1
|
Rajpar S, Ibrahim T, Carmel A, Merabet Z, Vielh P, Foulon S, Lesaunier F, Delva R, Rolland F, Priou F, Ferrero JM, Houédé N, Mourey L, Théodore C, Krakowski I, Faivre L, Habibian M, Culine S, Gravis G, Chauchereau A, Fizazi K. The Benefit of Combining Docetaxel with Androgen Deprivation Therapy in Localized and Metastatic Hormone-sensitive Prostate Cancer is Predicted by ERG Expression: An Analysis of Two GETUG Phase 3 Trials. Eur Urol Oncol 2025; 8:296-305. [PMID: 39034169 DOI: 10.1016/j.euo.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND AND OBJECTIVE Docetaxel has become a standard component of care for advanced prostate cancer (PC); however, its benefits are not universal among patients. A subset of PC cases exhibit TMPRSS2-ERG gene fusion, resulting in ERG overexpression in tumors. Our aim was to assess biomarkers for docetaxel efficacy in men with hormone-sensitive PC (HSPC). METHODS Pretreatment prostate biopsies were obtained from participants in two randomized phase 3 clinical trials investigating docetaxel in high-risk localized PC (GETUG 12) and metastatic HSPC (GETUG 15). Immunohistochemistry staining for Ki67, PTEN, RB, and phosphorylated RB was conducted for GETUG 12 samples, and ERG staining for GETUG 12 and GETUG 15 samples. We examined biomarker association with outcomes using univariate and multivariable analyses adjusted for other validated prognostic factors. KEY FINDINGS AND LIMITATIONS Among GETUG 12 patients, Ki67 was associated with a worse relapse-free survival (RFS; hazard ratio [HR] 1.72; p = 0.0092). A pooled analysis for the two trials (pinteraction = 0.056) revealed that docetaxel-based chemotherapy improved failure-free survival for patients with ERG-positive cancer (HR 0.58; p = 0.03), but not patients with ERG-negative cancer (HR 1.08; p = 0.72). In the ERG-positive subgroup in GETUG 12 (high-risk localized PC), median RFS was 7.79 yr with androgen deprivation therapy (ADT) alone, and was not reached with ADT + docetaxel. In the ERG-negative subgroup, median progression-free survival (mPFS) was 7.79 yr with ADT alone versus 7.08 yr with ADT + docetaxel. In the ERG-positive subgroup in GETUG 15 (metastatic HSPC), mPFS was 10.7 mo with ADT alone versus 18.8 mo with ADT + docetaxel. In the ERG-negative subgroup, mPFS was 10.6 mo with ADT alone versus 13.2 mo with ADT + docetaxel. CONCLUSIONS AND CLINICAL IMPLICATIONS Ki67 may serve as a prognostic factor in HSPC, while ERG expression appears to predict a response to docetaxel in both high-risk localized and metastatic HSPC. PATIENT SUMMARY We assessed factors that could predict outcomes after docetaxel chemotherapy in patients with advanced prostate cancer. We found that expression of a protein called ERG can predict a good response to docetaxel in these patients.
Collapse
Affiliation(s)
| | - Tony Ibrahim
- INSERM U981, Prostate Cancer Group, Université Paris-Saclay, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Alexandra Carmel
- Biostatistics Department, Gustave Roussy, Paris-Saclay University, Paris, France
| | - Zahira Merabet
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Philippe Vielh
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France; Medipath and American Hospital of Paris, Paris, France
| | - Stephanie Foulon
- Biostatistics Department, Gustave Roussy, Paris-Saclay University, Paris, France
| | | | - Rémy Delva
- Institut de Cancerologie de l'Ouest, Angers, France
| | - Frederic Rolland
- Department of Medical Oncology, Centre René Gauducheau, Saint-Herblin, France
| | - Frank Priou
- Department of Medical Oncology, Centre Hospitalier La Roche-sur-Yon, La Roche-sur-Yon, France
| | - Jean-Marc Ferrero
- Medical Oncology Department, Centre Antoine Lacassagne, University Côte d'Azur, Nice, France
| | - Nadine Houédé
- Medical Oncology, Institut de Cancérologie du Gard, Montpellier University, Nimes, France
| | | | | | - Ivan Krakowski
- Department of Medical Oncology, Centre Alexis Vautrin, Vandoeuvre Les Nancy, France
| | - Laura Faivre
- Biostatistics Department, Gustave Roussy, Paris-Saclay University, Paris, France
| | | | - Stéphane Culine
- Department of Medical Oncology, Hôpital Saint-Louis, AP-HP, Paris, France
| | | | - Anne Chauchereau
- INSERM U981, Prostate Cancer Group, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Karim Fizazi
- INSERM U981, Prostate Cancer Group, Université Paris-Saclay, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Gustave Roussy, Villejuif, France.
| |
Collapse
|
2
|
Su XA, Stopsack KH, Schmidt DR, Ma D, Li Z, Scheet PA, Penney KL, Lotan TL, Abida W, DeArment EG, Lu K, Janas T, Hu S, Vander Heiden MG, Loda M, Boselli M, Amon A, Mucci LA. RAD21 promotes oncogenesis and lethal progression of prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2405543121. [PMID: 39190349 PMCID: PMC11388324 DOI: 10.1073/pnas.2405543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, RAD21, with an odds ratio of 3.7 (95% CI 1.8, 7.6) comparing the highest vs. lowest tertiles of mRNA expression and adjusting for overall aneuploidy burden and Gleason score, both strong prognostic factors in primary prostate cancer. Studying prostate cancer driven by the TMPRSS2-ERG oncogenic fusion, found in about half of all prostate tumors, we found that increased RAD21 alleviated toxic oncogenic stress and DNA damage caused by oncogene expression. Data from both organoids and patients indicate that increased RAD21 thereby enables aggressive tumors to sustain tumor proliferation, and more broadly suggests one path through which tumors benefit from aneuploidy.
Collapse
Affiliation(s)
- Xiaofeng A. Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD20817
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Daniel R. Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02115
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Zhe Li
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Paul A. Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, TX77030
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21218
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Kate Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Sofia Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Dana-Farber Cancer Institute, Boston, MA02115
| | - Massimo Loda
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Monica Boselli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Discovery Science, American Cancer Society, Atlanta, GA30144
| |
Collapse
|
3
|
Segalés L, Juanpere N, Gallarín N, Lorenzo M, López D, Perera-Bel J, Rodriguez-Vida A, Fumadó L, Cecchini L, Bellmunt J, Lloreta-Trull J, Hernández-Llodrà S. Immunohistochemical markers as predictors of prognosis in multifocal prostate cancer. Virchows Arch 2024; 485:281-290. [PMID: 38017230 PMCID: PMC11329545 DOI: 10.1007/s00428-023-03699-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/09/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
The impact of tumor focality on prostate cancer (PCa) prognosis has been addressed in several studies with conflicting results. Tumor foci from multifocal (MF) PCa can show highly heterogeneous molecular features. Our aim was to analyze the protein expression of PTEN, SPOP, SLC45A3, ETV1, ERG and the "triple hit" (ERG overexpression, PTEN plus SLC45A3 loss) in unifocal (UF) and MF PCa, to evaluate their value as prognostic markers according to focality, and the role of tumor heterogeneity in MF disease. PTEN, SPOP, SLC45A3, ETV1 and ERG immunohistochemical expression was evaluated in 185 PCa from 9 TMAs, 51 UF and 134 MF. In a subset of 69 MF cases, the dominant and secondary foci (DF and SF) were compared. Heterogeneity was considered when both tumor foci presented different expression patterns. Relationship with clinicopathological features was also analyzed. MF PCa was diagnosed in significantly younger patients when compared to UF ones (p = 0.007). ETV1 overexpression was associated with UF disease (p = 0.028). A shorter time to PSA recurrence was related to SLC45A3 wt expression in UF PCa (p = 0.052), and to SPOP expression loss (p = 0.043) or "triple hit" phenotype in MF PCa (p = 0.041). In MF cases, PTEN loss, SLC45A3 loss and "triple hit" phenotype were associated with the DF and had significant heterogeneity. In conclusion, our results indicate that UF and MF PCa have relevant and consistent molecular differences. The analysis of an immunohistochemical panel, composed by PTEN, SPOP, SLC45A3, ETV1 and ERG, could be useful to predict outcome in MF cases.
