1
|
Alshelh Z, Brusaferri L, Morrissey EJ, Torrado-Carvajal A, Kim M, Akeju O, Grmek G, Chane C, Murphy J, Schrepf A, Harris R, Kwon YM, Bedair H, Siliski J, Chen AF, Melnic C, Jarraya M, Napadow V, Veronese M, Maccioni L, Edwards RR, Efthimiou N, Mohammadian M, Luo Y, Pollak LE, Catana C, Toschi N, Loggia ML. Brain inflammation and its predictive value for post-operative pain in total knee arthroplasty patients. Brain Behav Immun 2025:S0889-1591(25)00185-0. [PMID: 40354834 DOI: 10.1016/j.bbi.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/15/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Recent evidence suggests that chronic pain patients exhibit elevated brain levels of the neuroinflammation marker 18 kDa translocator protein (TSPO). However, the clinical significance of brain TSPO elevations, and their responses to pain interventions, remain unknown. To explore these questions, we studied patients with knee osteoarthritis (KOA) undergoing total knee arthroplasty (TKA), a procedure which is curative for most, but carries a relatively high risk of persistent post-surgical pain. Pre-surgical KOA patients (n = 41) and healthy controls (n = 22) underwent brain positron emission tomography/magnetic resonance imaging, using the TSPO radioligand [11C]PBR28. A subset of KOA patients (n = 27) returned for a second scan one-year post-TKA. When compared groups, pre-surgical KOA patients exhibited widespread[11C]PBR28 PET signal elevations (Standardized Uptake Value Ratio), with pituitary uptake positively correlating with knee pain severity (rho = 0.51; p = 0.003). A voxel-wise paired t-test revealed that while most brain regions showed no change post-surgery, the [11C]PBR28 PET signal significantly decreased in the thalamus and caudate, reaching control levels. Additionally, a Support Vector Machine model based on pre-surgical imaging, clinical, and demographic features, achieved a correlation of rho = 0.487 (p = 0.001) between the predicted and actual pain improvement. Top predictive features included [11C]PBR28 uptake in the pituitary gland, cuneal cortex, amygdala and other regions. This study suggests that neuroinflammation 1) is widespread in KOA and, in some regions, 2) is linked to pain severity, 3) undergoes normalization following TKA, and 4) can predict post-surgical TKA outcomes. Understanding the neuroinflammatory mechanisms in KOA and post-surgical pain may guide targeted interventions and improve patient outcomes.
Collapse
Affiliation(s)
- Zeynab Alshelh
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Ludovica Brusaferri
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Department of Computer Science and Digital Technology, College of Technology and Environment, London South Bank University, London, UK
| | - Erin Janas Morrissey
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Angel Torrado-Carvajal
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Minhae Kim
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Grace Grmek
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Courtney Chane
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Jennifer Murphy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Andrew Schrepf
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Richard Harris
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Susan Samueli Integrative Health Institute, School of Medicine, University of California at Irvine, Irvine CA, United States; Department of Anesthesiology and Perioperative Care, School of Medicine, University of California at Irvine, Irvine CA, United States
| | - Young-Min Kwon
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hany Bedair
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - John Siliski
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Antonia F Chen
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Christopher Melnic
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Mohamed Jarraya
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Vitaly Napadow
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Information Engineering, University of Padua, Italy
| | - Lucia Maccioni
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikos Efthimiou
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Mehrbod Mohammadian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yijing Luo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Lauren E Pollak
- Department of Psychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Ciprian Catana
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Nicola Toschi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Department of Biomedicine and Prevention, University of Rome, "Tor Vergata", Rome, Italy
| | - Marco L Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Zhang J, Li Y, Li Y, Liu H. Unraveling the brain-joint axis: genetic, transcriptomic, and cohort insights from neuroticism to osteoarthritis. Mamm Genome 2025:10.1007/s00335-025-10112-4. [PMID: 40080206 DOI: 10.1007/s00335-025-10112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
The causal relationships between neuroticism and osteoarthritis (OA) were inconclusive in observational studies. We conducted bidirectional two-sample Mendelian randomization (MR) and transcriptome-wide association studies to determine the associations and the underlying transcriptomic basis. The summary-level genome-wide association study data for any site OA, knee OA, erosive hand OA, and hip OA were mainly derived from UK Biobank, and neuroticism was derived from CTGlab. We then utilized weighted regression and propensity score matching (PSM) models to investigate the relationship between neuroticism and OA in 11,948 participants of European ancestry from the National Health and Nutrition Examination Survey from 2005 to 2018. Bidirectional two-sample MR studies revealed that feelings of being fed-up, a sense of miserableness, mood swings, and a higher neuroticism score were all linked to an increased risk of OA. These factors were specifically associated with OA at various sites, including the knee. Conversely, there was no evidence to suggest that OA had any influence on traits related to neuroticism. In a comprehensive analysis that accounted for variables such as age, sex, blood lipids, blood glucose, body weight, smoking, alcohol consumption, and physical activity, it was determined that mental fluctuation significantly increased the incidence of self-reported OA (OR 1.37, 95% CI 1.20-1.58, P < 0.001) based on weighted regression. Further confirmation was provided by PSM analysis, which showed that mental fluctuation was associated with a higher incidence of self-reported OA (OR 1.28, 95% CI 1.08-1.52, P = 0.004). Moreover, differentially expressed genes were enriched in several biological processes, including the cell cycle, lipid metabolism, RNA processing, and immuno-inflammatory responses. The results revealed significant genetic and population-based associations, as well as underlying mechanisms, between neuroticism and osteoarthritis, supporting the concept of a brain-joint axis.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingjie Li
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhen Li
- Department of Pediatric, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Hongwei Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Elsehrawy GG, Ibrahim ME, A Moneim NH, Hefny MA, El Shaarawy NK. Transcutaneous vagus nerve stimulation as a pain modulator in knee osteoarthritis: a randomized controlled clinical trial. BMC Musculoskelet Disord 2025; 26:68. [PMID: 39828740 PMCID: PMC11744843 DOI: 10.1186/s12891-025-08288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Our understanding of osteoarthritis (OA) has evolved from a degenerative disease to one in which low-grade, chronic inflammation plays a central role. In addition, evidence suggests that OA is accompanied by both peripheral and central nervous system sensitization that can cause pain. It has been demonstrated that transcutaneous vagus nerve stimulation (tVNS) can relieve pain, inflammation, and central sensitization in other conditions including fibromyalgia, pelvic pain, and headaches. We aimed to assess the efficacy and safety of tVNS on nociceptive pain, central sensitization, and physical function in knee OA. METHODS In this 12-week study, we stimulated the auricular branch of the vagus nerve with an auricular electrode connected to a transcutaneous electrical nerve stimulation device once a day for 3 days each week for 12 weeks. A total of 68 patients with chronic knee OA were randomly assigned to the active and sham groups (34 patients in each group). We used a variety of outcome measures, including the visual analog scale (VAS), pressure pain threshold (PPT), knee injury and osteoarthritis outcome score (KOOS), PainDETECT (PD-Q) and Douleur Neuropathique 4 (DN4) questionnaires. Outcome measures were recorded at baseline, At the end of the stimulation period, and then after 4 weeks. RESULTS In the active group, compared to baseline, there was a significant improvement in VAS scores between the first and second follow-up visits (P < 0.001). A significant improvement in PPT was seen in the right knee, left knee, and right elbow in active tVNS, and this improvement persisted for four weeks post-intervention. Meanwhile, in the sham group, right knee PPT was improved but not maintained. There were statistically significant improvements in the PD-Q and DN4 scores in the active tVNS group (P < 0.001), whereas in the sham group, DN4 questionnaire did not show any improvement. In terms of functional outcomes, the improvement in KOOS was significant only in the active group (31.44 ± 18.49, P < 0.001). No serious adverse events were observed. CONCLUSION There is preliminary evidence to support the benefits of tVNS in OA, suggesting that neuromodulation can be used as an adjunct to existing pharmacological and non-pharmacological treatments. TRIAL REGISTRATION The study was registered on ClinicalTrials.gov (NCT05387135) on 24/05/2022.
Collapse
Affiliation(s)
- Gehad Gamal Elsehrawy
- Department of Physical Medicine, Rheumatology and Rehabilitation, faculty of medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Maha Emad Ibrahim
- Department of Physical Medicine, Rheumatology and Rehabilitation, faculty of medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Nermeen Hassan A Moneim
- Department of Physical Medicine, Rheumatology and Rehabilitation, faculty of medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Ahmed Hefny
- Department of Physical Medicine, Rheumatology and Rehabilitation, faculty of medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Nashwa Kamel El Shaarawy
- Department of Physical Medicine, Rheumatology and Rehabilitation, faculty of medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
4
|
Pan B, Yao P, Ma J, Lin X, Zhou L, Lin C, Zhang Y, Lin B, Lin C. Identification of key biomarkers related to fibrocartilage chondrocytes for osteoarthritis based on bulk, single-cell transcriptomic data. Front Immunol 2024; 15:1482361. [PMID: 39640258 PMCID: PMC11617364 DOI: 10.3389/fimmu.2024.1482361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Osteoarthritis (OA) is a prevalent joint disease that severely impacts patients' quality of life. Due to its unclear pathogenesis and lack of effective therapeutic targets, discovering new biomarkers for OA is essential. Recently, the role of chondrocyte subpopulations in OA progression has gained significant attention, offering potential insights into the disease. This study aimed to explore the role of fibrocartilage chondrocytes (FC) in the progression of OA and identify key biomarkers related to FC. Methods We analyzed single-cell ribonucleic acid sequencing (scRNA-seq) data from samples of OA and normal cartilage, focusing on FC. Microarray data were integrated to identify differentially expressed genes (DEGs). We conducted functional-enrichment analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and used weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) algorithm to select biomarkers. A novel risk model for OA was constructed using these biomarkers. We then built a transcription factor (TF)-gene interaction network and performed immunohistochemistry (IHC) to validate protein expression levels of these biomarkers in cartilage samples. Results The study identified 545 marker genes associated with FC in OA. GO and KEGG analyses revealed their biological functions; microarray analysis identified 243 DEGs on which functional-enrichment analysis were conducted. Using WGCNA and LASSO, we identified six hub genes, on the basis of which we constructed a risk model for OA. In addition, correlation analysis revealed a close association between Forkhead Box (FoxO)-mediated transcription and these these biomarkers. IHC showed significantly lower protein levels of ABCA5, ABCA6 and SLC7A8 in OA samples than in normal samples. Conclusion This study used a multi-omics approach to identify six FC-related OA biomarkers (BCL6, ABCA5, ABCA6, CITED2, NR1D1, and SLC7A8) and developed an exploratory risk model. Functional enrichment analysis revealed that the FoxO pathway may be linked to these markers, particularly implicating ABCA5 and ABCA6 in cholesterol homeostasis within chondrocytes. These findings highlight ABCA family members as novel contributors to OA pathogenesis and suggest new therapeutic targets.
