1
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Chen W, Su G, Chai M, An Y, Song J, Zhang Z. Astrogliosis and glial scar in ischemic stroke - focused on mechanism and treatment. Exp Neurol 2025; 385:115131. [PMID: 39733853 DOI: 10.1016/j.expneurol.2024.115131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Ischemic stroke is a kind of neurological dysfunction caused by cerebral ischemia. Astrocytes, as the most abundant type of glial cells in the central nervous system, are activated into reactive astrocytes after cerebral ischemia, and this process involves the activation or change of a series of cell surface receptors, ion channels and ion transporters, GTPases, signaling pathways, and so on. The role of reactive astrocytes in the development of ischemic stroke is time-dependent. In the early stage of ischemia, reactive astrocytes proliferate moderately and surround the ischemic tissue to prevent the spread of the lesion. At the same time, reactive astrocytes release neuroprotective factors, ultimately relieving brain injury. In the late stage of ischemia, reactive astrocytes excessively proliferate and migrate to form dense glial scar tissue, which hinders the repair of damaged tissue. At the same time, reactive astrocytes in the glial scar release a large number of neurotoxic factors, ultimately aggravating ischemic stroke. In this paper, we focus on the molecular mechanism of astrogliosis and glial scar formation after cerebral ischemia, and explore the relevant studies using glial scar as a therapeutic target, providing a reference for the selection of therapeutic strategies for ischemic stroke and further research directions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jinyang Song
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
3
|
Berkhout JH, Glazier JA, Piersma AH, Belmonte JM, Legler J, Spencer RM, Knudsen TB, Heusinkveld HJ. A computational dynamic systems model for in silico prediction of neural tube closure defects. Curr Res Toxicol 2024; 8:100210. [PMID: 40034255 PMCID: PMC11875186 DOI: 10.1016/j.crtox.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 03/05/2025] Open
Abstract
Neural tube closure is a critical morphogenetic event during early vertebrate development. This complex process is susceptible to perturbation by genetic errors and chemical disruption, which can induce severe neural tube defects (NTDs) such as spina bifida. We built a computational agent-based model (ABM) of neural tube development based on the known biology of morphogenetic signals and cellular biomechanics underlying neural fold elevation, bending and fusion. The computer model functionalizes cell signals and responses to render a dynamic representation of neural tube closure. Perturbations in the control network can then be introduced synthetically or from biological data to yield quantitative simulation and probabilistic prediction of NTDs by incidence and degree of defect. Translational applications of the model include mechanistic understanding of how singular or combinatorial alterations in gene-environmental interactions and animal-free assessment of developmental toxicity for an important human birth defect (spina bifida) and potentially other neurological problems linked to development of the brain and spinal cord.
Collapse
Affiliation(s)
- Job H. Berkhout
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Aldert H. Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Thomas B. Knudsen
- Biocomplexity Institute, Indiana University, Bloomington, USA
- U.S. EPA/ORD, Research Triangle Park, NC, USA
| | - Harm J. Heusinkveld
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
4
|
Deng J, Labarta-Bajo L, Brandebura AN, Kahn SB, Pinto AFM, Diedrich JK, Allen NJ. Suppression of astrocyte BMP signaling improves fragile X syndrome molecular signatures and functional deficits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599752. [PMID: 38979341 PMCID: PMC11230279 DOI: 10.1101/2024.06.19.599752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Fragile X syndrome (FXS) is a monogenic neurodevelopmental disorder with manifestations spanning molecular, neuroanatomical, and behavioral changes. Astrocytes contribute to FXS pathogenesis and show hundreds of dysregulated genes and proteins; targeting upstream pathways mediating astrocyte changes in FXS could therefore be a point of intervention. To address this, we focused on the bone morphogenetic protein (BMP) pathway, which is upregulated in FXS astrocytes. We generated a conditional KO (cKO) of Smad4 in astrocytes to suppress BMP signaling, and found this lessens audiogenic seizure severity in FXS mice. To ask how this occurs on a molecular level, we performed in vivo transcriptomic and proteomic profiling of cortical astrocytes, finding upregulation of metabolic pathways, and downregulation of secretory machinery and secreted proteins in FXS astrocytes, with these alterations no longer present when BMP signaling is suppressed. Functionally, astrocyte Smad4 cKO restores deficits in inhibitory synapses present in FXS auditory cortex. Thus, astrocytes contribute to FXS molecular and functional phenotypes, and targeting astrocytes can mitigate FXS symptoms.
Collapse
Affiliation(s)
- James Deng
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lara Labarta-Bajo
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samuel B Kahn
- Department of Biology, University of California, San Diego, La Jolla, CA, USA
| | - Antonio F M Pinto
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
5
|
Kokkorakis N, Douka K, Nalmpanti A, Politis PK, Zagoraiou L, Matsas R, Gaitanou M. Mirk/Dyrk1B controls ventral spinal cord development via Shh pathway. Cell Mol Life Sci 2024; 81:70. [PMID: 38294527 PMCID: PMC10830675 DOI: 10.1007/s00018-023-05097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Cross-talk between Mirk/Dyrk1B kinase and Sonic hedgehog (Shh)/Gli pathway affects physiology and pathology. Here, we reveal a novel role for Dyrk1B in regulating ventral progenitor and neuron subtypes in the embryonic chick spinal cord (SC) via the Shh pathway. Using in ovo gain-and-loss-of-function approaches at E2, we report that Dyrk1B affects the proliferation and differentiation of neuronal progenitors at E4 and impacts on apoptosis specifically in the motor neuron (MN) domain. Especially, Dyrk1B overexpression decreases the numbers of ventral progenitors, MNs, and V2a interneurons, while the pharmacological inhibition of endogenous Dyrk1B kinase activity by AZ191 administration increases the numbers of ventral progenitors and MNs. Mechanistically, Dyrk1B overexpression suppresses Shh, Gli2 and Gli3 mRNA levels, while conversely, Shh, Gli2 and Gli3 transcription is increased in the presence of Dyrk1B inhibitor AZ191 or Smoothened agonist SAG. Most importantly, in phenotype rescue experiments, SAG restores the Dyrk1B-mediated dysregulation of ventral progenitors. Further at E6, Dyrk1B affects selectively the medial lateral motor neuron column (LMCm), consistent with the expression of Shh in this region. Collectively, these observations reveal a novel regulatory function of Dyrk1B kinase in suppressing the Shh/Gli pathway and thus affecting ventral subtypes in the developing spinal cord. These data render Dyrk1B a possible therapeutic target for motor neuron diseases.