Collapse
Affiliation(s)
- Laura Segalés
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Juanpere
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | | | - Marta Lorenzo
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | - David López
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | | | - Alejo Rodriguez-Vida
- Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medical Oncology, Hospital del Mar, CIBERONC, Barcelona, Spain
| | - Lluís Fumadó
- Department of Urology, Hospital del Mar, Barcelona, Spain
| | - Lluís Cecchini
- Department of Urology, Hospital del Mar, Barcelona, Spain
| | - Joaquim Bellmunt
- Hospital del Mar Research Institute, Barcelona, Spain
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Josep Lloreta-Trull
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar, Barcelona, Spain
| | | |
Collapse
|
4
|
Anselmino N, Labanca E, Shepherd PD, Dong J, Yang J, Song X, Nandakumar S, Kundra R, Lee C, Schultz N, Zhang J, Araujo JC, Aparicio AM, Subudhi SK, Corn PG, Pisters LL, Ward JF, Davis JW, Vazquez ES, Gueron G, Logothetis CJ, Futreal A, Troncoso P, Chen Y, Navone NM. Integrative Molecular Analyses of the MD Anderson Prostate Cancer Patient-derived Xenograft (MDA PCa PDX) Series. Clin Cancer Res 2024; 30:2272-2285. [PMID: 38488813 PMCID: PMC11094415 DOI: 10.1158/1078-0432.ccr-23-2438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.
Collapse
Affiliation(s)
- Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter D.A. Shepherd
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiabin Dong
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Yang
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaofei Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subhiksha Nandakumar
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritika Kundra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Cindy Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John C. Araujo
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumit K. Subudhi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John W. Davis
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elba S. Vazquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Geraldine Gueron
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Inflamación y Cáncer, Buenos Aires, Argentina
- CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Gao Y, Kim H, Kitata RB, Lin TT, Swensen AC, Shi T, Liu T. Multiplexed quantitative proteomics in prostate cancer biomarker development. Adv Cancer Res 2024; 161:31-69. [PMID: 39032952 PMCID: PMC11987045 DOI: 10.1016/bs.acr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the most common non-skin cancer among men in the United States. However, the widely used protein biomarker in PCa, prostate-specific antigen (PSA), while useful for initial detection, its use alone cannot detect aggressive PCa and can lead to overtreatment. This chapter provides an overview of PCa protein biomarker development. It reviews the state-of-the-art liquid chromatography-mass spectrometry-based proteomics technologies for PCa biomarker development, such as enhancing the detection sensitivity of low-abundance proteins through antibody-based or antibody-independent protein/peptide enrichment, enriching post-translational modifications such as glycosylation as well as information-rich extracellular vesicles, and increasing accuracy and throughput using advanced data acquisition methodologies. This chapter also summarizes recent PCa biomarker validation studies that applied those techniques in diverse specimen types, including cell lines, tissues, proximal fluids, urine, and blood, developing novel protein biomarkers for various clinical applications, including early detection and diagnosis, prognosis, and therapeutic intervention of PCa.
Collapse
Affiliation(s)
- Yuqian Gao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Hyeyoon Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States.
| |
Collapse
|
7
|
Zhou S, Abdihamid O, Tan F, Zhou H, Liu H, Li Z, Xiao S, Li B. KIT mutations and expression: current knowledge and new insights for overcoming IM resistance in GIST. Cell Commun Signal 2024; 22:153. [PMID: 38414063 PMCID: PMC10898159 DOI: 10.1186/s12964-023-01411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/25/2023] [Indexed: 02/29/2024] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma located in gastrointestinal tract and derived from the interstitial cell of Cajal (ICC) lineage. Both ICC and GIST cells highly rely on KIT signal pathway. Clinically, about 80-90% of treatment-naive GIST patients harbor primary KIT mutations, and special KIT-targeted TKI, imatinib (IM) showing dramatic efficacy but resistance invariably occur, 90% of them was due to the second resistance mutations emerging within the KIT gene. Although there are multiple variants of KIT mutant which did not show complete uniform biologic characteristics, most of them have high KIT expression level. Notably, the high expression level of KIT gene is not correlated to its gene amplification. Recently, accumulating evidences strongly indicated that the gene coding, epigenetic regulation, and pre- or post- protein translation of KIT mutants in GIST were quite different from that of wild type (WT) KIT. In this review, we elucidate the biologic mechanism of KIT variants and update the underlying mechanism of the expression of KIT gene, which are exclusively regulated in GIST, providing a promising yet evidence-based therapeutic landscape and possible target for the conquer of IM resistance. Video Abstract.
Collapse
Affiliation(s)
- Shishan Zhou
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87
| | - Omar Abdihamid
- Garissa Cancer Center, Garissa County Referral Hospital, Kismayu road, Garissa town, P.O BOX, 29-70100, Kenya
| | - Fengbo Tan
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Haiyan Zhou
- Division of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heli Liu
- Division of Surgery, Xiangya Hospital, Central South University, China, Hunan, Changsha
| | - Zhi Li
- Center for Molecular Medicine of Xiangya Hospital, Collaborative Innovation Center for Cancer Medicine, Central South University, Changsha, Hunan, China, 410008
| | - Sheng Xiao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, 410008, MA, USA
| | - Bin Li
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China, Xiangya road 87#.
| |
Collapse
|
8
|
Gazzellone A, Sangiorgi E. From Churchill to Elephants: The Role of Protective Genes against Cancer. Genes (Basel) 2024; 15:118. [PMID: 38255007 PMCID: PMC10815068 DOI: 10.3390/genes15010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Richard Peto's paradox, first described in 1975 from an epidemiological perspective, established an inverse correlation between the probability of developing cancer in multicellular organisms and the number of cells. Larger animals exhibit fewer tumors compared to smaller ones, though exceptions exist. Mice are more susceptible to cancer than humans, while elephants and whales demonstrate significantly lower cancer prevalence rates than humans. How nature and evolution have addressed the issue of cancer in the animal kingdom remains largely unexplored. In the field of medicine, much attention has been devoted to cancer-predisposing genes, as they offer avenues for intervention, including blocking, downregulating, early diagnosis, and targeted treatment. Predisposing genes also tend to manifest clinically earlier and more aggressively, making them easier to identify. However, despite significant strides in modern medicine, the role of protective genes lags behind. Identifying genes with a mild predisposing effect poses a significant challenge. Consequently, comprehending the protective function conferred by genes becomes even more elusive, and their very existence is subject to questioning. While the role of variable expressivity and penetrance defects of the same variant in a family is well-documented for many hereditary cancer syndromes, attempts to delineate the function of protective/modifier alleles have been restricted to a few instances. In this review, we endeavor to elucidate the role of protective genes observed in the animal kingdom, within certain genetic syndromes that appear to act as cancer-resistant/repressor alleles. Additionally, we explore the role of protective alleles in conditions predisposing to cancer. The ultimate goal is to discern why individuals, like Winston Churchill, managed to live up to 91 years of age, despite engaging in minimal physical activity, consuming large quantities of alcohol daily, and not abstaining from smoking.
Collapse
Affiliation(s)
| | - Eugenio Sangiorgi
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
9
|
Hawley JE, Obradovic AZ, Dallos MC, Lim EA, Runcie K, Ager CR, McKiernan J, Anderson CB, Decastro GJ, Weintraub J, Virk R, Lowy I, Hu J, Chaimowitz MG, Guo XV, Zhang Y, Haffner MC, Worley J, Stein MN, Califano A, Drake CG. Anti-PD-1 immunotherapy with androgen deprivation therapy induces robust immune infiltration in metastatic castration-sensitive prostate cancer. Cancer Cell 2023; 41:1972-1988.e5. [PMID: 37922910 PMCID: PMC11184948 DOI: 10.1016/j.ccell.2023.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
When compared to other malignancies, the tumor microenvironment (TME) of primary and castration-resistant prostate cancer (CRPC) is relatively devoid of immune infiltrates. While androgen deprivation therapy (ADT) induces a complex immune infiltrate in localized prostate cancer, the composition of the TME in metastatic castration-sensitive prostate cancer (mCSPC), and the effects of ADT and other treatments in this context are poorly understood. Here, we perform a comprehensive single-cell RNA sequencing (scRNA-seq) profiling of metastatic sites from patients participating in a phase 2 clinical trial (NCT03951831) that evaluated standard-of-care chemo-hormonal therapy combined with anti-PD-1 immunotherapy. We perform a longitudinal, protein activity-based analysis of TME subpopulations, revealing immune subpopulations conserved across multiple metastatic sites. We also observe dynamic changes in these immune subpopulations in response to treatment and a correlation with clinical outcomes. Our study uncovers a therapy-resistant, transcriptionally distinct tumor subpopulation that expands in cell number in treatment-refractory patients.
