1
|
Wang M, Zheng L, Sun F, Ye Q, Liang P, Pang K, Ye Z, Wang Y. Revolutionizing Escherichia coli detection in real samples with digital SERS aptamer sensor technology. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126314. [PMID: 40311255 DOI: 10.1016/j.saa.2025.126314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Aptamer sensors based on surface-enhanced Raman scattering (SERS) technology have demonstrated great potential in the ultrasensitive and rapid detection of Escherichia coli (E. coli). Herein, this paper presents a digital SERS aptamer sensor. This sensor integrates ordered nanoscale array synthesis technology and digital analysis technology, enabling highly sensitive and rapid bacterial quantification. The ordered monolayer gold nanosphere arrays (Au NS) can form uniform and dense "hot spots" on the silicon wafer due to their uniform spherical structures and narrow gaps. Moreover, digital SERS is adopted to further optimize the signal uniformity so as to achieve precise quantification. The sensor modules are combined together through base pairing. The aptamers labeled with Raman tags are detached from the complementary DNA due to the competition of the target substance, thus realizing the detection of E. coli. The digital SERS aptamer sensor has been verified to possess excellent selectivity and reproducibility. It has a wide dynamic linear detection range from 1.0 * 101 to 1.0 * 109 CFU/ml and a detection limit of 0.657 CFU/ml, maintaining excellent specificity even in the presence of mixed bacterial interference. The spiked recoveries in actual samples range from 98.80 % to 99.81 %. Leveraging different aptamers and digital analysis, the sensor holds promise for food safety and environmental monitoring applications.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Li Zheng
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Fan Sun
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qingdan Ye
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
| | - Kun Pang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zihong Ye
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yufeng Wang
- Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Das M, Kiruthiga C, Shafreen RB, Nachammai K, Selvaraj C, Langeswaran K. Harnessing the human microbiome and its impact on immuno-oncology and nanotechnology for next-generation cancer therapies. Eur J Pharmacol 2025; 996:177436. [PMID: 40023356 DOI: 10.1016/j.ejphar.2025.177436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The integration of microbiome research and nanotechnology represents a significant advancement in immuno-oncology, potentially improving the effectiveness of cancer immunotherapies. Recent studies highlight the influential role of the human microbiome in modulating immune responses, presenting new opportunities to enhance immune checkpoint inhibitors (ICIs) and other cancer therapies. Nanotechnology offers precise drug delivery and immune modulation capabilities, minimizing off-target effects while maximizing therapeutic outcomes. This review consolidates current knowledge on the interactions between the microbiome and the immune system, emphasizing the microbiome's impact on ICIs, and explores the incorporation of nanotechnology in cancer treatment strategies. Additionally, it provides a forward-looking perspective on the synergistic potential of microbiome modulation and nanotechnology to overcome existing challenges in immuno-oncology. This integrated approach may enhance the personalization and effectiveness of next-generation cancer treatments, paving the way for transformative patient care.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | | | - R Beema Shafreen
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India
| | - Kathiresan Nachammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CsrDD Lab, Department of Microbiology, Dr. D. Y. Patil Medical College Hospital & Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to Be University), Pimpri, Pune, 411018, India.
| | - K Langeswaran
- Department of Biomedical Science, Alagappa University, Karaikudi, 630003, India; Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
3
|
Klak K, Maciuszek M, Michalik A, Mazur M, Zawisza M, Pecio A, Nowak B, Chadzinska M. Fire in the belly: Stress and antibiotics induce dysbiosis and inflammation in the gut of common carp. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110301. [PMID: 40157582 DOI: 10.1016/j.fsi.2025.110301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Fish are exposed to numerous stressors which negatively affect their immune response and increase infection susceptibility. The risk of bacterial infections results in the excessive and preventive use of antibiotics. Therefore, we aimed to study how antibiotic treatment and restraint stress will affect the stress response, microbiota composition, gut morphology, and inflammatory reaction in common carp. Both restraint stress and antibiotic treatment increased cortisol level. Moreover, antibiotics induced dysbiosis in fish gut, manifested by a decrease in the total abundance of bacteria, and a shift in bacteria diversity, including a reduced number of Aeromonas, Bacteroides, Barnesiellaceae, Cetobacterium and Shewanella and an increased abundance of Flavobacterium. To a lesser extent, stress modified gut microbiota, as it decreased bacteria number and slightly changed the microbiota composition by decreasing Cetobacterium abundance and increasing Vibrio abundance. Microbiota of the antibiotic-treated and stressed fish shifted from the beneficial bacterial genera - Cetobacterium and Bacteroides, to the increased presence of unfavorable bacteria such as Brevinema, Flavobacterium and Desulfovibrionaceae. Stress and antibiotic-induced changes in the gut microbiota were related to the changes in the gut morphology when the higher abundance of goblet and rodlet cells and increased secretion activity of goblet cells were observed. Moreover, up-regulation of the expression of genes encoding pro-inflammatory mediators and cytokines involved in the Th17 immune response was present in the gut of the antibiotic-treated and stressed fish. We conclude that in carp antibiotics and stress alter the abundance and composition of the microbiota and induce Th17-dependent inflammatory reaction in the gut. Moreover, our results strongly suggest the interplay of the stress axis and the brain-gut-microbiota axis.
Collapse
Affiliation(s)
- Katarzyna Klak
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland.
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Anna Michalik
- Department of Invertebrate Development and Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Mikolaj Mazur
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland.
| | - Maria Zawisza
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland.
| | - Anna Pecio
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| | - Barbara Nowak
- Institute for Marine and Antarctic Studies - Launceston, University of Tasmania, Launceston, Tasmania, Australia.
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
4
|
Chen CC, Chen YP, Yang HT, Chen YL, Wu CW, Gong HY, Ho YS, Ho YN. Temperature-dependent shifts in gut microbiota and metabolome of olive flounder (Paralichthys olivaceus): implications for cold-water aquaculture expansion and probiotic applications. Anim Microbiome 2025; 7:49. [PMID: 40369686 PMCID: PMC12079817 DOI: 10.1186/s42523-025-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND In recent years, rising temperatures due to climate change have become significant stressors in aquatic environments, impacting disease incidence, growth, and gut microbiota in fish. Cold-water species, such as the olive flounder (Paralichthys olivaceus), are particularly vulnerable to increasing water temperatures. Despite its economic importance as a species farmed in East Asia, research on temperature-dependent shifts in the gut microbiota and metabolome of olive flounder remains limited. This study investigates the effects of water temperature on the gut microbiota and metabolome of olive flounder using full-length 16 S rRNA sequencing with Oxford Nanopore Technologies and metabolomics analysis with high-resolution liquid chromatography-mass spectrometry (LC-MS). The analysis compares individuals exposed to three water temperatures (18 °C, 22 °C, and 26 °C). RESULTS Temperature significantly influenced the composition of gut microbiota, with an increase in Gammaproteobacteria abundance at higher temperatures. Potential pathogens such as Vibrio and Photobacterium increased from 22 °C to 26 °C, while Pseudomonas declined, suggesting an elevated risk of pathogen infection at 26 °C. Functional predictions revealed that gut bacteria regulated host metabolism, particularly carbohydrate, amino acid, and lipid pathways. Metabolomic analysis showed reduced levels of polyunsaturated fatty acids (PUFAs) and phosphatidylcholine (PC)-related metabolites at higher temperatures. Notably, the umami flavor-related compound aspartic acid decreased, while the bitter flavor-related compound phenylalanine increased. Correlation analysis identified significant associations between bacterial genera, such as Comamonas,Pseudomonas,Sphingomonas, and Stentotrophomonas (positive correlation), and Legionella and Phaeobacter (negative correlation), with shifts in PUFAs and PC metabolites. CONCLUSIONS This study demonstrates that environmental temperature significantly affects the gut microbiota and muscle metabolites of olive flounder. Higher temperatures diversified gut bacterial communities and altered metabolite profiles, with reductions in PUFAs and PC-related compounds linked to specific bacterial genera. These findings highlight the potential of these bacterial genera as biomarkers or probiotics for improving aquaculture practices and environmental adaptation strategies. By establishing a strong correlation between gut microbiota and muscle metabolites, this research provides insights that could contribute to sustainable flounder farming and enhance resilience to climate change.
Collapse
Affiliation(s)
- Che-Chun Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ping Chen
- Eastern Fishery Research Center, Fisheries Research Institute, Ministry of Agriculture, Taitung, Taiwan
| | - Hsiao-Tsu Yang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ling Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chen-Wei Wu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Yuan-Shing Ho
- Eastern Fishery Research Center, Fisheries Research Institute, Ministry of Agriculture, Taitung, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan.
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
5
|
Zhao JX, Elsheikha HM, Shang KM, Su JW, Wei YJ, Qin Y, Zhao ZY, Ma H, Zhang XX. Investigation of the genetic diversity of gut mycobiota of the wild and laboratory mice. Microbiol Spectr 2025; 13:e0284024. [PMID: 40162766 PMCID: PMC12054021 DOI: 10.1128/spectrum.02840-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Mice are colonized by diverse gut fungi, known as the mycobiota, which have received much less attention than bacterial microbiota. Here, we studied the diversities and structures of cecal fungal communities in wild (Lasiopodomys brandtii, Apodemus agrarius, and Microtus fortis) vs laboratory C57BL/6J mice to disentangle the contributions of gut fungi to the adaptation of mice to genetic diversity. Using ITS1 gene sequencing, we obtained 2,912 amplicon sequence variants (ASVs) and characterized the composition and diversity of cecal mycobiota in mice. There were significant differences in the composition of cecal fungal communities between wild and C57BL/6J mice, with more species diversity and richness of fungi in wild mice than C57BL/6J mice. We cultured 428 fungal strains from the cecal mycobiota, sequenced the whole genome of 48 selected strains, and identified 500,849 genes. Functional annotation analysis revealed multiple pathways related to energy metabolism, carbohydrate metabolism, fatty acid metabolism, and enzymes involved in the degradation of polysaccharides, lipids, and proteins, and secondary metabolite biosynthesis. The functions and abundance of Hypocreales and Pleosporales, which included the majority of the crucial metabolic pathways, were significantly higher in wild mice than in C57BL/6J mice. The results suggest that variations in the fungal community composition may relate to the adaptability of mice to their environmental habitats. IMPORTANCE In this study, we analyzed the fungal microbiota of three wild mouse species alongside laboratory mice using ITS1 amplicon sequencing. By integrating whole-genome sequencing with culturomics, we sequenced the genomes of 48 fungi isolated from cultured strains and investigated their biological functions to understand the role of intestinal fungi in the environmental adaptability of wild mice. This investigation has expanded the functional gene repository of gut fungi and shed new light on the intricate interplay between mice and their gut fungal communities. The data offer valuable insight into the ecological adaptation in wild mice, emphasizing the complex and dynamic relationship between the murine hosts and their mycobiota.
Collapse
Affiliation(s)
- Ji-Xin Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Kai-Meng Shang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jin-Wen Su
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yong-Jie Wei
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Zi-Yu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
6
|
Cong X, Liu X, Zhou D, Xu Y, Liu J, Tong F. Characterization and comparison of the fecal bacterial microbiota in Red Back Pine Root Snake ( Oligodon formosanus) and Chinese Slug-Eating Snake ( Pareas chinensis). Front Microbiol 2025; 16:1575405. [PMID: 40309103 PMCID: PMC12040955 DOI: 10.3389/fmicb.2025.1575405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The gastrointestinal tracts and oral cavities of animals harbor complex microbial communities that assist hosts in nutrient absorption and immune responses, thereby influencing behavior, development, reproduction, and overall health. Methods We utilized metagenomic sequencing technology to conduct a detailed analysis of the fecal bacterial communities of six Red Back Pine Root Snakes (Oligodon formosanus, XT) and three Chinese Slug-Eating Snakes (Pareas chinensis, Z) individuals. The microbial composition was assessed through taxonomic profiling, alpha diversity analysis, and functional annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results The results indicated that Proteobacteria, Bacteroidetes, Firmicutes, Verrucomicrobia, Actinobacteria, and Fusobacteria were the dominant phyla in XT samples, while Z samples additionally contained Patescibacteria. Alpha diversity analysis revealed significant differences in species abundance at the family level, with Z samples exhibiting higher microbial richness than XT. Furthermore, KEGG analysis showed that XT had higher functional gene abundance in pathways related to transcription, translation, environmental adaptation, membrane transport, cellular communities (prokaryotes), motility, and replication/repair compared to Z. Discussion This study provides a comparative analysis of their gut microbiomes, offering valuable insights for future research on zoonotic diseases, host-microbe interactions, and ecological, evolutionary, behavioral, and seasonal influences on snake microbiota. These findings contribute to a broader understanding of microbial ecology in reptiles and its implications for conservation and disease dynamics.
