DCs while suppressing pathogenic Th1 cell populations. Bone marrow-derived macrophages (BMDMs) from Acod1-/- mice (deficient in itaconate synthesis) failed to induce DC tolerance upon PLN-GR treatment. However, supplementation with the itaconate derivative 4-octyl itaconate (4-OI) restored PD-L1 expression in DC2.4 cells in vitro, revealing that itaconate induces and stabilizes the tolerant DC phenotype. These findings underscore PLN-GR as a novel nanotherapeutic platform for CeD, achieving gliadin-specific tolerance through hepatic-splenic immunometabolic reprogramming and itaconate-dependent PD-L1 regulation, thereby offering a translatable strategy for autoimmune disease management.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of General Surgery, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Min Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of General Surgery, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Ruihan Zou
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of General Surgery, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Min Fu
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Gastroenterology Department, The Fourth Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wentao Fan
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Gastroenterology Department, The Fourth Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yao Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of General Surgery, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Chenguang Dai
- Department of Gastroenterology, First Afilliated Hospital of Soochow University, Soochow 215000, China
| | - Zaman Swapnil
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wanjun Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Gastroenterology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Hao Wu
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of General Surgery, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Kunxin Xie
- Pancreas Center, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Li Liu
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of General Surgery, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Yan Wang
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Ili & Jiangsu Joint Institute of Health, Ili 835800, China
| | - Zhining Fan
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
- Department of General Surgery, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Lili Zhao
- Department of Digestive Endoscopy, Jiangsu Province Hospital and the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
3
|
Chiu DKC, Zhang X, Cheng BYL, Liu Q, Hayashi K, Yu B, Lee R, Zhang C, An X, Rajadas J, Reticker-Flynn NE, Rankin EB, Engleman EG. Tumor-derived erythropoietin acts as an immunosuppressive switch in cancer immunity. Science 2025; 388:eadr3026. [PMID: 40273234 DOI: 10.1126/science.adr3026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/26/2025]
Abstract
Successful cancer immunotherapy requires a patient to mount an effective immune response against tumors; however, many cancers evade the body's immune system. To investigate the basis for treatment failure, we examined spontaneous mouse models of hepatocellular carcinoma (HCC) with either an inflamed T cell-rich or a noninflamed T cell-deprived tumor microenvironment (TME). Our studies reveal that erythropoietin (EPO) secreted by tumor cells determines tumor immunotype. Tumor-derived EPO autonomously generates a noninflamed TME by interacting with its cognate receptor EPOR on tumor-associated macrophages (TAMs). EPO signaling prompts TAMs to become immunoregulatory through NRF2-mediated heme depletion. Removing either tumor-derived EPO or EPOR on TAMs leads to an inflamed TME and tumor regression independent of genotype, owing to augmented antitumor T cell immunity. Thus, the EPO/EPOR axis functions as an immunosuppressive switch for antitumor immunity.
Collapse
Affiliation(s)
| | - Xiangyue Zhang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bowie Yik-Ling Cheng
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Qiang Liu
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Bo Yu
- ImmunEdge Inc., Mountain View, CA, USA
| | - Ryan Lee
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Catherine Zhang
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA
| | - Jayakumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Palo Alto, CA, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
4
|
Ren Y, Yao D, Wu F, Xiao J, Ma L, Zhang Y, Zhang Z, He G, Deng W, Qin B, Lei N, Wang F. Tolerogenic nanovaccines for the treatment of type I allergic diseases. J Control Release 2025; 380:664-685. [PMID: 39955034 DOI: 10.1016/j.jconrel.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
The high prevalence of type I allergic diseases such as allergic rhinitis, allergic asthma, food allergies, allergic conjunctivitis, and atopic dermatitis has emerged as a significant public health concern globally. Failure of immune tolerance to ordinarily harmless substances or stimulation, and subsequent induction of T helper 2 cells by antigen-presenting cells evokes the allergic immune response, which results in persistent inflammation, tissue damage, and organ function impairment. Current therapeutic approaches for allergic diseases include avoiding allergen exposure, corticosteroids, biologics, etc. However, these strategies only relieve allergic symptoms but hardly prevent the deteriorative progression and may have adverse effects on patients. With the rapid development of nanotechnology and immunology, emerging tolerogenic nanovaccines represent novel approaches with the potential to cure type I allergic diseases rather than merely alleviate symptoms. In this review, we expound the burgeoning field of tolerogenic nanovaccines against type I allergic diseases, highlight various types of antigens employed in constructing allergen extracts, protein/peptide and nucleic acid-based tolerogenic nanovaccines, and discuss their application in allergic rhinitis, allergic asthma, food allergies, allergic conjunctivitis, and atopic dermatitis.
Collapse
Affiliation(s)
- Yuxuan Ren
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Daoke Yao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Fang Wu
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Xiao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lixia Ma
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yong Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science Evidence, School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Wengjing Deng
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Bo Qin
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Fazhan Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
5
|
Pan Z, Ye YS, Liu C, Li W. Role of liver-resident NK cells in liver immunity. Hepatol Int 2025; 19:315-324. [PMID: 39893278 PMCID: PMC12003521 DOI: 10.1007/s12072-025-10778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
The tolerogenic immune microenvironment of the liver (the immune system avoids attacking harmless antigens, such as antigens derived from food and gut microbiota) has garnered significant attention in recent years. Inherent immune cells in the liver play a unique role in regulating this microenvironment. Liver-resident natural killer (LrNK) cells, also known as liver type 1 innate lymphoid cells (ILC1s), are a recently discovered subset of immune cells that possess properties distinct from those of conventional NK (cNK) cells. Accumulating evidence suggests that there are significant differences between LrNK and cNK cells, with LrNK cells potentially exhibiting immunosuppressive functions in the liver. This review summarizes the latest findings on LrNK cells, focusing on their phenotype, heterogeneity, plasticity, origin, development, and the required transcription factors. In addition, immune functions of LrNK cells in various liver diseases, including liver cancer, viral infections, liver injury, and cirrhosis, were analyzed. By elucidating the role of LrNK cells in liver immunity, this review aims to enhance our understanding of the mechanisms underlying liver immunity and contribute to the improvement of liver disease treatment.
Collapse
Affiliation(s)
- Zheng Pan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan-Shuo Ye
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Chang Liu
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
6
|
Wen J, Wen K, Tao M, Zhou Z, He X, Wang W, Huang Z, Lin Q, Li H, Liu H, Yan Y, Xiao Z. Integrated analysis reveals an immune evasion prognostic signature for predicting the overall survival in patients with hepatocellular carcinoma. Cancer Cell Int 2025; 25:101. [PMID: 40102844 PMCID: PMC11916977 DOI: 10.1186/s12935-025-03743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The development of immunotherapy has enriched the treatment of hepatocellular carcinoma (HCC), but the efficacy is not as expected, which may be due to immune evasion. Immune evasion is related to the immune microenvironment of HCC, but there is little research on it. METHODS We employed unsupervised clustering analysis to categorize patients from TCGA based on 182 immune evasion-related genes (IEGs). We utilized single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT to calculate differences in immune cell infiltration between clusters. The differences in immune cells and immune-related pathways were assessed using GSEA. We constructed an immune escape prognosis signature (IEPS) using univariate Cox and LASSO Cox algorithms and evaluated the predictive performance of IEPS with receiver operating characteristic (ROC) curves and survival curves. Additionally, we established a nomogram for clinical application based on IEPS. IHC validated the expression of Carbamoyl phosphate synthetase 2, Aspartate transcarbamylase, and Dihydroorotase (CAD) and Phosphatidylinositol Glycan Anchor Biosynthesis Class U (PIGU) in HCC. We transfected liver cancer cell lines with siRNA and overexpression plasmids, and confirmed the relationship between CAD, PIGU, and the potential downstream TGF-β1 in HCC using qRT-PCR and Western blot. Finally, we validated the tumor response of CAD overexpression using an animal model. RESULTS Unsupervised clustering analysis based on IEGs divided HCC patients from TCGA into two groups. There were significant differences in prognosis and immune characteristics between the two groups of patients. Scoring of TCGA patients using IEPS revealed that higher scores were associated with poorer overall survival (OS). Validation was performed using the ICGC database. TIME analysis indicated that patients in the high-IEPS group were in an immunosuppressive state, possibly due to a significant increase in Treg infiltration. Compared to normal liver cells, HCC cells expressed higher levels of CAD and PIGU. Cellular experimental results showed a positive correlation between CAD, PIGU and the potential downstream TGF-β1 expression. Animal experiments demonstrated that CAD significantly promoted tumor progression, with an increase in Treg infiltration. CONCLUSION IEPS has strong prognostic value for HCC patients, and CAD and PIGU provide perspectives on new biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jiahua Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Tao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zian Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiaohong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Svensson M, Limeres MJ, Zeyn Y, Gambaro RC, Islan GA, Berti IR, Fraude-El Ghazi S, Pretsch L, Hilbert K, Schneider P, Kaps L, Bros M, Gehring S, Cacicedo ML. mRNA-LNP vaccine strategies: Effects of adjuvants on non-parenchymal liver cells and tolerance. Mol Ther Methods Clin Dev 2025; 33:101427. [PMID: 40027262 PMCID: PMC11872076 DOI: 10.1016/j.omtm.2025.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025]
Abstract
The liver, which plays pivotal roles in metabolism and immunity, often confers tolerance, suppressing immune responses to pathogens. Adjuvanted, lipid nanoparticle-encapsulated mRNA vaccines (mRNA-LNPs) offer a promising approach to overcome immune tolerance. In this study, the immunostimulatory activity of well-documented adjuvants, i.e., 2'3'-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), resiquimod (R848), and polyinosinic:polycytidylic acid (Poly I:C), on non-parenchymal liver cells was determined. When co-applied with mRNA-loaded LNPs, these adjuvants enhanced immune responses at variable extents. Moreover, the efficiency of mRNA translation in the presence of cGAMP was comparable with the non-adjuvanted control. Repetitive co-application of adjuvants with mRNA-LNPs showed improvement in cellular responses when R848 or R848/cGAMP treatments were used. These findings emphasize the need to delineate the delicate balance between immunomodulatory properties and the efficiency of mRNA translation when selecting adjuvants for mRNA-LNP vaccines and offer insights on how to enhance immunity to infectious diseases and cancers that affect the liver.