Collapse
Affiliation(s)
- Jessica E Hawley
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Aleksandar Z Obradovic
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Matthew C Dallos
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Emerson A Lim
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Karie Runcie
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Casey R Ager
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - James McKiernan
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Christopher B Anderson
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Guarionex J Decastro
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Joshua Weintraub
- Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu Virk
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Jianhua Hu
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xinzheng V Guo
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ya Zhang
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeremy Worley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mark N Stein
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry & Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA; J.P. Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032 USA.
| | - Charles G Drake
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA; Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA; Department of Interventional Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
11
|
Wang J, Ben-David R, Mehrazin R, Yang W, Tewari AK, Kyprianou N. Novel signatures of prostate cancer progression and therapeutic resistance. Expert Opin Ther Targets 2023; 27:1195-1206. [PMID: 38108262 DOI: 10.1080/14728222.2023.2293757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION The extensive heterogeneity of prostate cancer (PCa) and multilayered complexity of progression to castration-resistant prostate cancer (CRPC) have contributed to the challenges of accurately monitoring advanced disease. Profiling of the tumor microenvironment with large-scale transcriptomic studies have identified gene signatures that predict biochemical recurrence, lymph node invasion, metastases, and development of therapeutic resistance through critical determinants driving CRPC. AREAS COVERED This review encompasses understanding of the role of different molecular determinants of PCa progression to lethal disease including the phenotypic dynamic of cell plasticity, EMT-MET interconversion, and signaling-pathways driving PCa cells to advance and metastasize. The value of liquid biopsies encompassing circulating tumor cells and extracellular vesicles to detect disease progression and emergence of therapeutic resistance in patients progressing to lethal disease is discussed. Relevant literature was added from PubMed portal. EXPERT OPINION Despite progress in the tumor-targeted therapeutics and biomarker discovery, distant metastasis and therapeutic resistance remain the major cause of mortality in patients with advanced CRPC. No single signature can encompass the tremendous phenotypic and genomic heterogeneity of PCa, but rather multi-threaded omics-derived and phenotypic markers tailored and validated into a multimodal signature.
Collapse
Affiliation(s)
- Jason Wang
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Yang
- Department of Pathology, Stony Brook University, New York, NY, USA
| | - Ashutosh K Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|
13
|
Bowling GC, Rands MG, Dobi A, Eldhose B. Emerging Developments in ETS-Positive Prostate Cancer Therapy. Mol Cancer Ther 2023; 22:168-178. [PMID: 36511830 DOI: 10.1158/1535-7163.mct-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a global health concern, which has a low survival rate in its advanced stages. Even though second-generation androgen receptor-axis inhibitors serve as the mainstay treatment options, utmost of the metastatic cases progress into castration-resistant prostate cancer after their initial treatment response with poor prognostic outcomes. Hence, there is a dire need to develop effective inhibitors that aim the causal oncogenes tangled in the prostate cancer initiation and progression. Molecular-targeted therapy against E-26 transformation-specific (ETS) transcription factors, particularly ETS-related gene, has gained wide attention as a potential treatment strategy. ETS rearrangements with the male hormone responsive transmembrane protease serine 2 promoter defines a significant number of prostate cancer cases and is responsible for cancer initiation and progression. Notably, inhibition of ETS activity has shown to reduce tumorigenesis, thus highlighting its potential as a clinical therapeutic target. In this review, we recapitulate the various targeted drug approaches, including small molecules, peptidomimetics, nucleic acids, and many others, aimed to suppress ETS activity. Several inhibitors have demonstrated ERG antagonist activity in prostate cancer, but further investigations into their molecular mechanisms and impacts on nontumor ETS-containing tissues is warranted.
Collapse
Affiliation(s)
- Gartrell C Bowling
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mitchell G Rands
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Albert Dobi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| | - Binil Eldhose
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland
| |
Collapse
|
14
|
Gene-Transcript Expression in Urine Supernatant and Urine Cell-Sediment Are Different but Equally Useful for Detecting Prostate Cancer. Cancers (Basel) 2023; 15:cancers15030789. [PMID: 36765747 PMCID: PMC9913640 DOI: 10.3390/cancers15030789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/02/2023] Open
Abstract
There is considerable interest in urine as a non-invasive liquid biopsy to detect prostate cancer (PCa). PCa-specific transcripts such as the TMPRSS2:ERG fusion gene can be found in both urine extracellular vesicles (EVs) and urine cell-sediment (Cell) but the relative usefulness of these and other genes in each fraction in PCa detection has not been fully elucidated. Urine samples from 76 men (PCa n = 40, non-cancer n = 36) were analysed by NanoString for 154 PCa-associated genes-probes, 11 tissue-specific, and six housekeeping. Comparison to qRT-PCR data for four genes (PCA3, OR51E2, FOLH1, and RPLP2) was strong (r = 0.51-0.95, Spearman p < 0.00001). Comparing EV to Cells, differential gene expression analysis found 57 gene-probes significantly more highly expressed in 100 ng of amplified cDNA products from the EV fraction, and 26 in Cells (p < 0.05; edgeR). Expression levels of prostate-specific genes (KLK2, KLK3) measured were ~20× higher in EVs, while PTPRC (white-blood Cells) was ~1000× higher in Cells. Boruta analysis identified 11 gene-probes as useful in detecting PCa: two were useful in both fractions (PCA3, HOXC6), five in EVs alone (GJB1, RPS10, TMPRSS2:ERG, ERG_Exons_4-5, HPN) and four from Cell (ERG_Exons_6-7, OR51E2, SPINK1, IMPDH2), suggesting that it is beneficial to fractionate whole urine prior to analysis. The five housekeeping genes were not significantly differentially expressed between PCa and non-cancer samples. Expression signatures from Cell, EV and combined data did not show evidence for one fraction providing superior information over the other.
Collapse
|
15
|
Gupta N, Song H, Wu W, Ponce RK, Lin YK, Kim JW, Small EJ, Feng FY, Huang FW, Okimoto RA. The CIC-ERF co-deletion underlies fusion-independent activation of ETS family member, ETV1, to drive prostate cancer progression. eLife 2022; 11:e77072. [PMID: 36383412 PMCID: PMC9668335 DOI: 10.7554/elife.77072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human prostate cancer can result from chromosomal rearrangements that lead to aberrant ETS gene expression. The mechanisms that lead to fusion-independent ETS factor upregulation and prostate oncogenesis remain relatively unknown. Here, we show that two neighboring transcription factors, Capicua (CIC) and ETS2 repressor factor (ERF), which are co-deleted in human prostate tumors can drive prostate oncogenesis. Concurrent CIC and ERF loss commonly occur through focal genomic deletions at chromosome 19q13.2. Mechanistically, CIC and ERF co-bind the proximal regulatory element and mutually repress the ETS transcription factor, ETV1. Targeting ETV1 in CIC and ERF-deficient prostate cancer limits tumor growth. Thus, we have uncovered a fusion-independent mode of ETS transcriptional activation defined by concurrent loss of CIC and ERF.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Hanbing Song
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Wei Wu
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Rovingaile K Ponce
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Yone K Lin
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Ji Won Kim
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Eric J Small
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Felix Y Feng
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
- Department of Radiation Oncology, University of CaliforniaSan FranciscoUnited States
| | - Franklin W Huang
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Ross A Okimoto
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
16
|
Tsai JW, Cejas P, Wang DK, Patel S, Wu DW, Arounleut P, Wei X, Zhou N, Syamala S, Dubois FP, Crane A, Pelton K, Vogelzang J, Sousa C, Baguette A, Chen X, Condurat AL, Dixon-Clarke SE, Zhou KN, Lu SD, Gonzalez EM, Chacon MS, Digiacomo JJ, Kumbhani R, Novikov D, Hunter J, Tsoli M, Ziegler DS, Dirksen U, Jager N, Balasubramanian GP, Kramm CM, Nathrath M, Bielack S, Baker SJ, Zhang J, McFarland JM, Getz G, Aguet F, Jabado N, Witt O, Pfister SM, Ligon KL, Hovestadt V, Kleinman CL, Long H, Jones DT, Bandopadhayay P, Phoenix TN. FOXR2 Is an Epigenetically Regulated Pan-Cancer Oncogene That Activates ETS Transcriptional Circuits. Cancer Res 2022; 82:2980-3001. [PMID: 35802025 PMCID: PMC9437574 DOI: 10.1158/0008-5472.can-22-0671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.