Collapse
Affiliation(s)
- Xiao Cong
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangnan Liu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Dan Zhou
- Fu Shun Vocational Technology Institute, Fushun, China
| | - Yunfeng Xu
- Fu Shun Vocational Technology Institute, Fushun, China
| | - Jinru Liu
- Fu Shun Vocational Technology Institute, Fushun, China
| | - Fei Tong
- Fu Shun Vocational Technology Institute, Fushun, China
| |
Collapse
|
7
|
Hayes C, Mitchell A, Huerlimann R, Jolly J, Li C, Booth DJ, Ravasi T, Nagelkerken I. Stomach Microbiome Simplification of a Coral Reef Fish at Its Novel Cold-Range Edge Under Climate Change. Mol Ecol 2025; 34:e17704. [PMID: 39985278 PMCID: PMC11934084 DOI: 10.1111/mec.17704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 02/24/2025]
Abstract
Climate-driven range extensions of animals into higher latitudes are often facilitated by phenotypic plasticity. Modifications to habitat preference, behaviour and diet can increase the persistence of range-extending species in novel high-latitude ecosystems. These strategies may be influenced by changes in their gut and stomach microbial communities that are critical to host fitness and potentially adaptive plasticity. Yet, it remains unknown if the gut and stomach microbiome of range-extending species is plastic in their novel ranges to help facilitate these modifications. Here, we categorised stomach microbiome communities of a prevalent range-extending coral reef fish along a 2000-km latitudinal gradient in a global warming hotspot, extending from their tropical core range to their temperate cold range edge. At their cold range edge, the coral reef fish's stomach microbiome showed a 59% decrease in bacterial diversity and a 164% increase in the relative abundance of opportunistic bacteria (Vibrio) compared to their core range. Microbiome diversity was unaffected by fish body size, water temperature, physiology (cellular defence and damage) and habitat type (turf, barren, oyster, kelp and coral) across their range. The observed shifts in microbiome composition suggest dysbiosis and low plasticity of tropical range-extending fishes to novel environmental conditions (e.g., temperate prey and lower seawater temperature) at their novel range edges, which may increase their susceptibility to disease in temperate ecosystems. We conclude that fishes extending their ranges to higher latitudes under ocean warming can experience a simplification (i.e., reduced diversity) of their stomach microbiome, which could restrict their current rate of range extensions or establishment in temperate ecosystems.
Collapse
Affiliation(s)
- Chloe Hayes
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Angus Mitchell
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Roger Huerlimann
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Jeffrey Jolly
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Chengze Li
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - David J. Booth
- School of the Life SciencesUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Timothy Ravasi
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonOkinawaJapan
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Ivan Nagelkerken
- Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
8
|
Loddo F, Laganà P, Rizzo CE, Calderone SM, Romeo B, Venuto R, Maisano D, Fedele F, Squeri R, Nicita A, Nirta A, Genovese G, Bartucciotto L, Genovese C. Intestinal Microbiota and Vaccinations: A Systematic Review of the Literature. Vaccines (Basel) 2025; 13:306. [PMID: 40266208 PMCID: PMC11946530 DOI: 10.3390/vaccines13030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Vaccination constitutes a low-cost, safe, and efficient public health measure that can help prevent the spread of infectious diseases and benefit the community. The fact that vaccination effectiveness varies among populations, and that the causes of this are still unclear, indicates that several factors are involved and should be thoroughly examined. The "intestinal microbiota" is the most crucial of these elements. Numerous clinical studies demonstrate the intestinal microbiota's significance in determining the alleged "immunogenicity" and efficacy of vaccines. This systematic review aimed to review all relevant scientific literature and highlight the role of intestinal microbiota in COVID-19, Salmonella typhi, Vibrio cholerae, and rotavirus vaccinations. Materials and Methods: The MESH terms "vaccines" and "microbiota" were used to search the major scientific databases PubMed, SciVerse Scopus, Web of Knowledge, and the Cochrane Central Register of Controlled Clinical Trials. Results: Between February 2024 and October 2024, the analysis was conducted using electronic databases, yielding a total of 235 references. Finally, 24 RCTs were chosen after meeting all inclusion criteria: eight studies of COVID-19, two studies of Salmonella typhi, three studies of Vibrio cholerae, and eleven studies of rotavirus. Only six of these demonstrated good study quality with a Jadad score of three or four. Conclusions: According to the review's results, the intestinal microbiota surely plays a role in vaccinations' enhanced immunogenicity, especially in younger people. As it is still unclear what mechanisms underlie this effect, more research is needed to better understand the role of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Giovanni Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| | | | - Cristina Genovese
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy; (F.L.); (P.L.); (C.E.R.); (S.M.C.); (B.R.); (R.V.); (D.M.); (F.F.); (R.S.); (A.N.); (A.N.); (L.B.)
| |
Collapse
|
9
|
Engelhart MJ, Brock OD, Till JM, Glowacki RWP, Cantwell JW, Clarke DJ, Wesener DA, Ahern PP. BT1549 coordinates the in vitro IL-10 inducing activity of Bacteroides thetaiotaomicron. Microbiol Spectr 2025; 13:e0166924. [PMID: 39868786 PMCID: PMC11878027 DOI: 10.1128/spectrum.01669-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses. Despite the importance of this microbiome-driven immunomodulation, detailed knowledge of the microbial factors that promote these responses remains limited. We have previously established that the gut symbiont Bacteroides thetaiotaomicron stimulates the production of the anti-inflammatory cytokine IL-10 via soluble factors in a Toll-like receptor 2 (TLR2)-MyD88-dependent manner. Here, using TLR2 activity reporter cell lines, we show that the capacity of B. thetaiotaomicron to stimulate TLR2 activity was not critically dependent on either of the canonical heterodimeric forms of TLR2, TLR2/TLR1, or TLR2/TLR6, that typically mediate its function. Furthermore, biochemical manipulation of B. thetaiotaomicron-conditioned media suggests that IL-10 induction is mediated by a protease-resistant or non-proteogenic factor. We next uncovered that deletion of gene BT1549, a predicted secreted lipoprotein, significantly impaired the capacity of B. thetaiotaomicron to induce IL-10, while complementation in trans restored IL-10 induction, suggesting a role for BT1549 in the immunomodulatory function of B. thetaiotaomicron. Collectively, these data provide molecular insight into the pathways through which B. thetaiotaomicron operates to promote intestinal immune tolerance and symbiosis. IMPORTANCE Intestinal homeostasis requires the establishment of peaceful interactions between the gut microbiome and the intestinal immune system. Members of the gut microbiome, like the symbiont Bacteroides thetaiotaomicron, actively induce anti-inflammatory immune responses to maintain mutualistic relationships with the host. Despite the importance of such interactions, the specific microbial factors responsible remain largely unknown. Here, we show that B. thetaiotaomicron, which stimulates Toll-like receptor 2 (TLR2) to drive IL-10 production, can stimulate TLR2 independently of TLR1 or TLR6, the two known TLR that can form heterodimers with TLR2 to mediate TLR2-dependent responses. Furthermore, we show that IL-10 induction is likely mediated by a protease-resistant or non-proteogenic factor, and that this requires gene BT1549, a predicted secreted lipoprotein and peptidase. Collectively, our work provides insight into the molecular dialog through which B. thetaiotaomicron coordinates anti-inflammatory immune responses. This knowledge may facilitate future strategies to promote such responses for therapeutic purposes.
Collapse
Affiliation(s)
- Morgan J. Engelhart
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Orion D. Brock
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jessica M. Till
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert W. P. Glowacki
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jason W. Cantwell
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - David J. Clarke
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Darryl A. Wesener
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Philip P. Ahern
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Hoffbeck C, Middleton DMRL, Wallbank JA, Boey JS, Taylor MW. Culture-Independent Species-Level Taxonomic and Functional Characterisation of Bacteroides, the Core Bacterial Genus Within Reptile Guts. Mol Ecol 2025; 34:e17685. [PMID: 39917835 PMCID: PMC11874691 DOI: 10.1111/mec.17685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/27/2025] [Indexed: 03/04/2025]
Abstract
The genus Bacteroides is a widespread and abundant bacterial taxon associated with gut microbiotas. Species within Bacteroides fill many niches, including as mutualists, commensals and pathogens for their hosts. Within many reptiles, Bacteroides is a dominant, 'core' gut bacterium that sometimes exhibits increased abundance in times of food scarcity, such as during hibernation. Here, we take a two-pronged approach to better characterise Bacteroides populations in reptile guts. Firstly, we leverage published 16S rRNA gene sequence datasets to determine the species-level distributions of Bacteroides members in reptile hosts. Secondly, we mine publicly available metagenomes to extract data for Bacteroides from reptiles, birds, amphibians and mammals, to compare the functional potential of Bacteroides in different host taxa. The 16S rRNA gene analyses revealed that B. acidifaciens is the most common Bacteroides species in reptile guts, and that different orders of reptiles differ in which Bacteroides species they harbour. The taxonomy of Bacteroides species recovered from metagenomic assembly did not differ between reptile orders or substantially across birds, amphibians and mammals. Metagenome-assembled genomes for Bacteroides species were marginally more related when their hosts were more closely related, with reptile hosts in particular harbouring markedly more unique Bacteroides MAGs compared to other hosts. Our findings indicate that hosts harbour similar profiles of Bacteroides species across broad comparisons, but with some differences between reptile groups, and that Bacteroides appears to perform largely similar roles in vertebrate host guts regardless of host relatedness.
Collapse
Affiliation(s)
- Carmen Hoffbeck
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | | | | | - Jian S. Boey
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Michael W. Taylor
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
11
|
Chu D, Zhang H, Shang Z, Liu N, Fu H, Yuan S. Gut Microecology of Four Sympatric Desert Rodents Varies by Diet. Ecol Evol 2025; 15:e70992. [PMID: 40027415 PMCID: PMC11868701 DOI: 10.1002/ece3.70992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
The gut microbiome can be one pathway by which a host rapidly acclimates and adapts to its ecological environment. Exploring how the microbiome has evolved to differ between hosts with different diets provides insights into the profound interactions between hosts and microbes within these systems. In this study, we used DNA metabarcoding techniques and macrogenomic prediction techniques to study the gut microbes of four desert rodent species with different feeding strategies in the same habitat. One species is herbivorous (Spermophilus alashanicu)s, one is granivorous (Phodopus roborovskii), another is omnivorous (Dipus sagitta), and the last (Orientallactaga sibirica) has a diet with a relatively high proportion of insects. Diets rich in plants and insects can be challenging to digest due to the abundance of indigestible fiber and stable chitin, respectively. Out of the species studied, the herbivorous Spermophilus alashanicus has the highest density of UCG-005 genes and the highest predicted abundance of genes related to digestive complexity. The composition of Phodopus roborovskii's microbiome has the highest variation between individuals, yet Phodopus roborovskii has the highest predicted abundance of genes associated with simple sugars-reflecting this species' potential adaptability to the starch within plant seeds and its constraints brought about by its smaller body size. The most insectivorous species, Orientallactaga sibirica, exhibits the highest predicted abundance of genes related to chitin degradation. This study has enhanced our understanding of the gut microbiota in the intestines of rodents as they adapt to various dietary strategies.