Collapse
Affiliation(s)
- Malin Svensson
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - María José Limeres
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rocio C. Gambaro
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - German A. Islan
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ignacio Rivero Berti
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Silvia Fraude-El Ghazi
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Leah Pretsch
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katja Hilbert
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Department of Medicine II Saarland University Medical Center Saarland University 66421 Homburg, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Maximiliano L. Cacicedo
- Children’s Hospital, University Medical Center Mainz of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
8
|
Xu X, Wang X, Liao YP, Luo L, Nel AE. Reprogramming the Tolerogenic Immune Response Against Pancreatic Cancer Metastases by Lipid Nanoparticles Delivering a STING Agonist Plus Mutant KRAS mRNA. ACS NANO 2025; 19:8579-8594. [PMID: 40025875 PMCID: PMC11912578 DOI: 10.1021/acsnano.4c14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
We demonstrate reprogramming of the tolerogenic immune environment in the liver for mounting an effective immune response against often-fatal pancreatic cancer metastases. This was achieved by engineering a lipid nanoparticle (LNP) to deliver mRNA encoding the KRAS G12D neoantigenic epitope along with cGAMP, a dinucleotide agonist of the stimulator of the interferon genes (STING) pathway, capable of activating a type I interferon response. cGAMP/mKRAS/LNP were synthesized by a microfluidics approach involving nanoprecipitation of mRNA and cGAMP by an ionizable lipid, MC3. Controls included nanoparticles delivering individual components or a wild-type RAS sequence. The dual delivery carrier successfully activated the type I interferon pathway in vitro as well as in vivo, with reprogramming of costimulatory receptor (CD80 and CD86) and MHC-I expression on liver antigen-presenting cells (APC). This allowed the generation of IFN-γ producing cytotoxic T cells, capable of mounting an effective immune response in the metastatic KRAS pancreatic cancer (KPC) mouse model. Noteworthy, intravenous injection of cGAMP/mKRAS/LNP suppressed metastatic growth significantly and prolonged animal survival, both prophylactically and during treatment of established metastases. The protective immune response was mediated by the generation of perforin-releasing CD8+ cytotoxic T cells, engaged in pancreatic cancer cell killing. Importantly, the immune response could also be adoptively transferred by injecting splenocytes (containing memory T cells) from treated into nontreated recipient mice. This study demonstrates that reprogramming the immune-protective niche for metastatic pancreatic cancer can be achieved by the delivery of a STING agonist and mutant KRAS mRNA via ionizable LNPs, offering both prophylactic and therapeutic advantages.
Collapse
Affiliation(s)
- Xiao Xu
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Lijia Luo
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Division
of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Ivashkin VT, Drapkina OM, Maevskaya MV, Raikhelson KL, Okovityi SV, Zharkova MS, Grechishnikova VR, Abdulganieva DI, Alekseenko SA, Ardatskaya MD, Bakulin IG, Bakulina NV, Bogomolov PO, Breder VV, Vinnitskaya EV, Geyvandova NI, Golovanova EV, Grinevich VB, Doshchitsin VL, Dudinskaya EN, Ershova EV, Kodzoeva KB, Kozlova IV, Komshilova KA, Konev YV, Korochanskaya NV, Kotovskaya YV, Kravchuk YA, Loranskaya ID, Maev IV, Martynov AI, Mekhtiev SN, Mishina EE, Nadinskaia MY, Nikitin IG, Osipenko MF, Ostroumova OD, Pavlov CS, Pogosova NV, Radchenko VG, Roytberg GE, Saifutdinov RG, Samsonov AA, Seliverstov PV, Sitkin SI, Tarasova LV, Tarzimanova AI, Tkacheva ON, Tkachenko EI, Troshina EA, Turkina SV, Uspenskiy YP, Fominykh YA, Khlynova OV, Tsyganova YV, Shamkhalova MS, Sharkhun OO, Shestakova MV. Clinical Guidelines of the Russian Society for the Study of the Liver, Russian Gastroenterological Association, Russian Society for the Prevention of Non-Communicable Diseases, Russian Association of Endocrinologists, Russian Scientific Medical Society of Therapists, National Society of Preventive Cardiology, Russian Association of Gerontologists and Geriatricians on Non-Alcoholic Fatty Liver Disease. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2025; 35:94-152. [DOI: 10.22416/1382-4376-2025-35-1-94-152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2025]
Abstract
Aim. The clinical guidelines are intended to provide information support for making decisions by gastroenterologists, general practitioners and internists that will improve the quality of medical care for patients with non-alcoholic fatty liver disease, taking into account the latest clinical data and principles of evidence-based medicine. Key points. Clinical guidelines contain information about current views on etiology, risk factors and pathogenesis of nonalcoholic fatty liver disease, peculiarities of its clinical course. Also given recommendations provide information on current methods of laboratory and instrumental diagnostics, invasive and non-invasive tools for nonalcoholic fatty liver disease and its clinical phenotypes assessment, approaches to its treatment, considering the presence of comorbidities, features of dispensary monitoring and prophylaxis. The information is illustrated with algorithms of differential diagnosis and physician's actions. In addition, there is information for the patient and criteria for assessing the quality of medical care. Conclusion. Awareness of specialists in the issues of diagnosis, treatment and follow-up of patients with nonalcoholic fatty liver disease contributes to the timely diagnosis and initiation of treatment, which in the long term will significantly affect their prognosis and quality of life.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. V. Maevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. L. Raikhelson
- Saint Petersburg State University;
Academician I.P. Pavlov First Saint Petersburg State Medical University
| | - S. V. Okovityi
- Saint Petersburg State Chemical Pharmaceutical University
| | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - M. D. Ardatskaya
- Central State Medical Academy of the Department of Presidential Affairs
| | - I. G. Bakulin
- North-Western State Medical University named after I.I. Mechnikov
| | - N. V. Bakulina
- North-Western State Medical University named after I.I. Mechnikov
| | - P. O. Bogomolov
- Russian University of Medicine;
Moscow Regional Research Clinical Institute
| | - V. V. Breder
- National Medical Research Center of Oncology named after N.N. Blokhin
| | | | | | | | | | | | | | | | - K. B. Kodzoeva
- National Medical Research Center for Transplantology and Artificial Organs named after Academician V.I. Shumakov
| | - I. V. Kozlova
- Saratov State Medical University named after V.I. Razumovsky
| | | | | | | | | | | | | | | | | | - S. N. Mekhtiev
- Academician I.P. Pavlov First Saint Petersburg State Medical University
| | | | - M. Yu. Nadinskaia
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. G. Nikitin
- N.I. Pirogov Russian National Research Medical University;
National Medical Research Center “Treatment and Rehabilitation Center”
| | | | | | - Ch. S. Pavlov
- I.M. Sechenov First Moscow State Medical University (Sechenov University);
Moscow Multidisciplinary Scientific and Clinical Center named after S.P. Botkin
| | - N. V. Pogosova
- National Medical Research Center of Cardiology named after Academician E.I. Chazov
| | | | - G. E. Roytberg
- N.I. Pirogov Russian National Research Medical University
| | - R. G. Saifutdinov
- Kazan State Medical Academy — Branch Campus of the Russian Medical Academy of Continuous Professional Education
| | | | | | - S. I. Sitkin
- North-Western State Medical University named after I.I. Mechnikov;
V.A. Almazov National Medical Research Center
| | | | - A. I. Tarzimanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. N. Tkacheva
- N.I. Pirogov Russian National Research Medical University
| | | | | | | | - Yu. P. Uspenskiy
- Academician I.P. Pavlov First Saint Petersburg State Medical University;
Saint Petersburg State Pediatric Medical University
| | - Yu. A. Fominykh
- V.A. Almazov National Medical Research Center; Saint Petersburg State Pediatric Medical University
| | - O. V. Khlynova
- Perm State Medical University named after Academician E.A. Wagner
| | | | | | - O. O. Sharkhun
- N.I. Pirogov Russian National Research Medical University
| | | |
Collapse
|
10
|
Liao Y, Wang D, Yang X, Ni L, Lin B, Zhang Y, Feng G, Li J, Gao F, Liao M, Du X, Chen W. High‑intensity focused ultrasound thermal ablation boosts the efficacy of immune checkpoint inhibitors in advanced cancers with liver metastases: A single‑center retrospective cohort study. Oncol Lett 2025; 29:124. [PMID: 39807097 PMCID: PMC11726302 DOI: 10.3892/ol.2025.14871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
High-intensity focused ultrasound thermal ablation (HIFU) is a novel non-invasive technique in the treatment of liver metastases (LIM) that allows focal destruction and is not affected by dose limits. This retrospective study aimed to explore the efficacy of HIFU in improving survival and the safety of the method in newly diagnosed patients with cancer with LIM who received first-line immune checkpoint inhibitor (ICI) therapy. Between January 2018 and December 2023, data from 438 newly diagnosed patients with cancer and LIM who were treated at Mianyang Central Hospital (Mianyang, China) were reviewed. A total of 94 patients were enrolled in this study, of whom 28 were diagnosed with lung carcinoma, 36 with gastric carcinoma, 11 with esophageal carcinoma, 7 with cholangiocarcinoma and 12 with other malignancies. The patients were divided into groups depending on whether they underwent HIFU. Progression-free survival (PFS), overall survival (OS) and adverse events (AEs) were compared. Clinicopathological features were analyzed using the chi-squared test. Of the 94 patients, 28 received ICI + HIFU as first-line treatment. After a median follow-up of 13.8 months, the median PFS and OS in the HIFU group were 2.38 times [10.95 vs. 4.60 months, 95% confidence interval (CI): 1.087-3.106, P<0.0001] and 1.84 times (19.6 vs. 10.67 months, 95% CI: 1.087-3.106, P=0.0418), respectively, higher than in the group without HIFU. All-cause AEs and immune-mediated AEs were similar between the groups with and without HIFU. However, the incidence of grade 1-2 immune-mediated AEs, troponin elevation, hepatotoxicity and renal dysfunction were more common in the current patients with LIM than those reported previously for the entire population. No immune-mediated AEs of grade ≥3 occurred in either group. HIFU prolonged the PFS and OS of first-line ICI in newly diagnosed patients with advanced cancer with LIM, with manageable safety and tolerability. The efficacy of HIFU in patients with LIM who plan to undergo ICI treatment warrants further prospective clinical investigation.