Collapse
Affiliation(s)
- N Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - K Douka
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - A Nalmpanti
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
- Athens International Master's Programme in Neurosciences, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - P K Politis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - L Zagoraiou
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - R Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - M Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
6
|
Zhou W, Yan K, Xi Q. BMP signaling in cancer stemness and differentiation. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:37. [PMID: 38049682 PMCID: PMC10695912 DOI: 10.1186/s13619-023-00181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
The BMP (Bone morphogenetic protein) signaling pathway plays a central role in metazoan biology, intricately shaping embryonic development, maintaining tissue homeostasis, and influencing disease progression. In the context of cancer, BMP signaling exhibits context-dependent dynamics, spanning from tumor suppression to promotion. Cancer stem cells (CSCs), a modest subset of neoplastic cells with stem-like attributes, exert substantial influence by steering tumor growth, orchestrating therapy resistance, and contributing to relapse. A comprehensive grasp of the intricate interplay between CSCs and their microenvironment is pivotal for effective therapeutic strategies. Among the web of signaling pathways orchestrating cellular dynamics within CSCs, BMP signaling emerges as a vital conductor, overseeing CSC self-renewal, differentiation dynamics, and the intricate symphony within the tumor microenvironment. Moreover, BMP signaling's influence in cancer extends beyond CSCs, intricately regulating cellular migration, invasion, and metastasis. This multifaceted role underscores the imperative of comprehending BMP signaling's contributions to cancer, serving as the foundation for crafting precise therapies to navigate multifaceted challenges posed not only by CSCs but also by various dimensions of cancer progression. This article succinctly encapsulates the diverse roles of the BMP signaling pathway across different cancers, spanning glioblastoma multiforme (GBM), diffuse intrinsic pontine glioma (DIPG), colorectal cancer, acute myeloid leukemia (AML), lung cancer, prostate cancer, and osteosarcoma. It underscores the necessity of unraveling underlying mechanisms and molecular interactions. By delving into the intricate tapestry of BMP signaling's engagement in cancers, researchers pave the way for meticulously tailored therapies, adroitly leveraging its dualistic aspects-whether as a suppressor or promoter-to effectively counter the relentless march of tumor progression.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kun Yan
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiaoran Xi
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
8
|
Hossain MS, Yao A, Qiao X, Shi W, Xie T, Chen C, Zhang YQ. Gbb glutathionylation promotes its proteasome-mediated degradation to inhibit synapse growth. J Cell Biol 2023; 222:e202202068. [PMID: 37389657 PMCID: PMC10316630 DOI: 10.1083/jcb.202202068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Glutathionylation is a posttranslational modification involved in various molecular and cellular processes. However, it remains unknown whether and how glutathionylation regulates nervous system development. To identify critical regulators of synapse growth and development, we performed an RNAi screen and found that postsynaptic knockdown of glutathione transferase omega 1 (GstO1) caused significantly more synaptic boutons at the Drosophila neuromuscular junctions. Genetic and biochemical analysis revealed an increased level of glass boat bottom (Gbb), the Drosophila homolog of mammalian bone morphogenetic protein (BMP), in GstO1 mutants. Further experiments showed that GstO1 is a critical regulator of Gbb glutathionylation at cysteines 354 and 420, which promoted its degradation via the proteasome pathway. Moreover, the E3 ligase Ctrip negatively regulated the Gbb protein level by preferentially binding to glutathionylated Gbb. These results unveil a novel regulatory mechanism in which glutathionylation of Gbb facilitates its ubiquitin-mediated degradation. Taken together, our findings shed new light on the crosstalk between glutathionylation and ubiquitination of Gbb in synapse development.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aiyu Yao
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinhua Qiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Shi
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ting Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chang Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Q. Zhang
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Schloo C, Kutscher LM. Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro Oncol 2023; 25:1225-1235. [PMID: 36757217 PMCID: PMC10326493 DOI: 10.1093/neuonc/noad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 02/10/2023] Open
Abstract
Pluripotent stem cells offer unique avenues to study human-specific aspects of disease and are a highly versatile tool in cancer research. Oncogenic processes and developmental programs often share overlapping transcriptomic and epigenetic signatures, which can be reactivated in induced pluripotent stem cells. With the emergence of brain organoids, the ability to recapitulate brain development and structure has vastly improved, making in vitro models more realistic and hence more suitable for biomedical modeling. This review highlights recent research and current challenges in human pluripotent stem cell modeling of brain and neural crest neoplasms, and concludes with a call for more rigorous quality control and for the development of models for rare tumor subtypes.
Collapse
Affiliation(s)
- Cedar Schloo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Hong H, Yoon SB, Park JE, Lee JI, Kim HY, Nam HJ, Cho H. MeCP2 dysfunction prevents proper BMP signaling and neural progenitor expansion in brain organoid. Ann Clin Transl Neurol 2023. [PMID: 37302988 DOI: 10.1002/acn3.51799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVES Sporadic mutations in MeCP2 are a hallmark of Rett syndrome (RTT). Many RTT brain organoid models have exhibited pathogenic phenotypes such as decreased spine density and small size of soma with altered electrophysiological signals. However, previous models are mainly focused on the phenotypes observed in the late phase and rarely provide clues for the defect of neural progenitors which generate different types of neurons and glial cells. METHODS We newly established the RTT brain organoid model derived from MeCP2-truncated iPS cells which were genetically engineered by CRISPR/Cas9 technology. By immunofluorescence imaging, we studied the development of NPC pool and its fate specification into glutamatergic neurons or astrocytes in RTT organoids. By total RNA sequencing, we investigated which signaling pathways were altered during the early brain development in RTT organoids. RESULTS Dysfunction of MeCP2 caused the defect of neural rosette formation in the early phase of cortical development. In total transcriptome analysis, BMP pathway-related genes are highly associated with MeCP2 depletion. Moreover, levels of pSMAD1/5 and BMP target genes are excessively increased, and treatment of BMP inhibitors partially rescues the cell cycle progression of neural progenitors. Subsequently, MeCP2 dysfunction reduced the glutamatergic neurogenesis and induced overproduction of astrocytes. Nevertheless, early inhibition of BMP pathway rescued VGLUT1 expression and suppressed astrocyte maturation. INTERPRETATION Our results demonstrate that MeCP2 is required for the expansion of neural progenitor cells by modulating BMP pathway at early stages of development, and this influence persists during neurogenesis and gliogenesis at later stages of brain organoid development.
Collapse
Affiliation(s)
- Hyowon Hong
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sae-Bom Yoon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung Eun Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung In Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hye Jin Nam
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Identification of the Time Period during Which BMP Signaling Regulates Proliferation of Neural Progenitor Cells in Zebrafish. Int J Mol Sci 2023; 24:ijms24021733. [PMID: 36675251 PMCID: PMC9863262 DOI: 10.3390/ijms24021733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling regulates neural induction, neuronal specification, and neuronal differentiation. However, the role of BMP signaling in neural progenitors remains unclear. This is because interruption of BMP signaling before or during neural induction causes severe effects on subsequent neural developmental processes. To examine the role of BMP signaling in the development of neural progenitors in zebrafish, we bypassed the effect of BMP signaling on neural induction and suppressed BMP signaling at different time points during gastrulation using a temporally controlled transgenic line carrying a dominant-negative form of Bmp receptor type 1aa and a chemical inhibitor of BMP signaling, DMH1. Inhibiting BMP signaling from 8 hpf could bypass BMP regulation on neural induction, induce the number of proliferating neural progenitors, and reduce the number of neuronal precursors. Inhibiting BMP signaling upregulates the expression of the Notch downstream gene hairy/E(spl)-related 2 (her2). Inhibiting Notch signaling or knocking down the Her2 function reduced neural progenitor proliferation, whereas inactivating BMP signaling in Notch-Her2 deficient background restored the number of proliferating neural progenitors. These results reveal the time window for the proliferation of neural progenitors during zebrafish development and a fine balance between BMP and Notch signaling in regulating the proliferation of neural progenitor cells.
Collapse
|
12
|
Xu C, Hu X, Fan Y, Zhang L, Gao Z, Cai C. Wif1 Mediates Coordination of Bone Morphogenetic Protein and Wnt Signaling in Neural and Glioma Stem Cells. Cell Transplant 2022; 31:9636897221134540. [PMID: 36324293 PMCID: PMC9634200 DOI: 10.1177/09636897221134540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnts, bone morphogenetic protein (BMP), and fibroblast growth factor (FGF) are
paracrine signaling pathways implicated in the niche control of stem cell fate
decisions. BMP-on and Wnt-off are the dominant quiescent niche signaling
pathways in many cell types, including neural stem cells (NSCs). However, among
the multiple inhibitory family members of the Wnt pathway, those with direct
action after BMP4 stimulation in NSCs remain unclear. We examined 11 Wnt
inhibitors in NSCs after BMP4 treatment. Wnt inhibitory factor 1 (Wif1) has been
identified as the main factor reacting to BMP4 stimuli. RNA sequencing confirmed
that Wif1 was markedly upregulated after BMP4 treatment in different gene
expression analyses. Similar to the functional role of BMP4, Wif1 significantly
decreased the cell cycle of NSCs and significantly inhibited cell proliferation
(P < 0.05). Combined treatment with BMP4 and Wif1
significantly enhanced the inhibition of cell growth compared with the single
treatment (P < 0.05). Wif1 expression was clearly lower in
glioblastoma and low-grade glioma samples than in normal samples
(P < 0.05). A functional analysis revealed that both
BMP4 and Wif1 could decrease glioma cell growth. These effects were abrogated by
the BMP inhibitor Noggin. The collective findings demonstrate that Wif1 plays a
key role in quiescent NSC homeostasis and glioma cell growth downstream of
BMP-on signaling. The functional roles of Wif1/BMP4 in glioma cells may provide
a technical basis for regenerative medicine, drug discovery, and personal
molecular therapy in future clinical treatments.