Collapse
Affiliation(s)
- Dongyang Chu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Haoting Zhang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Zhenghaoni Shang
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Nan Liu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Heping Fu
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| | - Shuai Yuan
- College of Grassland, Resources and EnvironmentInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Grassland Rodent Ecology and Rodent Pest Control at Universities of Inner Mongolia AutonomousHohhotChina
- Key Laboratory of Grassland Resources of the Ministry of EducationHohhotChina
| |
Collapse
|
12
|
Grobbelaar A, Osthoff G, Deacon F, Cason ED. The Faecal Microbiome Analysed from Healthy, Free-Roaming Giraffes (Giraffa camelopardalis). Curr Microbiol 2025; 82:151. [PMID: 39994074 PMCID: PMC11850562 DOI: 10.1007/s00284-025-04127-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/09/2025] [Indexed: 02/26/2025]
Abstract
Similar to other herbivores, healthy giraffes (Giraffa camelopardalis) rely on a variety of symbiotic microorganisms in their digestive systems to break down cellulose and hemicellulose. In this study, we investigate the impact that external stimuli might have on the faecal prokaryote composition of healthy, free-roaming giraffes. Faecal samples were collected from six male and seven female giraffe individuals, over a 2-year period, during the wet and dry seasons, from six locations within the Free State Province, South Africa. Giraffe populations were exposed to one of two feeding practices which included provision of supplemental feed or only naturally available vegetation. Seventeen (17) different prokaryotic phyla, consisting of 8370 amplicon sequence variants (ASVs), were identified from the 13 healthy, adult, free-roaming giraffes included in the study. Overall, the bacterial phyla with the largest relative abundance included Fusobacteria (22%), followed by Lentisphaera (17%) and Cyanobacteria (16%), which included 21 dominant prokaryotic ASVs. The relative abundance of Ruminococcaceae UCG 014 and Treponema 2 were found to be significantly (P < 0.05) higher and Escherichia / Shigella, Romboutsia and Ruminococcus 1 significantly lower for giraffes receiving supplemental feed compared to natural available vegetation. This is the first study to investigate the composition of the faecal prokaryotic communities of healthy, free-roaming giraffes. The analysis of faecal prokaryotes contributes to the development of non-invasive methods for assessing the nutritional status and identifying health issues in giraffe populations. Ultimately, such advances are beneficial towards the larger-scale conservation, determining nutritional needs and management of other sensitive wildlife species, as well.
Collapse
Affiliation(s)
- Andri Grobbelaar
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Gernot Osthoff
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Francois Deacon
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Errol D Cason
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| |
Collapse
|
13
|
Bhunia S, Box SM, Bera S, Dolai A, Samanta S. Progress of Photoantibiotics in Overcoming Antibiotic Resistance. ChemMedChem 2025; 20:e202400613. [PMID: 39474944 DOI: 10.1002/cmdc.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/28/2024] [Indexed: 02/18/2025]
Abstract
Antibiotic resistance has emerged as a global public health crisis in the 21st century, leading to treatment failures. To address this issue, the medical and pharmaceutical sectors are confronted with two challenges: i) finding potent new antimicrobial agents that would work against resistant-pathogens, and ii) developing conceptually new or unconventional strategies by which a particular antibiotic would remain effective persistently. Photopharmacology with the aid of reversibly controllable light-active antibiotics that we call "photoantibiotics" shows great promise to meet the second challenge, which has inspired many research laboratories worldwide to align their research in inventing or developing such antibiotics. In this review, we have given an overview of the progress made over the last ten years or so towards developing such photoantibiotics. Although making such antibiotics that hold high antimicrobial potency like the native drugs and subsequently maintain a significant activity difference between light-irradiated and non-irradiated states is very challenging, the progress being reported here demonstrates the feasibility of various approaches to engineer photoantibiotics. This review provides a future perspective on the use of such antibiotics in clinical practice with the identification of potential problems and their solutions.
Collapse
Affiliation(s)
- Supriya Bhunia
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Sk Majid Box
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Satyajit Bera
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Anirban Dolai
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| | - Subhas Samanta
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata, West Bengal, 700009, India
| |
Collapse
|
14
|
Grahl MVC, Hohl KS, Smaniotto T, Carlini CR. Microbial Trojan Horses: Virulence Factors as Key Players in Neurodegenerative Diseases. Molecules 2025; 30:687. [PMID: 39942791 PMCID: PMC11820544 DOI: 10.3390/molecules30030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in population demographics indicate that the elderly population will reach 2.1 billion worldwide by 2050. In parallel, there will be an increase in neurodegenerative diseases such as Alzheimer's and Parkinson's. This review explores dysbiosis occurring in these pathologies and how virulence factors contribute to the worsening or development of clinical conditions, and it summarizes existing and potential ways to combat microorganisms related to these diseases. Microbiota imbalances can contribute to the progression of neurodegenerative diseases by increasing intestinal permeability, exchanging information through innervation, and even acting as a Trojan horse affecting immune cells. The microorganisms of the microbiota produce virulence factors to protect themselves from host defenses, many of which contribute to neurodegenerative diseases. These virulence factors are expressed according to the genetic composition of each microorganism, leading to a wide range of factors to be considered. Among the main virulence factors are LPS, urease, curli proteins, amyloidogenic proteins, VacA, and CagA. These factors can also be packed into bacterial outer membrane vesicles, which transport proteins, RNA, and DNA, enabling distal communication that impacts various diseases, including Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Matheus V. C. Grahl
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil
| | - Kelvin Siqueira Hohl
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Thiago Smaniotto
- Graduate Program in Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (K.S.H.); (T.S.)
| | - Célia R. Carlini
- Center of Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre 91501-970, RS, Brazil
- Graduate Program of Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
15
|
Jarquín-Díaz VH, Dayaram A, Soilemetzidou ES, Desvars-Larrive A, Bohner J, Buuveibaatar B, Kaczensky P, Walzer C, Greenwood AD, Löber U. Unraveling the distinctive gut microbiome of khulans (Equus hemionus hemionus) in comparison to their drinking water and closely related equids. Sci Rep 2025; 15:2767. [PMID: 39843625 PMCID: PMC11754619 DOI: 10.1038/s41598-025-87216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
The microbial composition of host-associated microbiomes is influenced by co-evolutionary interactions, host genetics, domestication, and the environment. This study investigates the contribution of environmental microbiota from freshwater bodies to the gastrointestinal microbiomes of wild khulans (Equus hemionus hemionus, n = 21) and compares them with those of captive khulans (n = 12) and other equids-Przewalski's horse (n = 82) and domestic horse (n = 26). Using PacBio technology and the LotuS pipeline for 16S rRNA gene sequencing, we analyze microbial diversity and conduct differential abundance, alpha, and beta diversity analyses. Results indicate limited microbial sharing between wild khulans and their waterhole environments, suggesting minimal environmental influence on their gut microbiomes and low levels of water contamination by khulans. Wild khulans exhibit greater microbial diversity and richness compared to captive ones, likely due to adaptations to the harsh nutritional conditions of the Gobi desert. Conversely, captive khulans show reduced microbial diversity, potentially affected by dietary changes during captivity. These findings highlight the significant impact of environment and lifestyle on the gut microbiomes of equids.
Collapse
Affiliation(s)
- Víctor Hugo Jarquín-Díaz
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred- Kowalke Str. 17, 10315, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anisha Dayaram
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, AG Rosenmund, Charitéplatz 1, 10117, Berlin, Germany
| | - Eirini S Soilemetzidou
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Amelie Desvars-Larrive
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- Unit of Veterinary Public Health and Epidemiology, Complexity Science Hub, University of Veterinary Medicine, Vienna, Austria
| | - Julia Bohner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Petra Kaczensky
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Stor-Elvdal, Norway
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- Wildlife Conservation Society - Global USA and University of Veterinary Medicine AT, New York, USA
| | - Alex D Greenwood
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- School of Veterinary Medicine, Free University of Berlin, Oertzenweg 19 b, 14163, Berlin, Germany.
| | - Ulrike Löber
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred- Kowalke Str. 17, 10315, Berlin, Germany.
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
16
|
Gu X, Wang X, Li B, Wang Y, Zhu W, Su J. Early age of dog exposure is negatively associated with atopic dermatitis: A comprehensive analysis. Pediatr Res 2025:10.1038/s41390-025-03864-x. [PMID: 39837990 DOI: 10.1038/s41390-025-03864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Currently, whether exposure to pets is a protective factor for atopic dermatitis (AD) is controversial. OBJECTIVE To investigate the association of pet exposure in early life with the incident AD. METHODS This study was based on PRISMA. The authors independently searched PubMed, Cochrane Library, and EMBASE. We gathered cohort studies reporting on the ratio of pet exposure and incident AD and meta-analyzed them by relative risks (RRs) and 95% confidence interval (CI). Newcastle-Ottawa Scale (NOS) and funnel plot were performed to evaluate the quality of the study and publication bias, respectively. P < 0.05 was considered statistically significant. RESULTS We included 23 studies comprising 3174-25,527 participants with exposure age 0-12. The quality of included studies was generally gorgeous, with NOS 5-8. Dog exposure was negatively associated with the incident AD, with RRs of 0.82 (P = 0.002), but this trend was insignificant in cats (RR = 1.08; P = 0.490) and other pets (RR = 0.94; P = 0.550). Subgroup analysis showed participants exposed to dogs had a further lower AD risk in the North American populations (RR = 0.60; P < 0.001). Publication bias was not supported by the funnel plot. CONCLUSION This study finds exposure to dog pets in early life is negatively associated with newly developed AD, especially in North American populations. IMPACT Currently, whether exposure to pets is a protective factor for atopic dermatitis (AD) is controversial. This study finds exposure to dog pets in early life is negatively associated with newly developed atopic dermatitis, and this trend is more remarkable in North American populations. Associations of exposure to cats and other pets with atopic dermatitis are not found. These results discover a novel insights to prevention AD and related diseases.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Department of Dermatology Hunan Engineering Research Center of Skin Health and Disease Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
- Furong Laboratory, Changsha, Hunan, 410008, China.
| | - Xinquan Wang
- Department of Dermatology Hunan Engineering Research Center of Skin Health and Disease Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China
- Furong Laboratory, Changsha, Hunan, 410008, China
| | - Binfa Li
- Department of Dermatology Hunan Engineering Research Center of Skin Health and Disease Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ying Wang
- Department of Dermatology Hunan Engineering Research Center of Skin Health and Disease Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China
- Furong Laboratory, Changsha, Hunan, 410008, China
| | - Wu Zhu
- Department of Dermatology Hunan Engineering Research Center of Skin Health and Disease Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
- Furong Laboratory, Changsha, Hunan, 410008, China.
| | - Juan Su
- Department of Dermatology Hunan Engineering Research Center of Skin Health and Disease Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
- Furong Laboratory, Changsha, Hunan, 410008, China.
| |
Collapse
|
17
|
Kanika NH, Liaqat N, Chen H, Ke J, Lu G, Wang J, Wang C. Fish gut microbiome and its application in aquaculture and biological conservation. Front Microbiol 2025; 15:1521048. [PMID: 39839099 PMCID: PMC11747440 DOI: 10.3389/fmicb.2024.1521048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Understanding the diversity and function of fish gut microbiomes has advanced substantially, yet many aspects remain poorly understood, particularly the interplay among microbiota, host species, and environmental factors in the context of conservation. This review explores the composition and abundance of gut bacterial communities in key aquaculture fish groups-cyprinids, ictalurids (catfish), salmonids, and cichlids (tilapia)-alongside the model organism zebrafish, across diverse geographic regions. The findings highlight environmental habitats and host species as primary determinants of gut microbiome structure, offering a global perspective on these microbial communities. Across all fish groups, the phyla Firmicutes, Fusobacteria, and Proteobacteria consistently dominated, while temperate, sub-equatorial, and sub-tropical regions exhibited the highest microbiome diversity, underscoring the contribution of taxonomic and environmental factors. The gut bacterial diversity of farm-raised fish shows a significant divergence from that of wild-caught fish, reflecting the impacts of ecological and management differences. Understanding the dynamic responses of fish gut microbiota is vital for guiding conservation efforts, safeguarding aquatic biodiversity, and advancing sustainable aquaculture practices. Future research should leverage innovative techniques and integrative approaches, both experimental and theoretical, to uncover the functional roles of microbiomes and predict their responses to environmental changes. Expanding geographic and taxonomic coverage will be critical for creating a comprehensive framework to inform global aquaculture and conservation strategies. Collectively, this perspective highlights the transformative potential of microbiome research in addressing global challenges in aquaculture and conservation biology.