Collapse
Affiliation(s)
- Yao Liao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Decai Wang
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Urology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Xiyue Yang
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Lu Ni
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Binwei Lin
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Yu Zhang
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Gang Feng
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Jie Li
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Feng Gao
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Min Liao
- Department of Information, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Xiaobo Du
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan 621000, P.R. China
| | - Wenzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
11
|
Shrestha S, Jeon JH, Hong CW. Neutrophils in MASLD and MASH. BMB Rep 2025; 58:116-123. [PMID: 39757200 PMCID: PMC11955729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 01/07/2025] Open
Abstract
Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) and its progressive form, Metabolic Dysfunction Associated Steatohepatitis (MASH), represent significant health concerns associated with the metabolic syndrome. These conditions are characterized by excessive hepatic fat accumulation, inflammation, and potential progression to cirrhosis and hepatocellular carcinoma. Neutrophils are innate immune cells that play a pivotal role in the development of MASLD and MASH. They can infiltrate the hepatic microenvironment in response to inflammatory cytokines and damage associated molecular patterns (DAMPs) derived from the liver and exacerbate tissue damage by releasing of reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps (NETs). Moreover, neutrophils can disrupt the metabolism of hepatocytes through key factors such as neutrophil elastase (NE) and human neutrophil peptides-1 (HNP-1), leading to inflammation and fibrosis, while myeloperoxidase (MPO) and lipocalin (LCN2) are involved in inflammatory and fibrotic processes. In contrast, neutrophils contribute to liver protection and repair through mechanisms involving microRNA-223 and matrix metalloproteinase 9 (MMP9). This dual role of neutrophils highlights their significance in the pathogenesis of MASLD and MASH. This review summarizes current understanding from recent studies on the involvement of neutrophils in MASLD and MASH. Understanding complex roles of neutrophils within the liver's unique microenvironment offers insights into novel therapeutic strategies, emphasizing the need for further research to explore neutrophil-targeted interventions for managing MASLD and MASH. [BMB Reports 2025; 58(3): 116-123].
Collapse
Affiliation(s)
- Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Cell & Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
12
|
Madill-Thomsen KS, Gauthier PT, Abouljoud M, Bhati C, Bruno D, Ciszek M, Durlik M, Feng S, Foroncewicz B, Grąt M, Jurczyk K, Levitsky J, McCaughan G, Maluf D, Montano-Loza A, Moonka D, Mucha K, Myślak M, Perkowska-Ptasińska A, Piecha G, Reichman T, Tronina O, Wawrzynowicz-Syczewska M, Zeair S, Halloran PF. Defining an NK Cell-enriched Rejection-like Phenotype in Liver Transplant Biopsies From the INTERLIVER Study. Transplantation 2025:00007890-990000000-00971. [PMID: 39780312 DOI: 10.1097/tp.0000000000005269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Initial analysis of liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov; unique identifier NCT03193151) using rejection-associated transcripts failed to find an antibody-mediated rejection state (ie, rich in natural killer [NK] cells and with interferon-gamma effects). We recently developed an optimization strategy in lung transplants that isolated an NK cell-enriched rejection-like (NKRL) state that was molecularly distinct from T cell-mediated rejection (TCMR). Here we apply the same strategy to a liver transplant biopsy population. METHODS We used this strategy to search for a molecular NKRL state in 765 consented liver transplant biopsies collected at participating international centers for gold-standard histology and molecular assessment by genome-wide microarrays. Validation through a training set-test set approach of an optimized selection of variables as inputs into unsupervised rejection classification identified an NKRL state in livers. RESULTS The full model classified 765 biopsies into the following molecular phenotypes, characterized by their gene expression: no-rejection 54%, TCMR 16%, NKRL 13%, and injury 16%. Top TCMR transcripts were expressed in effector T cells; top NKRL transcripts were almost exclusively expressed in NK cells; and both had increased interferon-γ-inducible transcripts, which were more pronounced in TCMR. Most TCMR biopsies had significant parenchymal injury, molecular fibrosis, and abnormal biochemistry. NKRL biopsies had no excess of injury, fibrosis, or biochemistry abnormalities. CONCLUSIONS Optimized rejection algorithms indicate that some liver transplants manifest an NKRL state that is well tolerated in the short term postbiopsy and with minimal injury and relatively normal biochemistry, while also underscoring the potential of TCMR to produce extensive parenchymal injury.
Collapse
Affiliation(s)
| | | | - Marwan Abouljoud
- Department of Surgery, Henry Ford Hospital, Virginia Commonwealth University, Richmond, VA
| | | | - David Bruno
- Department of Surgery, University of Maryland, Baltimore, MD
| | - Michał Ciszek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sandy Feng
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Bartosz Foroncewicz
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Jurczyk
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Josh Levitsky
- Department of Medicine, Northwestern University, Chicago, IL
| | - Geoff McCaughan
- Australian National Liver Transplant Unit, Centenary Research Institute, Royal Prince Alfred Hospital, University of Sydney, Sydney, NSW, Australia
| | - Daniel Maluf
- Department of Surgery, University of Maryland, Baltimore, MD
| | | | - Dilip Moonka
- Department of Surgery, Henry Ford Hospital, Virginia Commonwealth University, Richmond, VA
| | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marek Myślak
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | | | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | | | - Olga Tronina
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wawrzynowicz-Syczewska
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Samir Zeair
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | | |
Collapse
|
13
|
Cerovic V, Pabst O, Mowat AM. The renaissance of oral tolerance: merging tradition and new insights. Nat Rev Immunol 2025; 25:42-56. [PMID: 39242920 DOI: 10.1038/s41577-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Oral tolerance is the process by which feeding of soluble proteins induces antigen-specific systemic immune unresponsiveness. Oral tolerance is thought to have a central role in suppressing immune responses to 'harmless' food antigens, and its failure can lead to development of pathologies such as food allergies or coeliac disease. However, on the basis of long-standing experimental observations, the relevance of oral tolerance in human health has achieved new prominence recently following the discovery that oral administration of peanut proteins prevents the development of peanut allergy in at-risk human infants. In this Review, we summarize the new mechanistic insights into three key processes necessary for the induction of tolerance to oral antigens: antigen uptake and transport across the small intestinal epithelial barrier to the underlying immune cells; the processing, transport and presentation of fed antigen by different populations of antigen-presenting cells; and the development of immunosuppressive T cell populations that mediate antigen-specific tolerance. In addition, we consider how related but distinct processes maintain tolerance to bacterial antigens in the large intestine. Finally, we outline the molecular mechanisms and functional consequences of failure of oral tolerance and how these may be modulated to enhance clinical outcomes and prevent disease.
Collapse
Affiliation(s)
- Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Allan McI Mowat
- School of Infection and Immunity, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Hudson D, Ayares G, Taboun Z, Malhi G, Idalsoaga F, Mortuza R, Souyet M, Ramirez-Cadiz C, Díaz LA, Arrese M, Arab JP. Periodontal disease and cirrhosis: current concepts and future prospects. EGASTROENTEROLOGY 2025; 3:e100140. [PMID: 40160254 PMCID: PMC11950965 DOI: 10.1136/egastro-2024-100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/05/2025] [Indexed: 04/02/2025]
Abstract
Periodontal diseases are prevalent among the general population and are associated with several systemic conditions, such as chronic kidney disease and type 2 diabetes mellitus. Chronic liver disease and cirrhosis have also been linked with periodontal disease, an association with complex underlying mechanisms, and with potential prognostic implications. Multiple factors can explain this relevant association, including nutritional factors, alcohol consumption, disruption of the oral-gut-liver axis and associated dysbiosis. Additionally, patients with liver disease have been observed to exhibit poorer oral hygiene practices compared with the general population, potentially predisposing them to the development of periodontal disease. Therefore, it is recommended that all patients with liver disease undergo screening and subsequent treatment for periodontal disease. Treatment of periodontal disease in patients with cirrhosis may help reduce liver-derived inflammatory damage, with recent research indicating a potential benefit in terms of reduced mortality. However, further studies on periodontal disease treatment in patients with liver disease are still warranted to determine optimal management strategies. This narrative review describes current concepts on the association between periodontal disease and chronic liver disease.
Collapse
Affiliation(s)
- David Hudson
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Gustavo Ayares
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zahra Taboun
- Department of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gurpreet Malhi
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Francisco Idalsoaga
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rokhsana Mortuza
- Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Maite Souyet
- Escuela de Odontología, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
- Escuela de Odontología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Ramirez-Cadiz
- Department of Anesthesiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Luis Antonio Díaz
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, California, USA
| | - Marco Arrese
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
15
|
Wohlleber D, Knolle PA. Tissue Determinants of Antiviral Immunity in the Liver. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2025; 63:65-72. [PMID: 39793603 PMCID: PMC11723797 DOI: 10.1055/a-2365-3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 01/13/2025]
Abstract
The liver is an organ bearing important metabolic and immune functions. Hepatocytes are the main metabolically active cells of the liver and are the target of infection by hepatotropic viruses. Virus-specific CD8 T cells are essential for the control of hepatocyte infection with hepatotropic viruses but may be subject to local regulation of their effector function. Here, we review our current knowledge of the tissue determinants of antiviral immunity in the liver. Liver Sinusoidal Endothelial Cells (LSECs) not only allow through their fenestrations the access of circulating virus-specific CD8 T cells to engage in direct contact with infected hepatocytes without the need for extravasation but also cross-present viral antigens released from infected hepatocytes to these CD8 T cells. Two important features of LSECs and hepatocytes contribute to antiviral immune surveillance and liver failure. First, CD8 T cell immunity targeting LSECs leads to widespread endothelial cell death and results in sinusoidal microcirculation failure, causing fulminant viral hepatitis, whereas immune-mediated loss of hepatocytes is rapidly compensated by the regenerative capacity of the liver. Second, virus-infected hepatocytes support clearance of infection by responding to TNF, which is released from virus-specific CD8 T cells, with the selective induction of apoptosis. This increased sensitivity for TNF-induced death is caused by reduced mitochondrial resilience in virus-infected hepatocytes and may assist antiviral immunity in preferential targeting of virus-infected hepatocytes. Thus, hepatocytes and LSECs actively contribute to the outcome of antiviral CD8 T cell immunity in the liver. The knowledge of the mechanisms determining CD8 T cell control of hepatotropic viral infection will help to improve strategies to increase antiviral immune surveillance.