Collapse
Affiliation(s)
- Bailin Pan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Peixiu Yao
- Department of Biobank, Shantou Central Hospital, Shantou, Guangdong, China
| | - Jinjin Ma
- Institute of Future Health, South China University of Technology, Guangzhou, China
| | - Xuanhao Lin
- Department of Biobank, Shantou Central Hospital, Shantou, Guangdong, China
| | - Laixi Zhou
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Canzhen Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
- Department of Graduate Student, Shantou University Medical College, Shantou, Guangdong, China
| | - Yufeng Zhang
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Bendan Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| | - Chuangxin Lin
- Department of Orthopedic Surgery, Shantou Central Hospital, Shantou, Guangdong, China
| |
Collapse
|
5
|
Cruz CJ, Yeater TD, Griffith JL, Allen KD. Vagotomy accelerates the onset of symptoms during early disease progression and worsens joint-level pathogenesis in a male rat model of chronic knee osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100467. [PMID: 38655014 PMCID: PMC11035058 DOI: 10.1016/j.ocarto.2024.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Objective Low vagal tone is common in osteoarthritis (OA) comorbidities and results in greater peripheral inflammation. Characterizing vagal tone's role in OA pathogenesis may offer insights into OA's influences beyond the articular joint. We hypothesized that low vagal tone would accelerate onset of OA-related gait changes and worsen joint damage in a rat knee OA model. Methods Knee OA was induced in male Sprague Dawley rats by transecting the medial collateral ligament and medial meniscus. Then, left cervical vagus nerve transection (VGX, n = 9) or sham VGX (non-VGX, n = 6) was performed. Gait and tactile sensitivity were assessed at baseline and across 12 weeks, with histology and systemic inflammation evaluated at endpoint. Results At week 4, VGX animals showed limping gait characteristics through shifted stance times from their OA to non-OA limb (p = 0.055; stance time imbalance = 1.6 ± 1.6%) and shifted foot strike locations (p < 0.001; spatial symmetry = 48.4 ± 0.835%), while non-VGX animals walked with a balanced and symmetric gait. Also at week 4, while VGX animals had a mechanical sensitivity (50% withdrawal threshold) of 13.97 ± 7.70 compared to the non-VGX animal sensitivity of 29.74 ± 9.43, this difference was not statistically significant. Histologically, VGX animals showed thinner tibial cartilage and greater subchondral bone area than non-VGX animals (p = 0.076; VGX: 0.80 ± 0.036 mm2; non-VGX: 0.736 ± 0.066 mm2). No group differences in systemic inflammation were observed at endpoint. Conclusions VGX resulted in quicker onset of OA-related symptoms but remained unchanged at later timepoints. VGX also had thinner cartilage and abnormal bone remodeling than non-VGX. Overall, low vagal tone had mild effects on OA symptoms and joint remodeling, and not at the level seen in common OA comorbidities.
Collapse
Affiliation(s)
- Carlos J. Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Jacob L. Griffith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Zhou S, Wu L, Si H, Li M, Liu Y, Shen B. Association between nighttime sleep duration and quality with knee osteoarthritis in middle-aged and older Chinese: A longitudinal cohort study. Arch Gerontol Geriatr 2024; 118:105284. [PMID: 38029546 DOI: 10.1016/j.archger.2023.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The association between nighttime sleep duration and sleep quality with the risk of knee osteoarthritis (OA) remains unclear. This study aimed to examine the longitudinal association among middle-aged and older adults in China. METHODS The data used in this study were obtained from the China Health and Retirement Longitudinal Study (CHARLS) surveys conducted in 2011 and 2015. Nighttime sleep duration was categorized into five groups: <6 h, 6 to <7 h, 7 to <8 h, 8 to <9 h, and ≥9 h/night. Sleep quality was assessed by restless days in the past week (<1, 1-2, 3-4, and 5-7 days/week). Multivariate logistic regression models were used to assess the association between sleep duration and quality with incident knee OA. RESULTS A total of 11,114 participants who did not have knee OA at baseline were enrolled in this study. After 4 years of follow-up, the overall incidence of knee OA was 8.07 %. Compared to 7 to <8 h of sleep duration, short sleep duration (<6 h/night) was associated with a significantly increased risk of incident knee OA in the fully adjusted model [odds ratio (OR) =1.73, 95 % confidence interval (CI): 1.33-2.25]. Additionally, participants with 5-7 sleep restless days/week were associated with significantly increased risk of incident knee OA (OR = 1.88, 95 % CI: 1.48-2.38). CONCLUSIONS Short nighttime sleep duration and poor sleep quality are associated with increased risk of incident knee OA.
Collapse
Affiliation(s)
- Shengliang Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Limin Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haibo Si
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingyang Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Hao S, Chen Z, Gu Y, Chen L, Sheng F, Xu Y, Wu D, Han Y, Lu B, Chen S, Zhao W, Yin H, Wang X, Riazuddin SA, Lou X, Fu Q, Yao K. Long-term PM2.5 exposure disrupts corneal epithelial homeostasis by impairing limbal stem/progenitor cells in humans and rat models. Part Fibre Toxicol 2023; 20:36. [PMID: 37759270 PMCID: PMC10523760 DOI: 10.1186/s12989-023-00540-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Limbal stem/progenitor cells (LSPCs) play a crucial role in maintaining corneal health by regulating epithelial homeostasis. Although PM2.5 is associated with the occurrence of several corneal diseases, its effects on LSPCs are not clearly understood. METHODS In this study, we explored the correlation between PM2.5 exposure and human limbal epithelial thickness measured by Fourier-domain Optical Coherence Tomography in the ophthalmologic clinic. Long- and short-term PM2.5 exposed-rat models were established to investigate the changes in LSPCs and the associated mechanisms. RESULTS We found that people living in regions with higher PM2.5 concentrations had thinner limbal epithelium, indicating the loss of LSPCs. In rat models, long-term PM2.5 exposure impairs LSPCs renewal and differentiation, manifesting as corneal epithelial defects and thinner epithelium in the cornea and limbus. However, LSPCs were activated in short-term PM2.5-exposed rat models. RNA sequencing implied that the circadian rhythm in LSPCs was perturbed during PM2.5 exposure. The mRNA level of circadian genes including Per1, Per2, Per3, and Rev-erbα was upregulated in both short- and long-term models, suggesting circadian rhythm was involved in the activation and dysregulation of LSPCs at different stages. PM2.5 also disturbed the limbal microenvironment as evidenced by changes in corneal subbasal nerve fiber density, vascular density and permeability, and immune cell infiltration, which further resulted in the circadian mismatches and dysfunction of LSPCs. CONCLUSION This study systematically demonstrates that PM2.5 impairs LSPCs and their microenvironment. Moreover, we show that circadian misalignment of LSPCs may be a new mechanism by which PM2.5 induces corneal diseases. Therapeutic options that target circadian rhythm may be viable options for improving LSPC functions and alleviating various PM2.5-associated corneal diseases.
Collapse
Affiliation(s)
- Shengjie Hao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Zhijian Chen
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - Yuzhou Gu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Lu Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Feiyin Sheng
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Yili Xu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Di Wu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Yu Han
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Bing Lu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Shuying Chen
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Wei Zhao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Houfa Yin
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xiaoming Lou
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, Zhejiang Province, China.
| | - Qiuli Fu
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China.
| | - Ke Yao
- Eye Center of the 2nd Affiliated Hospital, School of Medicine, Zhejiang Provincial Key Lab of Ophthalmology, Zhejiang University, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
8
|
Davis S, Zekonyte J, Karali A, Roldo M, Blunn G. Early Degenerative Changes in a Spontaneous Osteoarthritis Model Assessed by Nanoindentation. Bioengineering (Basel) 2023; 10:995. [PMID: 37760097 PMCID: PMC10525236 DOI: 10.3390/bioengineering10090995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Understanding early mechanical changes in articular cartilage (AC) and subchondral bone (SB) is crucial for improved treatment of osteoarthritis (OA). The aim of this study was to develop a method for nanoindentation of fresh, unfixed osteochondral tissue to assess the early changes in the mechanical properties of AC and SB. Nanoindentation was performed throughout the depth of AC and SB in the proximal tibia of Dunkin Hartley guinea pigs at 2 months, 3 months, and 2 years of age. The contralateral tibias were either histologically graded for OA or analyzed using immunohistochemistry. The results showed an increase in the reduced modulus (Er) in the deep zone of AC during early-stage OA (6.0 ± 1.75 MPa) compared to values at 2 months (4.04 ± 1.25 MPa) (*** p < 0.001). In severe OA (2-year) specimens, there was a significant reduction in Er throughout the superficial and middle AC zones, which correlated to increased ADAMTS 4 and 5 staining, and proteoglycan loss in these regions. In the subchondral bone, a 35.0% reduction in stiffness was observed between 2-month and 3-month specimens (*** p < 0.001). The severe OA age group had significantly increased SB stiffness of 36.2% and 109.6% compared to 2-month and 3-month-old specimens respectively (*** p < 0.001). In conclusion, this study provides useful information about the changes in the mechanical properties of both AC and SB during both early- and late-stage OA and indicates that an initial reduction in stiffness of the SB and an increase in stiffness in the deep zone of AC may precede early-stage cartilage degeneration.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK; (J.Z.); (A.K.)
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth PO1 2DT, UK; (M.R.); (G.B.)
| |
Collapse
|
9
|
Tong X, Wang Y, Dong B, Li Y, Lang S, Ma J, Ma X. Effects of genus Epimedium in the treatment of osteoarthritis and relevant signaling pathways. Chin Med 2023; 18:92. [PMID: 37525296 PMCID: PMC10388486 DOI: 10.1186/s13020-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease in clinical practice with a high prevalence, especially in the elderly. Traditional Chinese Medicine (TCM) believes that OA belongs to the category of "Bi syndrome" and the "bone Bi syndrome". The etiology and pathogenesis lie in the deficiency of the liver and kidney, the deficiency of Qi and blood, and external exposure to wind, cold, and dampness. Epimedium is a yang-reinforcing herb in TCM, which can tonify the liver and kidney, strengthen muscles and bones, dispel wind, cold and dampness, and can treat both the symptoms and the root cause of "bone Bi syndrome". In addition, Epimedium contains a large number of ingredients. Through modern science and technology, more than 270 compounds have been found in Epimedium, among which flavonoids are the main active ingredients. Therefore, our study will review the effects and mechanisms of genus Epimedium in treating OA from two aspects: (1) Introduction of Epimedium and its main active ingredients; (2) Effects of Epimedium and its active ingredients in treating OA and relevant signaling pathways, in order to provide more ideas for OA treatment.
