1
|
Wang Y, Yang L, Wu W, Feng Z, He J, Guo C, He J. Bacillus haimaensis sp. nov.: a novel cold seep-adapted bacterium with unique biosynthetic potential. Appl Environ Microbiol 2025; 91:e0245624. [PMID: 40277363 DOI: 10.1128/aem.02456-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 02/18/2025] [Indexed: 04/26/2025] Open
Abstract
Deep-sea cold seeps harbor unique microbial communities that play crucial roles in biogeochemical cycles and possess potential biotechnological applications. Herein, we report the isolation, characterization, and genomic analysis of a novel Bacillus species, Bacillus haimaensis sp. nov. (type strain CSS-39T, CCTCC M20241382), obtained from sediments collected at a depth of 1,350 m in the Haima cold seep, South China Sea. Phylogenomic analysis, revealing an average nucleotide identity of 87.78% and a digital DNA-DNA hybridization value of 34.0% with its closest relative B. tianshenii DSM 25879T, confirms the taxonomic novelty of the genus Bacillus. The complete 4.54 Mb genome of B. haimaensis reveals adaptations to the cold seep environment, including enhanced nutrient acquisition capabilities and stress response mechanisms. Comparative genomic analysis identifies 27 unique gene clusters related to spore germination and sulfate assimilation, suggesting specialized metabolic strategies for this extreme habitat. Furthermore, six biosynthetic gene clusters, including a novel lassopeptide cluster, indicate a potential for secondary metabolite production. Phenotypic characterization demonstrates the strain's ability to utilize diverse carbon sources and tolerate a wide range of environmental conditions. Our findings provide insights into microbial adaptations to deep-sea cold seeps and highlight the potential of B. haimaensis for biotechnological applications in bioremediation and natural product discovery. This study expands our understanding of microbial diversity in extreme marine environments and offers a new model bacterium for investigating bacterial adaptations to deep-sea ecosystems.IMPORTANCEThe discovery of Bacillus haimaensis sp. nov. in the Haima cold seep of the South China Sea represents a significant advancement in our understanding of microbial adaptations to extreme marine environments. This novel species exhibits remarkable metabolic versatility and unique genomic features, providing insights into bacterial survival strategies in nutrient-variable, high-pressure deep-sea ecosystems. Comprehensive genomic analysis reveals distinctive biosynthetic gene clusters, suggesting untapped potential for discovering novel natural product. Furthermore, B. haimaensis exhibits promising capabilities for aromatic compound degradation, indicating potential applications in marine bioremediation. This work not only expands our knowledge of microbial diversity in understudied deep-sea habitats but also highlights the biotechnological promise of extremophiles. The adaptive mechanisms elucidated in B. haimaensis, particularly those related to sporulation and sulfate assimilation, contribute to our broader understanding of microbial ecology in cold seeps and may inform future research on climate change impacts on deep-sea ecosystems.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Luyi Yang
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Wenbo Wu
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Feng
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Jian He
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Changjun Guo
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory for Biocontrol & Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory of Aquatic Economic Animals / Guangdong Provincial Observation and Research Station for Marine Ranching of the Lingdingyang Bay, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Zhang Y, Palma CSD, Chen Z, Zarazúa-Osorio B, Fujita M, Igoshin OA. Biophysical modeling reveals the transcriptional regulatory mechanism of Spo0A, the master regulator in starving Bacillus subtilis. mSystems 2025; 10:e0007225. [PMID: 40298394 PMCID: PMC12090719 DOI: 10.1128/msystems.00072-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
In starving Bacillus subtilis bacteria, the initiation of two survival programs-biofilm formation and sporulation-is controlled by the same phosphorylated master regulator, Spo0A~P. Its gene, spo0A, is transcribed from two promoters, Pv and Ps, that are, respectively, regulated by RNA polymerase (RNAP) holoenzymes bearing σA and σH. Notably, transcription is directly autoregulated by Spo0A~P binding sites known as 0A1, 0A2, and 0A3 box, located in between the two promoters. It remains unclear whether, at the onset of starvation, these boxes activate or repress spo0A expression, and whether the Spo0A~P transcriptional feedback plays a role in the increase in spo0A expression. Based on the experimental data of the promoter activities under systematic perturbation of the promoter architecture, we developed a biophysical model of transcriptional regulation of spo0A by Spo0A~P binding to each of the 0A boxes. The model predicts that Spo0A~P binding to its boxes does not affect the RNAP recruitment to the promoters but instead affects the transcriptional initiation rate. Moreover, the effects of Spo0A~P binding to 0A boxes are mainly repressive and saturated early at the onset of starvation. Therefore, the increase in spo0A expression is mainly driven by the increase in RNAP holoenzyme levels. Additionally, we reveal that Spo0A~P affinity to 0A boxes is strongest at 0A3 and weakest at 0A2 and that there are attractive forces between the occupied 0A boxes. Our findings, in addition to clarifying how the sporulation master regulator is controlled, offer a framework to predict regulatory outcomes of complex gene-regulatory mechanisms. IMPORTANCE Cell differentiation is often critical for survival. In bacteria, differentiation decisions are controlled by transcriptional master regulators under transcriptional feedback control. Therefore, understanding how master regulators are transcriptionally regulated is required to understand differentiation. However, in many cases, the underlying regulation is complex, with multiple transcription factor binding sites and multiple promoters, making it challenging to dissect the exact mechanisms. Here, we address this problem for the Bacillus subtilis master regulator Spo0A. Using a biophysical model, we quantitatively characterize the effect of individual transcription factor binding sites on each spo0A promoter. Furthermore, the model allows us to identify the specific transcription step that is affected by transcription factor binding. Such a model is promising for the quantitative study of a wide range of master regulators involved in transcriptional feedback.
Collapse
Affiliation(s)
- Yujia Zhang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | - Zhuo Chen
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Oleg A. Igoshin
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Departments of Chemistry and of Biosciences, Center for Theoretical Biological Physics, and Rice Synthetic Biology Institute, Rice University, Houston, Texas, USA
| |
Collapse
|
3
|
Potisap C, Lawongsa P, Duangsri J, Gontijo JB, Wongratanacheewin S, Rodrigues JLM, Sermswan RW. The soil microorganism Bacillus amyloliquefaciens N3-8 shows potential as a biocontrol agent against the pathogen Burkholderia pseudomallei and its effect on rice plantation. Microbiol Spectr 2025:e0296324. [PMID: 40366149 DOI: 10.1128/spectrum.02963-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 05/15/2025] Open
Abstract
Burkholderia pseudomallei is a saprophytic bacterium responsible for melioidosis in humans and animals. In this study, Bacillus amyloliquefaciens N3-8 was applied as a biocontrol agent on sterile soil spiked with 107 colony-forming unit (CFU) per gram of B. pseudomallei p37 at two ratios: 1:10,000 and 1:100,000 CFU/g soil. Both treatments significantly reduced B. pseudomallei by 4-5 logs within 4 weeks. A subsequent experiment applied the 1:10,000 ratio to 10 kg of natural soil in a pot containing 102-103 CFU/g of B. pseudomallei alongside rice cultivation. Bacterial counts, rice yield, soil physicochemical factors, and microbial populations were monitored. B. pseudomallei was undetectable in biocontrol-treated soil by day 14 but reappeared by day 30, eventually matching the levels in control soil, suggesting interference by native microbial communities. No significant differences between the control and biocontrol treatments were observed in rice yield or soil physicochemical properties. Metataxonomic analysis revealed 17 bacterial phyla across all samples, with no significant differences in the overall microbial community structure between treatments at any time point. On the other hand, significant changes in microbial beta-diversity over time within the same soil treatments suggest that temporal dynamics, rather than the biocontrol treatment, drive shifts in microbial community structure. This study highlights the potential of B. amyloliquefaciens N3-8 as a biocontrol agent against B. pseudomallei on a pot scale with a rice plantation. For effective control of the pathogen, repeated applications in a rice field trial are necessary to ensure sustained management while being mindful not to disrupt the soil microbial balance.IMPORTANCEBacillus amyloliquefaciens N3-8 has been used in soil as a biocontrol agent against Burkholderia pseudomallei, a bacterium pathogenic to humans and animals, where it has shown no significant effects on soil physicochemical properties, rice yield, and bacterial community structure. However, long-term treatments are needed to achieve sustainable control, and critical management is required to avoid disturbing the microbial balance in the soil.
Collapse
Affiliation(s)
- Chotima Potisap
- Melioidosis Research Center, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
| | - Phrueksa Lawongsa
- Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
- Soil Organic Matter Management Research Group, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
| | - Jittima Duangsri
- Melioidosis Research Center, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
| | - Júlia B Gontijo
- Department of Land Air and Water Resources, University of California Davis, Davis, California, USA
| | - Surasakdi Wongratanacheewin
- Melioidosis Research Center, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
| | - Jorge L Mazza Rodrigues
- Department of Land Air and Water Resources, University of California Davis, Davis, California, USA
| | - Rasana W Sermswan
- Melioidosis Research Center, Khon Kaen University, Nai Mueang, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Nai Muaeng, Khon Kaen, Thailand
| |
Collapse
|
4
|
Wang H, Li C, Wang Y, Zhang H. Bacterial Species in Engineered Living Materials: Strategies and Future Directions. Microb Biotechnol 2025; 18:e70164. [PMID: 40407296 PMCID: PMC12100766 DOI: 10.1111/1751-7915.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025] Open
Abstract
In recent years, there has been a notable increase interest in engineered living materials (ELMs) owing to their considerable potential. One key area of research within this field is the utilisation of various species of bacteria to create innovative living materials. In order to accelerate the advancement of bacterial-based living materials, a systematic summary of bacterial species and their design strategies is essential. Yet, up to this point, no applicable reviews have been documented. This review offers a concise introduction to living materials derived from bacteria, delves into the strategies and applications of each bacterial species in this realm, and provides perspectives and future outlooks in this field.