Collapse
Affiliation(s)
- Congdi Xu
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China
| | - Xinyu Hu
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute for Molecules and Materials,
Radboud University, Nijmegen, The Netherlands
| | - Yantao Fan
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute of Geriatrics (Shanghai
University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s
Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ling Zhang
- The First Rehabilitation Hospital of
Shanghai, School of Medicine, Tongji University, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute of Geriatrics (Shanghai
University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s
Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Chunhui Cai
- Fundamental Research Center, Shanghai
YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of
Medicine, Tongji University, Shanghai, China,Institute of Geriatrics (Shanghai
University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s
Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China,Chunhui Cai, Fundamental Research Center,
Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation
Center), School of Medicine, Tongji University, Shanghai 200001, China.
| |
Collapse
|
13
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
14
|
Drugs and Endogenous Factors as Protagonists in Neurogenic Stimulation. Stem Cell Rev Rep 2022; 18:2852-2871. [PMID: 35962176 DOI: 10.1007/s12015-022-10423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 10/15/2022]
Abstract
Neurogenesis is a biological process characterized by new neurons formation from stem cells. For decades, it was believed that neurons only multiplied during development and in the postnatal period but the discovery of neural stem cells (NSCs) in mature brain promoted a revolution in neuroscience field. In mammals, neurogenesis consists of migration, differentiation, maturation, as well as functional integration of newborn cells into the pre-existing neuronal circuit. Actually, NSC density drops significantly after the first stages of development, however in specific places in the brain, called neurogenic niches, some of these cells retain their ability to generate new neurons and glial cells in adulthood. The subgranular (SGZ), and the subventricular zones (SVZ) are examples of regions where the neurogenesis process occurs in the mature brain. There, the potential of NSCs to produce new neurons has been explored by new advanced methodologies and in neuroscience for the treatment of brain damage and/or degeneration. Based on that, this review highlights endogenous factors and drugs capable of stimulating neurogenesis, as well as the perspectives for the use of NSCs for neurological and neurodegenerative diseases.
Collapse
|
15
|
Discovery of a novel class of benzimidazoles as highly effective agonists of bone morphogenetic protein (BMP) receptor signaling. Sci Rep 2022; 12:12146. [PMID: 35840622 PMCID: PMC9287337 DOI: 10.1038/s41598-022-16394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 11/09/2022] Open
Abstract
Increasing or restoring Bone Morphogenetic Protein receptor signaling is an effective therapy for conditions such as bone fracture and pulmonary arterial hypertension. However, direct use of recombinant BMPs has encountered significant obstacles. Moreover, synthetic, full agonists of BMP receptor signaling have yet to be identified. Here, we report the discovery of a novel class of indolyl-benzimidazoles, synthesized using a one-pot synthetic methodology, which appear to mimic the biochemical and functional activity of BMPs. The first-in-series compounds, SY-LB-35 and SY-LB-57, stimulated significant increases in cell number and cell viability in the C2C12 myoblast cell line. Cell cycle analysis revealed that these compounds induced a shift toward proliferative phases. SY-LB-35 and SY-LB-57 stimulated canonical Smad and non-canonical PI3K/Akt, ERK, p38 and JNK intracellular signaling pathways, similar to BMP2-stimulated responses. Importantly, increases in Smad phosphorylation and cell viability were dependent on type I BMP receptor activity. Thus, these compounds robustly activate intracellular signaling in a BMP receptor-dependent manner and may signify the first known, full agonists of BMP receptor signaling. Moreover, discovery of small molecule activators of BMP pathways, which can be efficiently formulated and targeted to diseased or damaged areas, could potentially substitute recombinant BMPs for treatment of BMP-related pathologies.
Collapse
|
16
|
Jimeno-Martín A, Sousa E, Brocal-Ruiz R, Daroqui N, Maicas M, Flames N. Joint actions of diverse transcription factor families establish neuron-type identities and promote enhancer selectivity. Genome Res 2022; 32:459-473. [PMID: 35074859 PMCID: PMC8896470 DOI: 10.1101/gr.275623.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022]
Abstract
To systematically investigate the complexity of neuron specification regulatory networks, we performed an RNA interference (RNAi) screen against all 875 transcription factors (TFs) encoded in Caenorhabditis elegans genome and searched for defects in nine different neuron types of the monoaminergic (MA) superclass and two cholinergic motoneurons. We identified 91 TF candidates to be required for correct generation of these neuron types, of which 28 were confirmed by mutant analysis. We found that correct reporter expression in each individual neuron type requires at least nine different TFs. Individual neuron types do not usually share TFs involved in their specification but share a common pattern of TFs belonging to the five most common TF families: homeodomain (HD), basic helix loop helix (bHLH), zinc finger (ZF), basic leucine zipper domain (bZIP), and nuclear hormone receptors (NHR). HD TF members are overrepresented, supporting a key role for this family in the establishment of neuronal identities. These five TF families are also prevalent when considering mutant alleles with previously reported neuronal phenotypes in C. elegans, Drosophila, and mouse. In addition, we studied terminal differentiation complexity focusing on the dopaminergic terminal regulatory program. We found two HD TFs (UNC-62 and VAB-3) that work together with known dopaminergic terminal selectors (AST-1, CEH-43, CEH-20). Combined TF binding sites for these five TFs constitute a cis-regulatory signature enriched in the regulatory regions of dopaminergic effector genes. Our results provide new insights on neuron-type regulatory programs in C. elegans that could help better understand neuron specification and evolution of neuron types.
Collapse
Affiliation(s)
- Angela Jimeno-Martín
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, 46010, Spain
| | - Erick Sousa
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, 46010, Spain
| | - Rebeca Brocal-Ruiz
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, 46010, Spain
| | - Noemi Daroqui
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, 46010, Spain
| | - Miren Maicas
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, 46010, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IBV-CSIC, Valencia, 46010, Spain
| |
Collapse
|
17
|
Zheng K, Huang H, Yang J, Qiu M. Origin, molecular specification and stemness of astrocytes. Dev Neurobiol 2022; 82:149-159. [DOI: 10.1002/dneu.22863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Kang Zheng
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Junlin Yang
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life Sciences Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
18
|
Russo K, Wharton KA. BMP/TGF-β signaling as a modulator of neurodegeneration in ALS. Dev Dyn 2022; 251:10-25. [PMID: 33745185 PMCID: PMC11929146 DOI: 10.1002/dvdy.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
This commentary focuses on the emerging intersection between BMP/TGF-β signaling roles in nervous system function and the amyotrophic lateral sclerosis (ALS) disease state. Future research is critical to elucidate the molecular underpinnings of this intersection of the cellular processes disrupted in ALS and those influenced by BMP/TGF-β signaling, including synapse structure, neurotransmission, plasticity, and neuroinflammation. Such knowledge promises to inform us of ideal entry points for the targeted modulation of dysfunctional cellular processes in an effort to abrogate ALS pathologies. It is likely that different interventions are required, either at discrete points in disease progression, or across multiple dysfunctional processes which together lead to motor neuron degeneration and death. We discuss the challenging, but intriguing idea that modulation of the pleiotropic nature of BMP/TGF-β signaling could be advantageous, as a way to simultaneously treat defects in more than one cell process across different forms of ALS.
Collapse
Affiliation(s)
- Kathryn Russo
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | - Kristi A Wharton
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
19
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
20
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
21
|
Kumar V, Goutam RS, Umair Z, Park S, Lee U, Kim J. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula. Cells 2021; 10:cells10102779. [PMID: 34685759 PMCID: PMC8534798 DOI: 10.3390/cells10102779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bone morphogenetic proteins (BMPs) is the primary step toward neuroectoderm formation in vertebrates. In this process, the Spemann organizer of the dorsal mesoderm plays a decisive role by secreting several extracellular BMP inhibitors such as Chordin (Chrd). Chrd physically interacts with BMP proteins and inhibits BMP signaling, which triggers the expression of neural-specific transcription factors (TFs), including Foxd4l1.1. Thus, Chrd induces in a BMP-inhibited manner and promotes neuroectoderm formation. However, the regulatory feedback mechanism of Foxd4l1.1 on mesodermal genes expression during germ-layer specification has not been fully elucidated. In this study, we investigated the regulatory mechanism of Foxd4l1.1 on chrd (a mesodermal gene). We demonstrate that Foxd4l1.1 inhibits chrd expression during neuroectoderm formation in two ways: First, Foxd4l1.1 directly binds to FRE (Foxd4l1.1 response elements) within the chrd promoter region to inhibit transcription. Second, Foxd4l1.1 physically interacts with Smad2 and Smad3, and this interaction blocks Smad2 and Smad3 binding to activin response elements (AREs) within the chrd promoter. Site-directed mutagenesis of FRE within the chrd(-2250) promoter completely abolished repressor activity of the Foxd4l1.1. RT-PCR and reporter gene assay results indicate that Foxd4l1.1 strongly inhibits mesoderm- and ectoderm-specific marker genes to maintain neural fate. Altogether, these results suggest that Foxd4l1.1 negatively regulates chrd transcription by dual mechanism. Thus, our study demonstrates the existence of precise reciprocal regulation of chrd transcription during neuroectoderm and mesoderm germ-layer specification in Xenopus embryos.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Ravi Shankar Goutam
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon 24252, Korea
- Correspondence: (U.L.); (J.K.)