Collapse
Affiliation(s)
- Xue Tong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Wang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Benchao Dong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Li
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Shuang Lang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jianxiong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Xinlong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
10
|
Li C, Wei P, Wang L, Wang Q, Wang H, Zhang Y. Integrated Analysis of Transcriptome Changes in Osteoarthritis: Gene Expression, Pathways and Alternative Splicing. Cartilage 2023; 14:235-246. [PMID: 36799242 PMCID: PMC10416206 DOI: 10.1177/19476035231154511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 02/18/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent joint disease characterized by the degeneration of articular cartilage and the remodeling of its underlying bones, resulting in pain and loss of function in the knees and hips. As far as we know, no curative treatments are available except for the joint replacement. The precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of osteoarthritis are still unclear. DESIGN By analyzing RNA-seq data, we found the molecular changes at the transcriptome level such as alternative splicing, gene expression, and molecular pathways in OA knees cartilage. RESULTS Expression analysis have identified 457 differential expressed genes including 266 up-regulated genes such as TNFSF15, ST6GALNAC5, TGFBI, ASPM, and TYM, and 191 down-regulated genes such as ADM, JUN, IRE2, PIGA, and MAFF. Gene set enrichment analysis (GSEA) analysis identified down-regulated pathways related to translation, transcription, immunity, PI3K/AKT, and circadian as well as disturbed pathways related to extracellular matrix and collagen. Splicing analysis identified 442 differential alternative splicing events within 284 genes in osteoarthritis, including genes involved in extracellular matrix (ECM) and alternative splicing, and TIA1 was identified as a key regulator of these splicing events. CONCLUSIONS These findings provide insights into disease etiology, and offer favorable information to support the development of more effective interventions in response to the global clinical challenge of osteoarthritis.
Collapse
Affiliation(s)
- Congming Li
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Pengli Wei
- Department of Emergency, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Lei Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Qiang Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Hong Wang
- Department of Orthopedic Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, P.R. China
| | - Yangjun Zhang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
11
|
Bossenger NR, Lewis GN, Rice DA, Shepherd D. The autonomic and nociceptive response to acute exercise is impaired in people with knee osteoarthritis. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100118. [PMID: 36711216 PMCID: PMC9873673 DOI: 10.1016/j.ynpai.2023.100118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Objectives An acute bout of exercise typically leads to short term exercise induced hypoalgesia (EIH), but this response is more variable in many chronic pain populations, including knee osteoarthritis (OA) and fibromyalgia (FM). There is evidence of autonomic nervous system (ANS) dysfunction in some chronic pain populations that may contribute to impaired EIH, but this has not been investigated in people with knee OA. The aim of this study was to assess the acute effects of isometric exercise on the nociceptive and autonomic nervous systems in people with knee OA and FM, compared to pain-free controls. Methods A cross-sectional study was undertaken with 14 people with knee OA, 13 people with FM, and 15 pain free controls. Across two experimental sessions, baseline recordings and the response of the nociceptive and autonomic nervous systems to a 5-min submaximal isometric contraction of the quadriceps muscle was assessed. The nociceptive system was assessed using pressure pain thresholds at the knee and forearm. The ANS was assessed using high frequency heart rate variability, cardiac pre-ejection period, and electrodermal activity. Outcome measures were obtained before and during (ANS) or immediately after (nociceptive) the acute bout of exercise. Results Submaximal isometric exercise led to EIH in the control group. EIH was absent in both chronic pain groups. Both chronic pain groups showed lower vagal activity at rest. Furthermore, people with knee OA demonstrated reduced vagal withdrawal in response to acute isometric exercise compared to controls. Sympathetic reactivity was similar across groups. Discussion The findings of reduced tonic vagal activity and reduced autonomic modulation in response to isometric exercise raise the potential of a blunted ability to adapt to acute exercise stress and modulate nociception in people with knee OA. The impairment of EIH in knee OA may, in part, be due to ANS dysfunction.
Collapse
Affiliation(s)
- Neil R. Bossenger
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Gwyn N. Lewis
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
- Corresponding author at: Health and Rehabilitation Research Institute, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - David A. Rice
- Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
- Waitematā Pain Services, Department of Anaesthesiology and Perioperative Medicine, Te Whatu Ora Waitematā, Auckland, New Zealand
| | - Daniel Shepherd
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
12
|
Yeater TD, Griffith JL, Cruz CJ, Patterson FM, Aldrich JL, Allen KD. Hypertension contributes to exacerbated osteoarthritis pathophysiology in rats in a sex-dependent manner. Arthritis Res Ther 2023; 25:7. [PMID: 36635774 PMCID: PMC9835335 DOI: 10.1186/s13075-022-02966-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Hypertension is a common comorbidity of osteoarthritis (OA) with known autonomic dysregulation; thus, the autonomic nervous system may provide a shared underlying mechanism. The objective of this study was to examine the role of the autonomic nervous system in a preclinical model of OA and hypertension. METHODS Experiments were conducted in spontaneously hypertensive rats and a normotensive control strain, including male and female rats. OA was surgically induced via medial meniscus transection with skin incision used as a sham control (n = 7-8/strain/sex/surgery). Tactile sensitivity, anxiety-related behavior, and serum corticosterone were measured at baseline then bi-weekly across 8 weeks. At weeks 9-10, cardiovascular responses to a chemical vagal nerve agonist were determined to indirectly evaluate vagus nerve function. The joint structure was assessed via grading of histological sections. RESULTS In males, OA resulted in thinner cartilage in both hypertensive (OA vs. non-OA p < 0.001) and normotensive (OA vs. non-OA p < 0.001). Only females with comorbid hypertension and OA displayed thinner cartilage (p = 0.013). Male hypertensive OA animals had increased calcified subchondral bone compared to normotensive OA animals (p = 0.043) while female hypertensive OA animals had increased calcified subchondral bone compared to hypertensive sham animals (p < 0.001). All MCLT+MMT groups developed low-grade synovitis; interestingly, hypertensive OA females had higher synovitis scores than normotensive OA females (p = 0.046). Additionally, hypertension led to larger drops in blood pressure with vagal activation in both OA (hypertensive vs. normotensive p = 0.018) and sham (hypertensive vs. normotensive p < 0.001) male animals. In females, this trend held true only in OA animals (normotensive vs. hypertensive p = 0.005). CONCLUSION These data provide preliminary evidence that hypertension influences OA progression and encourages further study into the autonomic nervous system as a possible mechanism.
Collapse
Affiliation(s)
- Taylor D Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Jacob L Griffith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Folly M Patterson
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
- Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA
| | - Jessica L Aldrich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA.
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.
- Department of Orthopedics and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Cruz CJ, Dewberry LS, Otto KJ, Allen KD. Neuromodulation as a Potential Disease-Modifying Therapy for Osteoarthritis. Curr Rheumatol Rep 2023; 25:1-11. [PMID: 36435890 PMCID: PMC11438129 DOI: 10.1007/s11926-022-01094-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW The following review discusses the therapeutic potential of targeting the autonomic nervous system (ANS) for osteoarthritis (OA) treatment and encourages the field to consider the candidacy of bioelectronic medicine as a novel OA treatment strategy. RECENT FINDINGS The study of OA pathogenesis has focused on changes occurring at the joint level. As such, treatments for OA have been aimed at the local joint environment, intending to resolve local inflammation and decrease pain. However, OA pathogenesis has shown to be more than joint wear and tear. Specifically, OA-related peripheral and central sensitization can prompt neuroplastic changes in the nervous system beyond the articular joint. These neuroplastic changes may alter physiologic systems, like the neuroimmune axis. In this way, OA and related comorbidities may share roots in the form of altered neuroimmune communication and autonomic dysfunction. ANS modulation may be able to modify OA pathogenesis or reduce the impact of OA comorbidities. Moreover, blocking chronic nociceptive drive from the joint may help to prevent maladaptive nervous system plasticity in OA.
Collapse
Affiliation(s)
- Carlos J Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Pain Research and Intervention Center of Excellence, Gainesville, FL, USA
| | - L Savannah Dewberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Department of Neurology, University of Florida, Gainesville, FL, USA
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Biomedical Sciences Building, University of Florida, 1275 Center Drive, Gainesville, FL, 32611, USA.
- Pain Research and Intervention Center of Excellence, Gainesville, FL, USA.
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Liu Y, Yang Y, Lin Y, Wei B, Hu X, Xu L, Zhang W, Lu J. N 6 -methyladenosine-modified circRNA RERE modulates osteoarthritis by regulating β-catenin ubiquitination and degradation. Cell Prolif 2023; 56:e13297. [PMID: 35733354 DOI: 10.1111/cpr.13297] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
OBJECTIVES N6 -methyladenosine (m6A) is one of the most abundant internal RNA modifications. We investigated the role of m6A-modified circRERE in osteoarthritis (OA) and its mechanism. MATERIALS AND METHODS CircRERE and IRF2BPL were screened by microarrays. The role of m6A-modification in circRERE was examined by methylated RNA precipitation and morpholino oligo (MOs) treatment. The axis of circRERE/miR-195-5p/IRF2BPL/β-catenin was determined using flow cytometry, western blotting and immunofluorescence in human chondrocytes (HCs) and corroborated using a mouse model of destabilization of medial meniscus (DMM) with intra-articular (IA) injection of adeno-associated viruses (AAV). RESULTS CircRERE was decreased in OA cartilage and chondrocytes compared with control. CircRERE downregulation was likely attributed to its increased m6A modification prone to endoribonucleolytic cleavage by YTHDF2-HRSP12-RNase P/MRP in OA chondrocytes. MOs transfection targeting HRSP12 binding motifs in circRERE partially reversed decreased circRERE expression and increased apoptosis in HCs treated with IL-1β for 6 h. CircRERE exerted chondroprotective effects by targeting miR-195-5p/IRF2BPL, thus regulating the ubiquitination and degradation of β-catenin. CircRere (mouse homologue) overexpression by IA-injection of AAV-circRere into mice attenuated the severity of DMM-induced OA, whereas AAV-miR-195a-5p or AAV-sh-Irf2bpl reduced the protective effects. The detrimental effects of AAV-sh-Irf2bpl on DMM-induced OA were substantially counteracted by ICG-001, an inhibitor of β-catenin. CONCLUSIONS Our study is a proof-of-concept demonstration for targeting m6A-modified circRERE and its target miR-195-5p/IRF2BPL/β-catenin as potential therapeutic strategies for OA treatment.
Collapse
Affiliation(s)
- Yuxi Liu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yunhan Yang
- School of Life Science and Technology, Southeast University, Nanjing, Jiangsu, China
| | - Yucheng Lin
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Bing Wei
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyue Hu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Li Xu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Weituo Zhang
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
McDonald MLN, Lakshman Kumar P, Srinivasasainagendra V, Nair A, Rocco AP, Wilson AC, Chiles JW, Richman JS, Pinson SA, Dennis RA, Jagadale V, Brown CJ, Pyarajan S, Tiwari HK, Bamman MM, Singh JA. Novel genetic loci associated with osteoarthritis in multi-ancestry analyses in the Million Veteran Program and UK Biobank. Nat Genet 2022; 54:1816-1826. [PMID: 36411363 DOI: 10.1038/s41588-022-01221-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
Osteoarthritis is a common progressive joint disease. As no effective medical interventions are available, osteoarthritis often progresses to the end stage, in which only surgical options such as total joint replacement are available. A more thorough understanding of genetic influences of osteoarthritis is essential to develop targeted personalized approaches to treatment, ideally long before the end stage is reached. To date, there have been no large multiancestry genetic studies of osteoarthritis. Here, we leveraged the unique resources of 484,374 participants in the Million Veteran Program and UK Biobank to address this gap. Analyses included participants of European, African, Asian and Hispanic descent. We discovered osteoarthritis-associated genetic variation at 10 loci and replicated findings from previous osteoarthritis studies. We also present evidence that some osteoarthritis-associated regions are robust to population ancestry. Drug repurposing analyses revealed enrichment of targets of several medication classes and provide potential insight into the etiology of beneficial effects of antiepileptics on osteoarthritis pain.