Collapse
Affiliation(s)
- Hu Wang
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
| | - Chunzhong Li
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
| | - Yanmin Wang
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
| | - Huanming Zhang
- School of Statistics and Applied MathematicsAnhui University of Finance and EconomicsBengbuAnhuiChina
- School of Mathematics and StatisticsHuaibei Normal UniversityHuaibeiAnhuiChina
| |
Collapse
|
5
|
Rangel-Mendoza A, Valenzuela-García LI, Robleto EA, Pedraza-Reyes M. Germination and Outgrowth of Bacillus subtilis Spores Deficient in BER and DisA Unveil Alternative Genetic Checkpoints. Microorganisms 2025; 13:939. [PMID: 40284773 PMCID: PMC12029834 DOI: 10.3390/microorganisms13040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
During Bacillus subtilis spore germination/outgrowth, the rehydration of the spore core and activation of aerobic metabolism can generate reactive oxygen species (ROS)-promoted DNA lesions that are repaired via the base excision repair pathway (BER). Accordingly, spores deficient in the AP-endonucleases (APEs) Nfo and ExoA exhibit a delayed outgrowth that is suppressed following disruption of the checkpoint protein DisA. Here, we report that DisA-independent DNA damage checkpoints operate during B. subtilis spore outgrowth. Consistent with this notion, spores lacking Nfo, ExoA, and Nth, which functions as an APE, did not suppress delayed outgrowth following disA disruption. Furthermore, in reference to the ∆nfo ∆exoA ∆nth spores, spores deficient for these APEs and DisA displayed a significantly higher number of oxidative genetic lesions and failed to properly segregate its chromosome during the first round of replication in the outgrowth stage. Finally, we found that DisA promotes low-fidelity repair and replication events, as revealed by DNA-alkaline gel electrophoresis (AGE) as well as spontaneous and H2O2-promoted RifR mutagenesis. Overall, our results unveil the existence of DisA-independent DNA damage checkpoint(s) that are activated by genomic lesions of an oxidative nature during spore germination and outgrowth, ensuring a proper transition to vegetative growth.
Collapse
Affiliation(s)
| | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Subsede-Durango, Durango 34147, Durango, Mexico;
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Mario Pedraza-Reyes
- Department of Biology, University of Guanajuato, Guanajuato 36050, Guanajuato, Mexico;
| |
Collapse
|
6
|
Yulo PRJ, Desprat N, Gerth ML, Ritzl-Rinkenberger B, Farr AD, Liu Y, Zhang XX, Miller M, Cava F, Rainey PB, Hendrickson HL. Evolutionary rescue of spherical mreB deletion mutants of the rod-shape bacterium Pseudomonas fluorescens SBW25. eLife 2025; 13:RP98218. [PMID: 40163529 PMCID: PMC11957537 DOI: 10.7554/elife.98218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.
Collapse
Affiliation(s)
- Paul Richard J Yulo
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Nicolas Desprat
- Laboratoire de Physique de l'ENS, Université Paris Cité, Ecole normale supérieure, UniversitéPSL, Sorbonne Université, CNRS, 75005 ParisParisFrance
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research UniversityParisFrance
- Université Paris CitéParisFrance
| | - Monica L Gerth
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
| | - Barbara Ritzl-Rinkenberger
- Department of Molecular Biology, Umeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå Centre for Microbial Research, Umeå UniversityUmeåSweden
| | - Andrew D Farr
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Yunhao Liu
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
| | - Xue-Xian Zhang
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Michael Miller
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
| | - Felipe Cava
- Department of Molecular Biology, Umeå UniversityUmeåSweden
- Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå Centre for Microbial Research, Umeå UniversityUmeåSweden
| | - Paul B Rainey
- New Zealand Institute for Advanced Study, Massey UniversityAucklandNew Zealand
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary BiologyPlönGermany
- Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSLParisFrance
| | - Heather L Hendrickson
- Institute of Natural and Mathematical Science, Massey UniversityAucklandNew Zealand
- School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| |
Collapse
|
7
|
Ramesh M, Behra PRK, Pettersson BMF, Dasgupta S, Kirsebom LA. Age-Dependent Pleomorphism in Mycobacterium monacense Cultures. Microorganisms 2025; 13:475. [PMID: 40142368 PMCID: PMC11946739 DOI: 10.3390/microorganisms13030475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Changes in cell shape have been shown to be an integral part of the mycobacterial life cycle; however, systematic investigations into its patterns of pleomorphic behaviour in connection with stages or conditions of growth are scarce. We have studied the complete growth cycle of Mycobacterium monacense cultures, a Non-Tuberculous Mycobacterium (NTM), in solid as well as in liquid media. We provide data showing changes in cell shape from rod to coccoid and occurrence of refractive cells ranging from Phase Grey to phase Bright (PGB) in appearance upon ageing. Changes in cell shape could be correlated to the bi-phasic nature of the growth curves for M. monacense (and the NTM Mycobacterium boenickei) as measured by the absorbance of liquid cultures while growth measured by colony-forming units (CFU) on solid media showed a uniform exponential growth. Based on the complete M. monacense genome we identified genes involved in cell morphology, and analyses of their mRNA levels revealed changes at different stages of growth. One gene, dnaK_3 (encoding a chaperone), showed significantly increased transcript levels in stationary phase cells relative to exponentially growing cells. Based on protein domain architecture, we identified that the DnaK_3 N-terminus domain is an MreB-like homolog. Endogenous overexpression of M. monacense dnaK_3 in M. monacense was unsuccessful (appears to be lethal) while exogenous overexpression in Mycobacterium marinum resulted in morphological changes with an impact on the frequency of appearance of PGB cells. However, the introduction of an anti-sense "gene" targeting the M. marinum dnaK_3 did not show significant effects. Using dnaK_3-lacZ reporter constructs we also provide data suggesting that the morphological differences could be due to differences in the regulation of dnaK_3 in the two species. Together these data suggest that, although its regulation may vary between mycobacterial species, the dnaK_3 might have a direct or indirect role in the processes influencing mycobacterial cell shape.
Collapse
Affiliation(s)
| | | | | | | | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden; (M.R.); (P.R.K.B.); (B.M.F.P.); (S.D.)
| |
Collapse
|
8
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
9
|
Li C, Feng M, Li B, Feng X, Zhang Y, Wang B. Nanoencapsulation of Living Microbial Cells in Porous Covalent Organic Framework Shells. ACS NANO 2025; 19:2890-2899. [PMID: 39763451 DOI: 10.1021/acsnano.4c16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Encapsulating living cells within nanoshells offers an important approach to enhance their stability against environmental stressors and broaden their application scope. However, this often leads to impaired mass transfer at the cell biointerface. Strengthening the protective shell with well-defined, ordered transport channels is crucial to regulating molecular transport and maintaining cell viability and biofunctionality. Herein, we report the construction of covalent organic framework (COF) mesoporous shells for single-cell nanoencapsulation, providing selective permeability and comprehensive protection for living microbial cells. The COF shells ensure nutrient uptake while blocking large harmful molecules and UV-C radiation, thereby preserving cell viability and metabolic activity. Integration of such crystalline porous shells with genetically modified cell factories for metabolic production is further investigated, revealing no adverse effects, as demonstrated by riboflavin production. Moreover, the COF shell effectively shields cells, ensuring efficient bioproduction even after being treated under harsh conditions. This versatile encapsulation approach is applicable for different cell types, providing a robust platform for cell surface engineering.
Collapse
Affiliation(s)
- Chen Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mengchu Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bixiao Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Technology Research Institute (Jinan), Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
10
|
Iwańska O, Latoch P, Kovalenko M, Lichocka M, Hołówka J, Serwa R, Grzybowska A, Zakrzewska-Czerwińska J, Starosta AL. Ribosomes translocation into the spore of Bacillus subtilis is highly organised and requires peptidoglycan rearrangements. Nat Commun 2025; 16:354. [PMID: 39753535 PMCID: PMC11698733 DOI: 10.1038/s41467-024-55196-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
In the spore-forming bacterium Bacillus subtilis transcription and translation are uncoupled and the translational machinery is located at the cell poles. During sporulation, the cell undergoes morphological changes including asymmetric division and chromosome translocation into the forespore. However, the fate of translational machinery during sporulation has not been described. Here, using microscopy and mass spectrometry, we show the localisation of ribosomes during sporulation in wild type and mutant Bacillus subtilis. We demonstrate that ribosomes are associated with the asymmetric septum, a functionally important organelle in the cell's developmental control, and that SpoIIDMP-driven peptidoglycan rearrangement is crucial for ribosomes packing into the forespore. We also show that the SpoIIIA-SpoIIQ 'feeding-tube' channel is not required for ribosome translocation. Our results demonstrate that translation and translational machinery are temporally and spatially organised in B. subtilis during sporulation and that the forespore 'inherits' ribosomes from the mother cell. We propose that the movement of ribosomes in the cell may be mediated by the bacterial homologs of cytoskeletal proteins and that the cues for asymmetric division localisation may be translation-dependent. We anticipate our findings to elicit more sophisticated structural and mechanistic studies of ribosome organisation during bacterial cell development.