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon 24252, Korea; (V.K.); (R.S.G.); (Z.U.)
- Correspondence: (U.L.); (J.K.)
| |
Collapse
|
22
|
Wang YF, Liu C, Xu PF. Deciphering and reconstitution of positional information in the human brain development. ACTA ACUST UNITED AC 2021; 10:29. [PMID: 34467458 PMCID: PMC8408296 DOI: 10.1186/s13619-021-00091-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022]
Abstract
Organoid has become a novel in vitro model to research human development and relevant disorders in recent years. With many improvements on the culture protocols, current brain organoids could self-organize into a complicated three-dimensional organization that mimics most of the features of the real human brain at the molecular, cellular, and further physiological level. However, lacking positional information, an important characteristic conveyed by gradients of signaling molecules called morphogens, leads to the deficiency of spatiotemporally regulated cell arrangements and cell–cell interactions in the brain organoid development. In this review, we will overview the role of morphogen both in the vertebrate neural development in vivo as well as the brain organoid culture in vitro, the strategies to apply morphogen concentration gradients in the organoid system and future perspectives of the brain organoid technology.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Zhejiang University and University of Edinburgh, Jiaxing, Zhejiang, China.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Cong Liu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng-Fei Xu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
Li Z, Xiang S, Lin Z, Li EN, Yagi H, Cao G, Yocum L, Li L, Hao T, Bruce KK, Fritch MR, Hu H, Wang B, Alexander PG, Khor KA, Tuan RS, Lin H. Graphene oxide-functionalized nanocomposites promote osteogenesis of human mesenchymal stem cells via enhancement of BMP-SMAD1/5 signaling pathway. Biomaterials 2021; 277:121082. [PMID: 34464823 DOI: 10.1016/j.biomaterials.2021.121082] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022]
Abstract
Biomaterials that can harness the intrinsic osteogenic potential of stem cells offer a promising strategy to accelerate bone regeneration and repair. Previously, we had used methacrylated gelatin (GelMA)-based scaffolds to achieve bone formation from human mesenchymal stem cells (hMSCs). In this study, we aimed to further enhance hMSC osteogenesis by incorporating graphene oxide (GO)-based nanosheets into GelMA. In vitro results showed high viability and metabolic activities in hMSCs encapsulated in the newly developed nanocomposites. Incorporation of GO markedly increased mineralization within hMSC-laden constructs, which was further increased by replacing GO with silica-coated graphene oxide (SiGO). Mechanistic analysis revealed that the nanosheet enhanced the production, retention, and biological activity of endogenous bone morphogenetic proteins (BMPs), resulting in robust osteogenesis in the absence of exogenous osteoinductive growth factors. Specifically, the osteoinductive effect of the nanosheets was abolished by inhibiting the BMP signaling pathway with LDN-193189 treatment. The bone formation potential of the technology was further tested in vivo using a mouse subcutaneous implantation model, where hMSCs-laden GO/GelMA and SiGO/GelMA samples resulted in bone volumes 108 and 385 times larger, respectively, than the GelMA control group. Taken together, these results demonstrate the biological activity and mechanism of action of GO-based nanosheets in augmenting the osteogenic capability of hMSCs, and highlights the potential of leveraging nanomaterials such as GO and SiGO for bone tissue engineering applications.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zixuan Lin
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Haruyo Yagi
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guorui Cao
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Yocum
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - La Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tingjun Hao
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine K Bruce
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Huanlong Hu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bing Wang
- Molecular Therapeutics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Khiam Aik Khor
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rocky S Tuan
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Hang Lin
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
24
|
Cai W, Zhang X, Batista TM, García-Martín R, Softic S, Wang G, Ramirez AK, Konishi M, O'Neill BT, Kim JH, Kim JK, Kahn CR. Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes 2021; 70:1857-1873. [PMID: 34031123 PMCID: PMC8385615 DOI: 10.2337/db20-1119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/09/2021] [Indexed: 11/13/2022]
Abstract
The brain is now recognized as an insulin-sensitive tissue; however, the role of changing insulin concentrations in the peripheral circulation in gene expression in the brain is largely unknown. Here, we performed a hyperinsulinemic-euglycemic clamp on 3-month-old male C57BL/6 mice for 3 h. We show that, in comparison with results in saline-infused controls, increases in peripheral insulin within the physiological range regulate expression of a broad network of genes in the brain. Insulin regulates distinct pathways in the hypothalamus (HTM), hippocampus, and nucleus accumbens. Insulin shows its most robust effect in the HTM and regulates multiple genes involved in neurotransmission, including upregulating expression of multiple subunits of GABA-A receptors, Na+ and K+ channels, and SNARE proteins; differentially modulating glutamate receptors; and suppressing multiple neuropeptides. Insulin also strongly modulates metabolic genes in the HTM, suppressing genes in the glycolysis and pentose phosphate pathways, while increasing expression of genes regulating pyruvate dehydrogenase and long-chain fatty acyl-CoA and cholesterol biosynthesis, thereby rerouting of carbon substrates from glucose metabolism to lipid metabolism required for the biogenesis of membranes for neuronal and glial function and synaptic remodeling. Furthermore, based on the transcriptional signatures, these changes in gene expression involve neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells. Thus, peripheral insulin acutely and potently regulates expression of a broad network of genes involved in neurotransmission and brain metabolism. Dysregulation of these pathways could have dramatic effects in normal physiology and diabetes.
Collapse
Affiliation(s)
- Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, NY
| | - Xuemei Zhang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Thiago M Batista
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Rubén García-Martín
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Samir Softic
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Department of Pediatrics, University of Kentucky, College of Medicine, Lexington, KY
| | - Guoxiao Wang
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Alfred K Ramirez
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Masahiro Konishi
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Brian T O'Neill
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
- Division of Endocrinology and Metabolism, Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Jong Hun Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Department of Food Science and Biotechnology, Sungshin University, Seoul, South Korea
| | - Jason K Kim
- Program in Molecular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Chen J, Kong A, Shelton D, Dong H, Li J, Zhao F, Bai C, Huang K, Mo W, Chen S, Xu H, Tanguay RL, Dong Q. Early life stage transient aristolochic acid exposure induces behavioral hyperactivity but not nephrotoxicity in larval zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 238:105916. [PMID: 34303159 PMCID: PMC8881052 DOI: 10.1016/j.aquatox.2021.105916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 05/12/2023]
Abstract
Aristolochic acids (AA) are nitrophenanthrene carboxylic acids found in plants of the Aristolochiaceae family. Humans are exposed to AA by deliberately taking herbal medicines or unintentionally as a result of environmental contamination. AA is notorious for its nephrotoxicity, however, fewer studies explore potential neurotoxicity associated with AA exposure. The developing nervous system is vulnerable to xenobiotics, and pregnant women exposed to AA may put their fetuses at risk. In the present study, we used the embryonic zebrafish model to evaluate the developmental neurotoxicity associated with AA exposure. At non-teratogenic concentrations (≤ 4 µM), continuous AA exposure from 8 to 120 hours post fertilization (hpf) resulted in larval hyperactivity that was characterized by increased moving distance, elevated activity and faster swimming speeds in several behavioral assays. Further analysis revealed that 8-24 hpf is the most sensitive exposure window for AA-induced hyperactivity. AA exposures specifically increased motor neuron proliferation, increased apoptosis in the eye, and resulted in cellular oxidative stress. In addition, AA exposures increased larval eye size and perturbed the expression of vision genes. Our study, for the first time, demonstrates that AA is neurotoxic to the developmental zebrafish with a sensitive window distinct from its well-documented nephrotoxicity.
Collapse
Affiliation(s)
- Jiangfei Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China..
| | - Aijun Kong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Delia Shelton
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States
| | - Haojia Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jiani Li
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Fan Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chenglian Bai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Kaiyu Huang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Wen Mo
- Zhejiang rehabilitation medical center, Hangzhou 310051, PR China
| | - Shan Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Robyn L Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States
| | - Qiaoxiang Dong
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China..
| |
Collapse
|
26
|
Wu Y, Peng S, Finnell RH, Zheng Y. Organoids as a new model system to study neural tube defects. FASEB J 2021; 35:e21545. [PMID: 33729606 PMCID: PMC9189980 DOI: 10.1096/fj.202002348r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 01/09/2023]
Abstract
The neural tube is the first critically important structure that develops in the embryo. It serves as the primordium of the central nervous system; therefore, the proper formation of the neural tube is essential to the developing organism. Neural tube defects (NTDs) are severe congenital defects caused by failed neural tube closure during early embryogenesis. The pathogenesis of NTDs is complicated and still not fully understood even after decades of research. While it is an ethically impossible proposition to investigate the in vivo formation process of the neural tube in human embryos, a newly developed technology involving the creation of neural tube organoids serves as an excellent model system with which to study human neural tube formation and the occurrence of NTDs. Herein we reviewed the recent literature on the process of neural tube formation, the progress of NTDs investigations, and particularly the exciting potential to use neural tube organoids to model the cellular and molecular mechanisms underlying the etiology of NTDs.