Collapse
Affiliation(s)
- Merry-Lynn N McDonald
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Preeti Lakshman Kumar
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Vinodh Srinivasasainagendra
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwathy Nair
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Alison P Rocco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ava C Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe W Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Joshua S Richman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah A Pinson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Richard A Dennis
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Vivek Jagadale
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Cynthia J Brown
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), Veterans Affairs Boston Healthcare System (VABHS), Boston, MA, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Florida Institute for Human & Machine Cognition, Pensacola, FL, USA
| | - Jasvinder A Singh
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine at the School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Chen Y, Pan X, Zhao J, Li C, Lin Y, Wang Y, Liu X, Tian M. Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway. Eur J Med Res 2022; 27:204. [PMID: 36253872 PMCID: PMC9575285 DOI: 10.1186/s40001-022-00820-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES This study aims to investigate the effects of Icariin (ICA) on interleukin-1β (IL-1β)-induced osteoarthritis (OA) and its potential mechanism of action. METHODS SW1353 chondrocytes were pretreated with ICA for 2 h, followed by stimulation with IL-1β to mimic OA. Expression levels of matrix metalloproteinases (MMP-3) and collagen II were determined using real-time PCR and Western blot assays. Autophagy activation (by ICA) or inhibition (by shRNA) was determined based on the expression levels of ULK1, Beclin-1, LC3-II/I, and p62, using Western blot analysis. The phosphorylation levels of PI3K, Akt, mTOR, and ULK1 were also detected using Western blot analysis. RESULTS IL-1β increased MMP-3 overproduction, induced collagen II degradation, and reduced the level of autophagy-associated proteins, including ULK1, Beclin-1, and LC3-II/I. In contrast, ICA pretreatment attenuated IL-1β-induced MMP-3 overproduction, increased collagen II expression, and induced expression of autophagy-related proteins. ICA also decreased PI3K, Akt, and mTOR phosphorylation, increased the production of ULK1, and induced autophagy. Short hairpin RNA-mediated knockdown of ULK1 led to activation of the PI3K/Akt/mTOR pathway, which reversed the protective effects of ICA. CONCLUSIONS Our findings indicate that ICA can induce autophagy by regulating the PI3K/AKT/mTOR/ULK1 signaling pathway. This study suggests that ICA may be effective for treating OA.
Collapse
Affiliation(s)
- Yan Chen
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaoli Pan
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jing Zhao
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Chunyan Li
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Yupei Lin
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Yu Wang
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Xu Liu
- Department of Rheumatology and Immunology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Mei Tian
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
17
|
Na HS, Lee SY, Lee DH, Woo JS, Choi SY, Cho KH, Kim SA, Go EJ, Lee AR, Choi JW, Kim SJ, Cho ML. Soluble CCR2 gene therapy controls joint inflammation, cartilage damage, and the progression of osteoarthritis by targeting MCP-1 in a monosodium iodoacetate (MIA)-induced OA rat model. J Transl Med 2022; 20:428. [PMID: 36138477 PMCID: PMC9503236 DOI: 10.1186/s12967-022-03515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C–C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation. The targeting of CCL2–CCR2 is being studied as part of various topics including the treatment of OA. Methods In this study, we evaluated the potential therapeutic effects the sCCR2 E3 gene may exert on OA. The effects of sCCR2 E3 were investigated in animal experiments consisting of intra-articular injection of sCCR2 E3 in a monosodium iodoacetate (MIA)-induced OA rat model. The effects after intra-articular injection of sCCR2 E3 (fusion protein encoding 20 amino acids of the E3 domain of the CCL2 receptor) in a monosodium iodoacetate-induced OA rat model were compared to those in rats treated with empty vector (mock treatment) and full-length sCCR2. Results Pain improved with expression of the sCCR2 gene. Improved bone resorption upon sCCR2 E3 gene activation was confirmed via bone analyses using micro-computed tomography. Histologic analyses showed that the sCCR2 E3 gene exerted protective effects against cartilage damage and anti-inflammatory effects on joints and the intestine. Conclusions These results show that sCCR2 E3 therapy is effective in reducing pain severity, inhibiting cartilage destruction, and suppressing intestinal damage and inflammation. Thus, sCCR2 E3 may be a potential therapy for OA.
Collapse
Affiliation(s)
- Hyun Sik Na
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Jin Seok Woo
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Si-Young Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Keun-Hyung Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seon Ae Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jeong-Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-Ro, Uijeongbu-si, Gyeonggi-do, 11765, Republic of Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea. .,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
18
|
He T, Pang S, Wang H, Yun H, Hao X, Jia L, Liu H, Wang D, Wang D, Xu H, Jie Q, Yang L, Zheng C. Drugging the circadian clock feedback cycle to ameliorate cartilage degeneration. FEBS J 2022; 289:6643-6658. [DOI: 10.1111/febs.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ting He
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research Northwestern Polytechnical University Xi'an China
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Siyi Pang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research Northwestern Polytechnical University Xi'an China
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Huanbo Wang
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Haitao Yun
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Xue Hao
- Department of Pediatric Orthopedic, Honghui Hospital, Xi'an Jiaotong University College of Medicine Xi'an China
| | - Liyuan Jia
- Laboratory of Tissue Engineering, College of Life Science Northwest University Xi'an China
| | - He Liu
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Huiyun Xu
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Qiang Jie
- Department of Pediatric Orthopedic, Honghui Hospital, Xi'an Jiaotong University College of Medicine Xi'an China
| | - Liu Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research Northwestern Polytechnical University Xi'an China
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
19
|
Yeater TD, Cruz CJ, Cruz-Almeida Y, Allen KD. Autonomic Nervous System Dysregulation and Osteoarthritis Pain: Mechanisms, Measurement, and Future Outlook. Curr Rheumatol Rep 2022; 24:175-183. [PMID: 35420372 PMCID: PMC9189055 DOI: 10.1007/s11926-022-01071-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW The autonomic nervous system is an important regulator of stress responses and exhibits functional changes in chronic pain states. This review discusses potential overlap among autonomic dysregulation, osteoarthritis (OA) progression, and chronic pain. From this foundation, we then discuss preclinical to clinical research opportunities to close gaps in our knowledge of autonomic dysregulation and OA. Finally, we consider the potential to generate new therapies for OA pain via modulation of the autonomic nervous system. RECENT FINDINGS Recent reviews provide a framework for the autonomic nervous system in OA progression; however, research is still limited on the topic. In other chronic pain states, functional overlaps between the central autonomic network and pain processing centers in the brain suggest relationships between concomitant dysregulation of the two systems. Non-pharmacological therapeutics, such as vagus nerve stimulation, mindfulness-based meditation, and exercise, have shown promise in alleviating painful symptoms of joint diseases, and these interventions may be partially mediated through the autonomic nervous system. The autonomic nervous system appears to be dysregulated in OA progression, and further research on rebalancing autonomic function may lead to novel therapeutic strategies for treating OA pain.
Collapse
Affiliation(s)
- Taylor D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Carlos J. Cruz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA.,Department of Community Dentistry & Behavioral Sciences, University of Florida, Gainesville, FL, USA.,Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.,Department of Orthopedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.,Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Du Z, You X, Wu D, Huang S, Zhou Z. Rhythm disturbance in osteoarthritis. Cell Commun Signal 2022; 20:70. [PMID: 35610652 PMCID: PMC9128097 DOI: 10.1186/s12964-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the main causes of disabilities among older people. To date, multiple disease-related molecular networks in OA have been identified, including abnormal mechanical loadings and local inflammation. These pathways have not, however, properly elucidated the mechanism of OA progression. Recently, sufficient evidence has suggested that rhythmic disturbances in the central nervous system (CNS) and local joint tissues affect the homeostasis of joint and can escalate pathological changes of OA. This is accompanied with an exacerbation of joint symptoms that interfere with the rhythm of CNS in reverse. Eventually, these processes aggravate OA progression. At present, the crosstalk between joint tissues and biological rhythm remains poorly understood. As such, the mechanisms of rhythm changes in joint tissues are worth study; in particular, research on the effect of rhythmic genes on metabolism and inflammation would facilitate the understanding of the natural rhythms of joint tissues and the OA pathology resulting from rhythm disturbance. Video Abstract
Collapse
Affiliation(s)
- Ze Du
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanhe You
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Diwei Wu
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishu Huang
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
21
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
22
|
Yeater T, Zubcevic J, Allen K. Measures of cardiovascular function suggest autonomic nervous system dysregulation after surgical induction of joint injury in the male Lewis rat. Osteoarthritis Cartilage 2022; 30:586-595. [PMID: 35017058 PMCID: PMC9255271 DOI: 10.1016/j.joca.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Functional changes in the autonomic nervous system may help explain variability in the progression of knee osteoarthritis (OA). Thus, the objective of this study was to evaluate autonomic nervous system shifts, measured via heart rate response variables, in rat knee joint injury and OA models. METHODS Cardiovascular characteristics were measured at baseline and bi-weekly for 8 weeks after skin incision, medial collateral ligament transection (MCLT), or MCLT+medial meniscus transection (MCLT+MMT). Heart rate was also assessed during a mild stressor (elevated maze). At endpoint, cardiovascular responses to mechanical knee stimuli were evaluated, as well as responses to 1-phenylbiguanide, a 5HT3A receptor agonist with reported ability to stimulate vagal responses. RESULTS During low activity, a slower heart rate occurred in MCLT (299 ± 10 bpm) and MCLT+MMT (310 ± 10 bpm) animals compared to controls (325 ± 10 bpm). Furthermore, patellar ligament mechanical stimuli produced an immediate decrease in heart rate and blood pressure in all groups. Finally, a larger drop in heart rate was observed in MCLT (252 ± 40 bpm) and MCLT+MMT (263 ± 49 bpm) following administration of 1-phenylbiguanide compared to skin incision (168 ± 45 bpm). CONCLUSIONS Acute mechanical stimulation of the patellar ligament produced drops in heart rate, suggesting a possible joint-brain connection that modulates autonomic responses. With both joint injury, cardiac vagal activation was altered in response to pharmacological stimulation, with chronic longitudinal heart rate reduction. These data provide some preliminary evidence of potential functional shifts in autonomic nervous system function in models of joint injury and OA.