Collapse
Affiliation(s)
- Olga Iwańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mariia Kovalenko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Hołówka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Remigiusz Serwa
- International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Grzybowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
11
|
Chiou JG, Chou TKT, Garcia-Ojalvo J, Süel GM. Intrinsically robust and scalable biofilm segmentation under diverse physical growth conditions. iScience 2024; 27:111386. [PMID: 39669429 PMCID: PMC11635021 DOI: 10.1016/j.isci.2024.111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Developmental patterning is a shared feature across biological systems ranging from vertebrates to bacterial biofilms. While vertebrate patterning benefits from well-controlled homeostatic environments, bacterial biofilms can grow in diverse physical contexts. What mechanisms provide developmental robustness under diverse environments remains an open question. We show that a native clock-and-wavefront mechanism robustly segments biofilms in both solid-air and solid-liquid interfaces. Biofilms grown under these distinct physical conditions differ 4-fold in size yet exhibit robust segmentation. The segmentation pattern scaled with biofilm growth rate in a mathematically predictable manner independent of habitat conditions. We show that scaling arises from the coupling between wavefront speed and biofilm growth rate. In contrast to the complexity of scaling mechanisms in vertebrates, our data suggests that the minimal bacterial clock-and-wavefront mechanism is intrinsically robust and scales in real time. Consequently, bacterial biofilms robustly segment under diverse conditions without requiring cell-to-cell signaling to track system size.
Collapse
Affiliation(s)
- Jian-geng Chiou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Todd Kwang-Tao Chou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gürol M. Süel
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
12
|
Riley EP, Lyda JA, Reyes-Matte O, Sugie J, Kasu IR, Enustun E, Armbruster E, Ravishankar S, Isaacson RL, Camp AH, Lopez-Garrido J, Pogliano K. Developmentally-regulated proteolysis by MdfA and ClpCP mediates metabolic differentiation during Bacillus subtilis sporulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625531. [PMID: 39651166 PMCID: PMC11623654 DOI: 10.1101/2024.11.26.625531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bacillus subtilis sporulation entails a dramatic transformation of the two cells required to assemble a dormant spore, with the larger mother cell engulfing the smaller forespore to produce the cell-within-a-cell structure that is a hallmark of endospore formation. Sporulation also entails metabolic differentiation, whereby key metabolic enzymes are depleted from the forespore but maintained in the mother cell. This reduces the metabolic potential of the forespore, which becomes dependent on mother-cell metabolism and the SpoIIQ-SpoIIIA channel to obtain metabolic building blocks necessary for development. We demonstrate that metabolic differentiation depends on the ClpCP protease and a forespore-produced protein encoded by the yjbA gene, which we have renamed MdfA (metabolic differentiation factor A). MdfA is conserved in aerobic endospore-formers and required for spore resistance to hypochlorite. Using mass spectrometry and quantitative fluorescence microscopy, we show that MdfA mediates the depletion of dozens of metabolic enzymes and key transcription factors from the forespore. An accompanying study by Massoni, Evans and collaborators demonstrates that MdfA is a ClpC adaptor protein that directly interacts with and stimulates ClpCP activity. Together, these results document a developmentally-regulated proteolytic pathway that reshapes forespore metabolism, reinforces differentiation, and is required to produce spores resistant to the oxidant hypochlorite.
Collapse
|
13
|
Machado DT, Dias BDC, Cayô R, Gales AC, Marques de Carvalho F, Vasconcelos ATR. Uncovering new Firmicutes species in vertebrate hosts through metagenome-assembled genomes with potential for sporulation. Microbiol Spectr 2024; 12:e0211324. [PMID: 39283121 PMCID: PMC11536998 DOI: 10.1128/spectrum.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.
Collapse
Affiliation(s)
- Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Rodrigo Cayô
- Laboratory of Environmental Antimicrobial Resistance (LEARN), Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Centro, Diadema, São Paulo, Brazil
| | - Ana Cristina Gales
- Laboratório ALERTA, Division of Infectious Diseases, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Chen Z, Lu Y, Cui J, Feng Y, Dong H, Huang X, Zhu C, Xiong X, Chen H, Wang Q, Liu G. Monitoring of Bacillus spore-forming dynamics through flow cytometry. Front Microbiol 2024; 15:1450913. [PMID: 39534508 PMCID: PMC11554475 DOI: 10.3389/fmicb.2024.1450913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
The plate counting method is a traditional and widely accepted technique for live cell counting, often employed for Bacillus enumeration and spore forming rate calculations. However, this method requires at least 12 h to generate results, making it unsuitable for real-time monitoring of bacterial growth status and spore transformation rate. Bacillus thuringiensis crystals, produced during sporulation, are widely used as microbial pesticides, with high demand for industrial scale production. Variations in cultivation conditions and harvest timing during large-scale pore production of Bacillus thuringiensis significantly affect spore forming rate, impacting crystallization yield. Nevertheless, there is a lack of real-time monitoring methods for spore conversion rate. Flow cytometry (FCM), a well-established technique for single-cell analysis in eukaryotic cells, has been successfully applied in bacterial detection in environmental and food samples. In this study, we introduced a rapid flow cytometry-based method for determining spore forming rate of Bacillus thuringiensis, with two nucleic acid dyes, SYTO24 and LDS751. The method enables dynamic monitoring of spore, vegetative cell, and viable but non-culturable/dead cell proportions during the whole cultivation process, and spore forming rate could be gained within 30 min. Data of spore forming rate by FCM method is consistent with that by plate counting method, offering a faster and more efficient approach for assessing sporulation status in industrial Bacillus thuringiensis microbial pesticide production.
Collapse
Affiliation(s)
- Zhili Chen
- Academy of Military Medical Sciences, Beijing, China
| | - Yuanyuan Lu
- Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jiazhen Cui
- Academy of Military Medical Sciences, Beijing, China
| | - Yuzhong Feng
- Academy of Military Medical Sciences, Beijing, China
| | - Haolong Dong
- Academy of Military Medical Sciences, Beijing, China
| | - Xuan Huang
- Academy of Military Medical Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Chen Zhu
- Academy of Military Medical Sciences, Beijing, China
| | | | - Huipeng Chen
- Academy of Military Medical Sciences, Beijing, China
| | - Qingyang Wang
- Academy of Military Medical Sciences, Beijing, China
| | - Gang Liu
- Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Lyu F, Yang D, Rao L, Liao X. Alanine and glutamate catabolism collaborate to ensure the success of Bacillus subtilis sporulation. Microbiol Res 2024; 286:127828. [PMID: 38991478 DOI: 10.1016/j.micres.2024.127828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Sporulation as a typical bacterial differentiation process has been studied for decades. However, two crucial aspects of sporulation, (i) the energy sources supporting the process, and (ii) the maintenance of spore dormancy throughout sporulation, are scarcely explored. Here, we reported the crucial role of RocG-mediated glutamate catabolism in regulating mother cell lysis, a critical step for sporulation completion of Bacillus subtilis, likely by providing energy metabolite ATP. Notably, rocG overexpression resulted in an excessive ATP accumulation in sporulating cells, leading to adverse effects on future spore properties, e.g. increased germination efficiency, reduced DPA content, and lowered heat resistance. Additionally, we revealed that Ald-mediated alanine metabolism was highly related to the inhibition of premature germination and the maintenance of spore dormancy during sporulation, which might be achieved by decreasing the typical germinant L-alanine concentration in sporulating environment. Our data inferred that sporulation of B. subtilis was a highly orchestrated biological process requiring a delicate balance in diverse metabolic pathways, hence ensuring both the completion of sporulation and production of high-quality spores.
Collapse
Affiliation(s)
- Fengzhi Lyu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Dong Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China; Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, Beijing, China
| |
Collapse
|
16
|
You HS, Lee SH, Hyun SH. Longitudinal Analysis of the Microbial Community on the Surface of Bloodstains Under Different Environmental Conditions in Areas with Minimal Human Interference. Curr Microbiol 2024; 81:307. [PMID: 39150477 DOI: 10.1007/s00284-024-03833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
The association between human metabolites and the environmental microbiome has primarily been investigated in relation to disease. In this study, the associations between environmental conditions and microbial communities on the surface of bloodstains were analyzed from a forensic science approach. The composition of microbial communities can be affected by numerous variables. After exposing bloodstains to two different environments with limited airflow and human interference, the microbial communities of the bloodstain surfaces were subjected to longitudinal analysis. Various microbes showed increasing or decreasing trends at the phylum and species level. The microbes identified in this study are usually found in soil, freshwater, and seawater and are known to exhibit unique properties, such as sporulation. Longitudinal variation in temperature and humidity were associated with various changes and correlations with the blood surface microbial community. Understanding these changes could introduce a new perspective to forensic science and could be used to develop a forensic tool used at crime scenes to analyze blood stains in more detail.
Collapse
Affiliation(s)
- Hee Sang You
- Department of Senior Healthcare, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea
| | - Song Hee Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea
| | - Sung Hee Hyun
- Department of Senior Healthcare, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea.
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Dongil-ro 712, Uijeongbu-si, 11759, Korea.
| |
Collapse
|
17
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
18
|
Pedraza-Reyes M, Abundiz-Yañez K, Rangel-Mendoza A, Martínez LE, Barajas-Ornelas RC, Cuéllar-Cruz M, Leyva-Sánchez HC, Ayala-García VM, Valenzuela-García LI, Robleto EA. Bacillus subtilis stress-associated mutagenesis and developmental DNA repair. Microbiol Mol Biol Rev 2024; 88:e0015823. [PMID: 38551349 PMCID: PMC11332352 DOI: 10.1128/mmbr.00158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
SUMMARYThe metabolic conditions that prevail during bacterial growth have evolved with the faithful operation of repair systems that recognize and eliminate DNA lesions caused by intracellular and exogenous agents. This idea is supported by the low rate of spontaneous mutations (10-9) that occur in replicating cells, maintaining genome integrity. In contrast, when growth and/or replication cease, bacteria frequently process DNA lesions in an error-prone manner. DNA repairs provide cells with the tools needed for maintaining homeostasis during stressful conditions and depend on the developmental context in which repair events occur. Thus, different physiological scenarios can be anticipated. In nutritionally stressed bacteria, different components of the base excision repair pathway may process damaged DNA in an error-prone approach, promoting genetic variability. Interestingly, suppressing the mismatch repair machinery and activating specific DNA glycosylases promote stationary-phase mutations. Current evidence also suggests that in resting cells, coupling repair processes to actively transcribed genes may promote multiple genetic transactions that are advantageous for stressed cells. DNA repair during sporulation is of interest as a model to understand how transcriptional processes influence the formation of mutations in conditions where replication is halted. Current reports indicate that transcriptional coupling repair-dependent and -independent processes operate in differentiating cells to process spontaneous and induced DNA damage and that error-prone synthesis of DNA is involved in these events. These and other noncanonical ways of DNA repair that contribute to mutagenesis, survival, and evolution are reviewed in this manuscript.