Collapse
Affiliation(s)
- Yu Wu
- Department of Cellular and Developmental Biology, School of life sciences, Fudan University, Shanghai, China
- Obstetrics & Gynecology Hospital, The institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Sisi Peng
- Department of Cellular and Developmental Biology, School of life sciences, Fudan University, Shanghai, China
- Obstetrics & Gynecology Hospital, The institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Richard H. Finnell
- Center for Precision Environmental Health, Departments of Molecular and Cellular Biology, Molecular and Human Genetics and Medicine, Baylor College of Medicine, Houston, TA, USA
| | - Yufang Zheng
- Department of Cellular and Developmental Biology, School of life sciences, Fudan University, Shanghai, China
- Obstetrics & Gynecology Hospital, The institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
27
|
BMP4 overexpression induces the upregulation of APP/Tau and memory deficits in Alzheimer's disease. Cell Death Discov 2021; 7:51. [PMID: 33723239 PMCID: PMC7961014 DOI: 10.1038/s41420-021-00435-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic progressive degenerative disease of the nervous system. Its pathogenesis is complex and is related to the abnormal expression of the amyloid β (Aβ), APP, and Tau proteins. Evidence has demonstrated that bone morphogenetic protein 4 (BMP4) is highly expressed in transgenic mouse models of AD and that endogenous levels of BMP4 mainly affect hippocampal function. To determine whether BMP4 participates in AD development, transgenic mice were constructed that overexpress BMP4 under the control of the neuron-specific enolase (NSE) promoter. We also performed MTT, FACS, transfection, TUNEL, and Western blotting assays to define the role of BMP4 in cells. We found that middle-aged BMP4 transgenic mice exhibited impaired memory via the Morris water maze experiment. Moreover, their hippocampal tissues exhibited high expression levels of AD-related proteins, including APP, Aβ, PSEN-1, Tau, P-Tau (Thr181), and P-Tau (Thr231). Furthermore, in multiple cell lines, the overexpression of BMP4 increased the expression of AD-related proteins, whereas the downregulation of BMP4 demonstrated opposing effects. Consistent with these results, BMP4 modulation affected cell apoptosis via the regulation of BAX and Bcl-2 expression in cells. Our findings indicate that BMP4 overexpression might be a potential factor to induce AD.
Collapse
|
28
|
Mansour AA, Schafer ST, Gage FH. Cellular complexity in brain organoids: Current progress and unsolved issues. Semin Cell Dev Biol 2021; 111:32-39. [DOI: 10.1016/j.semcdb.2020.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/31/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
|
29
|
Consalez GG, Goldowitz D, Casoni F, Hawkes R. Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Front Neural Circuits 2021; 14:611841. [PMID: 33519389 PMCID: PMC7843939 DOI: 10.3389/fncir.2020.611841] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, Milan, Italy
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Galiakberova AA, Dashinimaev EB. Neural Stem Cells and Methods for Their Generation From Induced Pluripotent Stem Cells in vitro. Front Cell Dev Biol 2020; 8:815. [PMID: 33117792 PMCID: PMC7578226 DOI: 10.3389/fcell.2020.00815] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells). However, there are many different protocols for the induction and differentiation of NSCs, and these result in a wide range of neural cell types. This review is intended to summarize the knowledge accumulated, to date, by workers in this field. It should be particularly useful for researchers who are beginning investigations in this area of cell biology.
Collapse
Affiliation(s)
- Adelya A Galiakberova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem B Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
31
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
32
|
Vickers E, Osypenko D, Clark C, Okur Z, Scheiffele P, Schneggenburger R. LTP of inhibition at PV interneuron output synapses requires developmental BMP signaling. Sci Rep 2020; 10:10047. [PMID: 32572071 PMCID: PMC7308402 DOI: 10.1038/s41598-020-66862-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022] Open
Abstract
Parvalbumin (PV)-expressing interneurons (PV-INs) mediate well-timed inhibition of cortical principal neurons, and plasticity of these interneurons is involved in map remodeling of primary sensory cortices during critical periods of development. To assess whether bone morphogenetic protein (BMP) signaling contributes to the developmental acquisition of the synapse- and plasticity properties of PV-INs, we investigated conditional/conventional double KO mice of BMP-receptor 1a (BMPR1a; targeted to PV-INs) and 1b (BMPR1a/1b (c)DKO mice). We report that spike-timing dependent LTP at the synapse between PV-INs and principal neurons of layer 4 in the auditory cortex was absent, concomitant with a decreased paired-pulse ratio (PPR). On the other hand, baseline synaptic transmission at this connection, and action potential (AP) firing rates of PV-INs were unchanged. To explore possible gene expression targets of BMP signaling, we measured the mRNA levels of the BDNF receptor TrkB and of P/Q-type Ca2+ channel α-subunits, but did not detect expression changes of the corresponding genes in PV-INs of BMPR1a/1b (c)DKO mice. Our study suggests that BMP-signaling in PV-INs during and shortly after the critical period is necessary for the expression of LTP at PV-IN output synapses, involving gene expression programs that need to be addressed in future work.
Collapse
Affiliation(s)
- Evan Vickers
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christopher Clark
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
- Institute for Regenerative Medicine, University of Zürich, 8952, Schlieren, Switzerland
| | - Zeynep Okur
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
33
|
Neuronal Reprogramming for Tissue Repair and Neuroregeneration. Int J Mol Sci 2020; 21:ijms21124273. [PMID: 32560072 PMCID: PMC7352898 DOI: 10.3390/ijms21124273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cell and cell reprogramming technology represent a rapidly growing field in regenerative medicine. A number of novel neural reprogramming methods have been established, using pluripotent stem cells (PSCs) or direct reprogramming, to efficiently derive specific neuronal cell types for therapeutic applications. Both in vitro and in vivo cellular reprogramming provide diverse therapeutic pathways for modeling neurological diseases and injury repair. In particular, the retina has emerged as a promising target for clinical application of regenerative medicine. Herein, we review the potential of neuronal reprogramming to develop regenerative strategy, with a particular focus on treating retinal degenerative diseases and discuss future directions and challenges in the field.
Collapse
|
34
|
Brązert M, Kranc W, Celichowski P, Jankowski M, Piotrowska-Kempisty H, Pawelczyk L, Bruska M, Zabel M, Nowicki M, Kempisty B. Expression of genes involved in neurogenesis, and neuronal precursor cell proliferation and development: Novel pathways of human ovarian granulosa cell differentiation and transdifferentiation capability in vitro. Mol Med Rep 2020; 21:1749-1760. [PMID: 32319615 PMCID: PMC7057781 DOI: 10.3892/mmr.2020.10972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/10/2019] [Indexed: 01/17/2023] Open
Abstract
The process of neural tissue formation is associated primarily with the course of neurogenesis during embryonic life. The source of neural-like cells is stem cells, which, under the influence of appropriate differentiating factors, may differentiate/transdifferentiate towards a neural-like lineage. The present study suggested that, under long-term in vitro culture conditions, human ovarian granulosa cells (GCs), obtained from granulosa-rich follicular fluid, acquired new properties and expressed genes characteristic of the ontological groups ‘neurogenesis’ (GO:0022008), ‘neuronal precursor cell proliferation’ (GO:0061351) and ‘nervous system development’ (GO:0007399), which are closely related to the formation of neurons. The present study collected GCs from 20 women referred for the procedure of in vitro fertilization. Cells were maintained in long-term in vitro culture for 30 days, and RNA was isolated after 1, 7, 15 and 30 days of culture. The expression profile of individual genes was determined using the Affymetrix microarray method. The 131 genes with the highest expression change in relation to day 1 of culture were then selected; the 10 most affected genes found to be primarily involved in nerve cell formation processes were chosen for consideration in this study: CLDN11, OXTR, DFNA5, ATP8B1, ITGA3, CD9, FRY, NANOS1, CRIM1 and NTN4. The results of the present study revealed that these genes may be considered potential markers of the uninduced differentiation potential of GCs. In addition, it was suggested that GCs may be used to develop a cell line showing neuronal characteristics after 30 days of cultivation. In addition, due to their potential, these cells could possibly be used in the treatment of neurodegenerative diseases, not only in the form of ‘cultured neurons’ but also as producers of factors involved in the regeneration of the nervous system.