Collapse
Affiliation(s)
- T.D. Yeater
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - J. Zubcevic
- Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - K.D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA,Department of Orthopedic Surgery and Sports Medicine, College of Medicine, University of Florida, Gainesville, FL, USA,Address correspondence and reprint requests to: K.D. Allen, J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building, Gainesville, FL, 32610, USA. Tel: (352)-273-9337. , (K.D. Allen)
| |
Collapse
|
23
|
Evidence for causal effects of sleep disturbances on risk for osteoarthritis: a univariable and multivariable Mendelian randomization study. Osteoarthritis Cartilage 2022; 30:443-450. [PMID: 34890811 DOI: 10.1016/j.joca.2021.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To disentangle whether sleep disturbances have a causal effect on the risk of osteoarthritis (OA) using genetically based approaches. METHOD We performed univariable and multivariable Mendelian randomization (MR) analyses using publicly released genome-wide association studies summary statistics to estimate the causal associations of sleep disturbances with OA risk. The inverse-variance weighted (IVW) method was utilized as primary MR analysis, whereas complementary methods including weighted median, weighted mode, MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO) were applied to detect and correct for the presence of pleiotropy. RESULTS There were 228 independent instrumental variables (IVs) for insomnia and 78, 27 and 8 IVs for sleep duration, short sleep duration and long sleep duration, respectively. Univariable MR analysis suggested that genetically determined insomnia or short sleep duration exerted a causal effect on overall OA in an unfavorable manner (Insomnia: OR = 1.22, 95%CI = 1.15-1.30, P = 8.05 × 10-10; Short sleep duration: OR = 1.04, 95%CI = 1.02-1.07, P = 2.20 × 10-3). More compelling, increasing genetic liability to insomnia or short sleep duration was also associated with OA risk, after accounting for effects of insomnia or short sleep duration on body mass index, type 2 diabetes and depression individually, and in a combined model considering all three confounders. CONCLUSIONS Findings suggested consisted evidence for an adverse effect of increased insomnia or short sleep duration on OA risk. Strategies to mitigate sleep disturbances may be one of the cornerstones protects against OA.
Collapse
|
24
|
Wang ST, Ni GX. Depression in Osteoarthritis: Current Understanding. Neuropsychiatr Dis Treat 2022; 18:375-389. [PMID: 35237034 PMCID: PMC8883119 DOI: 10.2147/ndt.s346183] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
Depression, one of the most common comorbidities with osteoarthritis (OA), affects patient prognosis and quality of life. It also increases the overall burden of disease. This subgroup of patients has not been effectively managed in clinical settings. The study aimed to direct physicians' attention to the co-occurrence of depression and OA. Therefore, this review summarizes the relevant literature published over the past 10 years. The focus is on the prevalence of and risk factors for depression in OA, the effects of depression on OA development and treatment response, comorbidity mechanisms, screening, and non-pharmacological treatment. The research on the etiology of depression has been driven largely by epidemiological studies. Recent studies have shown that high levels of pain, poor levels of function, high numbers of OA sites, and slow gait might be associated with depression. However, the pathophysiology of OA and depression comorbidities remains unclear. In addition to immune inflammation and structural changes in the brain, which have been documented in brain imaging studies, psychosocial factors may also play a role. The evidence indicates that depression can be treated with early intervention; however, adjustments may need to be made for individuals with comorbid depression in OA. It is recommended that health care providers pay more attention to depressive symptoms in patients with OA. Clinicians should develop and implement an individualized and comprehensive treatment plan for patients based on a mental health assessment and in teams with other professionals to optimize treatment outcomes.
Collapse
Affiliation(s)
- Shen-Tao Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, People’s Republic of China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Li X, Xu Y, Li H, Jia L, Wang J, Liang S, Cai A, Tan X, Wang L, Wang X, Huang Y, Tao E, Ye H, Asakawa T. Verification of pain-related neuromodulation mechanisms of icariin in knee osteoarthritis. Biomed Pharmacother 2021; 144:112259. [PMID: 34607107 DOI: 10.1016/j.biopha.2021.112259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022] Open
Abstract
Knee osteoarthritis (KOA) is a common disease with no specific treatment. Icariin (ICA) is considered an agent for KOA. This study aimed to confirm the pain-related neuromodulation mechanisms of ICA on KOA. Three experiments were designed: (1) verifying the therapeutic effects of ICA in vivo and in vitro, (2) exploring the potential pain-related neuromodulation pathways involved in ICA treatment by functional magnetic resonance imaging (fMRI) and virus retrograde tracing (VRT) and (3) confirming the pain-related targets by tandem mass tag (TMT)-based quantitative proteomics and bioinformatic analyses. Experiment 1 verified the efficacy of ICA in OA animal and cell models. Experiment 2 found a series of brain regions associated with KOA reversed by ICA treatment, indicating that a pain-related hypothalamic-mediated neuromodulation pathway and an endocannabinoid (EC)-related pathway contribute to ICA mechanisms. Experiment 3 explored and confirmed four pain-related genes involved in KOA and ICA treatment. We confirmed the key role of pain-related neuromodulation mechanisms in ICA treatment associated with its analgesic effect. Our findings contribute to considering ICA as a novel therapy for KOA.
Collapse
MESH Headings
- Analgesics/pharmacology
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/diagnostic imaging
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/physiopathology
- Behavior, Animal/drug effects
- Brain/diagnostic imaging
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Cells, Cultured
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Flavonoids/pharmacology
- Gene Expression Regulation
- Inflammation Mediators/metabolism
- Joints/drug effects
- Joints/innervation
- Joints/metabolism
- Magnetic Resonance Imaging
- Male
- Mice, Inbred C57BL
- Neuroanatomical Tract-Tracing Techniques
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Osteoarthritis, Knee/diagnostic imaging
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/physiopathology
- Pain Threshold/drug effects
- Proteomics
- Rats, Sprague-Dawley
- Signal Transduction
- Tandem Mass Spectrometry
- Mice
- Rats
Collapse
Affiliation(s)
- Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Yunteng Xu
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Hui Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Liangliang Jia
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan 430071, China; Innovation Academy for Precision Measurement Science, Wuhan 430071, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Aoling Cai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan 430071, China; Innovation Academy for Precision Measurement Science, Wuhan 430071, China
| | - Xue Tan
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Lili Wang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China
| | - Yanfeng Huang
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Enxiang Tao
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Hongzhi Ye
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou 350122, China; Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Tetsuya Asakawa
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China; Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
26
|
Whitney DG, Schmidt M, Hurvitz EA. Shared Physiologic Pathways Among Comorbidities for Adults With Cerebral Palsy. Front Neurol 2021; 12:742179. [PMID: 34671312 PMCID: PMC8520916 DOI: 10.3389/fneur.2021.742179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Aging with cerebral palsy is accompanied by a declining health and function status across neurological and non-neurological systems. There is a need to understand the shared pathophysiology among comorbidities for adults with cerebral palsy, to inform clinical assessment and guidelines for interventions to improve healthful aging. To begin defining multimorbidity, this study identified the most common comorbidity combinations and their association with mortality among a representative sample of adults with cerebral palsy. Methods: Data from 2016 to 2018 were used from a random 20% sample from the fee-for-service Medicare database. Adults ≥18 years with cerebral palsy and 25 neurological and non-neurological comorbidities were obtained from 2016. Principal component (PC) analysis identified the most common comorbidity combinations, defined as individual PCs. Cox regression estimated the hazard ratio (HR) of 2-year mortality including all PCs and demographics in a single model. To facilitate comparisons, PC scores were transformed into quintiles (reference: lowest quintile). Results: Among the 16,728 adults with cerebral palsy, the most common comorbidity combinations (PCs) in order were: cardiorespiratory diseases, dysphagia, and fluid/electrolyte disorders; metabolic disorders (e.g., diabetes, renal disease, hypertension); neurologic-related disorders (e.g., dementia, cerebrovascular disease); gastrointestinal issues; and orthopedic-related disorders. During the 2-year follow-up, 1,486 (8.9%) died. In the adjusted model, most PCs were associated with an elevated mortality rate, especially the first PC (5th quintile HR = 3.91; 95%CI = 3.29–4.65). Discussion: This study identified the most common comorbidity combinations for adults with cerebral palsy, many of them were deadly, which may inform on the underlying pathophysiology or shared characteristics of multimorbidity for this population.
Collapse
Affiliation(s)
- Daniel G Whitney
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States.,Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, United States
| | - Mary Schmidt
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States
| | - Edward A Hurvitz
- Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Lu KH, Lu PWA, Lu EWH, Tang CH, Su SC, Lin CW, Yang SF. The potential remedy of melatonin on osteoarthritis. J Pineal Res 2021; 71:e12762. [PMID: 34435392 DOI: 10.1111/jpi.12762] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA), the most common arthritis worldwide, is a degenerative joint disease characterized by progressive cartilage breakdown, subchondral remodeling, and synovial inflammation. Although conventional pharmaceutical therapies aimed to prevent further cartilage loss and joint dysfunction, there are no ideal strategies that target the pathogenesis of OA. Melatonin exhibits a variety of regulatory properties by binding to specific receptors and downstream molecules and exerts a myriad of receptor-independent actions via intracellular targets as a chondrocyte protector, an anti-inflammation modulator, and a free radical scavenger. Melatonin also modulates cartilage regeneration and degradation by directly/indirectly regulating the expression of main circadian clock genes, such as transcriptional activators [brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein (Bmal) and circadian locomotor output cycles kaput (Clock)], transcriptional repressors [period circadian regulator (Per)1/2, cryptochrome (Cry)1/2, and Dec2], and nuclear hormone receptors [Rev-Erbs and retinoid acid-related orphan receptors (Rors)]. Owing to its effects on cartilage homeostasis, we propose a potential role for melatonin in the prevention and therapy of OA via the modulation of circadian clock genes, mitigation of chondrocyte apoptosis, anti-inflammatory activity, and scavenging of free radicals.
Collapse
Affiliation(s)
- Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital 402, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
28
|
The role of HIF proteins in maintaining the metabolic health of the intervertebral disc. Nat Rev Rheumatol 2021; 17:426-439. [PMID: 34083809 PMCID: PMC10019070 DOI: 10.1038/s41584-021-00621-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 01/18/2023]
Abstract
The physiologically hypoxic intervertebral disc and cartilage rely on the hypoxia-inducible factor (HIF) family of transcription factors to mediate cellular responses to changes in oxygen tension. During homeostatic development, oxygen-dependent prolyl hydroxylases, circadian clock proteins and metabolic intermediates control the activities of HIF1 and HIF2 in these tissues. Mechanistically, HIF1 is the master regulator of glycolytic metabolism and cytosolic lactate levels. In addition, HIF1 regulates mitochondrial metabolism by promoting flux through the tricarboxylic acid cycle, inhibiting downsteam oxidative phosphorylation and controlling mitochondrial health through modulation of the mitophagic pathway. Accumulation of metabolic intermediates from HIF-dependent processes contribute to intracellular pH regulation in the disc and cartilage. Namely, to prevent changes in intracellular pH that could lead to cell death, HIF1 orchestrates a bicarbonate buffering system in the disc, controlled by carbonic anhydrase 9 (CA9) and CA12, sodium bicarbonate cotransporters and an intracellular H+/lactate efflux mechanism. In contrast to HIF1, the role of HIF2 remains elusive; in disorders of the disc and cartilage, its function has been linked to both anabolic and catabolic pathways. The current knowledge of hypoxic cell metabolism and regulation of HIF1 activity provides a strong basis for the development of future therapies designed to repair the degenerative disc.