Collapse
Affiliation(s)
- Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Karen Abundiz-Yañez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Alejandra Rangel-Mendoza
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Rocío C. Barajas-Ornelas
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato, Mexico
| | | | | | - Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | |
Collapse
|
19
|
Jaiaue P, Srimongkol P, Thitiprasert S, Piluk J, Thammaket J, Assabumrungrat S, Cheirsilp B, Tanasupawat S, Thongchul N. Inactivation of guanylate kinase in Bacillus sp. TL7-3 cultivated under an optimized ratio of carbon and nitrogen sources influenced GTP regeneration capability and sporulation. Heliyon 2024; 10:e31956. [PMID: 38841476 PMCID: PMC11152743 DOI: 10.1016/j.heliyon.2024.e31956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Bacillus sp. TL7-3 has potential as a dietary supplement to promote human and animal health. It produces spores that can survive in harsh environments. Thus, when supplemented with nutrients, these spores can withstand the acidic pH of the stomach and resume vegetative development in the gut when exposed to growth-promoting conditions. Spores are formed as a cellular defense mechanism when a culture experiences stress and process optimization to achieve high spore production in a typical batch process remains challenging. Existing literature on the manipulation of gene expression and enzyme activity during batch cultivation is limited. Studies on the growth patterns, morphological changes, and relevant gene expression have aided in enhancing spore production. The present study used the response surface methodology for medium optimization. The model suggested that yeast extract and NH4Cl were significant factors controlling spore production. A comparison between the high weight ratio of carbon and nitrogen (C:N) substrates (8.57:1) in the optimized and basal media (0.52:1) showed an 8.76-fold increase in the final spore concentration. The expression of major genes, including codY, spo0A, kinA, and spo0F, involved in the sporulation was compared when cultivating Bacillus sp. TL7-3 in media with varying C:N ratios. At high C:N ratios, spo0A, kinA, and spo0F were upregulated, whereas codY was downregulated. This led to decreased guanylate kinase activity, resulting in a low guanosine triphosphate concentration and inactivation of CodY, thereby reducing the repression of spo0A and CodY-repressed genes and stimulating sporulation.
Collapse
Affiliation(s)
- Phetcharat Jaiaue
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Sitanan Thitiprasert
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jirabhorn Piluk
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jesnipit Thammaket
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suttichai Assabumrungrat
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Benjamas Cheirsilp
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkla, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuttha Thongchul
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Hou ZJ, Cao CY, Gao GR, Ding MZ, Xu QM, Cheng JS. Enhanced Iturin A Production of Engineered Bacillus amyloliquefaciens by Knockout of Endogenous Plasmid and Rap Phosphatase Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11577-11586. [PMID: 38721818 DOI: 10.1021/acs.jafc.4c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Iturin A biosynthesis has garnered considerable interest, yet bottlenecks persist in its low productivity in wild strains and the ability to engineer Bacillus amyloliquefaciens producers. This study reveals that deleting the endogenous plasmid, plas1, from the wild-type B. amyloliquefaciens HM618 notably enhances iturin A synthesis, likely related to the effect of the Rap phosphatase gene within plas1. Furthermore, inactivating Rap phosphatase-related genes (rapC, rapF, and rapH) in the genome of the strain also improved the iturin A level and specific productivity while reducing cell growth. Strategic rap genes and plasmid elimination achieved a synergistic balance between cell growth and iturin A production. Engineered strain HM-DR13 exhibited an increase in iturin A level to 849.9 mg/L within 48 h, significantly shortening the production period. These insights underscore the critical roles of endogenous plasmids and Rap phosphatases in iturin A biosynthesis, presenting a novel engineering strategy to optimize iturin A production in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Zheng-Jie Hou
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Geng-Rong Gao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| |
Collapse
|
21
|
Adeleye SA, Yadavalli SS. Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.31.565030. [PMID: 37961685 PMCID: PMC10635034 DOI: 10.1101/2023.10.31.565030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint particular residues in QueE that contribute distinctly to each of its functions - Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueEs secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of one gene, one enzyme, one function, which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.
Collapse
|
22
|
Lee CD, Rizvi A, McBride SM. KipOTIA detoxifies 5-oxoproline and promotes the growth of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592088. [PMID: 38746432 PMCID: PMC11092664 DOI: 10.1101/2024.05.01.592088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile is an anaerobic enteric pathogen that disseminates in the environment as a dormant spore. For C. difficile and other sporulating bacteria, the initiation of sporulation is a regulated process that prevents spore formation under favorable growth conditions. In Bacillus subtilis , one such mechanism for preventing sporulation is the Kinase Inhibitory Protein, KipI, which impedes activation of the main sporulation kinase. In addition, KipI functions as part of a complex that detoxifies the intermediate metabolite, 5-oxoproline (OP), a harmful by-product of glutamic acid. In this study, we investigate the orthologous Kip proteins in C. difficile to determine their roles in the regulation of sporulation and metabolism. Using deletion mutants in kipIA and the full kipOTIA operon, we show that unlike in B. subtilis, the Kip proteins have no significant impact on sporulation. However, we found that the kip operon encodes a functional oxoprolinase that facilitates detoxification of OP. Further, our data demonstrate that KipOTIA not only detoxifies OP, but also allows OP to be used as a nutrient source that supports the robust growth of C. difficile , thereby facilitating the conversion of a toxic byproduct of metabolism into an effective energy source.
Collapse
|
23
|
Adeleye SA, Yadavalli SS. Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator. PLoS Genet 2024; 20:e1011287. [PMID: 38768229 PMCID: PMC11142719 DOI: 10.1371/journal.pgen.1011287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/31/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
In many organisms, stress responses to adverse environments can trigger secondary functions of certain proteins by altering protein levels, localization, activity, or interaction partners. Escherichia coli cells respond to the presence of specific cationic antimicrobial peptides by strongly activating the PhoQ/PhoP two-component signaling system, which regulates genes important for growth under this stress. As part of this pathway, a biosynthetic enzyme called QueE, which catalyzes a step in the formation of queuosine (Q) tRNA modification is upregulated. When cellular QueE levels are high, it co-localizes with the central cell division protein FtsZ at the septal site, blocking division and resulting in filamentous growth. Here we show that QueE affects cell size in a dose-dependent manner. Using alanine scanning mutagenesis of amino acids in the catalytic active site, we pinpoint residues in QueE that contribute distinctly to each of its functions-Q biosynthesis or regulation of cell division, establishing QueE as a moonlighting protein. We further show that QueE orthologs from enterobacteria like Salmonella typhimurium and Klebsiella pneumoniae also cause filamentation in these organisms, but the more distant counterparts from Pseudomonas aeruginosa and Bacillus subtilis lack this ability. By comparative analysis of E. coli QueE with distant orthologs, we elucidate a unique region in this protein that is responsible for QueE's secondary function as a cell division regulator. A dual-function protein like QueE is an exception to the conventional model of "one gene, one enzyme, one function", which has divergent roles across a range of fundamental cellular processes including RNA modification and translation to cell division and stress response.
Collapse
Affiliation(s)
- Samuel A. Adeleye
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, Piscataway New Jersey, United States of America
| | - Srujana S. Yadavalli
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, Piscataway New Jersey, United States of America
| |
Collapse
|
24
|
Berkvens A, Salinas L, Remeijer M, Planqué R, Teusink B, Bruggeman FJ. Understanding and computational design of genetic circuits of metabolic networks. Essays Biochem 2024; 68:41-51. [PMID: 38662439 PMCID: PMC11065555 DOI: 10.1042/ebc20230045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
The expression of metabolic proteins is controlled by genetic circuits, matching metabolic demands and changing environmental conditions. Ideally, this regulation brings about a competitive level of metabolic fitness. Understanding how cells can achieve a robust (close-to-optimal) functioning of metabolism by appropriate control of gene expression aids synthetic biology by providing design criteria of synthetic circuits for biotechnological purposes. It also extends our understanding of the designs of genetic circuitry found in nature such as metabolite control of transcription factor activity, promoter architectures and transcription factor dependencies, and operon composition (in bacteria). Here, we review, explain and illustrate an approach that allows for the inference and design of genetic circuitry that steers metabolic networks to achieve a maximal flux per unit invested protein across dynamic conditions. We discuss how this approach and its understanding can be used to rationalize Escherichia coli's strategy to regulate the expression of its ribosomes and infer the design of circuitry controlling gene expression of amino-acid biosynthesis enzymes. The inferred regulation indeed resembles E. coli's circuits, suggesting that these have evolved to maximize amino-acid production fluxes per unit invested protein. We end by an outlook of the use of this approach in metabolic engineering applications.