Collapse
Affiliation(s)
- Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Nusrat Liaqat
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Centre for Aquatic Sciences, Shanghai Ocean University, Shanghai, China
| | - Huifan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Guoqing Lu
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
18
|
Chen C, Hao Y, Yang J, Zhang J, Wang H, Liu Y. Influences of Rearing Season, Host Plant, and Silkworm Species on Gut Bacterial Community. INSECTS 2025; 16:47. [PMID: 39859628 PMCID: PMC11766399 DOI: 10.3390/insects16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
The gut bacterial community plays many important roles in the production of nutrients and digestion. Antheraea pernyi and A. yamamai (Lepidoptera: Saturniidae) are two traditional sources of human food, as well as being silk-producing insects. In the present study, the influences of rearing season (spring and autumn), silkworm species (A. pernyi and A. yamamai), and host plant (Quercus wutaishanica and Salix viminalis) on gut microbiota diversity were tested using Illumina MiSeq technology. We found that the bacterial composition and diversity of larvae reared in the autumn are elevated compared to those of larvae from the spring. Silkworm species played an important role in the gut bacterial community. Host plants also affected the diversity of the intestinal flora of the insects: the diversity of the intestinal flora of A. pernyi reared using S. viminalis was higher than those reared using Q. wutaishanica. Our findings provide insights into the gut microbial environment in edible insects.
Collapse
Affiliation(s)
| | | | | | | | - Huan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (C.C.); (Y.H.); (J.Y.); (J.Z.)
| | - Yanqun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (C.C.); (Y.H.); (J.Y.); (J.Z.)
| |
Collapse
|
19
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:91-106. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
20
|
Li K, Li J, Luo S, Chai L. Cogrowth advantage: Intestinal microbiota analysis of Bufo gargarizans and Rana chensinensis. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111764. [PMID: 39396615 DOI: 10.1016/j.cbpa.2024.111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Intestinal microbiota has profound effects on host health and adaptation to environmental changes. Bufo gargarizans and Rana chensinensis coexist in the same habitat and have been paid much attention to economically because of their medicinal value. To date, no comparison of differences between single and mixed populations has been made. In our study, differences in the structure and function of the intestinal microbial of B. gargarizans and R. chensinensis in environments of single-species and mixed-species growth were investigated by high-throughput sequencing. Our results suggest that the cogrowth of B. gargarizans and R. chensinensis could lead to the decrease of the abundance of pathogenic bacteria (Bosea) and the introduction or increase of beneficial bacteria (Kaistia, Cetobacterium and Erysipelatoclostridium). The Tax4Fun-based functional predictions revealed that the level of pathways involved in the metabolism of R. chensinensis in mixed-species aquaria is greatly up-regulated. This study provides useful information for ecologists, ecosystem policy makers and wildlife conservationists to promote more effective conservation measures.
Collapse
Affiliation(s)
- Kaiyue Li
- School of Water and Environment, Chang' an University, Xi'an 710054, China; College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jiayi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Shuangyan Luo
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang' an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang' an University, Xi'an 710054, China.
| |
Collapse
|
21
|
Wang H, Li S, Zhang L, Zhang N. The role of fecal microbiota transplantation in type 2 diabetes mellitus treatment. Front Endocrinol (Lausanne) 2024; 15:1469165. [PMID: 39735647 PMCID: PMC11671274 DOI: 10.3389/fendo.2024.1469165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
In contemporary microbial research, the exploration of interactions between microorganisms and multicellular hosts constitutes a burgeoning field. The gut microbiota is increasingly acknowledged as a pivotal contributor to various disorders within the endocrine system, encompassing conditions such as diabetes and thyroid diseases. A surge in research activities has been witnessed in recent years, elucidating the intricate interplay between the gut microbiota and disorders of the endocrine system. Simultaneously, fecal microbiota transplantation (FMT) has emerged as a focal point, garnering substantial attention in both biomedical and clinical spheres. Research endeavors have uncovered the remarkable therapeutic efficacy of FMT across diverse diseases, with particular emphasis on its application in addressing type 2 diabetes mellitus (T2DM) and associated com-plications. Consequently, this manuscript accentuates the intimate connection between the gut microbiota and disorders within the endocrine system, with a specific focus on exploring the potential of FMT as an intervention in the therapeutic landscape of T2DM and its complications. Furthermore, the article scrutinizes concerns inherent in treatment modalities centered around the gut microbiota, proposing viable solutions to address these issues.
Collapse
Affiliation(s)
| | | | | | - Nan Zhang
- *Correspondence: Nan Zhang, ; Luping Zhang,
| |
Collapse
|
22
|
Arellano-Hernández HD, Montes-Carreto LM, Guerrero JA, Martinez-Romero E. The fecal microbiota of the mouse-eared bat (Myotis velifer) with new records of microbial taxa for bats. PLoS One 2024; 19:e0314847. [PMID: 39637086 PMCID: PMC11620696 DOI: 10.1371/journal.pone.0314847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
Studies on the fecal microbiome of wild animals reveal valuable information on the feeding habits of the host and the possible roles of bacteria in digestion. In this work we characterized the fecal microbiota of seven male and seven female Myotis velifer bats using the V3-V4 regions of the 16S rRNA gene. Fecal samples were collected at the El Salitre cave in Mexico. We obtained 81 amplicon sequence variants, identifying four phyla, 12 families and 14 genera for females and seven phyla, 21 families and 26 genera for males. The phylum Synergistota is reported for the first time in bats. The most abundant phyla were Pseudomonadota and Fusobacteriota. Male feces showed a greater taxonomic richness than those from females. This study revealed that the fecal microbiota of M. velifer had a unique and more diverse composition compared to the microbiota reported for other bats. We identified 24 families and two abundant genera Cetobacterium and Haematospirillum in both males and females. Cetobacterium may produce vitamin B12 that is not produced by animals and Haematospirillum, which has been reported as an emerging human pathogen, may produce non-volatile organic acids. These genera had not been previously reported in the bat microbiota.
Collapse
Affiliation(s)
- Hanya D. Arellano-Hernández
- Labotarorio de Monitoreo y Conservación de Fauna, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Leslie M. Montes-Carreto
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - José Antonio Guerrero
- Labotarorio de Monitoreo y Conservación de Fauna, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Esperanza Martinez-Romero
- Laboratorio de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
23
|
Ndiaye C, Bassene H, Fonkou MDM, Fenollar F, Lagier JC, Raoult D, Sokhna C. The Application of Culturomics to Explore African Skin Microbiota. Am J Trop Med Hyg 2024; 111:1331-1337. [PMID: 39353418 PMCID: PMC11619480 DOI: 10.4269/ajtmh.23-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/12/2024] [Indexed: 10/04/2024] Open
Abstract
Over the past 12 years, culturomics, a high-throughput culture method, has been developed, considerably widening the repertoire of known cultured bacteria. An exhaustive database, including a list of microbes isolated by culture from human skin, was recently established by performing a review of the literature. The aim of the present study was to use the culturomics approach to explore the African skin microbiota. Skin swabs from the palms of human hands were collected between January and December 2016 from healthy subjects from the villages of Dielmo and Ndiop in rural Senegal. Three culture media were selected for the isolation of bacteria in aerobic conditions. Bacterial colonies were subjected to matrix-assisted laser desorption ionization-time of flight mass spectroscopy and the 16 S rRNA gene was sequenced for unidentified colonies. A total of 176 bacterial species were isolated. This increased the repertoire of bacterial species on the skin by 14.0%, by adding 71 bacteria, including seven new species. The culturomics approach characterizing microbial diversity has significantly changed our view of the skin microbiota, raising many important questions about the host-microorganism relationship and its relevance to skin diseases. In particular, the difference between the palm microbiota of these African populations (composed mainly of the genera Staphylococcus, Arthrobacter, Bacillus, and Microbacterium) and that of Western populations, whose main genera are Staphylococcus, Propionibacterium, Micrococcus, Corynebacterium, Enhydrobacter, and Streptococcus. This study demonstrates the need to continue to explore the skin microbiome using the culturomics approach.
Collapse
Affiliation(s)
- Codou Ndiaye
- UMR VITROME, Campus International IRD-UCAD de l’IRD de Hann, Dakar, Senegal
| | - Hubert Bassene
- UMR VITROME, Campus International IRD-UCAD de l’IRD de Hann, Dakar, Senegal
| | - Maxime Descartes Mbogning Fonkou
- Aix Marseille Université, IRD, AP-HM, Microbes Evolution Phylogeny and Infections (MEPHI), IHU-Méditerranée Infection, Marseille, France
| | - Florence Fenollar
- Aix-Marseille Univ, IRD, AP-HM, SSA, IHU-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Jean Christophe Lagier
- Aix Marseille Université, IRD, AP-HM, Microbes Evolution Phylogeny and Infections (MEPHI), IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, IRD, AP-HM, Microbes Evolution Phylogeny and Infections (MEPHI), IHU-Méditerranée Infection, Marseille, France
| | - Cheikh Sokhna
- UMR VITROME, Campus International IRD-UCAD de l’IRD de Hann, Dakar, Senegal
- Aix-Marseille Univ, IRD, AP-HM, SSA, IHU-Méditerranée Infection, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| |
Collapse
|
24
|
Rosenberg E. Diversity of bacteria within the human gut and its contribution to the functional unity of holobionts. NPJ Biofilms Microbiomes 2024; 10:134. [PMID: 39580487 PMCID: PMC11585559 DOI: 10.1038/s41522-024-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/07/2024] [Indexed: 11/25/2024] Open
Abstract
The composition of bacteria in the human colon has been a subject of interest since the beginning of microbiology. With the development of methods for culturing strict anaerobic bacteria under multiple culture conditions, it was shown the gut contained more than 400 bacterial species and different people harbor different abundant species. The term "gut microbiome" in this review refers to bacteria studied in stool samples. Molecular methods for determining the bacterial composition of human gut has revealed more than 3000 species and less than 130 genera, indicating that the diversity of human colonic bacteria is concentrated at the species and strain levels. This review concludes with a discussion of how diversity can lead to unity of individual holobionts, between holobionts, and between populations. One of the reasons for the unity is that different bacterial species can have similar functional genes.
Collapse
Affiliation(s)
- Eugene Rosenberg
- Department of Microbiology, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
25
|
Maher S, Rajapakse J, El-Omar E, Zekry A. Role of the Gut Microbiome in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024; 44:457-473. [PMID: 39389571 DOI: 10.1055/a-2438-4383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD)-previously described as nonalcoholic fatty liver disease-continues to rise globally. Despite this, therapeutic measures for MASLD remain limited. Recently, there has been a growing interest in the gut microbiome's role in the pathogenesis of MASLD. Understanding this relationship may allow for the administration of therapeutics that target the gut microbiome and/or its metabolic function to alleviate MASLD development or progression. This review will discuss the interplay between the gut microbiome's structure and function in relation to the development of MASLD, assess the diagnostic yield of gut microbiome-based signatures as a noninvasive tool to identify MASLD severity, and examine current and emerging therapies targeting the gut microbiome-liver axis.
Collapse
Affiliation(s)
- Salim Maher
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Jayashi Rajapakse
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Emad El-Omar
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| | - Amany Zekry
- Department of Gastroenterology and Hepatology, St George Hospital, Sydney, Australia
- School of Clinical Medicine, UNSW Medicine & Health, St George & Sutherland Clinical Campuses
| |
Collapse
|
26
|
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Wei G, Wang Z, Ning Z. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28:427. [PMID: 39301250 PMCID: PMC11411594 DOI: 10.3892/etm.2024.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/03/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut-cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
Collapse
Affiliation(s)
- Li Lin
- Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shaowei Xiang
- Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yan Liu
- Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dingwen Shen
- Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xiaoping Yu
- Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Kequan Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jia Luo
- School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China
| | - Guilai Wei
- School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhiguo Wang
- Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
27
|
Grobbelaar A, Osthoff G, du Preez I, Deacon F. First Insights into the Fecal Metabolome of Healthy, Free-Roaming Giraffes ( Giraffa camelopardalis): An Untargeted GCxGC/TOF-MS Metabolomics Study. Metabolites 2024; 14:586. [PMID: 39590822 PMCID: PMC11596133 DOI: 10.3390/metabo14110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study provides the first insights to the fecal metabolome of the giraffe (Giraffa camelopardalis). By using untargeted metabolomics via gas chromatography time-of-flight mass spectrometry (GCxGC/TOF-MS), this study primarily aims to provide results of the impact that external stimuli, such as supplemental feeding (SF) practices, seasonal variation and sex, might have on the fecal metabolome composition of healthy, free-roaming giraffes. METHODS Untargeted GCxGC/TOF-MS analysis was applied to the feces collected from thirteen giraffes (six males and seven females) from six different locations within the central Free State Province of South Africa over a period of two years. Statistical analysis of the generated data was used to identify the metabolites that were significantly different between the giraffes located in environments that provided SF and others where the giraffes only fed on the natural available vegetation. The same metabolomics analysis was used to investigate metabolite concentrations that were significantly different between the wet and dry seasons for a single giraffe male provided with SF over the two-year period, as well as for age and sex differences. RESULTS A total of 2042 features were detected from 26 giraffe fecal samples. Clear variations between fecal metabolome profiles were confirmed, with higher levels of amino acid-related and carbohydrate-related metabolites for giraffes receiving SF. In addition, a separation between the obtained profiles of samples collected from a single adult male giraffe during the wet and dry seasons was identified. Differences, such as higher levels of carbohydrate-related metabolites and organic compounds during the wet season were noted. Distinct variations in profiles were also identified for the metabolites from fecal samples collected from the six males and seven females, with higher concentrations in carbohydrate-related metabolites and alkanes for female giraffes comparatively. CONCLUSIONS This is the first study to investigate the composition of the fecal metabolome of free-roaming giraffes, as well as the effects that external factors, such as environmental exposures, feeding practices, seasonal variations, age and sex, have on it. This novel use of fecal metabolomics assists in developing non-invasive techniques to determine giraffe populations' health that do not require additional stressors such as capture, restraint and blood collection. Ultimately, such non-invasive advances are beneficial towards the conservation of wildlife species on a larger scale.