Collapse
|
29
|
Morris H, Gonçalves CF, Dudek M, Hoyland J, Meng QJ. Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis 2021; 80:828-839. [PMID: 33397731 DOI: 10.1136/annrheumdis-2020-219515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.
Collapse
Affiliation(s)
- Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Mohajer B, Kwee RM, Guermazi A, Berenbaum F, Wan M, Zhen G, Cao X, Haugen IK, Demehri S. Metabolic Syndrome and Osteoarthritis Distribution in the Hand Joints: A Propensity Score Matching Analysis From the Osteoarthritis Initiative. J Rheumatol 2021; 48:1608-1615. [PMID: 34329188 DOI: 10.3899/jrheum.210189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the metabolic syndrome (MetS) association with radiographic and symptomatic hand osteoarthritis (HOA). METHODS Using 1:2 propensity score matching for relevant confounders, we included 2509 participants (896 MetS positive and 1613 MetS negative) from the Osteoarthritis Initiative dataset. MetS and its components, according to the International Diabetes Federation criteria, were extracted from baseline data, and included hypertension, abdominal obesity, dyslipidemia, and diabetes. We scored distinct hand joints based on the modified Kellgren-Lawrence (mKL) grade of baseline radiographs, with HOA defined as mKL ≥ 2. In the cross-sectional analysis, we investigated the association between MetS and its components with radiographic HOA and the presence of nodal and erosive HOA phenotypes using regression models. In the longitudinal analysis, we performed Cox regression analysis for hand pain incidence in follow-up visits. RESULTS MetS was associated with higher odds of radiographic HOA, including the number of joints with OA (OR 1.32, 95% CI 1.08-1.62), the sum of joints mKLs (OR 2.42, 95% CI 1.24-4.71), mainly in distal interphalangeal joints (DIPs) and proximal interphalangeal joints (PIPs; OR 1.52, 95% CI 1.08-2.14 and OR 1.38, 95% CI 1.09-1.75, respectively), but not metacarpophalangeal (MCP) and first carpometacarpal (CMC1) joints. Hand pain incidence during follow-up was higher with MetS presence (HR 1.25, 95% CI 1.07-1.47). The erosive HOA phenotype and joints' nodal involvement were more frequent with MetS (OR 1.40, 95% CI 1.01-1.97 and OR 1.28, 95% CI 1.02-1.60, respectively). CONCLUSION MetS, a potentially modifiable risk factor, is associated with radiographic DIP and PIP OA and longitudinal hand pain incidence while sparing MCPs and CMC1s. Nodal and erosive HOA phenotypes are associated with MetS, suggestive of possible distinct pathophysiology.
Collapse
Affiliation(s)
- Bahram Mohajer
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Robert M Kwee
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Ali Guermazi
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Francis Berenbaum
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Mei Wan
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Gehua Zhen
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Xu Cao
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Ida K Haugen
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| | - Shadpour Demehri
- This research was supported by the National Institutes of Health (NIH) National Institute on Aging under award number P01AG066603. The Osteoarthritis Initiative (OAI), a collaborative project between public and private sectors, includes 5 contracts: N01-AR-2-2258, N01-AR-2-2259, N01-AR-2-2260, N01-AR-2-2261, and N01-AR-2-2262. The OAI is conducted by the OAI project investigators and is financially supported by the National Institutes of Health (NIH). Private funding partners are Merck Research Laboratories, Novartis Pharmaceuticals Corporation, GlaxoSmithKline, and Pfizer Inc. In preparing this manuscript, publicly available OAI project datasets were used. The results of this work do not necessarily reflect the opinions of the OAI project investigators, the NIH, or the private funding partners. B. Mohajer, MD, MPH, S. Demehri, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; R.M. Kwee, MD, Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA, and Department of Radiology, Zuyderland Medical Center, Heerlen/Sittard/ Geleen, the Netherlands; A. Guermazi, MD, PhD, Department of Radiology, Boston University School of Medicine, Boston, Massachusetts, USA; F. Berenbaum, MD, PhD, Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hospital Saint Antoine, Paris, France; M. Wan, PhD, G. Zhen, MD, X. Cao, PhD, Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; I.K. Haugen, MD, PhD, Department of Rheumatology, Diakonhjemmet Hospital, Oslo, Norway. AG has received funding from MerckSerono, AstraZeneca, Galapagos, Pfizer, Roche, TissueGene ( for consultation), and Boston Imaging Core Lab (as the president and stockholder). SD has received funding from Toshiba Medical Systems ( for consultation) and grants from the GE Radiology Research Academic Fellowship and Carestream Health ( for a clinical trial study). IH has received funding from the Southeastern Norway Health Authority. None of the authors have any conflicting personal or financial relationships that could have influenced the results of this study. The other authors have no competing interests to declare. Address correspondence to Dr. B. Mohajer, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N Caroline St, JHOC 5165, Baltimore, MD 21287, USA. . Accepted for publication June 2, 2021
| |
Collapse
|
31
|
Park HM, Lee JH, Lee YJ. Positive Association of Serum Alkaline Phosphatase Level with Severe Knee Osteoarthritis: A Nationwide Population-Based Study. Diagnostics (Basel) 2020; 10:diagnostics10121016. [PMID: 33261160 PMCID: PMC7760969 DOI: 10.3390/diagnostics10121016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Serum alkaline phosphatase (ALP), a well-known marker of hepatobiliary and bone disorders, has recently been discovered to be a biochemical marker of cardiometabolic diseases and chronic low-grade inflammation. We aimed to evaluate the association of serum ALP level with knee osteoarthritis in the general population. The study included 3060 men and women aged ≥50 years who participated in the 2009–2011 Korea National Health and Nutrition Examination Survey. The participants were categorized into three groups based on log-transformed serum ALP level as follows: T1 (1.74–2.32), T2 (2.33–2.43), and T3 (2.44–3.01). Their radiographs were evaluated by two well-trained radiologists using the Kellgren–Lawrence (KL) grading system. After excluding those with KL Grade 0, we categorized the remaining participants into two groups, a severe osteoarthritis group (KL Grade 4) and a non-severe osteoarthritis group (KL Grades 1 to 3). The odds ratios (ORs) with 95% confidence intervals (CIs) of severe osteoarthritis according to the tertiles of log-transformed serum ALP levels of patients with osteoarthritis were calculated using a weighted multivariate logistic regression analysis. Compared with T1, the adjusted ORs (95% CIs) for severe osteoarthritis of the T3 serum ALP group was 1.613 (1.087–2.394; p = 0.018) after adjusting for the confounding variables. Conclusively, serum ALP activity was independently and positively associated with severe knee osteoarthritis in middle-aged and older adults.
Collapse
Affiliation(s)
- Hye-Min Park
- Department of Family Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea;
- Department of Medicine, Graduate School, Yonsei University, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Korea;
| | - Jun-Hyuk Lee
- Department of Medicine, Graduate School, Yonsei University, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul 03722, Korea;
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, Gyeonggi-do 16995, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea;
- Correspondence: ; Tel.: +82-2-2019-3481
| |
Collapse
|
32
|
Chen G, Zhao H, Ma S, Chen L, Wu G, Zhu Y, Zhu J, Ma C, Zhao H. Circadian Rhythm Protein Bmal1 Modulates Cartilage Gene Expression in Temporomandibular Joint Osteoarthritis via the MAPK/ERK Pathway. Front Pharmacol 2020; 11:527744. [PMID: 33041790 PMCID: PMC7530270 DOI: 10.3389/fphar.2020.527744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to elucidate the role of the circadian gene Bmal1 in human cartilage and its crosstalk with the MAPK/ERK signaling pathway in temporomandibular joint osteoarthritis (TMJ-OA). We verified the periodical variation of the circadian gene Bmal1 and then established a modified multiple platform method (MMPM) to induce circadian rhythm disturbance leading to TMJ-OA. IL-6, p-ERK, and Bmal1 mRNA and protein expression levels were assessed by real-time RT-PCR and immunohistochemistry. Chondrocytes were treated with an ERK inhibitor (U0126), siRNA and plasmid targeting Bmal1 under IL-6 simulation; then, the cells were subjected to Western blotting to analyze the relationship between Bmal1 and the MAPK/ERK pathway. We found that sleep rhythm disturbance can downregulate the circadian gene BMAL-1 and improve phosphorylated ERK (p-ERK) and IL-6 levels. Furthermore, Bmal1 siRNA transfection was sufficient to improve the p-ERK level and aggravate OA-like gene expression changes under IL-6 stimulation. Bmal1 overexpression relieved the alterations induced by IL-6, which was consistent with the effect of U0126 (an ERK inhibitor). However, we also found that BMAL1 upregulation can decrease ERK phosphorylation, whereas ERK downregulation did not change BMAL1 expression. Collectively, this study provides new insight into the regulatory mechanism that links chondrocyte BMAL1 to cartilage maintenance and repair in TMJ-OA via the MAPK/ERK pathway and suggests that circadian rhythm disruption is a risk factor for TMJ-OA.
Collapse
Affiliation(s)
- Guokun Chen
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Haoming Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shixing Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Gaoyi Wu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yong Zhu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jie Zhu
- Department of Plastic Surgery, Jinan Airong Plastic Surgery Hospital, Jinan, China
| | - Chuan Ma
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Huaqiang Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
33
|
Mukherji A, Dachraoui M, Baumert TF. Perturbation of the circadian clock and pathogenesis of NAFLD. Metabolism 2020; 111S:154337. [PMID: 32795560 PMCID: PMC7613429 DOI: 10.1016/j.metabol.2020.154337] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
All living organisms including humans, experience changes in the light exposure generated by the Earth's rotation. In anticipation of this unavoidable geo-physical variability, and to generate an appropriate biochemical response, species of many phyla, including mammals have evolved a nearly 24-hour endogenous timing device known as the circadian clock (CC), which is self-sustained, cell autonomous and is present in every cell type. At the heart of the 'clock' functioning resides the CC-oscillator, an elegantly designed transcriptional-translational feedback system. Notably, the core components of the CC-oscillator not only drive daily rhythmicity of their own synthesis, but also generate circadian phase-specific variability in the expression levels of thousands of target genes through transcriptional, post-transcriptional and post-translational mechanisms. Thereby, this 'clock'-system provides proper chronological coordination in the functioning of cells, tissues and organs. The CC governs many physiologically critical functions. Among these functions, the key role of the CC in maintaining metabolic homeostasis deserves special emphasis. Indeed, the several features of the modern lifestyle (e.g. travel-induced jet lag, rotating shift work, energy-dense food) which, force disruption of circadian rhythms have recently emerged as a major driver to global health problems like obesity, cardiovascular disease and metabolic liver disease such as non-alcoholic fatty liver disease (NAFLD). Here we review, the CC-dependent pathways in different tissues which play critical roles in mediating several critical metabolic functions under physiological conditions and discuss their impact for the development of metabolic disease with a focus on the liver.