Collapse
Affiliation(s)
- Jessica W. Tsai
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Dayle K. Wang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Smruti Patel
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
- Division of Pediatric Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David W. Wu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Phonepasong Arounleut
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Xin Wei
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Ningxuan Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Sudeepa Syamala
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - Frank P.B. Dubois
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alexander Crane
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristine Pelton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jayne Vogelzang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Cecilia Sousa
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra L. Condurat
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sarah E. Dixon-Clarke
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts
| | - Kevin N. Zhou
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Sophie D. Lu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Elizabeth M. Gonzalez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Madison S. Chacon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Jeromy J. Digiacomo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Rushil Kumbhani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Dana Novikov
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - J'Ya Hunter
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - David S. Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Uta Dirksen
- West German Cancer Center, Pediatrics III, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK), Essen/Düsseldorf, Germany
| | - Natalie Jager
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gnana Prakash Balasubramanian
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christof M. Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Michaela Nathrath
- Department of Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany
- Children's Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Suzanne J. Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, H3A 0C7, Canada
- Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, H4A 3J1, Canada
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology, and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Disease (NCT) Network, Germany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, Immunology, and Pulmonology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Disease (NCT) Network, Germany
| | - Keith L. Ligon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Volker Hovestadt
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Claudia L. Kleinman
- Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, H3A 0C7, Canada
| | - Henry Long
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts, Cancer Program, Broad Institute, Cambridge, Massachusetts
| | - David T.W. Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg University Hospital and German Cancer Research Center (DKFZ) Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
17
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
18
|
Qin S, Gao H, Kim W, Zhang H, Gu Y, Kalari KR, Sinnwell JP, Scholz JA, Xie F, Yin P, Yu J, Qin B, Zhuang Y, Wei L, Tan W, Bryce AH, Weinshilboum RM, Wang L. Biomarkers for Predicting Abiraterone Treatment Outcome and Selecting Alternative Therapies in Castration-Resistant Prostate Cancer. Clin Pharmacol Ther 2022; 111:1296-1306. [PMID: 35288936 PMCID: PMC9124371 DOI: 10.1002/cpt.2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Abstract
Approximately one‐third of patients with metastatic castration‐resistant prostate cancer (CRPC) exhibited primary abiraterone resistance. To identify alternative treatment for abiraterone nonresponders, we performed drug discovery analyses using the L1000 database using differentially expressed genes identified in tumor biopsies and patient‐derived xenograft (PDX) tumors between abiraterone responders and nonresponders enrolled in PROMOTE trial. This approach identified 3 drugs, including topoisomerase II (TOP2) inhibitor mitoxantrone, CDK4/6 inhibitor palbociclib, and pan‐CDK inhibitor PHA‐793887. These drugs significantly suppressed the growth of abiraterone‐resistant cell lines and PDX models. Moreover, we identified 11 genes targeted by all 3 drugs that were associated with worse outcomes in both the PROMOTE and Stand Up To Cancer cohorts. This 11‐gene panel might also function as biomarkers to select the 3 alternative therapies for this subgroup of patients with CRPC, warranting further clinical investigation.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Wootae Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Huan Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yayun Gu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jason P Sinnwell
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jodi A Scholz
- Department of Comparative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Fang Xie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Ping Yin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.,Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jia Yu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Bo Qin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yongxian Zhuang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lixuan Wei
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Winston Tan
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Alan H Bryce
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Phoenix, Arizona, USA
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Raspin K, O'Malley DE, Marthick JR, Donovan S, Malley RC, Banks A, Redwig F, Skala M, Dickinson JL, FitzGerald LM. Analysis of a large prostate cancer family identifies novel and recurrent gene fusion events providing evidence for inherited predisposition. Prostate 2022; 82:540-550. [PMID: 34994974 DOI: 10.1002/pros.24300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
There is strong interest in the characterisation of gene fusions and their use to enhance clinical practices in prostate cancer (PrCa). Significantly, ~50% of prostate tumours harbour a gene fusion. Inherited factors are thought to predispose to these events but, to date, only one study has investigated gene fusions in a familial context. Here, we examined the prevalence and diversity of gene fusions in 14 tumours from a single large PrCa family, PcTas9, using the TruSight® RNA Fusion Panel and Sanger sequencing validation. These fusions were then explored in The Cancer Genome Atlas (TCGA) PrCa data set (n = 494). Overall, 64.3% of PcTas9 tumours harboured a gene fusion, including known erythroblast transformation-specific (ETS) fusions involving ERG and ETV1, and two novel gene fusions, C19orf48:ETV4 and RYBP:FOXP1. Although 3' ETS genes were overexpressed in PcTas9 and TCGA tumour samples, 3' fusion of FOXP1 did not appear to alter its expression. In addition, PcTas9 fusion carriers were more likely to have lower-grade disease than noncarriers (p = 0.02). Likewise, TCGA tumours with high-grade disease were less likely to harbour fusions (p = 0.03). Our study further implicates an inherited predisposition to PrCa gene fusion events, which are associated with less aggressive tumours. This knowledge could lead to clinical strategies to predict men at risk for fusion-positive PrCa and, thus, identify patients who are more or less at risk of aggressive disease and/or responsive to particular therapies.
Collapse
Affiliation(s)
- Kelsie Raspin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Dannielle E O'Malley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - James R Marthick
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Roslyn C Malley
- Hobart Pathology, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Annette Banks
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Frank Redwig
- Department of Urology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Marketa Skala
- WP Holman Clinic, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Liesel M FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
20
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
21
|
Mukherjee S, Heng HH, Frenkel-Morgenstern M. Emerging Role of Chimeric RNAs in Cell Plasticity and Adaptive Evolution of Cancer Cells. Cancers (Basel) 2021; 13:4328. [PMID: 34503137 PMCID: PMC8431553 DOI: 10.3390/cancers13174328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis. Due to their recurrence in cancers and functional association with oncogenic processes, chimeric RNAs are considered biomarkers for cancer diagnosis. Several recent studies demonstrated that chimeric RNAs could lead to the generation of new functionality for the resistance of cancer cells against drug therapy. Therefore, targeting chimeric RNAs in drug resistance cancer could be useful for developing precision medicine. So, understanding the functional impact of chimeric RNAs in cancer cells from an evolutionary perspective will be helpful to elucidate cancer evolution, which could provide a new insight to design more effective therapies for cancer patients in a personalized manner.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
22
|
Harel S, Sanchez V, Moamer A, Sanchez-Galan JE, Abid Hussein MN, Mayaki D, Blanchette M, Hussain SNA. ETS1, ELK1, and ETV4 Transcription Factors Regulate Angiopoietin-1 Signaling and the Angiogenic Response in Endothelial Cells. Front Physiol 2021; 12:683651. [PMID: 34381375 PMCID: PMC8350579 DOI: 10.3389/fphys.2021.683651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Background Angiopoietin-1 (Ang-1) is the main ligand of Tie-2 receptors. It promotes endothelial cell (EC) survival, migration, and differentiation. Little is known about the transcription factors (TFs) in ECs that are downstream from Tie-2 receptors. Objective The main objective of this study is to identify the roles of the ETS family of TFs in Ang-1 signaling and the angiogenic response. Methods In silico enrichment analyses that were designed to predict TF binding sites of the promotors of eighty-six Ang-1-upregulated genes showed significant enrichment of ETS1, ELK1, and ETV4 binding sites in ECs. Human umbilical vein endothelial cells (HUVECs) were exposed for different time periods to recombinant Ang-1 protein and mRNA levels of ETS1, ELK1, and ETV4 were measured with qPCR and intracellular localization of these transcription factors was assessed with immunofluorescence. Electrophoretic mobility shift assays and reporter assays were used to assess activation of ETS1, ELK1, and ETV4 in response to Ang-1 exposure. The functional roles of these TFs in Ang-1-induced endothelial cell survival, migration, differentiation, and gene regulation were evaluated by using a loss-of-function approach (transfection with siRNA oligos). Results Ang-1 exposure increased ETS1 mRNA levels but had no effect on ELK1 or ETV4 levels. Immunostaining revealed that in control ECs, ETS1 has nuclear localization whereas ELK1 and ETV4 are localized to the nucleus and the cytosol. Ang-1 exposure increased nuclear intensity of ETS1 protein and enhanced nuclear mobilization of ELK1 and ETV4. Selective siRNA knockdown of ETS1, ELK1, and ETV4 showed that these TFs are required for Ang-1-induced EC survival and differentiation of cells, while ETS1 and ETV4 are required for Ang-1-induced EC migration. Moreover, ETS1, ELK1, and ETV4 knockdown inhibited Ang-1-induced upregulation of thirteen, eight, and nine pro-angiogenesis genes, respectively. Conclusion We conclude that ETS1, ELK1, and ETV4 transcription factors play significant angiogenic roles in Ang-1 signaling in ECs.