Collapse
Affiliation(s)
- Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Percy A. Knolle
- Institute of Molecular Immunology, School of Life Science, Technical University of Munich, Munich, Germany
- German Center for Infection Research, Munich, Germany
| |
Collapse
|
16
|
Klaimi C, Kong W, Blériot C, Haas JT. The immunological interface: dendritic cells as key regulators in metabolic dysfunction-associated steatotic liver disease. FEBS Lett 2024. [PMID: 39668616 DOI: 10.1002/1873-3468.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) refers to a broad spectrum of conditions associating fat accumulation in the liver (steatosis) with varying degrees of inflammation (hepatitis) and fibrosis, which can progress to cirrhosis and potentially cancer (hepatocellular carcinoma). The first stages of these diseases are reversible and the immune system, together with metabolic factors (obesity, insulin resistance, Western diet, etc.), can influence the disease trajectory leading to progression or regression. Dendritic cells are professional antigen-presenting cells that constantly sense environmental stimuli and orchestrate immune responses. Herein, we discuss the existing literature on the heterogeneity of dendritic cell lineages, states, and functions, to provide a comprehensive overview of how liver dendritic cells influence the onset and evolution of MASLD.
Collapse
Affiliation(s)
- Camilla Klaimi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | - Camille Blériot
- Gustave Roussy, CNRS UMR9018, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, Université Paris-Saclay, Villejuif, France
- Institut Necker Enfants Malades, CNRS, INSERM, Université Paris Cité, France
| | - Joel T Haas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| |
Collapse
|
17
|
Del Bello A, Vionnet J, Congy-Jolivet N, Kamar N. Simultaneous combined transplantation: Intricacies in immunosuppression management. Transplant Rev (Orlando) 2024; 38:100871. [PMID: 39096886 DOI: 10.1016/j.trre.2024.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/05/2024]
Abstract
Simultaneous combined transplantation (SCT), i.e. the transplantation of two solid organs within the same procedure, can be required when the patients develop more than one end-stage organ failure. The development of SCT over the last 20 years could only be possible thanks to progress in the surgical techniques and in the perioperative management of patients in an ageing population. Performing such major transplant surgeries from the same donor, in a short amount of time, and in critical pathophysiological conditions, is often considered to be counterbalanced by the immune benefits expected from these interventions. However, SCT includes a wide array of different transplant combinations, with each time a different immunological constellation. Recent research offers new insights into the immune mechanisms involved in these different settings. Progress in the understanding of these immunological intricacies help to address the optimal induction and maintenance immunosuppressive treatment strategies. In this review, we summarize the different immunological benefits according to the type of SCT performed. We also incorporate the main outcomes according to the immunological risk at transplantation, and the deleterious impact of preformed or de novo donor-specific antibodies (DSA) in the different types of SCT. Finally, we propose comprehensive and evidence-based induction and maintenance immunosuppression strategies guided by the type of SCT.
Collapse
Affiliation(s)
- Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, CHU de Toulouse, Toulouse, France; Centre Hospitalier et Universitaire, Université Paul Sabatier Toulouse III, Toulouse, France; Department of Vascular Biology, Institute of Metabolic and Cardiovascular Diseases (I2MC), France.
| | - Julien Vionnet
- Transplantation Center and Service of Gastroenterology and Hepatology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Congy-Jolivet
- Centre Hospitalier et Universitaire, Université Paul Sabatier Toulouse III, Toulouse, France; Laboratory of Immunology, Biology Department, Centre Hospitalier et Universitaire (CHU) de Toulouse, Toulouse, France; INSERM UMR 1037, DynAct team, CRCT, Université Paul Sabatier, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, CHU de Toulouse, Toulouse, France; Centre Hospitalier et Universitaire, Université Paul Sabatier Toulouse III, Toulouse, France; INSERM UMR 1037, DynAct team, CRCT, Université Paul Sabatier, Toulouse, France; Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1043-CNRS 5282, Toulouse, France
| |
Collapse
|
18
|
Chen Z, Yang J, Song Y, Chen X, Duan Y, Wang J, Liu Y, Guan G. HCC Model Induced by P53 and Pten Knockout in HBV-Transgenic Mice Mirrors Human HCC at the Transcriptome Level. J Med Virol 2024; 96:e70120. [PMID: 39704250 DOI: 10.1002/jmv.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
With a multitude of HCC mouse models available, choosing the one that most closely resembles human HCC can be challenging. This study addresses this gap by conducting a comprehensive transcriptomic similarity analysis of widely used HCC mouse models. In this study, RNA-seq was performed on a model induced by double knockout of P53 and Pten via CRISPR/Cas9 in HBV-transgenic mice. Additionally, RNA-seq data from 2345 various other models induced by different methods were collected from GEO databases. The gene expression profiles, immune microenvironments, and metabolic pathways of these models were compared with those of human HCC. The analysis revealed distinct transcriptomic features among the different models. The HBV + P53&Pten KO model demonstrated the highest overall similarity to human HCC across various parameters. It shared a high degree of overlap in differentially expression genes (DEGs) between tumor and non-tumor tissues with human HCC, exhibited a transcriptome profile and immune cell infiltration pattern closely resembling human HCC, and showed metabolic alterations similar to those in human HCC. Conversely the DEN + CCl4-induced model showed the lowest similarity to human HCC in transcriptome profiles and DEGs and exhibited a distinct immune microenvironment with high NK cell infiltration, with minimal metabolic differences between tumor and non-tumor tissues. This study highlights the importance of selecting appropriate HCC mouse models for research. The HBV + p53&Pten KO model emerged as the most promising due to its remarkable similarity to human HCC across various aspects.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Jing Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, College of Medicine, Qingdao University, Qingdao, China
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Duan
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jingzhou Wang
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yongzhen Liu
- Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guiwen Guan
- School of Cybersecurity, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
19
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
20
|
Wang L, Liu SS, Zhang SM, Chen XQ, Huang T, Tian R, Zhao YQ, Chen Z, Xianba CR. Gastric cancer liver metastasis will reduce the efficacy of immunotherapy. World J Gastrointest Surg 2024; 16:2760-2764. [PMID: 39351566 PMCID: PMC11438812 DOI: 10.4240/wjgs.v16.i9.2760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/06/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Immune checkpoint inhibitors augment the antitumor activity of T cells by inhibiting the negative regulatory pathway of T cells, leading to notable efficacy in patients with non-small cell lung cancer, melanoma, and other malignancies through immunotherapy utilization. However, secondary malignant liver tumors not only lower the liver's sensitivity to immunotherapy but also trigger systemic immune suppression, resulting in reduced overall effectiveness of immune therapy. Patients receiving immunotherapy for non-small cell lung cancer and melanoma experience reduced response rates, progression-free survival, and overall survival when secondary malignant tumors develop in the liver. Through Liu's retrospective analysis, valuable insights are provided for the future clinical management of these patients. Therefore, in patients with gastric cancer (GC), the occurrence of liver metastasis might be indicative of reduced efficacy of immunotherapy. Overcoming liver immune tolerance mechanisms and their negative impacts allows for the potential benefits of immunotherapy in patients with GC and liver metastasis.
Collapse
Affiliation(s)
- Liang Wang
- Department of Gastrointestinal Oncology Surgery, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Shan-Shan Liu
- Department of Gastrointestinal Oncology Surgery, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Sheng-Mei Zhang
- Department of Gastrointestinal Oncology Surgery, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Xiao-Qian Chen
- Department of Gastrointestinal Oncology Surgery, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Tao Huang
- Intensive Care Unit, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Rong Tian
- Department of Ultrasound, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Ya-Qi Zhao
- Department of Gastrointestinal Oncology Surgery, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Zhou Chen
- Department of Gastrointestinal Oncology Surgery, The Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Cai-Rang Xianba
- Department of General Surgery, Hainan State People's Hospital of Qinghai Province, Hainan Tibetan Autonomous Prefecture 813000, Qinghai Province, China
| |
Collapse
|
21
|
Cheng Q, Zhang T, Wang Q, Wu X, Li L, Lin R, Zhou Y, Qu S. Photocatalytic Carbon Dots-Triggered Pyroptosis for Whole Cancer Cell Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408685. [PMID: 39129656 DOI: 10.1002/adma.202408685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Indexed: 08/13/2024]
Abstract
Manufacturing whole cancer cell vaccines (WCCV) with both biosafety and efficacy is crucial for tumor immunotherapy. Pyroptotic cancer cells, due to their highly immunogenic properties, present a promising avenue for the development of WCCV. However, the successful development of WCCV based on pyroptotic cancer cells is yet to be accomplished. Here, a facile strategy that utilized photocatalytic carbon dots (CDs) to induce pyroptosis of cancer cells for fabricating WCCV is reported. Photocatalytic CDs are capable of generating substantial amounts of hydroxyl radicals and can effectively decrease cytoplasmic pH values under white light irradiation. This process efficiently triggers cancer cell pyroptosis through the reactive oxygen species (ROS)-mitochondria-caspase 3-gasdermin E pathway and the proton motive force-driven mitochondrial ATP synthesis pathway. Moreover, in vitro, these photocatalytic CDs-induced pyroptotic cancer cells (PCIP) can hyperactivate macrophage (M0-M1) with upregulation of major histocompatibility complex class II expression. In vivo, PCIP induced specific immune-preventive effects in melanoma and breast cancer mouse models through anticancer immune memory, demonstrating effective WCCV. This work provides novel insights for inducing cancer cell pyroptosis and bridges the gap in the fabrication of WCCV based on pyroptotic cancer cells.