Collapse
Affiliation(s)
- Andri Grobbelaar
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Gernot Osthoff
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Ilse du Preez
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
| | - Francois Deacon
- Department of Animal Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| |
Collapse
|
28
|
Hakkak R, Korourian S, Li W, Spray B, Twaddle NC, Randolph CE, Børsheim E, Robeson II MS. Dietary soy protein reverses obesity-induced liver steatosis and alters fecal microbial composition independent of isoflavone level. Front Nutr 2024; 11:1487859. [PMID: 39529929 PMCID: PMC11551038 DOI: 10.3389/fnut.2024.1487859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health concern that is exacerbated by the obesity pandemic. Dietary interventions have the potential to alleviate obesity-associated MASLD through variable mechanisms, including optimizing the gut microbiota. Previously, we reported that soy protein concentrate (SPC) with low or high levels of isoflavone (LIF or HIF) protected young obese Zucker rats from developing liver steatosis. The current study was designed to test whether SPC-LIF and SPC-HIF diets would reverse liver steatosis and alter fecal microbial composition in adult obese Zucker rats with existing steatosis. Methods Six-week-old male obese Zucker rats (n = 26) were fed a casein control diet (CAS) for 8 weeks and 7 rats were randomly selected and sacrificed to confirm liver steatosis. The remaining rats were randomly assigned to receive CAS, SPC-LIF, or SPC-HIF diet (n = 6-7/group) for an additional 10 weeks. Results Compared to CAS diet, feeding SPC-LIF and SPC-HIF diets resulted in significantly lower liver weight, liver steatosis score, and liver microvesicular score (p < 0.05), but did not lead to difference in body weight, liver macrovesicular score, serum ALT, or serum AST. Isoflavone levels (e.g., LIF vs. HIF) did not affect any of these measurements except in the SPC-HIF group, which had an additional decrease in liver weight (p < 0.05) compared to the SPC-LIF group. The SPC-HIF group also had significantly higher levels of the aglycone forms of daidzein, genistein, and equol as well as the total levels of daidzein, genistein, and equol compared to SPC-LIF or CAS diet fed rats (p < 0.05). The distribution of microbial communities based on measures of beta diversity of both SPC-LIF and SPC-HIF groups were significantly different to that of the CAS group (p ≤ 0.005). Alpha-diversity did not differ between any of the groups. Conclusion Taken together, dietary soy protein can reverse liver steatosis in adult Zucker rats, and the reversal of steatosis is accompanied by alterations in gut microbial composition.
Collapse
Affiliation(s)
- Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Soheila Korourian
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Beverly Spray
- Division of Biostatistics Core, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Nathan C. Twaddle
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | | | - Elisabet Børsheim
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Michael S. Robeson II
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
29
|
Zhu F, Sun K, Zhang H, Lu J, Guo P, Zhang J, Xu Y, Lyu B. Comparative Analyses of Lycodon rufozonatus and Lycodon rosozonatus Gut Microbiota in Different Regions. Ecol Evol 2024; 14:e70480. [PMID: 39440211 PMCID: PMC11495892 DOI: 10.1002/ece3.70480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The interactions between hosts and the gut microbiota are intricate and can significantly affect the ecology and evolution of both parties. Various host traits, including taxonomy, diet, social behaviour, and external factors such as prey availability and the local environment, all play an important role in shaping composition and diversity of the gut microbiogta. In this study, we explored the impact of intestinal microorganisms on the host in adapting to their respective ecological niches in two species of snakes. We collected feces from Lycodon rufozonatus and Lycodon rosozonatus from different geographical locations and used 16S rRNA gene sequencing technology to sequence the v3-v4 region. The results revealed that there was no significant difference in the alpha diversity of intestinal microorganisms between L. rufozonatus and L. rosozonatus. The gut microbiota of all individuals comprised four main phyla: Pseudomonadota, Bacteroidota, Bacillota, and Actinomycetota. At the genus level, the genus Salmonella dominated the enterobacterial microbiota in the samples from Hainan, while there was no obvious dominant genus in the enterobacterial microbiota of the samples from the other four localities. Comparative analysis of enzyme families annotated to the gut microbiota between L. rufozonatus and L. rosozonatus from the four sampling regions by CAZy carbohydrate annotation revealed that nine enzyme families differed significantly in terms of glycoside hydrolases (GHs). In addition, we compared the composition of gut microbial communities between L. rufozonatus and L. rosozonatus and investigated the impact of the differences on their functions. Our results will provide insights into the coevolution of host and gut microbes.
Collapse
Affiliation(s)
- Fei Zhu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Ke Sun
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - He Zhang
- Guizhou Academy of ForestryGuiyangGuizhouChina
| | - Jing Lu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Jiaqi Zhang
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| | - Yu Xu
- School of Life SciencesGuizhou Normal UniversityGuiyangGuizhouChina
| | - Bing Lyu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinSichuanChina
| |
Collapse
|
30
|
Liu L, He X, Wang J, Li M, Wei X, Yang J, Cheng G, Du W, Liu Z, Xiao X. Exploring the associations between gut microbiota composition and SARS-CoV-2 inactivated vaccine response in mice with type 2 diabetes mellitus. mSphere 2024; 9:e0038024. [PMID: 39189780 PMCID: PMC11423585 DOI: 10.1128/msphere.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is crucial for protecting vulnerable individuals, yet individuals with type 2 diabetes mellitus (T2DM) often exhibit impaired vaccine responses. Emerging evidence suggests that the composition of the host microbiota, crucial in immune regulation and development, influences vaccine efficacy. This study aimed to characterize the relationships between the SARS-CoV-2 inactivated vaccine and the host microbiota (specifically, gut and lung microbiota) of C57BL/6 mice with T2DM. Employing 16S rRNA metagenomic sequencing and ultra-high-performance liquid chromatography-mass spectrometry, we observed lower alpha diversity and distinct beta diversity in fecal microbiota before vaccination and in gut microbiota 28 days post-vaccination between T2DM mice and healthy mice. Compared with healthy mice, T2DM mice showed a higher Firmicutes/Bacteroidetes ratio 28 days post-vaccination. Significant alterations in gut microbiota composition were detected following vaccination, while lung microbiota remained unchanged. T2DM was associated with a diminished initial IgG antibody response against the spike protein, which subsequently normalized after 28 days. Notably, the initial IgG response positively correlated with fecal microbiota alpha diversity pre-vaccination. Furthermore, after 28 days, increased relative abundance of gut probiotics (Bifidobacterium and Lactobacillus) and higher levels of the gut bacterial tryptophan metabolite, indole acrylic acid, were positively associated with IgG levels. These findings suggest a potential link between vaccine efficacy and gut microbiota composition. Nonetheless, further research is warranted to elucidate the precise mechanisms underlying the impact of the gut microbiome on vaccine response. Overall, this study enhances our understanding of the intricate relationships among host microbiota, SARS-CoV-2 vaccination, and T2DM, with potential implications for improving vaccine efficacy. IMPORTANCE Over 7 million deaths attributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by 6 May 2024 underscore the urgent need for effective vaccination strategies. However, individuals with type 2 diabetes mellitus (T2DM) have been identified as particularly vulnerable and display compromised immune responses to vaccines. Concurrently, increasing evidence suggests that the composition and diversity of gut microbiota, crucial regulators of immune function, may influence the efficacy of vaccines. Against this backdrop, our study explores the complex interplay among SARS-CoV-2 inactivated vaccination, T2DM, and host microbiota. We discover that T2DM compromises the initial immune response to the SARS-CoV-2 inactivated vaccine, and this response is positively correlated with specific features of the gut microbiota, such as alpha diversity. We also demonstrate that the vaccination itself induces alterations in the composition and structure of the gut microbiota. These findings illuminate potential links between the gut microbiota and vaccine efficacy in individuals with T2DM, offering valuable insights that could enhance vaccine responses in this high-risk population.
Collapse
Affiliation(s)
- Long Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xianzhen He
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Department of Children's Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiaqi Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Moran Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiuli Wei
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Yang
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Weixing Du
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
| | - Zhixin Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| | - Xiao Xiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Institute of Virology, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
31
|
Li K, Zhang G, Sun M, Xia M, Shi R, Jin Y, Zhang X. Comparative Analysis of the Potential Adaptability of Tibetan Dzo and Yellow Cattle Based on Blood Indices, Metabolites, and Fecal Microbiota. Animals (Basel) 2024; 14:2728. [PMID: 39335317 PMCID: PMC11429423 DOI: 10.3390/ani14182728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to investigate the differences in environmental adaptability between dzo and Tibetan yellow cattle by using corresponding assay kits to analyze blood indices, utilizing mass spectrometry for blood metabolite profiling, and performing 16S rDNA sequencing of fecal microbiota. Forty female cattle were randomly divided into a dzomo (female dzo) group (MG, n = 20) and a Tibetan-yellow-cattle group (HG, n = 20). After 150 days of uniform feeding, six cattle from each group were randomly picked for jugular blood sampling and collection of fecal microorganisms. The results showed that the serum albumin, creatinine, total protein, superoxide dismutase, IgG, and IgM concentrations in the MG group were higher (p < 0.05), whereas the serum triglyceride concentration was lower, compared to the HG group (p < 0.05). The higher level of phospholipids containing long-chain polyunsaturated fatty acids (PUFAs) (PC (18:5e/2:0), PC (20:5e/2:0), LPC 18:2, LPC 20:5) observed in the serum of the dzo suggests that they have an advantage in adapting to the challenging conditions of the plateau environment. The fecal microbiota analysis showed that Akkermansia was significantly enriched in the MG group; this might be the key bacterial genus leading to the strong adaptability of dzo. Our findings indicated the dzo's superior adaptation to the Tibetan Plateau's harsh environment.
Collapse
Affiliation(s)
- Kenan Li
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Guorui Zhang
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- College of Prataculture, Qingdao Agricultural University, Qingdao 266200, China
| | - Mengjiao Sun
- College of Prataculture, Qingdao Agricultural University, Qingdao 266200, China
| | - Maolin Xia
- Tibet Autonomous Region Animal Husbandry Station, Lhasa 850000, China
| | - Ruizhi Shi
- Institute of Practaculture Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Yanmei Jin
- Marine College, Shandong University, Weihai 264209, China
| | - Xiaoqing Zhang
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China
- Institute of Practaculture Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| |
Collapse
|
32
|
Chang H, Perkins MH, Novaes LS, Qian F, Zhang T, Neckel PH, Scherer S, Ley RE, Han W, de Araujo IE. Stress-sensitive neural circuits change the gut microbiome via duodenal glands. Cell 2024; 187:5393-5412.e30. [PMID: 39121857 PMCID: PMC11425084 DOI: 10.1016/j.cell.2024.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Negative psychological states impact immunity by altering the gut microbiome. However, the relationship between brain states and microbiome composition remains unclear. We show that Brunner's glands in the duodenum couple stress-sensitive brain circuits to bacterial homeostasis. Brunner's glands mediated the enrichment of gut Lactobacillus species in response to vagus nerve stimulation. Cell-specific ablation of the glands markedly suppressed Lactobacilli counts and heightened vulnerability to infection. In the forebrain, we mapped a vagally mediated, polysynaptic circuit connecting the central nucleus of the amygdala to Brunner's glands. Chronic stress suppressed central amygdala activity and phenocopied the effects of gland lesions. Conversely, excitation of either the central amygdala or parasympathetic vagal neurons activated Brunner's glands and reversed the effects of stress on the gut microbiome and immunity. The findings revealed a tractable brain-body mechanism linking psychological states to host defense.