Collapse
Affiliation(s)
- Sharon Harel
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Veronica Sanchez
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alaa Moamer
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Javier E Sanchez-Galan
- School of Computer Science, McGill Centre for Bioinformatics, McGill University, Montreal, QC, Canada
| | - Mohammad N Abid Hussein
- School of Engineering and Technology (SET), Aldar University College, Dubai, United Arab Emirates
| | - Dominique Mayaki
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill Centre for Bioinformatics, McGill University, Montreal, QC, Canada
| | - Sabah N A Hussain
- Translational Research in Respiratory Diseases Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Critical Care, McGill University Health Centre, Montreal, QC, Canada.,Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Yao D, Bao Z, Qian X, Yang Y, Mao Z. ETV4 transcriptionally activates HES1 and promotes Stat3 phosphorylation to promote malignant behaviors of colon adenocarcinoma. Cell Biol Int 2021; 45:2129-2139. [PMID: 34270850 DOI: 10.1002/cbin.11669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 12/24/2022]
Abstract
Colon adenocarcinoma (COAD) is the commonest type of colorectal cancer with high morbidity and mortality worldwide. ETS variant 4 (ETV4) is a member of the ETS transcription factors and is frequently involved in the progression of many cancers. This study focused on the relevance of ETV4 to the progression of COAD. ETV4 was highly expressed in the collected COAD tissues and acquired cells and indicated advanced Dukes staging in patients. Knockdown of ETV4 in COAD cells weakened proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) activity of cells. The downstream genes of ETV4 were predicted, and a Gene Ontology (GO) analysis was conducted to identify the key molecule involved. ETV4 bound to the promoter sequence of HES1 and activated its transcription. Further overexpression of HES1 restored the malignant behaviors of COAD cells. HES1 was also found to promote phosphorylation of Stat3. Similar results were reproduced in vivo where downregulation of ETV4 blocked the growth of xenograft tumors in nude mice. This study demonstrated that ETV4 encourages malignant development of COAD through activating HES1 transcription and Stat3 phosphorylation. This study may offer novel insights into COAD therapy.
Collapse
Affiliation(s)
- Dan Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
- Department of Gastrointestinal Surgery, Huai'an Second People's Hospital, the Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, Jiangsu, P.R. China
| | - Zhongming Bao
- Department of Hepatobiliary Surgery, Huaiyin People's Hospital, Huai Yin, Jiangsu, P.R. China
| | - Xu Qian
- Department of Thyroid and Breast Surgery, Huai'an Second People's Hospital, Huaian, Jiangsu, P.R. China
| | - Yong Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, P.R. China
| | - Zhongqi Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
24
|
Tolkach Y, Zarbl R, Bauer S, Ritter M, Ellinger J, Hauser S, Hüser L, Klauck SM, Altevogt P, Sültmann H, Dietrich D, Kristiansen G. DNA Promoter Methylation and ERG Regulate the Expression of CD24 in Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:618-630. [PMID: 33485866 DOI: 10.1016/j.ajpath.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/11/2020] [Accepted: 12/31/2020] [Indexed: 01/21/2023]
Abstract
CD24 is overexpressed in many human cancers and is a driver of tumor progression. Herein, molecular mechanisms leading to up-regulation of CD24 in prostate cancer were studied. DNA methylation of the CD24 gene promoter at four loci using quantitative methylation-specific PCR was evaluated. Expression of CD24 in tumor tissues was studied by immunohistochemistry. To corroborate the results in vitro, ERG-inducible LNCaP TMPRSS2:ERG (T2E) cells and luciferase promoter assays were used. DNA methylation of the CD24 promoter was significantly higher in tumors than in benign tissue and was associated with biochemical recurrence-free survival, tumor grade, and stage. CD24 mRNA and protein expression were significantly higher in T2E-positive, ERG-overexpressing, and/or PTEN-deficient cases. Higher levels of CD24 protein expression conferred shorter biochemical recurrence-free survival, and these observations were confirmed using The Cancer Genome Atlas prostate adenocarcinoma data. In silico analysis of the CD24 promoter revealed an ERG binding site in between the DNA methylation sites. ERG overexpression led to a strong induction of CD24 mRNA and protein expression. Luciferase promoter assays using the wild-type and mutated ERG binding site within the CD24 promoter showed ERG-dependent activation. Collectively, our results suggest that promoter DNA methylation of the CD24 gene and T2E fusion status are factors involved in the up-regulation of CD24 in patients with prostate cancer.
Collapse
Affiliation(s)
- Yuri Tolkach
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany
| | - Romina Zarbl
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center, German Cancer Consortium, and National Center for Tumor Diseases, Im Neuenheimer Feld 460, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Manuel Ritter
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Stephan Hauser
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center, German Cancer Consortium, and National Center for Tumor Diseases, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center, Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center, German Cancer Consortium, and National Center for Tumor Diseases, Im Neuenheimer Feld 460, Heidelberg, Germany
| | - Dimo Dietrich
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany; Center for Integrated Oncology Aachen/Bonn/Cologne/Dusseldorf, Bonn, Germany.
| |
Collapse
|
25
|
Chalmers ZR, Burns MC, Ebot EM, Frampton GM, Ross JS, Hussain MHA, Abdulkadir SA. Early-onset metastatic and clinically advanced prostate cancer is a distinct clinical and molecular entity characterized by increased TMPRSS2-ERG fusions. Prostate Cancer Prostatic Dis 2021; 24:558-566. [PMID: 33420417 DOI: 10.1038/s41391-020-00314-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Men with early-onset prostate cancer are at increased risk for cancer-related mortality, yet the prevalence and spectrum of molecular alterations in this patient population is unknown. Here, we analyze comprehensive genomic profiling data to characterize the molecular drivers of early-onset prostate cancer in patients with clinically advanced and metastatic disease. METHODS Next-generation sequencing was ordered as a part of routine clinical care for 10,189 patients with prostate cancer between 02/2013 and 03/2020 using commercially available comprehensive genomic profiling. RESULTS Deidentified genomic data for 10,189 unique patients with prostate cancer were obtained (median age = 66 y, range = 34-90 y). 439 patients were ≤50 y (4.3%), 1928 patients were between ages of 51 and 59 y (18.9%), and 7822 patients were ≥60 y (76.8%). Of metastatic biopsy sites, lymph node, liver, and bone were the most common in all groups, accounting for 60.2% of all specimens. Overall, 97.4% of patients harbored pathologic genomic alterations. The most commonly altered genes were TP53, TMPRSS2-ERG, PTEN, AR, MYC, MLL2, RAD21, BRCA2, APC, SPOP, PIK3CA, RB1, MLL3, CDK12, ATM, and CTNNB1. Patients ≤50 y harbored significantly more TMPRSS2-ERG fusions than patients ≥60 y, while AR copy number alterations as well as SPOP and ASXL1 mutations were significantly less frequent. CONCLUSIONS Clinically advanced and metastatic early-onset prostate cancer is a distinct clinical subgroup with characteristic genomic alterations including increased frequency of TMPRSS2-ERG fusions and fewer AR, SPOP, and ASXL1 alterations.
Collapse
Affiliation(s)
- Zachary R Chalmers
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael C Burns
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, MA, USA.,Upstate Medical University, Syracuse, NY, USA
| | - Maha H A Hussain
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Sarki A Abdulkadir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
27
|
Lewis DD, Cropp CD. The Impact of African Ancestry on Prostate Cancer Disparities in the Era of Precision Medicine. Genes (Basel) 2020; 11:E1471. [PMID: 33302594 PMCID: PMC7762993 DOI: 10.3390/genes11121471] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer disproportionately affects men of African ancestry at nearly twice the rate of men of European ancestry despite the advancement of treatment strategies and prevention. In this review, we discuss the underlying causes of these disparities including genetics, environmental/behavioral, and social determinants of health while highlighting the implications and challenges that contribute to the stark underrepresentation of men of African ancestry in clinical trials and genetic research studies. Reducing prostate cancer disparities through the development of personalized medicine approaches based on genetics will require a holistic understanding of the complex interplay of non-genetic factors that disproportionately exacerbate the observed disparity between men of African and European ancestries.