Collapse
Affiliation(s)
- Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznań University of Medical Sciences, 60‑535 Poznań, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznań University of Medical Sciences, 60‑781 Poznań, Poland
| | - Piotr Celichowski
- Department of Histology and Embryology, Poznań University of Medical Sciences, 60‑781 Poznań, Poland
| | - Maurycy Jankowski
- Department of Anatomy, Poznań University of Medical Sciences, 60‑781 Poznań, Poland
| | | | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznań University of Medical Sciences, 60‑535 Poznań, Poland
| | - Małgorzata Bruska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznań University of Medical Sciences, 60‑535 Poznań, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wrocław Medical University, 50‑368 Wrocław, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznań University of Medical Sciences, 60‑781 Poznań, Poland
| | - Bartosz Kempisty
- Department of Anatomy, Poznań University of Medical Sciences, 60‑781 Poznań, Poland
| |
Collapse
|
35
|
Leinster V, Phillips T, Jones N, Sanderson S, Simon K, Hanley J, Case C. Cortical cells are altered by factors including bone morphogenetic protein released from a placental barrier model under altered oxygenation. Neuronal Signal 2020; 4:NS20190148. [PMID: 32714599 PMCID: PMC7363303 DOI: 10.1042/ns20190148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022] Open
Abstract
Episodes of hypoxia and hypoxia/reoxygenation during foetal development have been associated with increased risk of neurodevelopmental conditions presenting in later life. The mechanism for this is not understood; however, several authors have suggested that the placenta plays an important role. Previously we found both placentas from a maternal hypoxia model and pre-eclamptic placentas from patients release factors lead to a loss of dendrite complexity in rodent neurons. Here to further explore the nature and origin of these secretions we exposed a simple in vitro model of the placental barrier, consisting of a barrier of human cytotrophoblasts, to hypoxia or hypoxia/reoxygenation. We then exposed cortical cultures from embryonic rat brains to the conditioned media (CM) from below these exposed barriers and examined changes in cell morphology, number, and receptor presentation. The barriers released factors that reduced dendrite and astrocyte process lengths, decreased GABAB1 staining, and increased astrocyte number. The changes in astrocytes required the presence of neurons and were prevented by inhibition of the SMAD pathway and by neutralising Bone Morphogenetic Proteins (BMPs) 2/4. Barriers exposed to hypoxia/reoxygenation also released factors that reduced dendrite lengths but increased GABAB1 staining. Both oxygen changes caused barriers to release factors that decreased GluN1, GABAAα1 staining and increased GluN3a staining. We find that hypoxia in particular will elicit the release of factors that increase astrocyte number and decrease process length as well as causing changes in the intensity of glutamate and GABA receptor staining. There is some evidence that BMPs are released and contribute to these changes.
Collapse
Affiliation(s)
| | - Thomas J. Phillips
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, U.K
- Dementia Research Institute, Cardiff University, Cardiff, U.K
| | - Nicola Jones
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, U.K
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, John Radcliffe Hospital, Oxford, U.K
| | - Katja Simon
- Translational Immunology Laboratory, NIHR BRC, John Radcliffe Hospital, Oxford, U.K
| | - Jon Hanley
- School of Biochemistry, University of Bristol, Bristol, U.K
| | - Charles Patrick Case
- School of Clinical Sciences, University of Bristol, Southmead Hospital, Bristol, U.K
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, U.K
| |
Collapse
|
36
|
Dalmo E, Johansson P, Niklasson M, Gustavsson I, Nelander S, Westermark B. Growth-Inhibitory Activity of Bone Morphogenetic Protein 4 in Human Glioblastoma Cell Lines Is Heterogeneous and Dependent on Reduced SOX2 Expression. Mol Cancer Res 2020; 18:981-991. [PMID: 32234828 DOI: 10.1158/1541-7786.mcr-19-0638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/13/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme continues to have a dismal prognosis. Even though detailed information on the genetic aberrations in cell signaling and cell-cycle checkpoint control is available, no effective targeted treatment has been developed. Despite the advanced molecular defects, glioblastoma cells may have remnants of normal growth-inhibitory pathways, such as the bone morphogenetic protein (BMP) signaling pathway. We have evaluated the growth-inhibitory effect of BMP4 across a broad spectrum of patient samples, using a panel of 40 human glioblastoma initiating cell (GIC) cultures. A wide range of responsiveness was observed. BMP4 sensitivity was positively correlated with a proneural mRNA expression profile, high SOX2 activity, and BMP4-dependent upregulation of genes associated with inhibition of the MAPK pathway, as demonstrated by gene set enrichment analysis. BMP4 response in sensitive cells was mediated by the canonical BMP receptor pathway involving SMAD1/5/9 phosphorylation and SMAD4 expression. SOX2 was consistently downregulated in BMP4-treated cells. Forced expression of SOX2 attenuated the BMP4 sensitivity including a reduced upregulation of MAPK-inhibitory genes, implying a functional relationship between SOX2 downregulation and sensitivity. The results show an extensive heterogeneity in BMP4 responsiveness among GICs and identify a BMP4-sensitive subgroup, in which SOX2 is a mediator of the response. IMPLICATIONS: Development of agonists targeting the BMP signaling pathway in glioblastoma is an attractive avenue toward a better treatment. Our study may help find biomarkers that predict the outcome of such treatment and enable stratification of patients.
Collapse
Affiliation(s)
- Erika Dalmo
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrik Johansson
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Niklasson
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ida Gustavsson
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, and Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
Amin SN, Hassan SS, Khashaba AS, Youakim MF, Latif NSA, Rashed LA, Yassa HD. Hippocampal and Cerebellar Changes in Acute Restraint Stress and the Impact of Pretreatment with Ceftriaxone. Brain Sci 2020; 10:E193. [PMID: 32218213 PMCID: PMC7225952 DOI: 10.3390/brainsci10040193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/15/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Acute restraint stress (ARS) is an unavoidable stress situation and may be encountered in different clinical situations. The aim of the current study was to investigate the effects of ARS on the hippocampus and cerebellum, assess the impact of these effects on the behavior and cognitive function, and determine whether pretreatment with ceftriaxone would attenuate the damages produced by ARS on the hippocampus and cerebellum. Four groups of male mice were included in this study: The control group, ARS group, ceftriaxone group, and ARS + ceftriaxone group. Tail suspension test, Y-maze task, and open field tests were used to assess depression, working spatial memory, and anxiety. The biochemical analyses included measurements of serum cortisol, tumor necrotic factor (TNF), interleukin-6, hippocampal expression of bone morphogenetic protein 9 (BMP9), lysosomal-associated membrane protein 1 (LAMP1), glutamate transporter 1 (GLT1), heat shock protein 90, cerebellar expression of S100 protein, glutamic acid decarboxylase (GAD), and carbon anhydrase. Histopathological examination of the brain sections was conducted on the hippocampus and cerebellum by hematoxylin and eosin stains in addition to ultrastructure evaluation using electron microscopy. Our results suggested that ceftriaxone had neuroprotective properties by attenuating the effects of ARS on the hippocampus and cerebellum in mice. This effect was demonstrated by the improvement in the cognitive and behavioral tests as well as by the preservation of the hippocampal and cerebellar architecture.
Collapse
Affiliation(s)
- Shaimaa N. Amin
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa 13133, Jordan
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt
| | - Sherif S. Hassan
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA 82408, USA
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo 11451, Egypt;
| | - Ahmed S. Khashaba
- Department of Basic Sciences, Riyadh Elm University, Riyadh 12734, Saudi Arabia;
| | - Magdy F. Youakim
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo 11451, Egypt;
| | - Noha S. Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University Cairo 11451, Egypt;
| | - Laila A. Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo 11451, Egypt;
| | - Hanan D. Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Beni Suef 62511, Egypt;
| |
Collapse
|
38
|
Tao G, Mao P, Guan H, Jiang M, Chu T, Zhong C, Liu J. Effect of miR-181a-3p on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells by targeting BMP10. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4159-4164. [PMID: 31713441 DOI: 10.1080/21691401.2019.1687494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective: To explore the regulation relationship between miR-181a-3p and BMP10, and their mechanism of osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (MSCs).Methods: After osteogenic induction of MSCs, the ALP activity was detected by ELISA. The expression of miRNA-181a-3p and BMP10 was detected by RT-qPCR, and the protein levels of BMP10 and osteogenic differentiation marker proteins ALK and RUNX2 were detected by Western blot. The TargetScan online website was used to predict the putative target of miR-181a-3p, and dual luciferase reporter assay was performed to validate the targeting relationship between miR-181a-3p and BMP10.Results: In osteogenic differentiation of MSCs, ALP activity, the level of ALK and RUNX2 was evidently increased (p < .05), and the expression of miR-181a-3p was significantly downregulated (p < .05). Moreover, overexpression of miR-181a-3p obviously decreased the expression of BMP10 (p < .05), miR-181a-3p knockdown increased the expression of BMP10 prominently (p < .05). The transfection of miR-181a-3p mimics resulted in significantly downregulation of ALP activity and RUNX2 protein expression in MSCs (p < .05). In addition, overexpression of BMP10 could reverse the inhibitory effect of miR-181a-3p on osteogenic differentiation (p < .05).Conclusions: In conclusion, we found that miR-181a-3p inhibited osteogenic differentiation of MCSs by targeting BMP10.