Collapse
Affiliation(s)
- Alicia Berkvens
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, NL
| | - Luis Salinas
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, NL
| | - Maaike Remeijer
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, NL
| | - Robert Planqué
- Department of Mathematics, Amsterdam Center for Dynamics and Computation, VU University, Amsterdam, NL
| | - Bas Teusink
- Systems Biology Lab, A-LIFE, AIMMS, VU University, Amsterdam, NL
| | | |
Collapse
|
25
|
Baquero F, Rodríguez-Beltrán J, Levin BR. Bacteriostatic cells instead of bacteriostatic antibiotics? mBio 2024; 15:e0268023. [PMID: 38126752 PMCID: PMC10865802 DOI: 10.1128/mbio.02680-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that bacteriostasis essentially reflects a distinct cellular status (or "cell variant") characterized by the inability to be killed as a consequence of an antibiotic-induced stress impacting on bacterial physiology/metabolism (growth). Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.IMPORTANCEThis year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that some antibiotics are drugs that induce bacteria to become bacteriostatic. Cells that are unable to multiply, thereby preventing the antibiotic from exerting major lethal effects on them, are a variant ("different") type of cells, bacteriostatic cells. Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Public Health Networking Biomedical Research Centre in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- Public Health Networking Biomedical Research Centre in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
26
|
Chouaia B, Dittmer J. A 2000-Year-Old Bacillus stercoris Strain Sheds Light on the Evolution of Cyclic Antimicrobial Lipopeptide Synthesis. Microorganisms 2024; 12:338. [PMID: 38399742 PMCID: PMC10893106 DOI: 10.3390/microorganisms12020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Some bacteria (notably the genera Bacillus and Clostridium) have the capacity to form endospores that can survive for millions of years in isolated habitats. The genomes of such ancient bacteria provide unique opportunities to understand bacterial evolution and metabolic capabilities over longer time scales. Herein, we sequenced the genome of a 2000-year-old bacterial strain (Mal05) isolated from intact apple seeds recovered during archaeological excavations of a Roman villa in Italy. Phylogenomic analyses revealed that this strain belongs to the species Bacillus stercoris and that it is placed in an early-branching position compared to most other strains of this species. Similar to other Bacillus species, B. stercoris Mal05 had been previously shown to possess antifungal activity. Its genome encodes all the genes necessary for the biosynthesis of fengycin and surfactin, two cyclic lipopeptides known to play a role in the competition of Bacilli with other microorganisms due to their antimicrobial activity. Comparative genomics and analyses of selective pressure demonstrate that these genes are present in all sequenced B. stercoris strains, despite the fact that they are not under strong purifying selection. Hence, these genes may not be essential for the fitness of these bacteria, but they can still provide a competitive advantage against other microorganisms present in the same environment.
Collapse
Affiliation(s)
- Bessem Chouaia
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, 30172 Venice, Italy
| | - Jessica Dittmer
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy;
- UMR 1345, Institut Agro, INRAE, IRHS, SFR Quasav, Université d’Angers, 49070 Beaucouzé, France
| |
Collapse
|
27
|
Karaki T, Sunaga A, Takahashi Y, Asai K. Artificial activation of both σ H and Spo0A in Bacillus subtilis enforced initiation of spore development at the vegetatively growing phase. J GEN APPL MICROBIOL 2024; 69:215-228. [PMID: 37380492 DOI: 10.2323/jgam.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
When Bacillus subtilis cells face environmental deterioration, such as exhaustion of nutrients and an increase in cell density, they form spores. It is known that phosphorylation of Spo0A and activation of σH are key events at the initiation of sporulation. However, the initiation of sporulation is an extremely complicated process, and the relationship between these two events remains to be elucidated. To determine the minimum requirements for triggering sporulation initiation, we attempted to induce cell sporulation at the log phase, regardless of nutrients and cell density. In rich media such as Luria-Bertani (LB) medium, the cells of B. subtilis do not sporulate efficiently, possibly because of excess nutrition. When the amount of xylose in the LB medium was limited, σH -dependent transcription of the strain, in which sigA was under the control of the xylose-inducible promoter, was induced, and the frequency of sporulation was elevated according to the decreased level of σA. We also employed a fusion of sad67, which codes for an active form of Spo0A, and the IPTG-inducible promoter. The combination of lowered σA expression and activated Spo0A allowed the cells in the log phase to stop growing and rush into spore development. This observation of enforced initiation of sporulation in the mutant strain was detected even in the presence of the wild-type strain, suggesting that only intracellular events initiate and fulfill spore development regardless of extracellular conditions. Under natural sporulation conditions, the amount of σA did not change drastically throughout growth. Mechanisms that sequester σA from the core RNA polymerase and help σH to become active exist, but this has not yet been elucidated.
Collapse
Affiliation(s)
- Tomomitsu Karaki
- Area of Biochemistry and Molecular Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University
| | - Ai Sunaga
- Area of Biochemistry and Molecular Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University
| | - Yasuhiro Takahashi
- Area of Biochemistry and Molecular Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University
| | - Kei Asai
- Area of Biochemistry and Molecular Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture
| |
Collapse
|
28
|
Yang P, Zeng Q, Jiang W, Wang L, Zhang J, Wang Z, Wang Q, Li Y. Genome Sequencing and Characterization of Bacillus velezensis N23 as Biocontrol Agent against Plant Pathogens. Microorganisms 2024; 12:294. [PMID: 38399699 PMCID: PMC10892835 DOI: 10.3390/microorganisms12020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The overuse of chemical fungicides against fungal pathogens adversely affects soil and plant health, resulting in environmental problems and food safety. Therefore, biocontrol is considered as an environmentally friendly and cost-effective green technique in environmental protection and agricultural production. We obtained a bacterial strain N23 from a contaminated plate which showed significant inhibition to anthracnose. The strain N23 was identified as Bacillus velezensis based on 16S rRNA gene, gyrA gene, and whole-genome sequence. The bacterium N23 was able to suppress the mycelial growth of numerous plant pathogenic fungi on solid media. Tomato seeds treated with strain N23 showed significantly higher germination levels than untreated ones. Moreover, strain N23 effectively reduced the lesion area of pepper anthracnose disease in planta. The gene clusters responsible for antifungal metabolites (fengycin, surfactin, and iturin) were identified in the genome sequence of N23 based on genome mining and PCR. Furthermore, methanol extracts of the bacterial culture caused significant inhibition in growth of the fungal Colletotrichum sp. and Botrytis cinerea. These findings suggested that B. velezensis N23 could be a potential biocontrol agent in agricultural production and a source of antimicrobial compounds for further exploitation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yan Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.Y.); (Q.Z.); (W.J.); (L.W.); (J.Z.); (Z.W.); (Q.W.)
| |
Collapse
|
29
|
Chen J, Wang Y, Lin S, Yu Q, Qi Z, Jiang W, Zhao Q, Fu QB. Interaction between membrane curvature sensitive factors SpoVM and SpoIVA in Bicelle condition. Biochem Biophys Res Commun 2024; 694:149395. [PMID: 38141557 DOI: 10.1016/j.bbrc.2023.149395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
SpoVM and SpoIVA are essential proteins for coat assembly in Bacillus subtilis. SpoVM is a membrane curvature sensor, specifically localized on the forespore membrane. SpoIVA is an ATP hydrolase that self-assembles by hydrolyzing ATP. In this work, SpoVM and its mutant SpoVMP9A were obtained by cyanogen bromide cleavage and reconstituted into bicelles. The purification of SpoIVA was achieved through a rigorous process involving Ni-NTA chromatography column and size exclusion chromatography. This study utilized Biacore to obtain a direct determination of the kinetic parameters of interaction between SpoVM (SpoVMP9A) and SpoIVA in Bicelle conditions.
Collapse
Affiliation(s)
- Jiali Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yifan Wang
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Shuru Lin
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Quanxiang Yu
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Zhengfei Qi
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Wenqi Jiang
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Qiang Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Qingshan Bill Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
30
|
Matha AR, Xie X, Lin X. Ergosterol Is Critical for Sporogenesis in Cryptococcus neoformans. J Fungi (Basel) 2024; 10:106. [PMID: 38392778 PMCID: PMC10890046 DOI: 10.3390/jof10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Microbes, both bacteria and fungi, produce spores to survive stressful conditions. Spores produced by the environmental fungal pathogen Cryptococcus neoformans serve as both surviving and infectious propagules. Because of their importance in disease transmission and pathogenesis, factors necessary for cryptococcal spore germination are being actively investigated. However, little is known about nutrients critical for sporogenesis in this pathogen. Here, we found that ergosterol, the main sterol in fungal membranes, is enriched in spores relative to yeasts and hyphae. In C. neoformans, the ergosterol biosynthesis pathway (EBP) is upregulated by the transcription factor Sre1 in response to conditions that demand elevated ergosterol biosynthesis. Although the deletion of SRE1 enhances the production of mating hyphae, the sre1Δ strain is deficient at producing spores even when crossed with a wild-type partner. We found that the defect of the sre1Δ strain is specific to sporogenesis, not meiosis or basidium maturation preceding sporulation. Consistent with the idea that sporulation demands heightened ergosterol biosynthesis, EBP mutants are also defective in sporulation. We discovered that the overexpression of some EBP genes can largely rescue the sporulation defect of the sre1Δ strain. Collectively, we demonstrate that ergosterol is a critical component in cryptococcal preparation for sporulation.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
Carrasco B, Torres R, Moreno-del Álamo M, Ramos C, Ayora S, Alonso JC. Processing of stalled replication forks in Bacillus subtilis. FEMS Microbiol Rev 2024; 48:fuad065. [PMID: 38052445 PMCID: PMC10804225 DOI: 10.1093/femsre/fuad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Accurate DNA replication and transcription elongation are crucial for preventing the accumulation of unreplicated DNA and genomic instability. Cells have evolved multiple mechanisms to deal with impaired replication fork progression, challenged by both intrinsic and extrinsic impediments. The bacterium Bacillus subtilis, which adopts multiple forms of differentiation and development, serves as an excellent model system for studying the pathways required to cope with replication stress to preserve genomic stability. This review focuses on the genetics, single molecule choreography, and biochemical properties of the proteins that act to circumvent the replicative arrest allowing the resumption of DNA synthesis. The RecA recombinase, its mediators (RecO, RecR, and RadA/Sms) and modulators (RecF, RecX, RarA, RecU, RecD2, and PcrA), repair licensing (DisA), fork remodelers (RuvAB, RecG, RecD2, RadA/Sms, and PriA), Holliday junction resolvase (RecU), nucleases (RnhC and DinG), and translesion synthesis DNA polymerases (PolY1 and PolY2) are key functions required to overcome a replication stress, provided that the fork does not collapse.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Rubén Torres
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - María Moreno-del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CNB-CSIC, 3 Darwin Str, 28049 Madrid, Spain
| |
Collapse
|
32
|
Bazin-Gélis M, Eleftheriou E, Zangarelli C, Lelandais G, Sperling L, Arnaiz O, Bétermier M. Inter-generational nuclear crosstalk links the control of gene expression to programmed genome rearrangement during the Paramecium sexual cycle. Nucleic Acids Res 2023; 51:12337-12351. [PMID: 37953377 PMCID: PMC10711438 DOI: 10.1093/nar/gkad1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023] Open
Abstract
Multinucleate cells are found in many eukaryotes, but how multiple nuclei coordinate their functions is still poorly understood. In the cytoplasm of the ciliate Paramecium tetraurelia, two micronuclei (MIC) serving sexual reproduction coexist with a somatic macronucleus (MAC) dedicated to gene expression. During sexual processes, the MAC is progressively destroyed while still ensuring transcription, and new MACs develop from copies of the zygotic MIC. Several gene clusters are successively induced and switched off before vegetative growth resumes. Concomitantly, programmed genome rearrangement (PGR) removes transposons and their relics from the new MACs. Development of the new MACs is controlled by the old MAC, since the latter expresses genes involved in PGR, including the PGM gene encoding the essential PiggyMac endonuclease that cleaves the ends of eliminated sequences. Using RNA deep sequencing and transcriptome analysis, we show that impairing PGR upregulates key known PGR genes, together with ∼600 other genes possibly also involved in PGR. Among these genes, 42% are no longer induced when no new MACs are formed, including 180 genes that are co-expressed with PGM under all tested conditions. We propose that bi-directional crosstalk between the two coexisting generations of MACs links gene expression to the progression of MAC development.