Collapse
Affiliation(s)
- Deyana D. Lewis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Baltimore, MD 21224, USA
| | - Cheryl D. Cropp
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University McWhorter School of Pharmacy, Birmingham, AL 35229, USA;
| |
Collapse
|
28
|
Afshari A, Janfeshan S, Yaghobi R, Roozbeh J, Azarpira N. Covid-19 pathogenesis in prostatic cancer and TMPRSS2-ERG regulatory genetic pathway. INFECTION GENETICS AND EVOLUTION 2020; 88:104669. [PMID: 33301988 PMCID: PMC7720011 DOI: 10.1016/j.meegid.2020.104669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Members of Coronaviridae family have been the source of respiratory illnesses. The outbreak of SARS-CoV-2 that produced a severe lung disease in afflicted patients in China and other countries was the reason for the incredible attention paid toward this viral infection. It is known that SARS-CoV-2 is dependent on TMPRSS2 activity for entrance and subsequent infection of the host cells and TMPRSS2 is a host cell molecule that is important for the spread of viruses such as coronaviruses. Different factors can increase the risk of prostate cancer, including older age, a family history of the disease. Androgen receptor (AR) initiates a transcriptional cascade which plays a serious role in both normal and malignant prostate tissues. TMPRSS2 protein is highly expressed in prostate secretory epithelial cells, and its expression is dependent on androgen signals. One of the molecular signs of prostate cancer is TMPRSS2-ERG gene fusion. In TMPRSS2-ERG-positive prostate cancers different patterns of changed gene expression can be detected. The possible molecular relation between fusion positive prostate cancer patients and the increased risk of lethal respiratory viral infections especially SARS-CoV-2 can candidate TMPRSS2 as an attractive drug target. The studies show that some molecules such as nicotinamide, PARP1, ETS and IL-1R can be studied deeper in order to control SARS-CoV-2 infection especially in prostate cancer patients. This review attempts to investigate the possible relation between the gene expression pattern that is produced through TMPRSS2-ERG fusion positive prostate cancer and the possible influence of these fluctuations on the pathogenesis and development of viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Yaghobi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
30
|
Devlies W, Eckstein M, Cimadamore A, Devos G, Moris L, Van den Broeck T, Montironi R, Joniau S, Claessens F, Gevaert T. Clinical Actionability of the Genomic Landscape of Metastatic Castration Resistant Prostate Cancer. Cells 2020; 9:E2494. [PMID: 33212909 PMCID: PMC7698403 DOI: 10.3390/cells9112494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The development of targeted therapies increases treatment options for metastatic castration resistant prostate cancer (mCRPC) patients. There is a need for strong predictive and prognostic signatures to guide physicians in treating mCRPC patients. In this review we unravel the possible actionability in the AR pathway, PI3K AKT signaling, and DNA repair pathways. Additionally, we make recommendations on biomarker trial design, and the clinical use of this new type of data.
Collapse
Affiliation(s)
- Wout Devlies
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| | - Markus Eckstein
- Department of Pathology, Friedrich-Alexander-University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60121 Ancona, Italy; (A.C.); (R.M.)
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
| | - Lisa Moris
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| | - Thomas Van den Broeck
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, Polytechnic University of the Marche Region, United Hospitals, 60121 Ancona, Italy; (A.C.); (R.M.)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (L.M.); (T.V.d.B.); (S.J.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| | - Thomas Gevaert
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
31
|
Eteleeb AM, Quigley DA, Zhao SG, Pham D, Yang R, Dehm SM, Luo J, Feng FY, Dang HX, Maher CA. SV-HotSpot: detection and visualization of hotspots targeted by structural variants associated with gene expression. Sci Rep 2020; 10:15890. [PMID: 32985524 PMCID: PMC7522247 DOI: 10.1038/s41598-020-71168-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/09/2020] [Indexed: 01/03/2023] Open
Abstract
Whole genome sequencing (WGS) has enabled the discovery of genomic structural variants (SVs), including those targeting intergenic and intronic non-coding regions that eluded previous exome focused strategies. However, the field currently lacks an automated tool that analyzes SV candidates to identify recurrent SVs and their targeted sites (hotspot regions), visualizes these genomic events within the context of various functional elements, and evaluates their potential effect on gene expression. To address this, we developed SV-HotSpot, an automated tool that integrates SV candidates, copy number alterations, gene expression, and genome annotations (e.g. gene and regulatory elements) to discover, annotate, and visualize recurrent SVs and their targeted hotspot regions that may affect gene expression. We applied SV-HotSpot to WGS and matched transcriptome data from metastatic castration resistant prostate cancer patients and rediscovered recurrent SVs targeting coding and non-coding functional elements known to promote prostate cancer progression and metastasis. SV-HotSpot provides a valuable resource to integrate SVs, gene expression, and genome annotations for discovering biologically relevant SVs altering coding and non-coding genome. SV-HotSpot is available at https://github.com/ChrisMaherLab/SV-HotSpot .
Collapse
Affiliation(s)
- Abdallah M Eteleeb
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David A Quigley
- Department of Urology, University of California San Francisco (UCSF), San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, 94158, USA
| | - Shuang G Zhao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duy Pham
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rendong Yang
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco (UCSF), San Francisco, CA, 94158, USA.,Department of Radiation Oncology, University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Ha X Dang
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA.
| |
Collapse
|
32
|
ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol 2020; 21:607-632. [PMID: 32576977 DOI: 10.1038/s41580-020-0255-7] [Citation(s) in RCA: 629] [Impact Index Per Article: 125.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
The proteins extracellular signal-regulated kinase 1 (ERK1) and ERK2 are the downstream components of a phosphorelay pathway that conveys growth and mitogenic signals largely channelled by the small RAS GTPases. By phosphorylating widely diverse substrates, ERK proteins govern a variety of evolutionarily conserved cellular processes in metazoans, the dysregulation of which contributes to the cause of distinct human diseases. The mechanisms underlying the regulation of ERK1 and ERK2, their mode of action and their impact on the development and homeostasis of various organisms have been the focus of much attention for nearly three decades. In this Review, we discuss the current understanding of this important class of kinases. We begin with a brief overview of the structure, regulation, substrate recognition and subcellular localization of ERK1 and ERK2. We then systematically discuss how ERK signalling regulates six fundamental cellular processes in response to extracellular cues. These processes are cell proliferation, cell survival, cell growth, cell metabolism, cell migration and cell differentiation.
Collapse
|
33
|
Wei Y, Peng J, He S, Huang H, Lin L, Zhu Q, Ye L, Li T, Zhang X, Gao Y, Zheng X. miR-223-5p targeting ERG inhibits prostate cancer cell proliferation and migration. J Cancer 2020; 11:4453-4463. [PMID: 32489464 PMCID: PMC7255369 DOI: 10.7150/jca.44441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022] Open
Abstract
Ectopic expression of miR-223-5p, the lagging strand of miR-223 duplex, has been reported acting as anti-tumor miRNA in many cancers. How miR-223-5p influencing prostate cancer (PCa) remains obscure and worth of experimental investigation. In this study, the expressions of miR-223-5p and ERG in common PCa cell lines were detected and compared to RWPE-1, respectively. Then luciferase reporter assay was performed to verify whether miR-223-5p could specifically target and regulate ERG. Further discovery ERG's role in the PCa oncogenesis was also conducted by up or down regulating miR-223-3p expression. We found miR-223-5p was significantly down-regulated in DU145, while it was only up-regulated in LNCaP. Similarly, ERG expression remarkably decreased in both PC-3 and DU145 than that in RWPE-1, but significantly increasing in LNCaP. Luciferase assay demonstrated slightly decreased ERG expression after miR-223-5p-mimics but significantly increased ERG expression after miR-223-5p-inhibtor. Using gene interference, we further confirmed that both ERG mRNA and protein expressions were decreased in all PCa lines transfected ERG siRNA, but increasing in both DU145 and LNCaP cells with miR-223-5p antisense oligonucleotides. MTT assay, Transwell invasion and migration assay supported the function of ERG in PCa oncogenesis. We revealed tumor suppressive abilities of miR-223-5p in PCa by negatively targeting ERG gene. It could serve as a fundamental supplement and extension of our previous study about miR-223-3p in PCa, revealing the coordinative regulation between miR-223-5p and miR-223-3p in PCa cell biological behaviors. Exploration of miR-233-duplex orientated pathway networks may help us develop novel potential therapeutic options for PCa.