Collapse
Affiliation(s)
- Hao Chang
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Matthew H Perkins
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Leonardo S Novaes
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tong Zhang
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou 510180, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Disease, Guangzhou Medical University, Guangzhou 510180, Guangdong, China
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen 72074, Germany
| | - Simon Scherer
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital, Tübingen 72076, Germany
| | - Ruth E Ley
- Max-Planck Institute for Biology, Tübingen 72076, Germany
| | - Wenfei Han
- Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany.
| |
Collapse
|
33
|
Rao G, Song WL, Yan SZ, Chen SL. Unraveling the distribution pattern and driving forces of soil microorganisms under geographic barriers. Appl Environ Microbiol 2024; 90:e0135924. [PMID: 39171904 PMCID: PMC11409670 DOI: 10.1128/aem.01359-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The Altai Mountains (ALE) and the Greater Khingan Mountains (GKM) in northern China are forest regions dominated by coniferous trees. These geographically isolated regions provide an ideal setting for studying microbial biogeographic patterns. In this study, we employed high-throughput techniques to obtain DNA sequences of soil myxomycetes, bacteria, and fungi and explored the mechanisms underlying the assembly of both local and cross-regional microbial communities in relation to environmental factors. Our investigation revealed that the environmental heterogeneity in ALE and GKM significantly affected the succession and assembly of soil bacterial communities at cross-regional scales. Specifically, the optimal environmental factors affecting bacterial Bray-Curtis similarity were elevation and temperature seasonality. The spatial factors and climate change impact on bacterial communities under the geographical barriers surpassed that of local soil microenvironments. The assembly pattern of bacterial communities transitions from local drift to cross-regional heterogeneous selection. Environmental factors had a relatively weak influence on myxomycetes and fungi. Both soil myxomycetes and fungi faced considerable dispersal limitation at local and cross-regional scales, ultimately leading to weak geographical distribution patterns.IMPORTANCEThe impact of environmental selection and dispersal on the soil microbial spatial distribution is a key concern in microbial biogeography, particularly in large-scale geographical patterns. However, our current understanding remains limited. Our study found that soil bacteria displayed a distinct cross-regional geographical distribution pattern, primarily influenced by environmental selection. Conversely, the cross-regional geographical distribution patterns of soil myxomycetes and fungi were relatively weak. Their composition exhibited a weak association with the environment at local and cross-regional scales, with assembly primarily driven by dispersal limitation.
Collapse
Affiliation(s)
- Gu Rao
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wen-Long Song
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shu-Zhen Yan
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuang-Lin Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
34
|
Korth N, Yang Q, Van Haute MJ, Tross MC, Peng B, Shrestha N, Zwiener-Malcom M, Mural RV, Schnable JC, Benson AK. Genomic co-localization of variation affecting agronomic and human gut microbiome traits in a meta-analysis of diverse sorghum. G3 (BETHESDA, MD.) 2024; 14:jkae145. [PMID: 38979923 PMCID: PMC11373648 DOI: 10.1093/g3journal/jkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
Substantial functional metabolic diversity exists within species of cultivated grain crops that directly or indirectly provide more than half of all calories consumed by humans around the globe. While such diversity is the molecular currency used for improving agronomic traits, diversity is poorly characterized for its effects on human nutrition and utilization by gut microbes. Moreover, we know little about agronomic traits' potential tradeoffs and pleiotropic effects on human nutritional traits. Here, we applied a quantitative genetics approach using a meta-analysis and parallel genome-wide association studies of Sorghum bicolor traits describing changes in the composition and function of human gut microbe communities, and any of 200 sorghum seed and agronomic traits across a diverse sorghum population to identify associated genetic variants. A total of 15 multiple-effect loci (MEL) were initially found where different alleles in the sorghum genome produced changes in seed that affected the abundance of multiple bacterial taxa across 2 human microbiomes in automated in vitro fermentations. Next, parallel genome-wide studies conducted for seed, biochemical, and agronomic traits in the same population identified significant associations within the boundaries of 13/15 MEL for microbiome traits. In several instances, the colocalization of variation affecting gut microbiome and agronomic traits provided hypotheses for causal mechanisms through which variation could affect both agronomic traits and human gut microbes. This work demonstrates that genetic factors affecting agronomic traits in sorghum seed can also drive significant effects on human gut microbes, particularly bacterial taxa considered beneficial. Understanding these pleiotropic relationships will inform future strategies for crop improvement toward yield, sustainability, and human health.
Collapse
Affiliation(s)
- Nate Korth
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Complex Biosystems Graduate Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Qinnan Yang
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mallory J Van Haute
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Michael C Tross
- Complex Biosystems Graduate Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Bo Peng
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Nikee Shrestha
- Complex Biosystems Graduate Program, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mackenzie Zwiener-Malcom
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ravi V Mural
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - James C Schnable
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrew K Benson
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
35
|
Yuan B, Fu Q, Wang XY, Zhang XH, Liu YL, Hou R, Zhang MY. Effects of Social Group Housing on the Behavioral and Physiological Responses of Captive Sub-Adult Giant Pandas. Animals (Basel) 2024; 14:2545. [PMID: 39272330 PMCID: PMC11394306 DOI: 10.3390/ani14172545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Wild giant pandas are inherently solitary creatures, however, the ex-situ conservation efforts significantly alter the living circumstances of their captive counterparts. Following the breeding period, giant pandas in captivity may be maintained in social groups. Currently, there is a lack of research on the effects of group housing on the physiology, behavior, and gut microbiota of captive giant pandas. This study divided six captive giant pandas into two groups following the breeding period. By comparing the behavior, physiology, and microorganisms of the two groups, we aim to investigate the behavioral responses and physiological adaptation mechanisms exhibited by captive giant pandas in a "group living" state. Our findings indicate that sub-adult giant pandas housed in group settings exhibit a significantly longer duration of playing behavior (including interactive and non-interactive play) compared to their counterparts housed separately (p < 0.001) while also demonstrating a significantly lower duration of stereotyped behavior than their separately housed counterparts. Additionally, an analysis of urine cortisol and heart rate variability between the two groups revealed no significant differences. Simultaneously, the group housing strategy markedly elevated the β diversity of gut microbiota in sub-adult giant pandas. In conclusion, the group-rearing model during the sub-adult stage has been shown to significantly alter the behavioral patterns of captive giant pandas. In conclusion, within the present captive setting, the group-rearing approach during the sub-adult stage proved to be less distressing for adult captive giant pandas.
Collapse
Affiliation(s)
- Bo Yuan
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Qin Fu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xue-Ying Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xiao-Hui Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
36
|
Yanık HD, Akçelik N, Has EG, Akçelik M. Relationship of Salmonella Typhimurium 14028 strain and its dam and seqA mutants with gut microbiota dysbiosis in rats. J Med Microbiol 2024; 73. [PMID: 39329274 DOI: 10.1099/jmm.0.001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Introduction. Disruptions in gut microbiota, known as dysbiosis, have been increasingly linked to pathogenic infections, with Salmonella Typhimurium being a notable contributor to these disturbances.Hypothesis. We hypothesize that the S. Typhimurium 14028 WT strain induces significant dysbiosis in the rat gut microbiota and that the dam and seqA genes play crucial roles in this process.Aim. In this study, it was aimed at investigating the dysbiotic activity of the S. Typhimurium 14028 WT strain on the rat gut microbiota and the roles of dam and seqA genes on this activity.Method. Changes in the rat gut microbiota were determined by examining the anal swap samples taken from the experimental groups of these animals using 16S rRNA high-throughput sequencing technology.Results. In the experimental groups, the dominant phyla were determined to be Firmicutes and Bacteroidetes (P<0.05). However, while the rate of Bacteroidetes was significantly reduced in those treated with the WT and seqA mutants, no significant difference was observed in the dam mutant compared to the control group (P<0.05). In all experimental animals, the dominant species was determined to be Prevotella copri, regardless of the experiment time and application. The analysis results of the samples taken on the third day from the rat groups infected with the S. Typhimurium 14028 WT strain (W2) presented the most striking data of this study.Conclusion. Through distance analysis, we demonstrated that a successful Salmonella infection completely changes the composition of the microbiota, dramatically reduces species diversity and richness in the microbiota and encourages the growth of opportunistic pathogens.
Collapse
Affiliation(s)
- Hafize Dilşad Yanık
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey
| | - Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey
| |
Collapse
|
37
|
Chatterjee S, Leach ST, Lui K, Mishra A. Symbiotic symphony: Understanding host-microbiota dialogues in a spatial context. Semin Cell Dev Biol 2024; 161-162:22-30. [PMID: 38564842 DOI: 10.1016/j.semcdb.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.
Collapse
Affiliation(s)
- Soumi Chatterjee
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia
| | - Steven T Leach
- Discipline Paediatrics, School of Clinical Medicine, University of New South Wales, Sydney 2052, Australia
| | - Kei Lui
- Department of Newborn Care, Royal Hospital for Women and Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Archita Mishra
- Telethon Kids Institute, Perth Children Hospital, Perth, Western Australia 6009, Australia; Curtin Medical School, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
38
|
Zhou S, Yang L, Qiu X, Li B, Hu L, Tang Z, Li H, Li S, Fang Z, Chen H. Okra extract alleviates lipopolysaccharide-induced inflammation response through the regulation of bile acids, the receptor-mediated pathway, and gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7501-7513. [PMID: 38757804 DOI: 10.1002/jsfa.13571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Okra contains flavonoids and vitamin C as antioxidants and it contains polysaccharides as immunomodulators. Flavonoids regulate the inflammatory response in mice and may be related to gut microbiota. This study therefore aimed to investigate the impact of okra extract (OE) on inflammation in mice and to elucidate its underlying mechanism. METHOD Forty male Kunming (KM) mice were categorized into four groups: the control (CON) group, the lipopolysaccharide stimulation (LPS) group, the 5 mg mL-1 OE intervention (LPS + OE) group, and the 5 mg mL-1 OE supplementation plus mixed antibiotics (LPS + OE + ABX) group. RESULTS The results showed that, compared with the OE group, the expression of inflammatory signaling pathway genes was upregulated and gut barrier genes were inhibited in the OE + ABX group. The Fxr receptor was activated and the abundance of Akkermansia was increased after OE supplementation, whereas the effect was reversed in the OE + ABX group. Meanwhile, Fxr was correlated positively with Akkermansia. CONCLUSION The OE supplementation alleviated the inflammatory response in mice under LPS stimulation, accompanied by changes in gut microbiota and bile acid receptors, whereas the addition of antibiotics caused a disturbance to the gut microbiota in the OE group, thus reducing the effect of OE in alleviating the inflammatory response. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Xia Qiu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Bohui Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zizhong Tang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
39
|
Ortega-Kindica RCMH, Padasas-Adalla CS, Tabugo SRM, Martinez JGT, Amparado OA, Moneva CSO, Dalayap R, Lomeli-Ortega CO, Balcazar JL. Shotgun Metagenomics Reveals Taxonomic and Functional Patterns of the Microbiome Associated with Barbour's Seahorse (Hippocampus barbouri). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:835-841. [PMID: 38864950 DOI: 10.1007/s10126-024-10330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
This study aimed to investigate the taxonomic and functional patterns of the microbiome associated with Barbour's seahorse (Hippocampus barbouri) using a combination of shotgun metagenomics and bioinformatics. The analyses revealed that Pseudomonadota and Bacillota were the dominant phyla in the seahorse skin microbiome, whereas Pseudomonadota and, to a lesser extent, Bacillota and Bacteroidota were the dominant phyla in the seahorse gut microbiome. Several metabolic pathway categories were found to be enriched in the skin microbiome, including amino acid metabolism, carbohydrate metabolism, cofactor and vitamin metabolism, energy metabolism, nucleotide metabolism, as well as membrane transport, signal transduction, and cellular community-prokaryotes. In contrast, the gut microbiome exhibited enrichment in metabolic pathways associated with the metabolism of terpenoids and polyketides, biosynthesis of other secondary metabolites, xenobiotics biodegradation and metabolism, and quorum sensing. Additionally, although the relative abundance of bacteriocins in the skin and gut was slightly similar, notable differences were observed at the class level. Specifically, class I bacteriocins were found to be more abundant in the skin microbiome, whereas class III bacteriocins were more abundant in the gut microbiome. To the best of our knowledge, this study represents the first comprehensive examination of the taxonomic and functional patterns of the skin and gut microbiome in Barbour's seahorse. These findings can greatly contribute to a deeper understanding of the seahorse-associated microbiome, which can play a pivotal role in predicting and controlling bacterial infections, thereby contributing to the success of aquaculture and health-promoting initiatives.