Collapse
Affiliation(s)
- Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Tesen Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Qingcheng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Xue Wu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Lingyun Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, SAR, 999078, China
- MOE Frontier Science Centre for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, 999078, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, SAR, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau, SAR, 999078, China
- MOE Frontier Science Centre for Precision Oncology, Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau, SAR, 999078, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, 519031, China
| |
Collapse
|
22
|
Jiang C, Zhang ZH, Li JX. Consideration on immunotherapy of liver metastases of malignant tumors. World J Gastrointest Surg 2024; 16:2374-2381. [PMID: 39220060 PMCID: PMC11362915 DOI: 10.4240/wjgs.v16.i8.2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/05/2024] [Accepted: 06/03/2024] [Indexed: 08/16/2024] Open
Abstract
In this editorial, we comment on the article "Analysis of the impact of immunotherapy efficacy and safety in patients with gastric cancer and liver metastasis" by Liu et al that was published in the recent issue of the World Journal of Gastrointestinal Surgery. It has prompted us to think and summarize some thoughts on immunotherapy for malignant tumor liver metastasis. Immunotherapy plays a crucial role in the treatment of malignant tumors; however, the presence of liver metastases in advanced tumors may impact its efficacy. Although patients with liver metastases can still benefit from immunotherapy, multiple clinical studies have indicated that, compared to other sites of metastasis, liver metastases may diminish the effectiveness of immunotherapy. The efficacy of immune checkpoint inhibitors in patients with liver metastases often fails to reach the ideal level, primarily due to the liver metastases exploiting the host's peripheral immune tolerance mechanisms to promote systemic CD8(+) T cell exhaustion, resulting in a systemic immune-tolerant environment. This article aims to summarize the reasons for the decreased efficacy of immunotherapy following liver metastasis in various malignant tumors and propose potential clinical strategies for management.
Collapse
Affiliation(s)
- Chuang Jiang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zhi-Hong Zhang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Xin Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of General Surgery, Dafang County People's Hospital, Bijie 551600, Guizhou Province, China
| |
Collapse
|
23
|
Zhang JM, Huang H, Li XQ, Li SP, Zhou LX, Song SY, Zhu ZJ. FLT3 + DC inhibits immune rejection via interaction with Treg in liver transplantation. Int Immunopharmacol 2024; 137:112289. [PMID: 38889505 DOI: 10.1016/j.intimp.2024.112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase (RTK) primarily expressed in hematopoietic stem cells and dendritic cells (DCs). While FLT3 plays a critical role in the proliferation, development and maintenance of DCs, thus influencing immune responses under both normal and pathological conditions, there also exists some evidence that FLT3+DC may be involved with immune responses in liver transplantation (LT). In this study, results from single-cell sequencing data analysis revealed a clear relationship between FLT3+DCs and Regulatory T cells (Tregs) in liver tissue of LT recipients. In peripheral blood samples of LT patients, levels of FLT3+DCs were decreased post-LT-surgery, while Tregs were increased. In a LT mouse model, levels of FLT3+DCs in the liver and bone marrow exhibited an initial time-dependent decrease followed by an increase after LT surgery. Results as obtained with co-culture experiments using mature BMDCs and CD4+ T cells revealed fluctuations in Tregs in response to FLT3 inhibitors and the FLT3 ligand. These findings suggest that FLT3+DCs could emerge as a novel target for mitigating immune rejection in LT.
Collapse
Affiliation(s)
- Jin-Ming Zhang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hao Huang
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xin-Qiang Li
- Organ Transplantation Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shi-Peng Li
- Department of Hepatopancreaticobiliary Surgery, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Liu-Xin Zhou
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | | | - Zhi-Jun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Clinical Research Center for Pediatric Liver Transplantation of Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
24
|
Li W, You L, Lin J, Zhang J, Zhou Z, Wang T, Wu Y, Zheng C, Gao Y, Kong X, Sun X. An herbal formula Shenlian decoction upregulates M1/M2 macrophage proportion in hepatocellular carcinoma by suppressing complement cascade. Biomed Pharmacother 2024; 177:116943. [PMID: 38878636 DOI: 10.1016/j.biopha.2024.116943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
The immunosuppressive microenvironment is a vital factor for the hepatocellular carcinoma (HCC) progression. However, effective treatment is lacking at current. Shenlian decoction (SLD) is a registered herbal therapy for the HCC treatment, but the underlying mechanism of SLD remains largely elusive. Here, we aimed to explore the anti-tumor effect of SLD in the treatment of HCC. SLD was intragastrically given after the tumor initiation in β-catenin/C-Met or DEN and CCl4 induced HCC mouse model. The tumor growth levels were evaluated by liver weight and histological staining. The tumor-infiltrating immune cells were detected by immunological staining and flow cytometry. The mechanism of the SLD was detected by non-targeted proteomics and verified by a cell co-culture system. The result showed that SLD significantly attenuated HCC progression. SLD promoted macrophage infiltration and increased the M1/M2 macrophage ratio within the tumor tissues. Non-targeted proteomics showed the inhibition of complement C5/C5a signaling is the key mechanism of SLD. Immunological staining showed SLD inhibited C5/C5a expression and C5aR1+ macrophage infiltration. The suggested mechanism was demonstrated by application of C5aR1 inhibitor, PMX-53 in mouse HCC model. Hepatoma cell-macrophage co-culture showed SLD targeted hepatoma cells and inhibited the supernatant-induced macrophage M2 polarization. SLD inhibited AMPK/p38 signaling which is an upstream mechanism of C5 transcription. In conclusion, we found SLD relieved immune-suppressive environment by inhibiting C5 expression. SLD could suppress the C5 secretion in hepatoma cells via inhibition of AMPK/p38 signaling. We suggested that SLD is a potential herbal therapy for the treatment of HCC by alleviating immune-suppressive status.
Collapse
Affiliation(s)
- Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuelan Wu
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
25
|
Zou J, Li J, Wang X, Tang D, Chen R. Neuroimmune modulation in liver pathophysiology. J Neuroinflammation 2024; 21:188. [PMID: 39090741 PMCID: PMC11295927 DOI: 10.1186/s12974-024-03181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
The liver, the largest organ in the human body, plays a multifaceted role in digestion, coagulation, synthesis, metabolism, detoxification, and immune defense. Changes in liver function often coincide with disruptions in both the central and peripheral nervous systems. The intricate interplay between the nervous and immune systems is vital for maintaining tissue balance and combating diseases. Signaling molecules and pathways, including cytokines, inflammatory mediators, neuropeptides, neurotransmitters, chemoreceptors, and neural pathways, facilitate this complex communication. They establish feedback loops among diverse immune cell populations and the central, peripheral, sympathetic, parasympathetic, and enteric nervous systems within the liver. In this concise review, we provide an overview of the structural and compositional aspects of the hepatic neural and immune systems. We further explore the molecular mechanisms and pathways that govern neuroimmune communication, highlighting their significance in liver pathology. Finally, we summarize the current clinical implications of therapeutic approaches targeting neuroimmune interactions and present prospects for future research in this area.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxu Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
26
|
Gonzalez-Visiedo M, Herzog RW, Munoz-Melero M, Blessinger SA, Cook-Mills JM, Daniell H, Markusic DM. Viral Vector Based Immunotherapy for Peanut Allergy. Viruses 2024; 16:1125. [PMID: 39066287 PMCID: PMC11281582 DOI: 10.3390/v16071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Food allergy (FA) is estimated to impact up to 10% of the population and is a growing health concern. FA results from a failure in the mucosal immune system to establish or maintain immunological tolerance to innocuous dietary antigens, IgE production, and the release of histamine and other mediators upon exposure to a food allergen. Of the different FAs, peanut allergy has the highest incidence of severe allergic responses, including systemic anaphylaxis. Despite the recent FDA approval of peanut oral immunotherapy and other investigational immunotherapies, a loss of protection following cessation of therapy can occur, suggesting that these therapies do not address the underlying immune response driving FA. Our lab has shown that liver-directed gene therapy with an adeno-associated virus (AAV) vector induces transgene product-specific regulatory T cells (Tregs), eradicates pre-existing pathogenic antibodies, and protects against anaphylaxis in several models, including ovalbumin induced FA. In an epicutaneous peanut allergy mouse model, the hepatic AAV co-expression of four peanut antigens Ara h1, Ara h2, Ara h3, and Ara h6 together or the single expression of Ara h3 prevented the development of a peanut allergy. Since FA patients show a reduction in Treg numbers and/or function, we believe our approach may address this unmet need.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Sophia A. Blessinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Joan M. Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| |
Collapse
|
27
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
28
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Muñoz-Melero M, Biswas M. Role of FoxP3 + Regulatory T Cells in Modulating Immune Responses to Adeno-Associated Virus Gene Therapy. Hum Gene Ther 2024; 35:439-450. [PMID: 38450566 PMCID: PMC11302314 DOI: 10.1089/hum.2023.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Adeno-associated virus (AAV) gene therapy is making rapid strides owing to its wide range of therapeutic applications. However, development of serious immune responses to the capsid antigen or the therapeutic transgene product hinders its full clinical impact. Immune suppressive (IS) drug treatments have been used in various clinical trials to prevent the deleterious effects of cytotoxic T cells to the viral vector or transgene, although there is no consensus on the best treatment regimen, dosage, or schedule. Regulatory T cells (Tregs) are crucial for maintaining tolerance against self or nonself antigens. Of importance, Tregs also play an important role in dampening immune responses to AAV gene therapy, including tolerance induction to the transgene product. Approaches to harness the tolerogenic effect of Tregs include the use of selective IS drugs that expand existing Tregs, and skew activated conventional T cells into antigen-specific peripherally induced Tregs. In addition, Tregs can be expanded ex vivo and delivered as cellular therapy. Furthermore, receptor engineering can be used to increase the potency and specificity of Tregs allowing for suppression at lower doses and reducing the risk of disrupting protective immunity. Because immune-mediated toxicities to AAV vectors are a concern in the clinic, strategies that can enhance or preserve Treg function should be considered to improve both the safety and efficacy of AAV gene therapy.
Collapse
Affiliation(s)
- Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Tu T, Wettengel J, Xia Y, Testoni B, Littlejohn M, Le Bert N, Ebert G, Verrier ER, Tavis JE, Cohen C. Major open questions in the hepatitis B and D field - Proceedings of the inaugural International emerging hepatitis B and hepatitis D researchers workshop. Virology 2024; 595:110089. [PMID: 38640789 PMCID: PMC11517827 DOI: 10.1016/j.virol.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Westmead, NSW, Australia.
| | - Jochen Wettengel
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA; Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany; German Center for Infection Research, Munich Partner Site, 81675, Munich, Germany
| | - Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Center for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; Hubei Jiangxia Laboratory, Wuhan, China; Pingyuan Laboratory, Henan, China
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon, Lyon, France; University of Lyon, Université Claude-Bernard, Lyon, France; Hepatology Institute of Lyon, France
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital and Department of Infectious Disease, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich /Helmholtz Munich, Munich, Germany
| | - Eloi R Verrier
- University of Strasbourg, Inserm, Institute for Translational Medicine and Liver Disease, UMR_S1110, Strasbourg, France
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine and the Saint Louis University Institute for Drug and Biotherapeutic Innovation, Saint Louis, MO, USA
| | | |
Collapse
|
31
|
Ahodantin J, Wu J, Funaki M, Flores J, Wang X, Zheng P, Liu Y, Su L. Siglec-H -/- Plasmacytoid Dendritic Cells Protect Against Acute Liver Injury by Suppressing IFN-γ/Th1 Response and Promoting IL-21 + CD4 T Cells. Cell Mol Gastroenterol Hepatol 2024; 18:101367. [PMID: 38849082 PMCID: PMC11296256 DOI: 10.1016/j.jcmgh.2024.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND & AIMS Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.