Collapse
Affiliation(s)
- Mélanie Bazin-Gélis
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Evangelia Eleftheriou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Institut Pasteur, Université Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Coralie Zangarelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Gaëlle Lelandais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Linda Sperling
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Mireille Bétermier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
33
|
Zhou B, Xiong Y, Nevo Y, Kahan T, Yakovian O, Alon S, Bhattacharya S, Rosenshine I, Sinai L, Ben-Yehuda S. Dormant bacterial spores encrypt a long-lasting transcriptional program to be executed during revival. Mol Cell 2023; 83:4158-4173.e7. [PMID: 37949068 DOI: 10.1016/j.molcel.2023.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.
Collapse
Affiliation(s)
- Bing Zhou
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yifei Xiong
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tamar Kahan
- Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Oren Yakovian
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel; The Racah Institute of Physics, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Sima Alon
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Lior Sinai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| |
Collapse
|
34
|
Soni A, Brightwell G. Effect of novel and conventional food processing technologies on Bacillus cereus spores. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 108:265-287. [PMID: 38461001 DOI: 10.1016/bs.afnr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
This chapter provides a summary of the effect of thermal and non-thermal processing technologies on Bacillus cereus spores, a well-known pathogenic bacterium associated with foodborne illnesses. B. cereus has been frequently detected in rice, milk products, infant food, liquid eggs products and meat products all over the world. This Gram positive, rod-shaped, facultative anaerobe can produce endospores that can withstand pasteurization, UV radiation, and chemical reagents commonly used for sanitization. B. cereus spores can germinate into vegetative cells that can produce toxins. The conventional regime for eliminating spores from food is retorting which uses the application of high temperature (121 °C). However, at this temperature, there could be a significant amount of loss in the organoleptic and functional qualities of the food components, especially proteins. This leads to the research on the preventive measures against germination and if possible, to reduce the resistance before using a non-thermal technology (temperatures less than retorting-121 °C) for inactivation. This chapter reviews the development and success of several food processing technologies in their ability to inactivate B. cereus spores in food.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; New Zealand Food Safety Science and Research Centre, Massey University Manawatu (Turitea), Palmerston North, New Zealand
| |
Collapse
|
35
|
Kaur S, Dadwal R, Nandanwar H, Soni S. Limits of antibacterial activity of triangular silver nanoplates and photothermal enhancement thereof for Bacillus subtilis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112787. [PMID: 37738748 DOI: 10.1016/j.jphotobiol.2023.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Currently, nanoparticles are being actively explored for antimicrobial applications involving variety of pathogens. Bacillus subtilis is a major concern considering its sporulation and biofilm formation capability which involves high bacteria loadings. Also, there is natural ability of B subtilis to adapt and develop resistance to the silver nanoparticles alone. So, this study reports the limits of antibacterial activity of triangular silver nanoplates (∆AgNPs) and further photothermal enhancement for B. subtilis ATCC 6051 for considerably high bacterial load of 2.5 × 107 to 5 × 108 CFU/ml. Triangular silver nanoplates were synthesized using one pot synthesis method and showed significant photothermal response i.e., ∼36 °C temperature rise on near infrared irradiation as well as photothermal stability. Triangular silver nanoplates alone showed absolute destruction for 2.5 × 107 CFU/ml initial B. subtilis load in 5 min. Whereas, for further higher bacterial loads, the antibacterial efficacy of ∆AgNPs is observed to be insignificant. For higher initial bacterial loads of 5 × 107 CFU/ml and 5 × 108 CFU/ml, photothermally enhanced triangular silver nanoplates resulted in complete destruction of bacteria in about 5 and 10 min, respectively. Antibacterial efficacy and mechanism of the destruction assessed via scanning electron microscopy and LIVE/DEAD assay confirmed morphological deformities. Further the generation of higher levels of reactive oxygen species is also confirmed due to photothermal activation of ∆AgNPs. The study concludes that ∆AgNPs alone are effective only up to bacterial load of 2.5 × 107 CFU/ml. Whereas, for higher bacterial loads of B. subtilis, photothermally activated ∆AgNPs lead to irreversible damage due to multiple targeting mechanisms leading to absolute elimination in short span of 5-10 min for the chosen irradiation conditions. Ultimately, this study demonstrates photothermally enhanced silver nanoplates as a potential antimicrobial agent for considerably high bacterial loads of B. subtilis. Overall, the broader window of considered high bacterial loadings and its irradiation by this technique shows the full-proof nature of photothermal applications for scenarios involving high cell density such as biofilms and wound infections etc. Further, the concept may be useful for sterilization or decontamination of samples, devices, etc. because B. subtilis and its spores are the challenges during sterilization.
Collapse
Affiliation(s)
- Sarabjot Kaur
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajneesh Dadwal
- CSIR-Institute of Microbial Technology, Sector-39, Chandigarh 160036, India
| | - Hemraj Nandanwar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Microbial Technology, Sector-39, Chandigarh 160036, India
| | - Sanjeev Soni
- CSIR-Central Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
36
|
Mortier J, Cambré A, Schack S, Christie G, Aertsen A. Impact of Protein Aggregates on Sporulation and Germination of Bacillus subtilis. Microorganisms 2023; 11:2365. [PMID: 37764209 PMCID: PMC10536567 DOI: 10.3390/microorganisms11092365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In order to improve our general understanding of protein aggregate (PA) management and impact in bacteria, different model systems and processes need to be investigated. As such, we developed an inducible synthetic PA model system to investigate PA dynamics in the Gram-positive model organism Bacillus subtilis. This confirmed previous observations that PA segregation in this organism seems to follow the Escherichia coli paradigm of nucleoid occlusion governing polar localization and asymmetric segregation during vegetative growth. However, our findings also revealed that PAs can readily persist throughout the entire sporulation process after encapsulation in the forespore during sporulation. Moreover, no deleterious effects of PA presence on sporulation, germination and spore survival against heat or UV stress could be observed. Our findings therefore indicate that the sporulation process is remarkably robust against perturbations by PAs and misfolded proteins.
Collapse
Affiliation(s)
- Julien Mortier
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Alexander Cambré
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| | - Sina Schack
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Graham Christie
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK; (S.S.); (G.C.)
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, B-3000 Leuven, Belgium; (J.M.); (A.C.)
| |
Collapse
|
37
|
Marathe A, Zarazúa-Osorio B, Srivastava P, Fujita M. The master regulator for entry into sporulation in Bacillus subtilis becomes a mother cell-specific transcription factor for forespore engulfment. Mol Microbiol 2023; 120:439-461. [PMID: 37485800 DOI: 10.1111/mmi.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
The Spo0A transcription factor is activated by phosphorylation in starving Bacillus subtilis cells. The activated Spo0A (Spo0A~P) regulates genes controlling entry into sporulation and appears to control mother-cell-specific gene expression after asymmetric division, but the latter remains elusive. Here, we found that Spo0A~P directly binds to three conserved DNA sequences (0A1-3) in the promoter region of the mother cell-specific lytic transglycosylase gene spoIID, which is transcribed by σE -RNA polymerase (RNAP) and negatively controlled by the SpoIIID transcription factor and required for forespore engulfment. Systematic mutagenesis of the 0A boxes revealed that the 0A1 and 0A2 boxes located upstream of the promoter positively control the transcription of spoIID. In contrast, the 0A3 box located downstream of the promoter negatively controls the transcription of spoIID. The mutated SpoIIID binding site located between the -35 and -10 promoter elements causes increased expression of spoIID and reduced sporulation. When the mutations of 0A1, 0A2, and IIID sites are combined, sporulation is restored. Collectively, our data suggest that the mother cell-specific spoIID expression is precisely controlled by the coordination of three factors, Spo0A~P, SpoIIID, and σE -RNAP, for proper sporulation. The conservation of this mechanism across spore-forming species was discussed.