Collapse
Affiliation(s)
- Yongbao Wei
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Junming Peng
- Department of Urology, Shenzhen People's Hospital, Second Clinic Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, P.R. China
| | - Shuyun He
- Department of Urology, the Second Xiangya Hospital, Central South University, No139. Renmin Road, Changsha 410011, China
- Department of Urology, The People's Hospital of Xiangtan Country, Xiangtan, China
| | - Haijian Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Pathology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Le Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qingguo Zhu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Liefu Ye
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Tao Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Urology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xing Zhang
- Department of Urology, the Traditional Chinese Medicine Hospital of Yangzhou, Yangzhou University of Traditional Chinese Medicine, Yangzhou, Jiangsu 225002, China
| | - Yunliang Gao
- Department of Urology, the Second Xiangya Hospital, Central South University, No139. Renmin Road, Changsha 410011, China
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
34
|
Upregulation of Phosphatase 1 Nuclear-Targeting Subunit (PNUTS) Is an Independent Predictor of Poor Prognosis in Prostate Cancer. DISEASE MARKERS 2020; 2020:7050146. [PMID: 32377272 PMCID: PMC7196962 DOI: 10.1155/2020/7050146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/07/2023]
Abstract
Protein phosphatase 1 nuclear-targeting subunit (PNUTS) is ubiquitously expressed and associates with PTEN and protein phosphatase 1 (PP1) to control its activity. The role of PNUTS overexpression has hardly been studied in cancer. In this study, we used immunohistochemistry to quantitate PNUTS expression on a tissue microarray containing 17,747 clinical prostate cancer specimens. As compared to normal prostate epithelium, PNUTS expression was often higher in cancer. Among 12,235 interpretable tumors, PNUTS staining was negative in 21%, weak in 34%, moderate in 35%, and strong in 10% of cases. High PNUTS expression was associated with higher tumor stage, classical and quantitative Gleason grade, nodal stage, surgical margin, Ki67 labeling index, and early biochemical recurrence (p < 0.0001 each). PNUTS expression proved to be a moderate prognostic parameter with a maximal univariable Cox proportional hazard for PSA recurrence-free survival of 2.21 compared with 5.91 for Gleason grading. It was independent from established prognostic parameters in multivariable analysis. Comparison with molecular data available from earlier studies using the same TMA identified associations between high PNUTS expression and elevated androgen receptor expression (p < 0.0001), presence of TMPRSS2:ERG fusion (p < 0.0001), and 8 of 11 chromosomal deletions (3p13, 5q21, 8p21, 10q23, 12p13, 13q14, 16q24, and 17p13; p < 0.05 each). Particularly strong associations with PTEN and 12p13 deletions (p < 0.0001 each) may indicate a functional relationship, which has already been established for PNUTS and PTEN. PNUTS had no additional role on outcome in PTEN-deleted cancers. In conclusion, the results of our study identify high PNUTS protein levels as a predictor of poor prognosis possibly linked to increased levels of genomic instability. PNUTS measurement, either alone or in combination, might be of clinical utility in prostate cancers.
Collapse
|
35
|
Merging new-age biomarkers and nanodiagnostics for precision prostate cancer management. Nat Rev Urol 2020; 16:302-317. [PMID: 30962568 DOI: 10.1038/s41585-019-0178-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The accurate identification and stratified treatment of clinically significant early-stage prostate cancer have been ongoing concerns since the outcomes of large international prostate cancer screening trials were reported. The controversy surrounding clinical and cost benefits of prostate cancer screening has highlighted the lack of strategies for discriminating high-risk disease (that requires early treatment) from low-risk disease (that could be managed using watchful waiting or active surveillance). Advances in molecular subtyping and multiomics nanotechnology-based prostate cancer risk delineation can enable refinement of prostate cancer molecular taxonomy into clinically meaningful and treatable subtypes. Furthermore, the presence of intertumoural and intratumoural heterogeneity in prostate cancer warrants the development of novel nanodiagnostic technologies to identify clinically significant prostate cancer in a rapid, cost-effective and accurate manner. Circulating and urinary next-generation prostate cancer biomarkers for disease molecular subtyping and the newest complementary nanodiagnostic platforms for enhanced biomarker detection are promising tools for precision prostate cancer management. However, challenges in merging both aspects and clinical translation still need to be overcome.
Collapse
|
36
|
Abstract
Mutated or dysregulated transcription factors represent a unique class of drug targets that mediate aberrant gene expression, including blockade of differentiation and cell death gene expression programmes, hallmark properties of cancers. Transcription factor activity is altered in numerous cancer types via various direct mechanisms including chromosomal translocations, gene amplification or deletion, point mutations and alteration of expression, as well as indirectly through non-coding DNA mutations that affect transcription factor binding. Multiple approaches to target transcription factor activity have been demonstrated, preclinically and, in some cases, clinically, including inhibition of transcription factor-cofactor protein-protein interactions, inhibition of transcription factor-DNA binding and modulation of levels of transcription factor activity by altering levels of ubiquitylation and subsequent proteasome degradation or by inhibition of regulators of transcription factor expression. In addition, several new approaches to targeting transcription factors have recently emerged including modulation of auto-inhibition, proteolysis targeting chimaeras (PROTACs), use of cysteine reactive inhibitors, targeting intrinsically disordered regions of transcription factors and combinations of transcription factor inhibitors with kinase inhibitors to block the development of resistance. These innovations in drug development hold great promise to yield agents with unique properties that are likely to impact future cancer treatment.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
37
|
Up regulation of Rho-associated coiled-coil containing kinase1 (ROCK1) is associated with genetic instability and poor prognosis in prostate cancer. Aging (Albany NY) 2019; 11:7859-7879. [PMID: 31557128 PMCID: PMC6781985 DOI: 10.18632/aging.102294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/14/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Overexpression of the cytoskeleton-modulating kinase ROCK1 has been associated with unfavorable outcome in many cancers, but its impact in prostate cancer is largely unknown. RESULTS A weak ROCK1 staining was found in >90% of normal, and cancerous prostate tissues, but was generally stronger in cancer cells as compared to adjacent normal glands. In cancer, ROCK1 staining was considered weak, moderate, and strong in 22%, 53%, and 18% of cases respectively. Higher ROCK1 expression levels were associated with tumor stage, and Gleason grade, positive nodal stage, positive surgical margin, accelerated cell proliferation and early PSA recurrence in multivariable analysis. ROCK1 up regulation was associated with androgen receptor (AR) expression, TMPRSS2:ERG fusion, genomic deletions of the PTEN tumor suppressor, as well as recurrent deletions at chromosomes 3p, 5q, 6q. Strong ROCK1 staining was found in 3% of AR-negative, but in 27% of strongly AR positive cancers, in 13% of ERG-negative but in 25% of ERG positive cancers, and in 12% of PTEN normal but in 26% of PTEN deleted cancers. CONCLUSIONS This study identifies ROCK1 expression associated with prognosis in prostate cancer. METHODS We tested ROCK1 expression in 12 427 prostate cancer specimens and followed PSA recurrence after prostatectomy.
Collapse
|
38
|
Meiners J, Schulz K, Möller K, Höflmayer D, Burdelski C, Hube-Magg C, Simon R, Göbel C, Hinsch A, Reiswich V, Weidemann S, Izbicki JR, Sauter G, Jacobsen F, Möller-Koop C, Mandelkow T, Blessin NC, Lutz F, Viehweger F, Lennartz M, Fraune C, Heinzer H, Minner S, Bonk S, Huland H, Graefen M, Schlomm T, Büscheck F. Upregulation of SPDEF is associated with poor prognosis in prostate cancer. Oncol Lett 2019; 18:5107-5118. [PMID: 31612022 PMCID: PMC6781494 DOI: 10.3892/ol.2019.10885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
SAM pointed domain-containing Ets transcription factor (SPDEF), a member of the ETS transcription factor family, has been associated with prostate cancer development; however, its role in tumour development and progression is controversial. In the present study, SPDEF expression was analysed on a tissue microarray with >12,000 prostate cancer samples. SPDEF expression levels were higher in most prostate cancer samples than in normal prostate epithelium, suggesting SPDEF was upregulated in cancer. Nuclear SPDEF expression was identified in 80% of prostate cancer samples, and considered weak in 26.4%, moderate in 40.1% and strong in 13.5% of cases. SPDEF positivity was significantly associated with tumour stage, Gleason grade, lymph node metastasis and PSA recurrence (all P<0.0001). SPDEF overexpression was more common in ERG positive (94%) than in ERG negative cancer (69%; P<0.0001). Elevated SPDEF expression predicted poor prognosis independent from established prognostic parameters, including Gleason grade, pT, pN, serum PSA level and nodal status (P<0.01). In summary, SPDEF overexpression was associated with aggressive behaviour, particularly in ERG negative prostate cancer, and may have potential for clinical application.