Collapse
Affiliation(s)
- Rose Chinly Mae H Ortega-Kindica
- Department of Biology and Environmental Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines.
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines.
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines.
| | - Chinee S Padasas-Adalla
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Department of Biological Sciences, Cavite State University, Don Severino Campus, Indang, 4000, Philippines
| | - Sharon Rose M Tabugo
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Oceanography Laboratory, Premier Research Institute of Science and Mathematics (PRISM), Mindanao State University-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Joey Genevieve T Martinez
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
- Mathematical Biology and Nematology Research Cluster, Complex System Groups, Premier Research Institute of Science and Mathematics (PRISM), MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Olive A Amparado
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Carlo Stephen O Moneva
- Department of Biological Sciences, College of Science and Mathematics, MSU-Iligan Institute of Technology, Iligan City, 9200, Philippines
| | - Rodelyn Dalayap
- Department of Biology, Sultan Kudarat State University, Tacurong City, Sultan Kudarat, 9800, Philippines
| | - Carlos O Lomeli-Ortega
- Catalan Institute for Water Research (ICRA), Girona, 17003, Spain
- University of Girona, Girona, 17004, Spain
| | - Jose Luis Balcazar
- Catalan Institute for Water Research (ICRA), Girona, 17003, Spain.
- University of Girona, Girona, 17004, Spain.
| |
Collapse
|
40
|
Yau C, Danska JS. Cracking the type 1 diabetes code: Genes, microbes, immunity, and the early life environment. Immunol Rev 2024; 325:23-45. [PMID: 39166298 DOI: 10.1111/imr.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) results from a complex interplay of genetic predisposition, immunological dysregulation, and environmental triggers, that culminate in the destruction of insulin-secreting pancreatic β cells. This review provides a comprehensive examination of the multiple factors underpinning T1D pathogenesis, to elucidate key mechanisms and potential therapeutic targets. Beginning with an exploration of genetic risk factors, we dissect the roles of human leukocyte antigen (HLA) haplotypes and non-HLA gene variants associated with T1D susceptibility. Mechanistic insights gleaned from the NOD mouse model provide valuable parallels to the human disease, particularly immunological intricacies underlying β cell-directed autoimmunity. Immunological drivers of T1D pathogenesis are examined, highlighting the pivotal contributions of both effector and regulatory T cells and the multiple functions of B cells and autoantibodies in β-cell destruction. Furthermore, the impact of environmental risk factors, notably modulation of host immune development by the intestinal microbiome, is examined. Lastly, the review probes human longitudinal studies, unveiling the dynamic interplay between mucosal immunity, systemic antimicrobial antibody responses, and the trajectories of T1D development. Insights garnered from these interconnected factors pave the way for targeted interventions and the identification of biomarkers to enhance T1D management and prevention strategies.
Collapse
Affiliation(s)
- Christopher Yau
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Fang J, Wang S, Liu L, Zhang X, Liu R, Pang X, Cui J, Han J, Zhu X. Gut microbiota: a potential influencer of insomnia occurring after COVID-19 infection. Front Psychiatry 2024; 15:1423715. [PMID: 39109368 PMCID: PMC11300359 DOI: 10.3389/fpsyt.2024.1423715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/09/2024] [Indexed: 04/30/2025] Open
Abstract
The prevalence of insomnia has increased in recent years, significantly affecting the lives of many individuals. Coronavirus disease 2019 (COVID-19) infection has been found to have a substantial impact on the human gut microbiota (GM). Clinical studies have shown that the high prevalence, prolonged duration, and refractory treatment of insomnia symptoms following the COVID-19 pandemic may be related to the effect of COVID-19 infection on the GM. Therefore, the GM may be a potential target for the treatment of insomnia following COVID-19 infection. However, relevant studies have not been well-documented, and the GM has not been sufficiently analyzed in the context of insomnia treatment. Herein, we review the interaction between sleep and the GM, summarize the characteristics of COVID-19-induced abnormal changes in the GM and metabolites in patients with insomnia, and discuss potential mechanisms, including metabolic, immune, and neural pathways, by which these abnormal changes in the GM cause insomnia as well as the factors affecting the GM. Finally, we discuss the prospect of modulating the host GM community for the effective treatment of insomnia after COVID-19 infection and the need for further clinical studies.
Collapse
Affiliation(s)
- Jiale Fang
- The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siwen Wang
- The Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lijia Liu
- The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyi Zhang
- The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ruilong Liu
- The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingchao Pang
- The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiankun Cui
- The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianshu Han
- The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyu Zhu
- The Third Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
42
|
Zhang S, Zhou C, Dong Z, Feng K, Peng K, Wang Z, Jiang Y, Jin L, Zhang P, Wu Y. The diet-intestinal microbiota dynamics and adaptation in an elevational migration bird, the Himalayan bluetail ( Tarsiger rufilatus). Ecol Evol 2024; 14:e11617. [PMID: 38952660 PMCID: PMC11214064 DOI: 10.1002/ece3.11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
Migratory birds experience changes in their environment and diet during seasonal migrations, thus requiring interactions between diet and gut microbes. Understanding the co-evolution of the host and gut microbiota is critical for elucidating the rapid adaptations of avian gut microbiota. However, dynamics of gut microbial adaptations concerning elevational migratory behavior, which is prevalent but understudied in montane birds remain poorly understood. We focused on the Himalayan bluetail (Tarsiger rufilatus) in the montane forests of Mt. Gongga to understand the diet-gut microbial adaptations of elevational migratory birds. Our findings indicate that elevational migratory movements can rapidly alter gut microbial composition and function within a month. There was a significant interaction between an animal-based diet and gut microbiota across migration stages, underscoring the importance of diet in shaping microbial communities. Furthermore, the gut microbial composition of T. rufilatus may be potentially altered by high-altitude acclimatization. An increase in fatty acid and amino acid metabolism was observed in response to low temperatures and limited resources, resulting in enhanced energy extraction and nutrient utilization. Moreover, microbial communities in distinct gut segments varied in relative abundance and responses to environmental changes. While the bird jejunum exhibited greater susceptibility to food and environmental fluctuations, there was no significant difference in metabolic capacity among gut segments. This study provides initial evidence of rapid diet-gut microbial changes in distinct gut segments of elevational migratory birds and highlights the importance of seasonal sample collection. Our findings provide a deeper understanding of the unique high-altitude adaptation patterns of the gut microbiota for montane elevational migratory birds.
Collapse
Affiliation(s)
- Shangmingyu Zhang
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Chuang Zhou
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhehan Dong
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kaize Feng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Kexin Peng
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| | - Zhengyang Wang
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Yong Jiang
- Administration of Gongga Mountain National Nature ReserveKangdingGanzi Tibetan Autonomous PrefectureChina
| | - Linyu Jin
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Ping Zhang
- Chengdu Tianfu International Airport Branch of Sichuan Airport Group Limited CompanyChengduChina
| | - Yongjie Wu
- Key Laboratory of Bio‐resources and Eco‐environment of Ministry of Education, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
43
|
Storm MB, Arfaoui EMR, Simelane P, Denlinger J, Dias CA, da Conceição AG, Monadjem A, Bohmann K, Poulsen M, Bodawatta KH. Diet components associated with specific bacterial taxa shape overall gut community compositions in omnivorous African viverrids. Ecol Evol 2024; 14:e11486. [PMID: 39005885 PMCID: PMC11239323 DOI: 10.1002/ece3.11486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 07/16/2024] Open
Abstract
Gut bacterial communities provide flexibility to hosts during dietary changes. Despite the increasing number of studies exploring the associations between broader dietary guilds of mammalian hosts and their gut bacteria, it is generally unclear how diversity and variability in consumed diets link to gut bacterial taxa in wild non-primate mammals, particularly in omnivores. Here, we contribute to filling this gap by exploring consumed diets and gut bacterial community compositions with metabarcoding of faecal samples for two African mammals, Civettictis civetta and Genetta spp., from the family Viverridae. For each individual sample, we characterised bacterial communities and identified dietary taxa by sequencing vertebrate, invertebrate and plant markers. This led us to establish diet compositions that diverged from what has previously been found from visual identification methods. Specifically, while the two genera have been categorised into the same dietary guild, we detected more animal dietary items than plant items in C. civetta, while in Genetta spp., we observed the opposite. We further found that individuals with similar diets have similar gut bacterial communities within both genera. This association tended to be driven by specific links between dietary items and gut bacterial genera, rather than communities as a whole, implying diet-driven selection for specific gut microbes in individual wild hosts. Our findings underline the importance of molecular tools for improving characterisations of omnivorous mammalian diets and highlight the opportunities for simultaneously disentangling links between diets and gut symbionts. Such insights can inform robustness and flexibility in host-microbe symbioses to dietary change associated with seasonal and habitat changes.
Collapse
Affiliation(s)
- Malou B. Storm
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Emilia M. R. Arfaoui
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Phumlile Simelane
- Department of Biological SciencesUniversity of EswatiniKwaluseniEswatini
| | | | | | | | - Ara Monadjem
- Department of Biological SciencesUniversity of EswatiniKwaluseniEswatini
- Mammal Research Institute, Department of Zoology and EntomologyUniversity of PretoriaHatfield, PretoriaSouth Africa
| | - Kristine Bohmann
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Kasun H. Bodawatta
- Section for Molecular Ecology and EvolutionGlobe Institute, University of CopenhagenCopenhagenDenmark
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
44
|
Pacheco-Sandoval A, Schramm Y, Heckel G, Giffard-Mena I, Lago-Lestón A. Unraveling the gut microbiota of Mexican pinnipeds: the dominance of life histories over phylogeny. Appl Environ Microbiol 2024; 90:e0203023. [PMID: 38771055 PMCID: PMC11218648 DOI: 10.1128/aem.02030-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 05/22/2024] Open
Abstract
Studying how phylogeny influences the composition and functions of microbiotas within animal hosts is essential for gaining insights into the connection between genetics, ecology, and health in the animal kingdom. However, due to limited comprehensive studies, this influence remains unclear for many wild mammals, including Mexican pinnipeds. We employed 16S rRNA gene deep-sequencing to investigate the impact of phylogeny on the gut microbiota of four pinniped species inhabiting Mexican shores: the Pacific harbor seal (Phoca vitulina richardii), the northern elephant seal (Mirounga angustirostris), the California sea lion (Zalophus californianus), and the Guadalupe fur seal (Arctocephalus philippii townsendi). Our results indicated that factors such as diets and shared life histories exerted more influence on microbiota composition than phylogeny alone. Notably, otariid species sharing similar life histories displayed greater microbiota similarity than phocids, which have distinct life histories and fewer microbiota similarities. Furthermore, harbor seals have more microbial similarities with the two otariid species than with elephant seals. Of particular concern, we observed a higher abundance of potentially pathogenic bacteria (e.g., Photobacterium damselae and Clostridium perfringens) in harbor seals and Guadalupe fur seals compared to other pinnipeds. This finding could pose health threats to these species and nearby human populations.IMPORTANCEPinnipeds in Mexico host microbial communities that remain understudied. While several factors can influence microbiota composition, the role of phylogenetic relationships among these pinnipeds remains unclear due to limited knowledge of the microbiota in certain species. This study aimed to fill this gap by characterizing the composition and function of the gut microbiota in the four pinniped species that occur in Mexico. Our analysis reveals that shared diets and life histories contribute to similarities in the composition of gut microbial communities. This study also highlights the potential differences in the metabolic capabilities and adaptations within the gut microbiota of pinnipeds. Understanding how phylogeny impacts microbial communities enhances our insights into the evolutionary dynamics of marine mammals.