Collapse
Affiliation(s)
- James Ahodantin
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| | - Jiapeng Wu
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Masaya Funaki
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jair Flores
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xu Wang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Yang Liu
- OncoC4, Inc, Rockville, Maryland
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pharmacology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Microbiology and Immunology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland; Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
32
|
Troise D, Infante B, Mercuri S, Catalano V, Ranieri E, Stallone G. Dendritic Cells: A Bridge between Tolerance Induction and Cancer Development in Transplantation Setting. Biomedicines 2024; 12:1240. [PMID: 38927447 PMCID: PMC11200833 DOI: 10.3390/biomedicines12061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Dendritic cells (DCs) are a heterogeneous group of antigen-presenting cells crucial for fostering allograft tolerance while simultaneously supporting host defense against infections and cancer. Within the tumor microenvironment, DCs can either mount an immune response against cancer cells or foster immunotolerance, presenting a dual role. In immunocompromised individuals, posttransplant malignancies pose a significant health concern, with DCs serving as vital players in immune responses against cancer cells. Both recipient- and donor-derived DCs play a critical role in the rejection process, infiltrating the transplanted organ and sustaining T-cell responses. The use of immunosuppressive drugs represents the predominant approach to control this immunological barrier in transplanted organs. Evidence has shed light on the immunopharmacology of these drugs and novel strategies for manipulating DCs to promote allograft survival. Therefore, comprehending the mechanisms underlying this intricate microenvironment and the effects of immunosuppressive therapy on DCs is crucial for developing targeted therapies to reduce graft failure rates. This review will delve into the fundamental immunobiology of DCs and provide a detailed exploration of their clinical significance concerning alloimmune responses and posttransplant malignancies.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Valeria Catalano
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Elena Ranieri
- Unit of Clinical Pathology, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
33
|
Marques-da-Silva C, Schmidt-Silva C, Kurup SP. Hepatocytes and the art of killing Plasmodium softly. Trends Parasitol 2024; 40:466-476. [PMID: 38714463 PMCID: PMC11156546 DOI: 10.1016/j.pt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/09/2024]
Abstract
The Plasmodium parasites that cause malaria undergo asymptomatic development in the parenchymal cells of the liver, the hepatocytes, prior to infecting erythrocytes and causing clinical disease. Traditionally, hepatocytes have been perceived as passive bystanders that allow hepatotropic pathogens such as Plasmodium to develop relatively unchallenged. However, now there is emerging evidence suggesting that hepatocytes can mount robust cell-autonomous immune responses that target Plasmodium, limiting its progression to the blood and reducing the incidence and severity of clinical malaria. Here we discuss our current understanding of hepatocyte cell-intrinsic immune responses that target Plasmodium and how these pathways impact malaria.
Collapse
Affiliation(s)
- Camila Marques-da-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Clyde Schmidt-Silva
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Samarchith P Kurup
- Department of Cellular Biology, University of Georgia, Athens, GA, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
34
|
Discepolo V, Kelly CP, Koning F, Schuppan D. How Future Pharmacologic Therapies for Celiac Disease Will Complement the Gluten-Free Diet. Gastroenterology 2024; 167:90-103. [PMID: 38604542 DOI: 10.1053/j.gastro.2024.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 04/13/2024]
Abstract
The only proven treatment for celiac disease is adherence to a strict, lifelong, gluten-free diet. However, complete dietary gluten avoidance is challenging and a substantial number of patients do not respond fully, clinically, or histologically, despite their best efforts. As celiac disease is common and its central pathophysiology is well elucidated, it has become attractive for drug development to address the limitations of dietary treatment. Most efforts address nonresponsive celiac disease, defined as continued symptoms and/or signs of disease activity despite a gluten-free diet, and the more severe forms of refractory celiac disease, types I and II. An increasing spectrum of therapeutic approaches target defined mechanisms in celiac disease pathogenesis and some have advanced to current phase 2 and 3 clinical studies. We discuss these approaches in terms of potential efficiency, practicability, safety, and need, as defined by patients, regulatory authorities, health care providers, and payors.
Collapse
Affiliation(s)
- Valentina Discepolo
- Department of Translational Medical Science and European Laboratory for the Investigation of Food Induced Diseases, University of Naples Federico II, Naples, Italy.
| | - Ciarán P Kelly
- Celiac Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Detlef Schuppan
- Celiac Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts; Institute of Translational Immunology and Research Center for Immunotherapy, Center for Celiac Disease and Autoimmunity, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
35
|
Zhu L, Yu X, Tang X, Hu C, Wu L, Liu Y, Zhou Q. Evolving landscape of treatments targeting the microenvironment of liver metastases in non-small cell lung cancer. Chin Med J (Engl) 2024; 137:1019-1032. [PMID: 38251678 PMCID: PMC11062672 DOI: 10.1097/cm9.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
ABSTRACT Liver metastases (LMs) are common in lung cancer. Despite substantial advances in diagnosis and treatment, the survival rate of patients with LM remains low as the immune-suppressive microenvironment of the liver allows tumor cells to evade the immune system. The impact of LMs on the outcomes of immune checkpoint inhibitors in patients with solid tumors has been the main focus of recent translational and clinical research. Growing evidence indicates that the hepatic microenvironment delivers paracrine and autocrine signals from non-parenchymal and parenchymal cells. Overall, these microenvironments create pre- and post-metastatic conditions for the progression of LMs. Herein, we reviewed the epidemiology, physiology, pathology and immunology, of LMs associated with non-small cell lung cancer and the role and potential targets of the liver microenvironment in LM in each phase of metastasis. Additionally, we reviewed the current treatment strategies and challenges that should be overcome in preclinical and clinical investigations. These approaches target liver elements as the basis for future clinical trials, including combinatorial interventions reported to resolve hepatic immune suppression, such as immunotherapy plus chemotherapy, immunotherapy plus radiotherapy, immunotherapy plus anti-angiogenesis therapy, and surgical resection.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan 610041, China
| | - Xiaojun Tang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
36
|
Sollid LM. Tolerance-inducing therapies in coeliac disease - mechanisms, progress and future directions. Nat Rev Gastroenterol Hepatol 2024; 21:335-347. [PMID: 38336920 DOI: 10.1038/s41575-024-00895-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Coeliac disease is an autoinflammatory condition caused by immune reactions to cereal gluten proteins. Currently, the only available treatment for the condition is a lifelong avoidance of gluten proteins in the diet. There is an unmet need for alternative therapies. Coeliac disease has a strong association with certain HLA-DQ allotypes (DQ2.5, DQ2.2 and DQ8), and these disease-associated HLA-DQ molecules present deamidated gluten peptides to gluten-specific CD4+ T cells. The gluten-specific CD4+ T cells are the drivers of the immune reactions leading to coeliac disease. Once established, the clonotypes of gluten-specific CD4+ T cells persist for decades, explaining why patients must adhere to a gluten-free diet for life. Given the key pathogenic role of gluten-specific CD4+ T cells, tolerance-inducing therapies that target these T cells are attractive for treatment of the disorder. Lessons learned from coeliac disease might provide clues for treatment of other HLA-associated diseases for which the disease-driving antigens are unknown. Thus, intensive efforts have been and are currently implemented to bring an effective tolerance-inducing therapy for coeliac disease. This Review discusses mechanisms of the various approaches taken, summarizing the progress made, and highlights future directions in this field.
Collapse
Affiliation(s)
- Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
37
|
Yang YP, Bai M, Cheng YX, Feng X, Zhang YY, Zhang YY, Liu MY, Duan YQ. Based on the prognosis model of immunogenes, the prognosis model was constructed to predict the invasion of immune genes and immune cells related to primary liver cancer and its experimental validation. Heliyon 2024; 10:e27362. [PMID: 38560168 PMCID: PMC10980948 DOI: 10.1016/j.heliyon.2024.e27362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Background Primary liver cancer (PLC) is a prevalent malignancy of the digestive system characterized by insidious symptom onset and a generally poor prognosis. Recent studies have highlighted a significant correlation between the initiation and prognosis of liver cancer and the immune function of PLC patients. Purpose Revealing the expression of PLC-related immune genes and the characteristics of immune cell infiltration provides assistance for the analysis of clinical pathological parameters and prognosis of PLC patients. Methods PLC-related differentially expressed genes (DEGs) with a median absolute deviation (MAD > 0.5) were identified from TCGA and GEO databases. These DEGs were intersected with immune-related genes (IRGs) from the ImmPort database to obtain PLC-related IRGs. The method of constructing a prognostic model through immune-related gene pairs (IRGPs) is used to obtain IRGPs and conduct the selection of central immune genes. The central immune genes obtained from the selection of IRGPs are validated in PLC. Subsequently, the relative proportions of 22 types of immune cells in different immune risk groups are evaluated, and the differential characteristics of PLC-related immune cells are verified through animal experiments. Results Through database screening and the construction of an IRGP prognosis model, 84 pairs of IRGPs (P < 0.001) were ultimately obtained. Analysis of these 84 IRGPs revealed 11 central immune genes related to PLC, showing differential expression in liver cancer tissues compared to normal liver tissues. Results from the CiberSort platform indicate differential expression of immune cells such as naive B cells, macrophages, and neutrophils in different immune risk groups. Animal experiments demonstrated altered immune cell proportions in H22 tumor-bearing mice, validating findings from peripheral blood and spleen homogenate analyses. Conclusion Our study successfully predicted and validated PLC-related IRGs and immune cells, suggesting their potential as prognostic indicators and therapeutic targets for PLC.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Gansu University of Traditional Chinese Medicine, College of Basic Medical Sciences, Lanzhou, 730000, PR China
| | - Min Bai
- Gansu University of Traditional Chinese Medicine, College of Basic Medical Sciences, Lanzhou, 730000, PR China
| | - Yin-Xia Cheng
- Ningxia Medical University, College of Traditional Chinese Medicine, Yinchuan, 750000, PR China
| | - Xin Feng
- Gansu University of Traditional Chinese Medicine, College of Basic Medical Sciences, Lanzhou, 730000, PR China
| | - Yan-Ying Zhang
- Gansu University of Traditional Chinese Medicine, College of Basic Medical Sciences, Lanzhou, 730000, PR China
| | - Yuan-Yuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Basic Medical Sciences, Lanzhou, 730000, PR China
| | - Meng-Ya Liu
- Gansu University of Traditional Chinese Medicine, College of Basic Medical Sciences, Lanzhou, 730000, PR China
| | - Yong-Qiang Duan
- Ningxia Medical University, College of Traditional Chinese Medicine, Yinchuan, 750000, PR China
| |
Collapse
|
38
|
Pinto AT, Lukacs-Kornek V. The role of dendritic cells in MASH: friends or foes? Front Immunol 2024; 15:1379225. [PMID: 38650949 PMCID: PMC11033439 DOI: 10.3389/fimmu.2024.1379225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Dendritic cells (DCs) are major antigen-presenting cells that connect innate and adaptive immunity. Hepatic DCs are less activated and contribute to maintain the tolerogenic environment of the liver under steady state. Several studies indicated DCs in metabolic dysfunction-associated steatohepatitis (MASH), representing a substantial burden on healthcare systems due to its association with liver-related morbidity and mortality. Studies highlighted the potential disease-promoting role of liver DCs in the development of MASH while other experimental systems suggested their protective role. This review discusses this controversy and the current understanding of how DCs affect the pathogenesis of MASH.