Collapse
Affiliation(s)
- Atish Mukherji
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR_S 1110, Strasbourg, France.
| | - Mayssa Dachraoui
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR_S 1110, Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR_S 1110, Strasbourg, France; Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
34
|
Song X, Hu H, Zhao M, Ma T, Gao L. Prospects of circadian clock in joint cartilage development. FASEB J 2020; 34:14120-14135. [PMID: 32946614 DOI: 10.1096/fj.202001597r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Altering the food intake, exercise, and sleep patterns have a great influence on the homeostasis of the biological clock. This leads to accelerated aging of the articular cartilage, susceptibility to arthropathy and other aspects. Deficiency or overexpression of certain circadian clock-related genes accelerates the cartilage deterioration and leads to phenotypic variation in different joints. The process of joint cartilage development includes the formation of joint site, interzone, joint cavitation, epiphyseal ossification center, and cartilage maturation. The mechanism by which, biological clock regulates the cell-cycle, growth, metabolism, and other biological processes of chondrocytes is poorly understood. Here, we summarized the interaction between biological clock proteins and developmental pathways in chondrogenesis and provided the evidence from other tissues that further predicts the molecular patterns of these protein-protein networks in activation, proliferation, and differentiation. The purpose of this review is to gain deeper understanding of the evolution of cartilage and its irreversibility seen in damage and aging.
Collapse
Affiliation(s)
- Xiaopeng Song
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hailong Hu
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchao Zhao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Li Gao
- Heilongjiang Key Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
35
|
MacDonald IJ, Huang CC, Liu SC, Tang CH. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21082877. [PMID: 32326031 PMCID: PMC7215432 DOI: 10.3390/ijms21082877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory joint disorder characterized by synovial proliferation and inflammation, with eventual joint destruction if inadequately treated. Modern therapies approved for RA target the proinflammatory cytokines or Janus kinases that mediate the initiation and progression of the disease. However, these agents fail to benefit all patients with RA, and many lose therapeutic responsiveness over time. More effective or adjuvant treatments are needed. Melatonin has shown beneficial activity in several animal models and clinical trials of inflammatory autoimmune diseases, but the role of melatonin is controversial in RA. Some research suggests that melatonin enhances proinflammatory activities and thus promotes disease activity in RA, while other work has documented substantial anti-inflammatory and immunoregulatory properties of melatonin in preclinical models of arthritis. In addition, disturbance of the circadian rhythm is associated with RA development and melatonin has been found to affect clock gene expression in joints of RA. This review summarizes current understanding about the immunopathogenic characteristics of melatonin in RA disease. Comprehensive consideration is required by clinical rheumatologists to balance the contradictory effects.
Collapse
Affiliation(s)
- Iona J. MacDonald
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 65152, Taiwan;
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 40402, Taiwan; (I.J.M.); (C.-C.H.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +(886)-2205-2121 (ext. 7726)
| |
Collapse
|
36
|
Allen KD, Chan KM, Yarmola EG, Shah YY, Partain BD. The effects of age on the severity of joint damage and intra-articular inflammation following a simulated medial meniscus injury in 3, 6, and 9 month old male rats. Connect Tissue Res 2020; 61:82-94. [PMID: 31438735 PMCID: PMC6884683 DOI: 10.1080/03008207.2019.1641495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 02/03/2023]
Abstract
Purpose: Aging is a known risk factor for osteoarthritis (OA). Several transgenic rodent models have been used to investigate the effects of accelerated or delayed aging in articular joints. However, age-effects on the progression of post-traumatic OA are less frequently evaluated. The objective of this study is to evaluate how animal age affects the severity of intra-articular inflammation and joint damage in the rat medial collateral ligament plus medial meniscus transection (MCLT+MMT) model of knee OA.Methods: Forty-eight, male Lewis rats were aged to 3, 6, or 9 months old. At each age, eight rats received either an MCLT+MMT surgery or a skin-incision. At 2 months post-surgery, intra-articular evidence of CTXII, IL1β, IL6, TNFα, and IFNγ was evaluated using a multiplex magnetic capture technique, and histological evidence of OA was assessed via a quantitative histological scoring technique.Results: Elevated levels of CTXII and IL6 were found in MCLT+MMT knees relative to skin-incision and contralateral controls; however, animal age did not affect the severity of joint inflammation. Conversely, histological investigation of cartilage damage showed larger cartilage lesion areas, greater width of affected cartilage, and more evidence of hypertrophic cartilage damage in MCLT+MMT knees with age.Conclusions: These data indicate the severity of cartilage damage subsequent to MCLT+MMT surgery is related to the rat's age at the time of injury. However, despite greater levels of cartilage damage, the level of intra-articular inflammation was not necessarily affected in 3, 6, and 9 month old male rats.
Collapse
Affiliation(s)
- Kyle D. Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Kiara M. Chan
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Elena G. Yarmola
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Yash Y. Shah
- Department of Materials Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Brittany D. Partain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
37
|
Physiological and Pathological Role of Circadian Hormones in Osteoarthritis: Dose-Dependent or Time-Dependent? J Clin Med 2019; 8:jcm8091415. [PMID: 31500387 PMCID: PMC6781184 DOI: 10.3390/jcm8091415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA), the most common form of arthritis, may be triggered by improper secretion of circadian clock-regulated hormones, such as melatonin, thyroid-stimulating hormone (TSH), or cortisol. The imbalance of these hormones alters the expression of pro-inflammatory cytokines and cartilage degenerative enzymes in articular cartilage, resulting in cartilage erosion, synovial inflammation, and osteophyte formation, the major hallmarks of OA. In this review, we summarize the effects of circadian melatonin, TSH, and cortisol on OA, focusing on how different levels of these hormones affect OA pathogenesis and recovery with respect to the circadian clock. We also highlight the effects of melatonin, TSH, and cortisol at different concentrations both in vivo and in vitro, which may help to elucidate the relationship between circadian hormones and OA.
Collapse
|
38
|
Sánchez M, Delgado D, Pompei O, Pérez JC, Sánchez P, Garate A, Bilbao AM, Fiz N, Padilla S. Treating Severe Knee Osteoarthritis with Combination of Intra-Osseous and Intra-Articular Infiltrations of Platelet-Rich Plasma: An Observational Study. Cartilage 2019; 10:245-253. [PMID: 29448817 PMCID: PMC6425546 DOI: 10.1177/1947603518756462] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Assessing the therapeutic effects of a combination of intra-articular and intra-osseous infiltrations of platelet-rich plasma (PRP) to treat severe knee osteoarthritis (KOA) using intra-articular injections of PRP as the control group. DESIGN In this observational study, 60 patients suffering from severe KOA were treated with intra-articular infiltrations of PRP (IA group) or with a combination of intra-osseous and intra-articular infiltrations of PRP (IO group). Both groups were matched for sex, age, body mass index, and radiographic severity (III and IV degree according to Ahlbäck scale). Clinical outcome was evaluated at 2, 6, and 12 months, using the Knee injury and Osteoarthritis Outcome Score (KOOS) and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) questionnaires. RESULTS At 2, 6 and 12 months after treatment, IO group had a significant improvement in all KOOS and WOMAC subscales ( P < 0.05). On the contrary, patients of the IA group did not improve in any of the scores. Sixteen out of 30 IO group patients showed minimal clinically important improvement (MCII) whereas 8 out of 30 IA group patients showed this response at 6 months (26.7%; 95% CI -0.4 to 49.9; P = 0.037). At 12 months, 14 patients of IO group and 5 patients of the IA group showed MCII (30%; 95% CI 4.3 to 51.9; P = 0.013). No differences between groups were observed at 2 months. CONCLUSIONS PRP intra-articular injections in severe KOA were not effective and did not provide any benefit. Combination of intra-articular and intra-osseous infiltrations of PRP was not clinically superior at 2 months, but it showed superior clinical outcomes at 6 and 12 months when compared with intra-articular injections of PRP.
Collapse
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
- Mikel Sánchez, Arthroscopic Surgery Unit Research, Hospital Vithas San Jose, C/Beato Tomás de Zumárraga 10, Vitoria-Gasteiz, 01008, Spain.
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Orlando Pompei
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Juan Carlos Pérez
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Ane Garate
- Advanced Biological Therapy Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Ane Miren Bilbao
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Nicolás Fiz
- Arthroscopic Surgery Unit, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Sabino Padilla
- University Institute for Regenerative Medicine & Oral Implantology – UIRMI (UPV/EHU-Fundacion Eduardo Anitua), C/Jacinto Quincoces, Vitoria–Gasteiz, Álava, Spain
| |
Collapse
|
39
|
Morris JL, Letson HL, Gillman R, Hazratwala K, Wilkinson M, McEwen P, Dobson GP. The CNS theory of osteoarthritis: Opportunities beyond the joint. Semin Arthritis Rheum 2019; 49:331-336. [PMID: 30982553 DOI: 10.1016/j.semarthrit.2019.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/02/2019] [Accepted: 03/14/2019] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a leading cause of global disability that affects more than half of the population over 65. It is not a single disease but a progressive, inflammatory- and immune-altering multi-disease that affects the whole joint. OA has many risk factors including age, obesity, gender, lifestyle, joint morphology, metabolic dysfunction and genetic disposition. A major stumbling block in treating clinical OA has been the inability to detect its early onset and disease progression. This gap in understanding may arise from our failure to recognize that the OA patient exhibits a vulnerability to dysregulation of central feedback circuits that control sympathetic tone, inflammation, circadian rhythms (central and peripheral clocks), gut microbiome, metabolic redox and whole joint pathology. Early detection of OA and slowing its progression may come from discoveries outside the joint targeting these potentially modifiable upstream targets. We argue that future treatments may benefit from moving from a knee-centric viewpoint to a more systems-based, whole-body approach. The challenge, however, will be to better characterize these key circuits and apply this knowledge to develop new therapies and interventions.