Collapse
Affiliation(s)
- GuiLu Tao
- Department of Wound Repairment, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Mao
- Department of Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - HaoNan Guan
- Department of Wound Repairment, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - MinFei Jiang
- Department of Wound Repairment, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tongbin Chu
- Department of Wound Repair, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - CunDi Zhong
- Department of Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - JiaZheng Liu
- Department of Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Gleeson BT. Masculinity and the Mechanisms of Human Self-Domestication. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2020. [DOI: 10.1007/s40750-019-00126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Carlson LM, Champagne FA, Cory-Slechta DA, Dishaw L, Faustman E, Mundy W, Segal D, Sobin C, Starkey C, Taylor M, Makris SL, Kraft A. Potential frameworks to support evaluation of mechanistic data for developmental neurotoxicity outcomes: A symposium report. Neurotoxicol Teratol 2020; 78:106865. [PMID: 32068112 PMCID: PMC7160758 DOI: 10.1016/j.ntt.2020.106865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
A key challenge in systematically incorporating mechanistic data into human health assessments is that, compared to studies of apical health endpoints, these data are both more abundant (mechanistic studies routinely outnumber other studies by several orders of magnitude) and more heterogeneous (e.g. different species, test system, tissue, cell type, exposure paradigm, or specific assays performed). A structured decision-making process for organizing, integrating, and weighing mechanistic DNT data for use in human health risk assessments will improve the consistency and efficiency of such evaluations. At the Developmental Neurotoxicology Society (DNTS) 2016 annual meeting, a symposium was held to address the application of existing organizing principles and frameworks for evaluation of mechanistic data relevant to interpreting neurotoxicology data. Speakers identified considerations with potential to advance the use of mechanistic DNT data in risk assessment, including considering the context of each exposure, since epigenetics, tissue type, sex, stress, nutrition and other factors can modify toxicity responses in organisms. It was also suggested that, because behavior is a manifestation of complex nervous system function, the presence and absence of behavioral change itself could be used to organize the interpretation of multiple complex simultaneous mechanistic changes. Several challenges were identified with frameworks and their implementation, and ongoing research to develop these approaches represents an early step toward full evaluation of mechanistic DNT data for assessments.
Collapse
Affiliation(s)
- Laura M Carlson
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC.
| | | | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School Rochester, NY
| | - Laura Dishaw
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| | - Elaine Faustman
- School of Public Health, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA
| | - William Mundy
- Neurotoxicologist, Durham, NC (formerly National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC))
| | - Deborah Segal
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Christina Sobin
- Dept of Public Health Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Carol Starkey
- Booz Allen Hamilton (formerly research fellow with the Oak Ridge Institute for Science and Engineering (ORISE) with Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington DC))
| | - Michele Taylor
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| | - Susan L Makris
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC
| | - Andrew Kraft
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC; Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, RTP, NC
| |
Collapse
|
41
|
Xue X, Wang RP, Fu J. Modeling of human neurulation using bioengineered pluripotent stem cell culture. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:127-133. [PMID: 32328535 DOI: 10.1016/j.cobme.2020.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leveraging the developmental potential and self-organizing property of human pluripotent stem (hPS) cells, researchers have developed tractable models of human embryonic development. Owing to their compatibility to live imaging, genome editing, mechanical perturbation and measurement, these models offer promising quantitative experimental platforms to advance human embryology and regenerative medicine. Herein, we provide a review of recent progress in using hPS cells to generate models of early human neural development or neurulation, including neural induction and regional patterning of the neural tube. These models, even in their nascent developmental stages, have already revealed intricate cell-cell signaling and mechanoregulation mechanisms likely involved in tissue patterning during early neural development. We also discuss future opportunities in modeling early neural development by incorporating bioengineering tools to control precisely neural tissue morphology and architecture, morphogen dynamics, intracellular signaling events, and cell-cell interactions to further the development of this emerging field and expand its applications.
Collapse
Affiliation(s)
- Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
42
|
Qin L, Ahn KJ, Wine Lee L, de Charleroy C, Crenshaw EB. Analyses with double knockouts of the Bmpr1a and Bmpr1b genes demonstrate that BMP signaling is involved in the formation of precerebellar mossy fiber nuclei derived from the rhombic lip. PLoS One 2019; 14:e0226602. [PMID: 31869353 PMCID: PMC6927620 DOI: 10.1371/journal.pone.0226602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have been hypothesized to specify distinct dorsal neural fates. During neural development, BMPs are expressed in the roof plate and adjacent neuroepithelium. Because several hindbrain nuclei that form the proprioceptive/vestibular/auditory sensory network originate from the rhombic lip, near the roof plate, BMP signaling may regulate the development of these nuclei. To test this hypothesis genetically, we have examined the development of the hindbrain in BMP type I receptor knockout mice. Our results demonstrate that BMP signaling is involved in the formation of precerebellar mossy fiber nuclei, which give rise to cerebellar mossy fibers, but is not required for the development of the inferior olivary nucleus, which gives rise to cerebellar climbing fibers.
Collapse
Affiliation(s)
- Lihua Qin
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kyung J. Ahn
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lara Wine Lee
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Charles de Charleroy
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - E. Bryan Crenshaw
- Division of Pediatric Otolaryngology, Mammalian Neurogenetics Group, Center for Childhood Communication, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Neuroscience Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Otorhinolaryngology, Head and Neck Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
43
|
Li H, Bai L, Dong X, Qi X, Liu H, Yu D. SEM observation of early shell formation and expression of biomineralization-related genes during larval development in the pearl oyster Pinctada fucata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100650. [PMID: 31837590 DOI: 10.1016/j.cbd.2019.100650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 11/25/2022]
Abstract
Shell formation of Pinctada fucata in larval development stages plays a crucial role in their survival. Scanning electron microscopy (SEM) was used to observe the morphological changes during larval development. We found that the early shell forms soon after enlargement of the blastopore at the anterior end of the trochophore stage and the complete shell forms in the spats stage, required for metamorphosis of P. fucata. Based on our transcriptome data of trochophore, D-shaped, umbonal, eyespots and spats stages, including the whole process of shell formation, 93 differentially expressed biomineralization-related genes were identified, of which 25 genes were unique to P. fucata, 30 were identical to genes in pacific oyster, and the remaining genes were annotated to other species. Two-dimensional and three-dimensional principal components analysis (PCA) showed that different developmental stages were significantly different, with the early two stages exhibiting a larger difference compared with the next stages. The 93 genes were sorted into 20 trends with three trends being significantly enriched: an initial increase and then a decrease, a monotonic decrease, and a monotonic increase. Gene expression patterns changed with regulatory function during shell formation. Almost all the biomineralization-related genes were up-regulated in the D-shaped stage, but only five genes were up-regulated in that stage but down-regulated in the remaining stages. There were also 11 genes up-regulated in the last three stages, and a total of 24 genes showed high expression level during the last four stages. The 55 genes selected for shell incision experiment sorted into five trends and most genes presented differences in expression between 24 h and other time points. Considering all these results, there is a correlation with the morphological change and the expression of biomineralization-related genes during larval developmental stages, especially of differently expressed genes.