Collapse
Affiliation(s)
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
39
|
Martínez-López S, Ángel-Gomis E, Gómez-Hurtado I, Fernández-Iglesias A, Morante J, Gracia-Sancho J, Boix P, Cubero FJ, Zapater P, Caparrós E, Francés R. Cirrhosis-downregulated LSECtin can be retrieved by cytokines, shifts the TLR-induced LSECs secretome and correlates with the hepatic Th response. Liver Int 2024; 44:996-1010. [PMID: 38293766 DOI: 10.1111/liv.15836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND AND AIMS We evaluated tolerogenic C-type lectin LSECtin loss in cirrhosis and its potential regulation by cytokines. METHODS Liver tissue from patients with cirrhosis and healthy controls, immortalised and generated LSECtin-CRISPR immortalised LSECs, and murine primary LSECs from the CCl4 model were handled. RESULTS LSECtin expression was reduced in liver tissue from cirrhotic patients, and it decreased from compensated to decompensated disease. Increased phosphorylation of MAPK, Akt and NFkB was observed upon LSECtin stimulation in LSEC murine cell line, showing a pattern of inflammatory and chemotactic cytokines either restrained (IL-10, CCL4) or unrestrained (TNF-α, IL-1β, IL-6, CCL2). CD44 attenuated whereas LAG-3 increased all substrates phosphorylation in combination with TLR4 and TLR2 ligands except for NFkB. TNF-α, IL-1 β, IL-6 and CCL2 were restrained by LSECtin crosslinking on TLRs studied. Conversely, IL-10 and CCL4 were upregulated, suggesting a LSECtin-TLRs synergistic effect. Also, LSECtin was significantly induced after IL-13 stimulation or combined with anti-inflammatory cytokines in cirrhotic and immortalised LSECs. Th17 and regulatory T cells were progressively increased in the hepatic tissue from compensated to decompensated patients. A significant inverse correlation was present between gene expression levels of CLEC4G/LSECtin and RORγT and FOXP3 in liver tissues. CONCLUSION LSECtin restrains TLR proinflammatory secretome induced on LSECs by interfering immune response control, survival and MAPKs signalling pathways. The cytokine-dependent induction of LSECtin and the association between LSECtin loss and Th17 cell subset expansion in the liver, provides a solid background for exploring LSECtin retrieval as a mechanism to reprogram LSEC homeostatic function hampered during cirrhosis.
Collapse
Affiliation(s)
- Sebastián Martínez-López
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Enrique Ángel-Gomis
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Isabel Gómez-Hurtado
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Anabel Fernández-Iglesias
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Liver Vascular Biology Research Group, IDIBAPS, Barcelona, Spain
| | - Javier Morante
- Instituto de Neurociencias, CSIC-UMH, San Juan de Alicante, Spain
| | - Jordi Gracia-Sancho
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Liver Vascular Biology Research Group, IDIBAPS, Barcelona, Spain
| | - Paula Boix
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Francisco J Cubero
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Pedro Zapater
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| | - Esther Caparrós
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
40
|
Mladenić K, Lenartić M, Marinović S, Polić B, Wensveen FM. The "Domino effect" in MASLD: The inflammatory cascade of steatohepatitis. Eur J Immunol 2024; 54:e2149641. [PMID: 38314819 DOI: 10.1002/eji.202149641] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly common complication of obesity, affecting over a quarter of the global adult population. A key event in the pathophysiology of MASLD is the development of metabolic-associated steatohepatitis (MASH), which greatly increases the chances of developing cirrhosis and hepatocellular carcinoma. The underlying cause of MASH is multifactorial, but accumulating evidence indicates that the inflammatory process in the hepatic microenvironment typically follows a pattern that can be roughly divided into three stages: (1) Detection of hepatocyte stress by tissue-resident immune cells including γδ T cells and CD4-CD8- double-negative T cells, followed by their secretion of pro-inflammatory mediators, most notably IL-17A. (2) Recruitment of pro-inflammatory cells, mostly of the myeloid lineage, and initiation of inflammation through secretion of effector-type cytokines such as TNF, TGF-β, and IL-1β. (3) Escalation of the inflammatory response by recruitment of lymphocytes including Th17, CD8 T, and B cells leading to chronic inflammation, hepatic stellate cell activation, and fibrosis. Here we will discuss these three stages and how they are consecutively linked like falling domino tiles to the pathophysiology of MASH. Moreover, we will highlight the clinical potential of inflammation as a biomarker and therapeutic target for the treatment of MASLD.
Collapse
Affiliation(s)
- Karlo Mladenić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sonja Marinović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Division of Molecular Medicine, Laboratory for Personalized Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
41
|
Li Z, Wang S, Xu Q, Su X, Wang Y, Wang L, Zhang Y. The double roles of T cell-mediated immune response in the progression of MASLD. Biomed Pharmacother 2024; 173:116333. [PMID: 38479177 DOI: 10.1016/j.biopha.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease(MASLD), formerly known as non-alcoholic fatty liver disease(NAFLD), has become a major cause of chronic liver disease and a significant risk factor for hepatocellular carcinoma, which poses a huge burden on global public health and economy. MASLD includes steatotic liver disease, steatohepatitis, and cirrhosis, and the latter two cause great harm to human health and life, even complicated with liver cancer. Immunologic mechanism plays a major role in promoting its development into hepatitis and cirrhosis. Now more and more evidences show that T cells play an important role in the progression of MASLD. In this review, we discuss the double roles of T cells in MASLD from the perspective of T cell response pathways, as well as new evidences regarding the possible application of immunomodulatory therapy in MASH.
Collapse
Affiliation(s)
- Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Shujun Wang
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241000, China
| | - Qinchen Xu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province 250021, China
| | - Lina Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China.
| | - Yong Zhang
- Shandong Provincial Third Hospital Affiliated to Shandong University, Jinan, Shandong Province 250031, China.
| |
Collapse
|
42
|
Roggendorf H, Shouval D, Roggendorf M, Gerken G. Longterm Outcome of Therapeutic Vaccination with a Third Generation Pre-S/S HBV Vaccine (PreHevbrio R) of Chronically HBV Infected Patients. J Pers Med 2024; 14:364. [PMID: 38672991 PMCID: PMC11050803 DOI: 10.3390/jpm14040364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Several antiviral treatment regimens for chronic hepatitis B (CHB) virus infection have been shown to be effective in suppressing viral load and reducing the risk of hepatocellular injury and its complications. It has been hypothesized that high levels of circulating HBV surface antigen(s) may lead to immune tolerance against HBV and contribute to chronic carriership. Conversely, low-level HBsAg may create a window for the reconstitution of an HBV-specific immune response through vaccination and control of infection. Previous studies in non-responders to yeast-derived HBV vaccines, using a third-generation pre-S/S vaccine, have led to up to 95% anti-HBs seroconversion. This report evaluates the long-term outcome after experimental vaccination with a pre-S/S HBV vaccine intended as a therapeutic intervention in chronic HBV carriers. Four low-level HBsAg carriers (<500 IU/mL) were vaccinated three to seven times with 20 μg PreHevbrioR. Three out of four carriers eliminated HBsAg completely and seroconverted to anti-HBs. One patient seroconverted to anti-HBs but remained with a borderline HBsAg titer (10 IU/mL). Serum anti-HBs levels following repeated vaccination varied between 27 and >1000 IU/L, respectively. Long-term observation (>6 years) showed that after discontinuing NUC treatment for at least two years, HBsAg and HBV DNA remained negative with anti-HBs positive titers ranging between 80 and >1000 IU/L. Based on our preliminary observations, there is a rationale to further evaluate the role of this vaccine as a therapeutic agent.