Collapse
Affiliation(s)
- Anuradha Marathe
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Priyanka Srivastava
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Masaya Fujita
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
38
|
Wan R, Zha Y, Wu M, Li X, Yang H, Liu H. Long-term effective remediation of black-odorous water via regulating calcium nitrate sustained-release. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1065. [PMID: 37598137 DOI: 10.1007/s10661-023-11659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/01/2023] [Indexed: 08/21/2023]
Abstract
Nitrate addition is reported as a cost-effective method for remediating black-odorous water, which is mainly induced by the deficiency of electron acceptor. However, excessive release of nitrate and lack of long-term effectiveness significantly limited the application of direct nitrate dosing technology. Herein, for remediating black-odorous water, we constructed a nitrate sustained-release ecological concrete (ecoN-concrete), in which calcium nitrate (Ca(NO3)2) was dosed into concrete block to regulate the release of nitrate. The results showed that chemical oxygen demand (COD), turbidity, ammonia, phosphate, and sulfate were significantly removed in an ecoN-concrete-contained reactor fed with black-odorous water, and its removal efficiency was largely dependent on Ca(NO3)2 dosage. Meanwhile, the released nitrate was lower than 25% of its total dosage and nitrite was lower than 1.5 mg/L during 14 days remediation. After three recycles, the removal efficiencies of COD and turbidity by using ecoN-concrete were still more than 85%, indicating an excellent nitrate sustained-release performance of ecoN-concrete, which can be applied for preventing water re-blackening and re-stinking. Further investigation illustrated that the ecoN-concrete (1) decreased the abundance of Desulfovibrio, Desulfomonile, and Desulforhabdus in the phylum of Desulfobacterota to alleviate the odorous gas production and (2) significantly increased the abundance of Bacillus and Thermomonas, which utilized the released-nitrate for consuming organic matters and ammonia. This study provided an artful Ca(NO3)2 dosing strategy and long-term effective method for black-odorous water remediation.
Collapse
Affiliation(s)
- Rui Wan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Yunyi Zha
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Mengqi Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xiaoxiao Li
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Haifeng Yang
- Donghu Innovation Center, Anhui Phoneya Environmental Technology Co. Ltd, Hefei, 230601, China
| | - Hongming Liu
- College of Life Sciences, Anhui Normal University, Wuhu, 241001, China
| |
Collapse
|
39
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
40
|
Xu T, Tao X, He H, Kempher ML, Zhang S, Liu X, Wang J, Wang D, Ning D, Pan C, Ge H, Zhang N, He YX, Zhou J. Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia. THE ISME JOURNAL 2023; 17:823-835. [PMID: 36899058 PMCID: PMC10203250 DOI: 10.1038/s41396-023-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 05/24/2023]
Abstract
Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.
Collapse
Affiliation(s)
- Tao Xu
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Xuanyu Tao
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Hongxi He
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Megan L Kempher
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xiaochun Liu
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Jun Wang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Dongyu Wang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Daliang Ning
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Chongle Pan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- School of computer science, University of Oklahoma, Norman, OK, USA
| | - Honghua Ge
- School of Life Sciences, Anhui University, Hefei, 230601, PR China
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - Nannan Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, PR China.
- Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
41
|
Swoboda AR, Wood NA, Saery EA, Fisher DJ, Ouellette SP. The Periplasmic Tail-Specific Protease, Tsp, Is Essential for Secondary Differentiation in Chlamydia trachomatis. J Bacteriol 2023; 205:e0009923. [PMID: 37092988 PMCID: PMC10210983 DOI: 10.1128/jb.00099-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The obligate intracellular human pathogen Chlamydia trachomatis (Ctr) undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms: the elementary body (EB) and the reticulate body (RB). The EB is the smaller, infectious, nondividing form which initiates infection of a susceptible host cell, whereas the RB is the larger, non-infectious form which replicates within a membrane-bound vesicle called an inclusion. The mechanism(s) which drives differentiation between these developmental forms is poorly understood. Bulk protein turnover is likely required for chlamydial differentiation given the significant differences in the protein repertoires and functions of the EB and RB. We hypothesize that periplasmic protein turnover is also critical for the reorganization of an RB into an EB, referred to as secondary differentiation. Ct441 is a periplasmic protease ortholog of tail-specific proteases (i.e., Tsp, Prc) and is expressed in Ctr during secondary differentiation. We investigated the effect of altering Tsp expression on developmental cycle progression. Through assessment of bacterial morphology and infectious progeny production, we found that both overexpression and CRISPR interference/dCas9 (CRISPRi)-mediated knockdown of Tsp negatively impacted chlamydial development through different mechanisms. We also confirmed that catalytic activity is required for the negative effect of overexpression and confirmed the effect of the mutation in in vitro assays. Electron microscopic assessments during knockdown experiments revealed a defect in EB morphology, directly linking Tsp function to secondary differentiation. These data implicate Ct441/Tsp as a critical factor in secondary differentiation. IMPORTANCE The human pathogen Chlamydia trachomatis is the leading cause of preventable infectious blindness and bacterial sexually transmitted infections worldwide. This pathogen has a unique developmental cycle that alternates between distinct forms. However, the key processes of chlamydial development remain obscure. Uncovering the mechanisms of differentiation between its metabolically and functionally distinct developmental forms may foster the discovery of novel Chlamydia-specific therapeutics and limit development of resistant bacterial populations derived from the clinical use of broad-spectrum antibiotics. In this study, we investigate chlamydial tail-specific protease (Tsp) and its function in chlamydial growth and development. Our work implicates Tsp as essential to chlamydial developmental cycle progression and indicates that Tsp is a potential drug target for Chlamydia infections.
Collapse
Affiliation(s)
- Abigail R. Swoboda
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nicholas A. Wood
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Elizabeth A. Saery
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Derek J. Fisher
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, Illinois, USA
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
42
|
Stülke J, Grüppen A, Bramkamp M, Pelzer S. Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology. J Bacteriol 2023; 205:e0010223. [PMID: 37140386 PMCID: PMC10210981 DOI: 10.1128/jb.00102-23] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Next to Escherichia coli, Bacillus subtilis is the most studied and best understood organism that also serves as a model for many important pathogens. Due to its ability to form heat-resistant spores that can germinate even after very long periods of time, B. subtilis has attracted much scientific interest. Another feature of B. subtilis is its genetic competence, a developmental state in which B. subtilis actively takes up exogenous DNA. This makes B. subtilis amenable to genetic manipulation and investigation. The bacterium was one of the first with a fully sequenced genome, and it has been subject to a wide variety of genome- and proteome-wide studies that give important insights into many aspects of the biology of B. subtilis. Due to its ability to secrete large amounts of proteins and to produce a wide range of commercially interesting compounds, B. subtilis has become a major workhorse in biotechnology. Here, we review the development of important aspects of the research on B. subtilis with a specific focus on its cell biology and biotechnological and practical applications from vitamin production to concrete healing. The intriguing complexity of the developmental programs of B. subtilis, paired with the availability of sophisticated tools for genetic manipulation, positions it at the leading edge for discovering new biological concepts and deepening our understanding of the organization of bacterial cells.
Collapse
Affiliation(s)
- Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | | |
Collapse
|
43
|
Xue C, Zhang Y, Li H, Liu Z, Gao W, Liu M, Wang H, Liu P, Zhao J. The genome of Candidatus phytoplasma ziziphi provides insights into their biological characteristics. BMC PLANT BIOLOGY 2023; 23:251. [PMID: 37173622 PMCID: PMC10176825 DOI: 10.1186/s12870-023-04243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Phytoplasmas are obligate cell wall-less prokaryotic bacteria that primarily multiply in plant phloem tissue. Jujube witches' broom (JWB) associated with phytoplasma is a destructive disease of jujube (Ziziphus jujuba Mill.). Here we report the complete 'Candidatus Phytoplasma ziziphi' chromosome of strain Hebei-2018, which is a circular genome of 764,108-base pairs with 735 predicted CDS. Notably, extra 19,825 bp (from 621,995 to 641,819 bp) compared to the previously reported one complements the genes involved in glycolysis, such as pdhA, pdhB, pdhC, pdhD, ackA, pduL and LDH. The synonymous codon usage bias (CUB) patterns by using comparative genomics analysis among the 9 phytoplasmas were similar for most codons. The ENc-GC3s analysis among the 9 phytoplasmas showed a greater effect under the selection on the CUBs of phytoplasmas genes than mutation and other factors. The genome exhibited a strongly reduced ability in metabolic synthesis, while the genes encoding transporter systems were well developed. The genes involved in sec-dependent protein translocation system were also identified.The expressions of nine FtsHs encoding membrane associated ATP-dependent Zn proteases and Mn-SodA with redox capacity in the Ca. P. ziziphi was positively correlated with the phytoplasma concentration. Taken together, the genome will not only expand the number of phytoplasma species and provide some new information about Ca. P. ziziphi, but also contribute to exploring its pathogenic mechanism.
Collapse
Affiliation(s)
- Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Ping Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000, China.