Collapse
Affiliation(s)
- A. Pacheco-Sandoval
- Posgrado de Ciencias de la Vida, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Y. Schramm
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - G. Heckel
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - I. Giffard-Mena
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - A. Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| |
Collapse
|
45
|
Lilli G, Sirot C, Campbell H, Hermand F, Brophy D, Flot JF, Graham CT, George IF. Do fish gut microbiotas vary across spatial scales? A case study of Diplodus vulgaris in the Mediterranean Sea. Anim Microbiome 2024; 6:32. [PMID: 38872229 PMCID: PMC11177387 DOI: 10.1186/s42523-024-00319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Biogeography has been linked to differences in gut microbiota in several animals. However, the existence of such a relationship in fish is not clear yet. So far, it seems to depend on the fish species studied. However, most studies of fish gut microbiotas are based on single populations. In this study, we investigated the gut microbiota of fish from three wild populations of the two-banded sea bream Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) to determine whether its diversity, structure and potential functionality reflect the geographic origin of the fish, at large and small geographical scale. Additionally, we explored the host- and environmental-related factors explaining this relationship. RESULTS We showed that the taxonomy and potential functionality of the mucosa-associated gut microbiota of Diplodus vulgaris differ to varying degrees depending on the spatial scale considered. At large scale, we observed that both the taxonomical structure and the potential functionality of the fish microbiota differed significantly between populations. In contrast, the taxonomical diversity of the microbial community displayed a significant relationship with factors other than the geographic origin of the fish (i.e. sampling date). On the other hand, at small scale, the different composition and diversity of the microbiota differ according to the characteristics of the habitat occupied by the fish. Specifically, we identified the presence of Posidonia oceanica in the benthic habitat as predictor of both the microbiota composition and diversity. Lastly, we reported the enrichment of functions related to the metabolism of xenobiotics (i.e. drugs and 4-aminobenzoate) in a population and we indicated it as a potential target of future monitoring. CONCLUSIONS With this study, we confirmed the importance of investigating the gut microbiota of wild fish species using multiple populations, taking into account the different habitats occupied by the individuals. Furthermore, we underscored the use of the biodegradation potential of the gut microbiota as an alternative means of monitoring emerging contaminants in Mediterranean fish.
Collapse
Affiliation(s)
- Ginevra Lilli
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium.
| | - Charlotte Sirot
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), University of Perpignan, Perpignan, France
| | - Hayley Campbell
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Fanny Hermand
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Deirdre Brophy
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels - (IB)², 1050, Brussels, Belgium
| | - Conor T Graham
- Marine and Freshwater Research Centre, Atlantic Technological University, Dublin Road, Galway, Ireland
| | - Isabelle F George
- Laboratoire d'Ecologie des Systèmes Aquatiques (ESA), Université Libre de Bruxelles (ULB), 1050, Brussels, Belgium
| |
Collapse
|
46
|
Chang H, Perkins MH, Novaes LS, Qian F, Han W, de Araujo IE. An Amygdalar-Vagal-Glandular Circuit Controls the Intestinal Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.594027. [PMID: 38853855 PMCID: PMC11160750 DOI: 10.1101/2024.06.02.594027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Psychological states can regulate intestinal mucosal immunity by altering the gut microbiome. However, the link between the brain and microbiome composition remains elusive. We show that Brunner's glands in the duodenal submucosa couple brain activity to intestinal bacterial homeostasis. Brunner's glands mediated the enrichment of gut probiotic species in response to stimulation of abdominal vagal fibers. Cell-specific ablation of the glands triggered transmissible dysbiosis associated with an immunodeficiency syndrome that led to mortality upon gut infection with pathogens. The syndrome could be largely prevented by oral or intra-intestinal administration of probiotics. In the forebrain, we identified a vagally-mediated, polysynaptic circuit connecting the glands of Brunner to the central nucleus of the amygdala. Intra-vital imaging revealed that excitation of central amygdala neurons activated Brunner's glands and promoted the growth of probiotic populations. Our findings unveil a vagal-glandular neuroimmune circuitry that may be targeted for the modulation of the gut microbiome. The glands of Brunner may be the critical cells that regulate the levels of Lactobacilli species in the intestine.
Collapse
|
47
|
Wu X, Hou L, Zhang H, Ma Y, Wang J, Cai M, Tang X. Identification of 3-ketocapnine reductase activity within the human microbiota. MLIFE 2024; 3:307-316. [PMID: 38948141 PMCID: PMC11211663 DOI: 10.1002/mlf2.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
The microbial synthesis of sulfonolipids within the human body is likely involved in maintaining human health or causing diseases. However, the enzymes responsible for their biosynthesis remain largely unknown. In this study, we identified and verified the role of 3-ketocapnine reductase, the third-step enzyme, in the four-step conversion of l-phosphoserine into sulfobacin B both in vivo and in vitro. This finding builds upon our previous research into sulfonolipid biosynthesis, which focused on the vaginal bacterium Chryseobacterium gleum DSM 16776 and the gut bacterium Alistipes finegoldii DSM 17242. Through comprehensive gene mapping, we demonstrate the widespread presence of potential sulfonolipid biosynthetic genes across diverse bacterial species inhabiting various regions of the human body. These findings shed light on the prevalence of sulfonolipid-like metabolites within the human microbiota, suggesting a potential role for these lipid molecules in influencing the intricate biointeractions within the complex microbial ecosystem of the human body.
Collapse
Affiliation(s)
- Xiaotong Wu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Lukuan Hou
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
- College of Chemistry and PharmacyNorthwest A&F UniversityYanglingChina
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Yi Ma
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Jufang Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
48
|
van der Meijs RM, van Leeuwen W, Prins C, Wittink F, Pirovano W, Duijsings D, van den Bogert B, Bruins-van Sonsbeek LGR. GUT MICROBIOME DIVERSITY OF THREE RHINOCEROS SPECIES IN EUROPEAN ZOOS. J Zoo Wildl Med 2024; 55:301-312. [PMID: 38875187 DOI: 10.1638/2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 06/16/2024] Open
Abstract
The wild rhinoceros populations have declined drastically in the past decades because the rhinoceros are heavily hunted for their horns. Zoological institutions aim to conserve rhinoceros populations in captivity, but one of the challenges of ex situ conservation is to provide food sources that resemble those available in the wild. Considering that the mammalian gut microbiota is a pivotal player in their host's health, the gut microbiota of rhinoceros may also play a role in the bioavailability of nutrients. Therefore, this study aims to characterize the fecal microbiome composition of grazing white rhinoceros (WR; Ceratotherium simum) and greater one-horned rhinoceros (GOHR; Rhinoceros unicornis) as well as the browsing black rhinoceros (BR; Diceros bicornis) kept in European zoos. Over the course of 1 yr, 166 fecal samples in total were collected from 9 BR (n = 39), 10 GOHR (n = 56), and 14 WR (n = 71) from 23 zoological institutions. The bacterial composition in the samples was determined using 16S rRNA gene Illumina sequencing. The fecal microbiomes of rhinoceros clustered by species, with BR clustering more distantly from GOHR and WR. Furthermore, the data report clustering of rhinoceros microbiota according to individual rhinoceros and institutional origin, showing that zoological institutions play a significant role in shaping the gut microbiome of rhinoceros species. In addition, BR exhibit a relatively higher microbial diversity than GOHR and WR. BR seem more susceptible to microbial gut changes and appear to have a more diverse microbiome composition among individuals than GOHR and WR. These data expand on the role of gut microbes and can provide baseline data for continued efforts in rhinoceros conservation and health status.
Collapse
Affiliation(s)
| | - Willem van Leeuwen
- University of Applied Sciences Leiden, Zernikedreef, 2333 CK Leiden, The Netherlands
| | - Casper Prins
- BaseClear B.V., Sylviusweg, 2333 BE Leiden, The Netherlands
| | - Floyd Wittink
- University of Applied Sciences Leiden, Zernikedreef, 2333 CK Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Herlemann DPR, Tammert H, Kivistik C, Käiro K, Kisand V. Distinct biogeographical patterns in snail gastrointestinal tract bacterial communities compared with sediment and water. Microbiologyopen 2024; 13:e13. [PMID: 38825966 PMCID: PMC11144953 DOI: 10.1002/mbo3.1413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
The factors that influence the distribution of bacterial community composition are not well understood. The role of geographical patterns, which suggest limited dispersal, is still a topic of debate. Bacteria associated with hosts face unique dispersal challenges as they often rely on their hosts, which provide specific environments for their symbionts. In this study, we examined the effect of biogeographic distances on the bacterial diversity and composition of bacterial communities in the gastrointestinal tract of Ampullaceana balthica. We compared the effects on the host-associated bacterial community to those on bacterial communities in water and sediment. This comparison was made using 16S ribosomal RNA gene sequencing. We found that the bacterial communities we sampled in Estonia, Denmark, and Northern Germany varied between water, sediment, and the gastrointestinal tract. They also varied between countries within each substrate. This indicates that the type of substrate is a dominant factor in determining bacterial community composition. We separately analyzed the turnover rates of water, sediment, and gastrointestinal bacterial communities over increasing geographic distances. We observed that the turnover rate was lower for gastrointestinal bacterial communities compared to water bacterial communities. This implies that the composition of gastrointestinal bacteria remains relatively stable over distances, while water bacterial communities exhibit greater variability. However, the gastrointestinal tract had the lowest percentage of country-specific amplicon sequence variants, suggesting bacterial colonization from local bacterial communities. Since the overlap between the water and gastrointestinal tract was highest, it appears that the gastrointestinal bacterial community is colonized by the water bacterial community. Our study confirmed that biogeographical patterns in host-associated communities differ from those in water and sediment bacterial communities. These host-associated communities consist of numerous facultative symbionts derived from the water bacterial community.
Collapse
Affiliation(s)
- Daniel P. R. Herlemann
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
- Department of Biological OceanographyLeibniz Institute for Baltic Sea Research Warnemünde (IOW)RostockGermany
| | - Helen Tammert
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Carmen Kivistik
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
| | - Kairi Käiro
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
| | - Veljo Kisand
- Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartu CountyEstonia
- Institute of TechnologyUniversity of TartuTartuEstonia
| |
Collapse
|
50
|
Meng Y, Zhang X, Zhai Y, Li Y, Shao Z, Liu S, Zhang C, Xing XH, Zheng H. Identification of the mutual gliding locus as a factor for gut colonization in non-native bee hosts using the ARTP mutagenesis. MICROBIOME 2024; 12:93. [PMID: 38778376 PMCID: PMC11112851 DOI: 10.1186/s40168-024-01813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The gut microbiota and their hosts profoundly affect each other's physiology and evolution. Identifying host-selected traits is crucial to understanding the processes that govern the evolving interactions between animals and symbiotic microbes. Current experimental approaches mainly focus on the model bacteria, like hypermutating Escherichia coli or the evolutionary changes of wild stains by host transmissions. A method called atmospheric and room temperature plasma (ARTP) may overcome the bottleneck of low spontaneous mutation rates while maintaining mild conditions for the gut bacteria. RESULTS We established an experimental symbiotic system with gnotobiotic bee models to unravel the molecular mechanisms promoting host colonization. By in vivo serial passage, we tracked the genetic changes of ARTP-treated Snodgrassella strains from Bombus terrestris in the non-native honeybee host. We observed that passaged isolates showing genetic changes in the mutual gliding locus have a competitive advantage in the non-native host. Specifically, alleles in the orphan mglB, the GTPase activating protein, promoted colonization potentially by altering the type IV pili-dependent motility of the cells. Finally, competition assays confirmed that the mutations out-competed the ancestral strain in the non-native honeybee gut but not in the native host. CONCLUSIONS Using the ARTP mutagenesis to generate a mutation library of gut symbionts, we explored the potential genetic mechanisms for improved gut colonization in non-native hosts. Our findings demonstrate the implication of the cell mutual-gliding motility in host association and provide an experimental system for future study on host-microbe interactions. Video Abstract.
Collapse
Affiliation(s)
- Yujie Meng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- MGI Tech, Qingdao, 266426, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuan Li
- MGI Tech, Qingdao, 266426, China
| | | | | | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin-Hui Xing
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|