Collapse
Affiliation(s)
- Haimei Li
- Weifang Medical University, Weifang 261042, Shandong, China.
| | - Lirong Bai
- Beibu Gulf University, Qinzhou 535011, Guangxi, China
| | - Xiaoyun Dong
- Weifang Medical University, Weifang 261042, Shandong, China
| | - Xiaohui Qi
- Weifang Medical University, Weifang 261042, Shandong, China
| | - Hongying Liu
- Weifang Medical University, Weifang 261042, Shandong, China
| | - Dahui Yu
- Beibu Gulf University, Qinzhou 535011, Guangxi, China.
| |
Collapse
|
44
|
George S, Hamblin MR, Abrahamse H. Differentiation of Mesenchymal Stem Cells to Neuroglia: in the Context of Cell Signalling. Stem Cell Rev Rep 2019; 15:814-826. [PMID: 31515658 PMCID: PMC6925073 DOI: 10.1007/s12015-019-09917-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The promise of engineering specific cell types from stem cells and rebuilding damaged or diseased tissues has fascinated stem cell researchers and clinicians over last few decades. Mesenchymal Stem Cells (MSCs) have the potential to differentiate into non-mesodermal cells, particularly neural-lineage, consisting of neurons and glia. These multipotent adult stem cells can be used for implementing clinical trials in neural repair. Ongoing research identifies several molecular mechanisms involved in the speciation of neuroglia, which are tightly regulated and interconnected by various components of cell signalling machinery. Growing MSCs with multiple inducers in culture media will initiate changes on intricately interlinked cell signalling pathways and processes. Net result of these signal flow on cellular architecture is also dependent on the type of ligands and stem cells investigated in vitro. However, our understanding about this dynamic signalling machinery is limited and confounding, especially with spheroid structures, neurospheres and organoids. Therefore, the results for differentiating neurons and glia in vitro have been inconclusive, so far. Added to this complication, we have no convincing evidence about the electrical conductivity and functionality status generated in differentiating neurons and glia. This review has taken a step forward to tailor the information on differentiating neuroglia with the common methodologies, in practice.
Collapse
Affiliation(s)
- Sajan George
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Michael R Hamblin
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
45
|
|
46
|
Cheng X, Pei P, Yu J, Zhang Q, Li D, Xie X, Wu J, Wang S, Zhang T. F-box protein FBXO30 mediates retinoic acid receptor γ ubiquitination and regulates BMP signaling in neural tube defects. Cell Death Dis 2019; 10:551. [PMID: 31320612 PMCID: PMC6639381 DOI: 10.1038/s41419-019-1783-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023]
Abstract
Retinoic acid (RA), an active derivative of vitamin A, is critical for the neural system development. During the neural development, the RA/RA receptor (RAR) pathway suppresses BMP signaling-mediated proliferation and differentiation of neural progenitor cells. However, how the stability of RAR is regulated during neural system development and how BMP pathway genes expression in neural tissue from human fetuses affected with neural tube defects (NTDs) remain elusive. Here, we report that FBXO30 acts as an E3 ubiquitin ligase and targets RARγ for ubiquitination and proteasomal degradation. In this way, FBXO30 positively regulates BMP signaling in mammalian cells. Moreover, RA treatment leads to suppression of BMP signaling by reducing the level of FBXO30 in mammalian cells and in mouse embryos with NTDs. In samples from human NTDs with high levels of retinol, downregulation of BMP target genes was observed, along with aberrant FBXO30 levels. Collectively, our results demonstrate that RARγ levels are controlled by FBXO30-mediated ubiquitination and that FBXO30 is a key regulator of BMP signaling. Furthermore, we suggest a novel mechanism by which high-retinol levels affect the level of FBXO30, which antagonizes BMP signaling during early stage development.
Collapse
Affiliation(s)
- Xiyue Cheng
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
- Graduate School of Peking Union Medical College, 100730, Beijing, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Qin Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Dan Li
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Xiaolu Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Science, 100730, Beijing, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100020, Beijing, China.
- Graduate School of Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
47
|
Chang KC, Sun C, Cameron EG, Madaan A, Wu S, Xia X, Zhang X, Tenerelli K, Nahmou M, Knasel CM, Russano KR, Hertz J, Goldberg JL. Opposing Effects of Growth and Differentiation Factors in Cell-Fate Specification. Curr Biol 2019; 29:1963-1975.e5. [PMID: 31155355 PMCID: PMC6581615 DOI: 10.1016/j.cub.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/15/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
Following ocular trauma or in diseases such as glaucoma, irreversible vision loss is due to the death of retinal ganglion cell (RGC) neurons. Although strategies to replace these lost cells include stem cell replacement therapy, few differentiated stem cells turn into RGC-like neurons. Understanding the regulatory mechanisms of RGC differentiation in vivo may improve outcomes of cell transplantation by directing the fate of undifferentiated cells toward mature RGCs. Here, we report a new mechanism by which growth and differentiation factor-15 (GDF-15), a ligand in the transforming growth factor-beta (TGF-β) superfamily, strongly promotes RGC differentiation in the developing retina in vivo in rodent retinal progenitor cells (RPCs) and in human embryonic stem cells (hESCs). This effect is in direct contrast to the closely related ligand GDF-11, which suppresses RGC-fate specification. We find these opposing effects are due in part to GDF-15's ability to specifically suppress Smad-2, but not Smad-1, signaling induced by GDF-11, which can be recapitulated by pharmacologic or genetic blockade of Smad-2 in vivo to increase RGC specification. No other retinal cell types were affected by GDF-11 knockout, but a slight reduction in photoreceptor cells was observed by GDF-15 knockout in the developing retina in vivo. These data define a novel regulatory mechanism of GDFs' opposing effects and their relevance in RGC differentiation and suggest a potential approach for advancing ESC-to-RGC cell-based replacement therapies.
Collapse
Affiliation(s)
- Kun-Che Chang
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA.
| | - Catalina Sun
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Evan G Cameron
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Ankush Madaan
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Suqian Wu
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Eye, Ear, Nose, & Throat Hospital, Department of Ophthalmology & Visual Science, Fudan University, 200031 Shanghai, China
| | - Xin Xia
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Xiong Zhang
- Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin Tenerelli
- Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Nahmou
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Cara M Knasel
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Kristina R Russano
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Jonathan Hertz
- Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; Shiley Eye Center, University of California San Diego, La Jolla, CA 92093, USA; Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
48
|
Fan S, Zhou D, Xu Y, Yu D. Cloning and functional analysis of BMP3 in the pearl oyster (Pinctada fucata). JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1624261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sigang Fan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Daizhi Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, PR China
| | - Youhou Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, PR China
| | - Dahui Yu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, PR China
| |
Collapse
|
49
|
Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell 2019; 11:45-59. [PMID: 31134525 PMCID: PMC6949328 DOI: 10.1007/s13238-019-0638-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 01/20/2023] Open
Abstract
Neuropsychiatric disorders are complex disorders characterized by heterogeneous genetic variations, variable symptoms, and widespread changes in anatomical pathology. In the context of neuropsychiatric disorders, limited access to relevant tissue types presents challenges for understanding disease etiology and developing effective treatments. Induced pluripotent stem cells (iPSCs) reprogrammed from patient somatic cells offer an opportunity to recapitulate disease development in relevant cell types, and they provide novel approaches for understanding disease mechanisms and for development of effective treatments. Here we review recent progress and challenges in differentiation paradigms for generating disease-relevant cells and recent studies of neuropsychiatric disorders using human pluripotent stem cell (hPSC) models where cellular phenotypes linked to disease have been reported. The use of iPSC-based disease models holds great promise for understanding disease mechanisms and supporting discovery of effective treatments.
Collapse
|
50
|
Khattab HM, Kubota S, Takigawa M, Kuboki T, Sebald W. The BMP-2 mutant L51P: a BMP receptor IA binding-deficient inhibitor of noggin. J Bone Miner Metab 2019; 37:199-205. [PMID: 29667005 DOI: 10.1007/s00774-018-0925-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/01/2018] [Indexed: 02/07/2023]
Abstract
The antagonist-specific regulation in tissue engineering constitutes important attempts to achieve an improved and rapid bone regeneration by controlling the natural biological response of the natural body growth factors. L51P is molecularly engineered bone morphogentic protein-2 (BMP-2) variant with a substitution of the 51st leucine with a proline residue. L51P is deficient in BMP receptor binding, but maintains its structure and affinity for inhibitory proteins such as noggin, chordin, and gremlin. These modifications convert the BMP-2 variant L51P into a receptor-inactive inhibitor of BMP antagonists. This current approach may prevent the uncontrolled bone overgrowth using high concentration of BMPs and thus regulates the possible growth factor's high-dose side effects. Exploring of L51P biological functions is required to broad our understanding of BMP mutant biological functions and their potential clinical applications. The progress of L51P researches would hopefully lead to the development of multiple applications for using the L51P in bone and fracture healing disorders.
Collapse
Affiliation(s)
- Hany Mohamed Khattab
- Department of Prosthodontics, Faculty of Oral and Dental Medicine, Fayoum University, Fayoum, Egypt.
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Walter Sebald
- Physiological Chemistry II, Theodor-Boveri-Institute for Biocenter of Würzburg University, Würzburg, Germany
| |
Collapse
|