Collapse
Affiliation(s)
- Jodie L Morris
- The Orthopaedic Research Institute of Queensland (ORIQL), Townsville 4812, Queensland, Australia; Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, 4811, Queensland, Australia.
| | - Hayley L Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, 4811, Queensland, Australia.
| | - Rhys Gillman
- The Orthopaedic Research Institute of Queensland (ORIQL), Townsville 4812, Queensland, Australia.
| | - Kaushik Hazratwala
- The Orthopaedic Research Institute of Queensland (ORIQL), Townsville 4812, Queensland, Australia.
| | - Matthew Wilkinson
- The Orthopaedic Research Institute of Queensland (ORIQL), Townsville 4812, Queensland, Australia.
| | - Peter McEwen
- The Orthopaedic Research Institute of Queensland (ORIQL), Townsville 4812, Queensland, Australia
| | - Geoffrey P Dobson
- The Orthopaedic Research Institute of Queensland (ORIQL), Townsville 4812, Queensland, Australia; Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, 4811, Queensland, Australia.
| |
Collapse
|
40
|
Nobs SP, Tuganbaev T, Elinav E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep 2019; 20:embr.201847129. [PMID: 30877136 DOI: 10.15252/embr.201847129] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 12/29/2022] Open
Abstract
Host-microbiome interactions constitute key determinants of host physiology, while their dysregulation is implicated in a wide range of human diseases. The microbiome undergoes diurnal variation in composition and function, and this in turn drives oscillations in host gene expression and functions. In this review, we discuss the newest developments in understanding circadian host-microbiome interplays, and how they may be relevant in health and disease contexts. We summarize the molecular mechanisms by which the microbiome influences host function in a diurnal manner, and inversely describe how the host orchestrates circadian rhythmicity of the microbiome. Furthermore, we highlight the future perspectives and challenges in studying this new and exciting facet of host-microbiome interactions. Finally, we illustrate how the elucidation of the microbiome chronobiology may pave the way for novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Timur Tuganbaev
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, Wen L, Li L, Xu Y, Wang Y, Tang F. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis 2019; 78:100-110. [PMID: 30026257 PMCID: PMC6317448 DOI: 10.1136/annrheumdis-2017-212863] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Understanding the molecular mechanisms underlying human cartilage degeneration and regeneration is helpful for improving therapeutic strategies for treating osteoarthritis (OA). Here, we report the molecular programmes and lineage progression patterns controlling human OA pathogenesis using single-cell RNA sequencing (scRNA-seq). METHODS We performed unbiased transcriptome-wide scRNA-seq analysis, computational analysis and histological assays on 1464 chondrocytes from 10 patients with OA undergoing knee arthroplasty surgery. We investigated the relationship between transcriptional programmes of the OA landscape and clinical outcome using severity index and correspondence analysis. RESULTS We identified seven molecularly defined populations of chondrocytes in the human OA cartilage, including three novel phenotypes with distinct functions. We presented gene expression profiles at different OA stages at single-cell resolution. We found a potential transition among proliferative chondrocytes, prehypertrophic chondrocytes and hypertrophic chondrocytes (HTCs) and defined a new subdivision within HTCs. We revealed novel markers for cartilage progenitor cells (CPCs) and demonstrated a relationship between CPCs and fibrocartilage chondrocytes using computational analysis. Notably, we derived predictive targets with respect to clinical outcomes and clarified the role of different cell types for the early diagnosis and treatment of OA. CONCLUSIONS Our results provide new insights into chondrocyte taxonomy and present potential clues for effective and functional manipulation of human OA cartilage regeneration that could lead to improved health.
Collapse
Affiliation(s)
- Quanbo Ji
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, China
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yuxuan Zheng
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Science, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Guoqiang Zhang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Yuqiong Hu
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Science, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaoying Fan
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Science, Peking University, Beijing, China
| | - Yu Hou
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Science, Peking University, Beijing, China
| | - Lu Wen
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Science, Peking University, Beijing, China
| | - Li Li
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Science, Peking University, Beijing, China
| | - Yameng Xu
- Department of Traditional Chinese Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Fuchou Tang
- Biomedical Institute for Pioneering Investigation via Convergence and Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Science, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
42
|
Oliva R, Jansen B, Benscheidt F, Sandbichler AM, Egg M. Nuclear magnetic resonance affects the circadian clock and hypoxia-inducible factor isoforms in zebrafish. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1498194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Regina Oliva
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | - Bianca Jansen
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| | | | | | - Margit Egg
- Institute of Zoology, University Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Jahanban‐Esfahlan R, Mehrzadi S, Reiter RJ, Seidi K, Majidinia M, Baghi HB, Khatami N, Yousefi B, Sadeghpour A. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. Br J Pharmacol 2018; 175:3230-3238. [PMID: 28585236 PMCID: PMC6057898 DOI: 10.1111/bph.13898] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the two most prevalent joint diseases. A such, they are important causes of pain and disability in a substantial proportion of the human population. A common characteristic of these diseases is the erosion of articular cartilage and consequently joint dysfunction. Melatonin has been proposed as a link between circadian rhythms and joint diseases including RA and OA. This hormone exerts a diversity of regulatory actions through binding to specific receptors and intracellular targets as well as having receptor-independent actions as a free radical scavenger. Cytoprotective effects of melatonin involve a myriad of prominent receptor-mediated pathways/molecules associated with inflammation, of which the role of omnipresent NF-κB signalling is crucial. Likewise, disturbance of circadian timekeeping is closely involved in the aetiology of inflammatory arthritis. Melatonin is shown to stimulate cartilage destruction/regeneration through direct/indirect modulation of the expression of the main circadian clock genes, such as BMAL, CRY and/or DEC2. In the current article, we review the effects of melatonin on RA and OA, focusing on its ability to regulate inflammatory pathways and circadian rhythms. We also review the possible protective effects of melatonin on RA and OA pathogenesis. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Rana Jahanban‐Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Saeed Mehrzadi
- Razi Drug Research CenterIran University of Medical SciencesTehranIran
| | - Russel J Reiter
- Department of Cellular and Structural BiologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | - Khaled Seidi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Maryam Majidinia
- Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
| | | | - Nasrin Khatami
- Students Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Bahman Yousefi
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
- Molecular Targeting Therapy Research Group, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Alireza Sadeghpour
- Department of Orthopaedic Surgery, School of Medicine and Shohada Educational HospitalTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
44
|
Abstract
Circadian rhythms are a ubiquitous feature of virtually all living organisms, regulating a wide diversity of physiological systems. It has long been established that the circadian clockwork plays a key role in innate immune responses, and recent studies reveal that several aspects of adaptive immunity are also under circadian control. We discuss the latest insights into the genetic and biochemical mechanisms linking immunity to the core circadian clock of the cell and hypothesize as to why the immune system is so tightly controlled by circadian oscillations. Finally, we consider implications for human health, including vaccination strategies and the emerging field of chrono-immunotherapy.
Collapse
Affiliation(s)
- Christoph Scheiermann
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Julie Gibbs
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Louise Ince
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany
| | - Andrew Loudon
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
45
|
Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 2018; 9:706. [PMID: 29988615 PMCID: PMC6026810 DOI: 10.3389/fphys.2018.00706] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disease causing chronic disability in adults. Studying cartilage aging, chondrocyte senescence, inflammation, and autophagy mechanisms have identified promising targets and pathways with clinical translatability potential. In this review, we highlight the most recent mechanistic and therapeutic preclinical models of aging with particular relevance in the context of articular cartilage and OA. Evidence supporting the role of metabolism, nuclear receptors and transcription factors, cell senescence, and circadian rhythms in the development of musculoskeletal system degeneration assure further translational efforts. This information might be useful not only to propose hypothesis and advanced models to study the molecular mechanisms underlying joint degeneration, but also to translate our knowledge into novel disease-modifying therapies for OA.
Collapse
Affiliation(s)
- Claire Vinatier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jerome Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France.,CHU Nantes, PHU4 OTONN, Nantes, France
| | - Beatriz Caramés
- Grupo de Biología del Cartílago, Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| |
Collapse
|
46
|
Cokelaere SM, Plomp SGM, de Boef E, de Leeuw M, Bool S, van de Lest CHA, van Weeren PR, Korthagen NM. Sustained intra-articular release of celecoxib in an equine repeated LPS synovitis model. Eur J Pharm Biopharm 2018; 128:327-336. [PMID: 29729412 DOI: 10.1016/j.ejpb.2018.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/23/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023]
Abstract
Synovial inflammation is an important characteristic of arthritic disorders like osteoarthritis and rheumatoid arthritis. Orally administered non-steroidal anti-inflammatory drugs (NSAIDs) such as celecoxib are among the most widely prescribed drugs to manage these debilitating diseases. Intra-articular delivery in biodegradable in situ forming hydrogels overcomes adverse systemic effects and prolongs drug retention in the joint. In this study two formulations of celecoxib (40 mg/g and 120 mg/g) in a propyl-capped PCLA-PEG-PCLA triblock copolymer were sequentially evaluated in a multiple LPS challenge equine synovitis model. Intra-articular release and systemic exposure to celecoxib and local changes at joint level were evaluated longitudinally. A single intra-articular injection of the high dose (HCLB)-gel or low dose (LCLB)-gel showed a sustained and controlled intra-articular release in both inflamed and healthy joints together with very low systemic exposure. Synovitis and lameness were moderate respectively very mild in this model due to the low concentration LPS (0.25 ng/joint). Both celecoxib formulations had a mild, transient effect on inflammatory and structural synovial fluid biomarkers but these returned to baseline within one week of administration. The HCLB-gel showed a significant inhibition in peak white blood cell concentration at 8 h after LPS induction. Elevated levels of celecoxib were observed in the joint for up to 30 days but no overall anti-inflammatory effects could be observed, which was thought to be due to the moderate synovitis. As there were no long-term adverse effects, sustained intra-articular release of celecoxib from in situ forming hydrogels should be evaluated further for its effects on longer-term relief of inflammatory joint pain in humans and animals.
Collapse
Affiliation(s)
- Stefan M Cokelaere
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands.
| | - Saskia G M Plomp
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esther de Boef
- InGell Labs BV, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Mike de Leeuw
- InGell Labs BV, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Sophie Bool
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Chris H A van de Lest
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - P René van Weeren
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands
| | - Nicoline M Korthagen
- Dept. Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112, 3584 CM Utrecht, The Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW Interest in the metabolic syndrome-associated osteoarthritis phenotype is increasing. Here, we summarize recently published significant findings. RECENT FINDINGS Meta-analyses confirmed an association between type 2 diabetes and osteoarthritis and between cardiovascular diseases and osteoarthritis. Recent advances in the study of metabolic syndrome-associated osteoarthritis have focused on a better understanding of the role of metabolic diseases in inducing or aggravating joint damage. In-vivo models of obesity, diabetes, or dyslipidemia have helped to better decipher this association. They give emerging evidence that, beyond the role of common pathogenic mechanisms for metabolic diseases and osteoarthritis (i.e., low-grade inflammation and oxidative stress), metabolic diseases have a direct systemic effect on joints. In addition to the impact of weight, obesity-associated inflammation is associated with osteoarthritis severity and may modulate osteoarthritis progression in mouse models. As well, osteoarthritis synovium from type 2 diabetic patients shows insulin-resistant features, which may participate in joint catabolism. Finally, exciting data are emerging on the association of gut microbiota and circadian rhythm and metabolic syndrome-associated osteoarthritis. SUMMARY The systemic role of metabolic syndrome in osteoarthritis pathophysiology is now better understood, but new avenues of research are being pursued to better decipher the metabolic syndrome-associated osteoarthritis phenotype.
Collapse
|
48
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system-resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|