Collapse
Affiliation(s)
- Hedwig Roggendorf
- Institute of Molecular Immunology, University Hospital TUM, 81675 Munich, Germany
| | - Daniel Shouval
- Liver Unit, Hadassah Medical Center, POB 12000, Jerusalem 91120, Israel;
| | - Michael Roggendorf
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum, 81675 Munich, Germany;
| | - Guido Gerken
- Department of Gastroenterology, Helios Klinikum Niedernberg, 42551 Velbert, Germany;
| |
Collapse
|
43
|
Trinchese G, Cimmino F, Catapano A, Cavaliere G, Mollica MP. Mitochondria: the gatekeepers between metabolism and immunity. Front Immunol 2024; 15:1334006. [PMID: 38464536 PMCID: PMC10920337 DOI: 10.3389/fimmu.2024.1334006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Metabolism and immunity are crucial monitors of the whole-body homeodynamics. All cells require energy to perform their basic functions. One of the most important metabolic skills of the cell is the ability to optimally adapt metabolism according to demand or availability, known as metabolic flexibility. The immune cells, first line of host defense that circulate in the body and migrate between tissues, need to function also in environments in which nutrients are not always available. The resilience of immune cells consists precisely in their high adaptive capacity, a challenge that arises especially in the framework of sustained immune responses. Pubmed and Scopus databases were consulted to construct the extensive background explored in this review, from the Kennedy and Lehninger studies on mitochondrial biochemistry of the 1950s to the most recent findings on immunometabolism. In detail, we first focus on how metabolic reconfiguration influences the action steps of the immune system and modulates immune cell fate and function. Then, we highlighted the evidence for considering mitochondria, besides conventional cellular energy suppliers, as the powerhouses of immunometabolism. Finally, we explored the main immunometabolic hubs in the organism emphasizing in them the reciprocal impact between metabolic and immune components in both physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maria Pina Mollica
- Department of Biology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
44
|
Dumitru A, Matei E, Cozaru GC, Chisoi A, Alexandrescu L, Popescu RC, Butcaru MP, Dumitru E, Rugină S, Tocia C. Endotoxin Inflammatory Action on Cells by Dysregulated-Immunological-Barrier-Linked ROS-Apoptosis Mechanisms in Gut-Liver Axis. Int J Mol Sci 2024; 25:2472. [PMID: 38473721 DOI: 10.3390/ijms25052472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Our study highlighted the immune changes by pro-inflammatory biomarkers in the gut-liver-axis-linked ROS-cell death mechanisms in chronic and acute inflammations when gut cells are exposed to endotoxins in patients with hepatic cirrhosis or steatosis. In duodenal tissue samples, gut immune barrier dysfunction was analyzed by pro-inflammatory biomarker expressions, oxidative stress, and cell death by flow cytometry methods. A significant innate and adaptative immune system reaction was observed as result of persistent endotoxin action in gut cells in chronic inflammation tissue samples recovered from hepatic cirrhosis with the A-B child stage. Instead, in patients with C child stage of HC, the endotoxin tolerance was installed in cells, characterized by T lymphocyte silent activation and increased Th1 cytokines expression. Interesting mechanisms of ROS-cell death were observed in chronic and acute inflammation samples when gut cells were exposed to endotoxins and immune changes in the gut-liver axis. Late apoptosis represents the chronic response to injury induction by the gut immune barrier dysfunction, oxidative stress, and liver-dysregulated barrier. Meanwhile, necrosis represents an acute and severe reply to endotoxin action on gut cells when the immune system reacts to pro-inflammatory Th1 and Th2 cytokines releasing, offering protection against PAMPs/DAMPs by monocytes and T lymphocyte activation. Flow cytometric analysis of pro-inflammatory biomarkers linked to oxidative stress-cell death mechanisms shown in our study recommends laboratory techniques in diagnostic fields.
Collapse
Affiliation(s)
- Andrei Dumitru
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medical Sciences Academy, 1 I.C. Bratianu Street, 030167 Bucharest, Romania
| | - Anca Chisoi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medical Sciences Academy, 1 I.C. Bratianu Street, 030167 Bucharest, Romania
| | - Luana Alexandrescu
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Răzvan Cătălin Popescu
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Mihaela Pundiche Butcaru
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Eugen Dumitru
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Sorin Rugină
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Cristina Tocia
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| |
Collapse
|
45
|
Lasagna A, Sacchi P. The ABC of Immune-Mediated Hepatitis during Immunotherapy in Patients with Cancer: From Pathogenesis to Multidisciplinary Management. Cancers (Basel) 2024; 16:795. [PMID: 38398187 PMCID: PMC10886483 DOI: 10.3390/cancers16040795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Immune-mediated hepatotoxicity (IMH) is not-so-rare complication during treatment with immune checkpoint inhibitors (ICIs). This narrative review aims to report the current knowledge on hepatic immune-related adverse events (irAEs) during immunotherapy from pathogenesis to multidisciplinary management. The majority of cases of IMH are asymptomatic and only a few patients may have clinical conditions. The severity of IMH is usually stratified according to Common Terminology for Clinical Adverse Events (CTCAE) criteria, but these scores may overestimate the clinical severity of IMH compared to the Drug-Induced Liver Injury Network (DILIN) scale. The differential diagnosis of IMH is challenging because the elevated liver enzymes can be due to a number of etiologies such as viral infection, autoimmune and metabolic diseases, liver metastases, biliary diseases, and other drugs. The cornerstones of IMH management are represented by withholding or delaying ICI administration and starting immunosuppressive therapy. A multidisciplinary team, including oncologists, hepatologists, internists, and emergency medicine physicians, is essential for the management of IMH.
Collapse
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Sacchi
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
46
|
Pei L, Li R, Wang X, Xu D, Gong F, Chen W, Zheng X, Liu W, Zhao S, Wang Q, Mao E, Chen E, Chen Y, Yang Z. MSCs-derived extracellular vesicles alleviate sepsis-associated liver dysfunction by inhibiting macrophage glycolysis-mediated inflammatory response. Int Immunopharmacol 2024; 128:111575. [PMID: 38280334 DOI: 10.1016/j.intimp.2024.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Sepsis-associated liver dysfunction (SALD) aggravates the disease progression and prognosis of patients. Macrophages in the liver play a crucial role in the occurrence and development of SALD. Human umbilical cord mesenchymal stem cells (MSCs), by secreting extracellular vesicles (EVs), show beneficial effects in various inflammatory diseases. However, whether MSC-derived EVs (MSC-EVs) could ameliorate the inflammatory response in liver macrophages and the underlying mechanisms remain unclear. In this study, a mouse model of sepsis induced by lipopolysaccharide (LPS) challenge was used to investigate the immunomodulatory functions of MSC-EVs in SALD. LPS-stimulated primary Kupffer cells (KCs) and Raw264.7 were used to further explore the potential mechanisms of MSC-EVs in regulating the inflammatory response of macrophages. The results showed that MSC-EVs alleviated liver tissue injury and facilitated the polarization of M1 to M2 macrophages. Further in vitro studies confirmed that MSC-EVs treatment significantly downregulated the expression of several enzymes related to glycolysis and reduced the glycolytic flux by inhibiting hypoxia-inducible factor 1α (HIF-1α) expression, thus effectively inhibiting the inflammatory responses of macrophages. These findings reveal that the application of MSC-EVs might be a potential therapeutic strategy for treating SALD.
Collapse
Affiliation(s)
- Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanzhi Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
47
|
Liu Q, Chen G, Liu X, Tao L, Fan Y, Xia T. Tolerogenic Nano-/Microparticle Vaccines for Immunotherapy. ACS NANO 2024. [PMID: 38323542 DOI: 10.1021/acsnano.3c11647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Autoimmune diseases, allergies, transplant rejections, generation of antidrug antibodies, and chronic inflammatory diseases have impacted a large group of people across the globe. Conventional treatments and therapies often use systemic or broad immunosuppression with serious efficacy and safety issues. Tolerogenic vaccines represent a concept that has been extended from their traditional immune-modulating function to induction of antigen-specific tolerance through the generation of regulatory T cells. Without impairing immune homeostasis, tolerogenic vaccines dampen inflammation and induce tolerogenic regulation. However, achieving the desired potency of tolerogenic vaccines as preventive and therapeutic modalities calls for precise manipulation of the immune microenvironment and control over the tolerogenic responses against the autoantigens, allergens, and/or alloantigens. Engineered nano-/microparticles possess desirable design features that can bolster targeted immune regulation and enhance the induction of antigen-specific tolerance. Thus, particle-based tolerogenic vaccines hold great promise in clinical translation for future treatment of aforementioned immune disorders. In this review, we highlight the main strategies to employ particles as exciting tolerogenic vaccines, with a focus on the particles' role in facilitating the induction of antigen-specific tolerance. We describe the particle design features that facilitate their usage and discuss the challenges and opportunities for designing next-generation particle-based tolerogenic vaccines with robust efficacy to promote antigen-specific tolerance for immunotherapy.
Collapse
Affiliation(s)
- Qi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xingchi Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Lu Tao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yubo Fan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Tian Xia
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
48
|
Wang Z, Liu N, Yang Y, Tu Z. The novel mechanism facilitating chronic hepatitis B infection: immunometabolism and epigenetic modification reprogramming. Front Immunol 2024; 15:1349867. [PMID: 38288308 PMCID: PMC10822934 DOI: 10.3389/fimmu.2024.1349867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Hepatitis B Virus (HBV) infections pose a global public health challenge. Despite extensive research on this disease, the intricate mechanisms underlying persistent HBV infection require further in-depth elucidation. Recent studies have revealed the pivotal roles of immunometabolism and epigenetic reprogramming in chronic HBV infection. Immunometabolism have identified as the process, which link cell metabolic status with innate immunity functions in response to HBV infection, ultimately contributing to the immune system's inability to resolve Chronic Hepatitis B (CHB). Within hepatocytes, HBV replication leads to a stable viral covalently closed circular DNA (cccDNA) minichromosome located in the nucleus, and epigenetic modifications in cccDNA enable persistence of infection. Additionally, the accumulation or depletion of metabolites not only directly affects the function and homeostasis of immune cells but also serves as a substrate for regulating epigenetic modifications, subsequently influencing the expression of antiviral immune genes and facilitating the occurrence of sustained HBV infection. The interaction between immunometabolism and epigenetic modifications has led to a new research field, known as metabolic epigenomics, which may form a mutually reinforcing relationship with CHB. Herein, we review the recent studies on immunometabolism and epigenetic reprogramming in CHB infection and discuss the potential mechanisms of persistent HBV infection. A deeper understanding of these mechanisms will offer novel insights and targets for intervention strategies against chronic HBV infection, thereby providing new hope for the treatment of related diseases.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Liu
- Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengkun Tu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
49
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
50
|
Szafranska K, Sørensen KK, Lalor PF, McCourt P. Sinusoidal cells and liver immunology. SINUSOIDAL CELLS IN LIVER DISEASES 2024:53-75. [DOI: 10.1016/b978-0-323-95262-0.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|