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
44
|
Millgaard M, Bidart GN, Pogrebnyakov I, Nielsen AT, Welner DH. An improved integrative GFP-based vector for genetic engineering of Parageobacillus thermoglucosidasius facilitates the identification of a key sporulation regulator. AMB Express 2023; 13:44. [PMID: 37154828 PMCID: PMC10167077 DOI: 10.1186/s13568-023-01544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Parageobacillus thermoglucosidasius is a thermophilic Gram-positive bacterium, which is a promising host organism for sustainable bio-based production processes. However, to take full advantage of the potential of P. thermoglucosidasius, more efficient tools for genetic engineering are required. The present study describes an improved shuttle vector, which speeds up recombination-based genomic modification by incorporating a thermostable sfGFP variant into the vector backbone. This additional selection marker allows for easier identification of recombinants, thereby removing the need for several culturing steps. The novel GFP-based shuttle is therefore capable of facilitating faster metabolic engineering of P. thermoglucosidasius through genomic deletion, integration, or exchange. To demonstrate the efficiency of the new system, the GFP-based vector was utilised for deletion of the spo0A gene in P. thermoglucosidasius DSM2542. This gene is known to be a key regulator of sporulation in Bacillus subtilis, and it was therefore hypothesised that the deletion of spo0A in P. thermoglucosiadius would produce an analogous sporulation-inhibited phenotype. Subsequent analyses of cell morphology and culture heat resistance suggests that the P. thermoglucosidasius ∆spo0A strain is sporulation-deficient. This strain may be an excellent starting point for future cell factory engineering of P. thermoglucosidasius, as the formation of endospores is normally not a desired trait in large-scale production.
Collapse
Affiliation(s)
- Marie Millgaard
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Gonzalo Nahuel Bidart
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| | - Ditte Hededam Welner
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
45
|
Fuchs M, Lamm-Schmidt V, Lenče T, Sulzer J, Bublitz A, Wackenreuter J, Gerovac M, Strowig T, Faber F. A network of small RNAs regulates sporulation initiation in Clostridioides difficile. EMBO J 2023:e112858. [PMID: 37140366 DOI: 10.15252/embj.2022112858] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
The obligate anaerobic, enteric pathogen Clostridioides difficile persists in the intestinal tract by forming antibiotic-resistant endospores that contribute to relapsing and recurrent infections. Despite the importance of sporulation for C. difficile pathogenesis, environmental cues and molecular mechanisms that regulate sporulation initiation remain ill-defined. Here, by using RIL-seq to globally capture the Hfq-dependent RNA-RNA interactome, we discovered a network of small RNAs that bind to mRNAs encoding sporulation-related genes. We show that two of these small RNAs, SpoX and SpoY, regulate translation of the master regulator of sporulation, Spo0A, in an opposing manner, which ultimately leads to altered sporulation rates. Infection of antibiotic-treated mice with SpoX and SpoY deletion mutants revealed a global effect on gut colonization and intestinal sporulation. Our work uncovers an elaborate RNA-RNA interactome controlling the physiology and virulence of C. difficile and identifies a complex post-transcriptional layer in the regulation of spore formation in this important human pathogen.
Collapse
Affiliation(s)
- Manuela Fuchs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Vanessa Lamm-Schmidt
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Tina Lenče
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Johannes Sulzer
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Arne Bublitz
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Janet Wackenreuter
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Milan Gerovac
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Franziska Faber
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| |
Collapse
|
46
|
Ayerakwa EA, Abban MK, Isawumi A, Mosi L. Profiling Mycobacterium ulcerans: sporulation, survival strategy and response to environmental factors. Future Sci OA 2023; 9:FSO845. [PMID: 37026027 PMCID: PMC10072065 DOI: 10.2144/fsoa-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer – a necrotizing skin infection. As an environmental pathogen, it has developed stress response mechanisms for survival. Similar to endospore formation in M. marinum, it is likely that M. ulcerans employs sporulation mechanisms for its survival and transmission. In this review, we modeled possible transmission routes and patterns of M. ulcerans from the environment to its host. We provided insights into the evolution of M. ulcerans and its genomic profiles. We discuss reservoirs of M. ulcerans as an environmental pathogen and its environmental survival. We comprehensively discuss sporulation as a possible stress response mechanism and modelled endospore formation in M. ulcerans. At last, we highlighted sporulation associated markers, which upon expression trigger endospore formation.
Collapse
|
47
|
Gorsuch JP, Buckman D. Meat extract casein peptone agar - A novel culture medium for the enumeration of Bacillus endospores in commercial products. J Microbiol Methods 2023; 206:106689. [PMID: 36787822 DOI: 10.1016/j.mimet.2023.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
Here we propose a novel culture medium, Meat Extract Casein Peptone (MECP) agar, to support the enumeration of Bacillus endospores in commercial products. The formulation is the result of screening eight different veterinary, pharmaceutical, and industrial grade peptones for the ability to support the formation of small, well-defined Bacillus colonies on solid culture medium. The impact of agar purity, agar formulation rate, and metal cation additives were examined in prototype medium batches prepared from preferred peptone inputs. A customized plate counting assay based on the resultant MECP agar formulation was compared with standardized pour-plate and spread-plate assays (ISO 4833) and flow cytometry for the ability to accurately enumerate five Bacillus-based biostimulants and biofertilizers. Estimations of Bacillus endospore concentration generated by the customized spread-plate assay were significantly higher than those produced by ISO 4833 pour-plate and spread-plate assays for four out of the five tested products and were in better agreement with flow cytometry values; however, flow cytometry values were numerically higher than values returned by both plating methods. Both flow cytometry and plating assays based on MECP or similar culture media represent potential candidates for standardization and validation through organizations such as ISO and AOAC International for the enumeration of Bacillus-based products.
Collapse
Affiliation(s)
- John P Gorsuch
- BiOWiSH Technologies, 2717 Erie Avenue, Cincinnati, OH 45208, USA.
| | - Dana Buckman
- BioForm Solutions, 11575 Sorrento Valley Rd, San Diego, CA 92121, USA
| |
Collapse
|
48
|
Abstract
The universally conserved protein elongation factor P (EF-P) facilitates translation at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Despite its wide conservation, it is not essential in most bacteria and its physiological role remains unclear. Here, we show that EF-P affects the process of sporulation initiation in the bacterium Bacillus subtilis. We observe that the lack of EF-P delays expression of sporulation-specific genes. Using ribosome profiling, we observe that expression of spo0A, encoding a transcription factor that functions as the master regulator of sporulation, is lower in a Δefp strain than the wild type. Ectopic expression of Spo0A rescues the sporulation initiation phenotype, indicating that reduced spo0A expression explains the sporulation defect in Δefp cells. Since Spo0A is the earliest sporulation transcription factor, these data suggest that sporulation initiation can be delayed when protein synthesis is impaired. IMPORTANCE Elongation factor P (EF-P) is a universally conserved translation factor that prevents ribosome stalling at amino acids that form peptide bonds with low efficiency, particularly polyproline tracts. Phenotypes associated with EF-P deletion are pleiotropic, and the mechanistic basis underlying many of these phenotypes is unclear. Here, we show that the absence of EF-P affects the ability of B. subtilis to initiate sporulation by preventing normal expression of Spo0A, the key transcriptional regulator of this process. These data illustrate a mechanism that accounts for the sporulation delay and further suggest that cells are capable of sensing translation stress before committing to sporulation.
Collapse
|
49
|
Corona Ramírez A, Lee KS, Odriozola A, Kaminek M, Stocker R, Zuber B, Junier P. Multiple roads lead to Rome: unique morphology and chemistry of endospores, exospores, myxospores, cysts and akinetes in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36804869 DOI: 10.1099/mic.0.001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The production of specialized resting cells is a remarkable survival strategy developed by many organisms to withstand unfavourable environmental factors such as nutrient depletion or other changes in abiotic and/or biotic conditions. Five bacterial taxa are recognized to form specialized resting cells: Firmicutes, forming endospores; Actinobacteria, forming exospores; Cyanobacteria, forming akinetes; the δ-Proteobacterial order Myxococcales, forming myxospores; and Azotobacteraceae, forming cysts. All these specialized resting cells are characterized by low-to-absent metabolic activity and higher resistance to environmental stress (desiccation, heat, starvation, etc.) when compared to vegetative cells. Given their similarity in function, we tested the potential existence of a universal morpho-chemical marker for identifying these specialized resting cells. After the production of endospores, exospores, akinetes and cysts in model organisms, we performed the first cross-species morphological and chemical comparison of bacterial sporulation. Cryo-electron microscopy of vitreous sections (CEMOVIS) was used to describe near-native morphology of the resting cells in comparison to the morphology of their respective vegetative cells. Resting cells shared a thicker cell envelope as their only common morphological feature. The chemical composition of the different specialized resting cells at the single-cell level was investigated using confocal Raman microspectroscopy. Our results show that the different specialized cells do not share a common chemical signature, but rather each group has a unique signature with a variable conservation of the signature of the vegetative cells. Additionally, we present the validation of Raman signatures associated with calcium dipicolinic acid (CaDPA) and their variation across individual cells to develop specific sorting thresholds for the isolation of endospores. This provides a proof of concept of the feasibility of isolating bacterial spores using a Raman-activated cell-sorting platform. This cross-species comparison and the current knowledge of genetic pathways inducing the formation of the resting cells highlights the complexity of this convergent evolutionary strategy promoting bacterial survival.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Kang Soo Lee
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Marek Kaminek
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Roman Stocker
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
50
|
Roberts DM. A new role for monomeric ParA/Soj in chromosome dynamics in Bacillus subtilis. Microbiologyopen 2023; 12:e1344. [PMID: 36825885 PMCID: PMC9841721 DOI: 10.1002/mbo3.1344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
ParABS (Soj-Spo0J) systems were initially implicated in plasmid and chromosome segregation in bacteria. However, it is now increasingly understood that they play multiple roles in cell cycle events in Bacillus subtilis, and possibly other bacteria. In a recent study, monomeric forms of ParA/Soj have been implicated in regulating aspects of chromosome dynamics during B. subtilis sporulation. In this commentary, I will discuss the known roles of ParABS systems, explore why sporulation is a valuable model for studying these proteins, and the new insights into the role of monomeric ParA/Soj. Finally, I will touch upon some of the future work that remains.
Collapse
|