Collapse
Affiliation(s)
- Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Schulz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Burdelski
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Cosima Göbel
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jacob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christina Möller-Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Tim Mandelkow
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Niclas C Blessin
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Lutz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Maximillian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hans Heinzer
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Sarah Bonk
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Hartwig Huland
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Markus Graefen
- Prostate Cancer Center, Martini-Clinic, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.,Department of Urology, Charité, Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
39
|
Umbreen S, Banday MM, Jamroze A, Mansini AP, Ganaie AA, Ferrari MG, Maqbool R, Beigh FH, Murugan P, Morrissey C, Corey E, Konety BR, Saleem M. COMMD3:BMI1 Fusion and COMMD3 Protein Regulate C-MYC Transcription: Novel Therapeutic Target for Metastatic Prostate Cancer. Mol Cancer Ther 2019; 18:2111-2123. [PMID: 31467179 DOI: 10.1158/1535-7163.mct-19-0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Gene rearrangement is reported to be associated to the aggressive phenotype and poor prognosis in prostate cancer. We identified a gene fusion between a transcription repressor (BMI1) and transcriptional factor (COMMD3) in human prostate cancer. We show that COMMD3:BMI1 fusion expression is significantly increased in prostate cancer disease in an order: normal tissue < primary < metastatic tumors (Mets). Although elevated TMPRSS-ERG/ETV fusion is reported in prostate cancer, we identified a subtype of Mets exhibiting low TMPRSS:ETV and high COMMD3:BMI1 We delineated the mechanism and function of COMMD3 and COMMD3:BMI1 in prostate cancer. We show that COMMD3 level is elevated in prostate cancer cell models, PDX models (adenocarcinoma, NECaP), and Mets. The analysis of TCGA/NIH/GEO clinical data showed a positive correlation between increased COMMD3 expression to the disease recurrence and poor survival in prostate cancer. We show that COMMD3 drives proliferation of normal cells and promotes migration/invasiveness of neoplastic cells. We show that COMMD3:BMI1 and COMMD3 regulate C-MYC transcription and C-MYC downstream pathway. The ChIP analysis showed that COMMD3 protein is recruited at the promoter of C-MYC gene. On the basis of these data, we investigated the relevance of COMMD3:BMI1 and COMMD3 as therapeutic targets using in vitro and xenograft mouse models. We show that siRNA-mediated targeting of COMMD3:BMI1 and COMMD3 significantly decreases (i) C-MYC expression in BRD/BET inhibitor-resistant cells, (ii) proliferation/invasion in vitro, and (iii) growth of prostate cancer cell tumors in mice. The IHC analysis of tumors confirmed the targeting of COMMD3-regulated molecular pathway under in vivo conditions. We conclude that COMMD3:BMI1 and COMMD3 are potential progression biomarkers and therapeutic targets of metastatic prostate cancer.
Collapse
Affiliation(s)
- Syed Umbreen
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Queens University, Belfast, Northern Ireland
| | - Mudassir Meraj Banday
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Anmbreen Jamroze
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Hormel Institute, Austin, Minnesota
| | - Adrian P Mansini
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Arsheed A Ganaie
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marina G Ferrari
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Raihana Maqbool
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Firdous H Beigh
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | | | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Badrinath R Konety
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Mohammad Saleem
- Department of Urology, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
40
|
Minner S, Hager D, Steurer S, Höflmayer D, Tsourlakis MC, Möller-Koop C, Clauditz TS, Hube-Magg C, Luebke AM, Simon R, Sauter G, Göbel C, Weidemann S, Lebok P, Dum D, Fraune C, Izbicki J, Burandt E, Schlomm T, Huland H, Heinzer H, Haese A, Graefen M, Heumann A. Down-Regulation of S100A8 is an Independent Predictor of PSA Recurrence in Prostate Cancer Treated by Radical Prostatectomy. Neoplasia 2019; 21:872-881. [PMID: 31382165 PMCID: PMC6698296 DOI: 10.1016/j.neo.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of S100A8 is described in many different human tumor types, but its role in prostate cancer is unknown. To evaluate the clinical relevance of S100A8 expression in prostate cancer, a tissue microarray containing 13,665 tumors was analyzed by immunohistochemistry. Cytoplasmic S100A8 staining was compared to prostate cancer phenotype, patient prognosis and molecular features including TMPRSS2:ERG fusion status and deletions of PTEN, 3p, 5q and 6q. S100A8 immunostaining was typically seen in normal prostate tissue but lost in 60% of 9786 interpretable prostate cancers. In the remaining tumors, S100A8 was considered weak in 17.9%, moderate in 17.8% and strong in 5.4% of cases. Loss of S100A8 expression was linked to advanced tumor stage, high Gleason grade, positive nodal status, positive surgical margin and high preoperative PSA (P < .0001 each). In addition, loss of S100A8 expression was associated with TMPRSS2:ERG fusions (P < .0001), deletions of PTEN, 3p, and 6q (P < .005), and a high number of genomic deletions per tumor (P = .0009). Absence of S100A8 immunostaining was also linked to an elevated risk for early PSA recurrence (P < .0001). In a multivariate analysis limited to features that are preoperatively available, the prognostic impact of S100A8 expression (P < .0001) was independent of clinical stage, Gleason grade, and serum PSA level (P < .0001). Taken together, the results of our study demonstrate that complete loss of S100A8 expression is linked to adverse tumor features and predicts early biochemical recurrence in prostate cancer. S100A8 measurement, either alone or in combination might be of clinical utility in prostate cancers.
Collapse
Affiliation(s)
- Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominik Hager
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | | | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
41
|
Hernández-Llodrà S, Segalés L, Safont A, Juanpere N, Lorenzo M, Fumadó L, Rodríguez-Vida A, Cecchini L, Bellmunt J, Lloreta-Trull J. SPOP and FOXA1 mutations are associated with PSA recurrence in ERG wt tumors, and SPOP downregulation with ERG-rearranged prostate cancer. Prostate 2019; 79:1156-1165. [PMID: 31090082 DOI: 10.1002/pros.23830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND ERG fusion-related prostate cancer (PrCa) is the most prevalent oncogenic driver subclass. SPOP, FOXA1, and IDH1 mutations are other three main oncogenic driver subclasses in non-ETS-fusion PrCa. ERG protein levels seem to be increased in SPOP-mutated cases, and different studies reported that SPOP mutations and ERG fusions are mutually exclusive. The aim of this study has been to analyze the alterations in non-ETS-oncogenic drivers in PrCa. METHODS SPOP, FOXA1, and IDH mutations were investigated by polymerase chain reaction (PCR) and Sanger direct sequencing. ERG, SPOP, and TMPRSS2-ERG messenger RNA expression was assessed by quantitative real-time PCR from complementary DNA, and the presence of the fusion was also analyzed by nonquantitative PCR. The clinical pathological features were retrieved from the charts of the 111 patients included in the study (MARBiobanc, Barcelona, Spain). RESULTS Loss of SPOP expression (25.2%) was associated with ERG overexpression (P = 0.0036). SPOP mutations were found in 5.4% cases, all with wild-type (wt) ERG (P = 0.007). FOXA1 mutations were found in 8.2% cases, most of them ERG wt (P = 0.06). No IDH1 mutations were found. SPOP or FOXA1 mutations were found in 1.7% of ERG-rearranged, and 34.2% of non-ERG-rearranged cases (P < 0.0001). SPOP or FOXA1 alterations (mutations or expression loss) were significantly more common in GG5, while isolated ERG overexpression was more common in GG1 tumors (P = 0.042). SPOP-or FOXA1-mutated cases were associated with a shorter time to prostate-specific antigen (PSA) recurrence in the univariate (P = 0.0009), and with the PSA recurrence risk in the multivariate (P = 0.023) analysis. CONCLUSIONS In conclusion, SPOP and FOXA1 mutations may have prognostic value in ERG wt tumors. Interestingly, in absence of SPOP mutations, downregulation of this gene is a feature of many ERG-rearranged prostate tumors.
Collapse
Affiliation(s)
| | - Laura Segalés
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ainara Safont
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Juanpere
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Marta Lorenzo
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Fumadó
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Alejo Rodríguez-Vida
- Department of Oncology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Lluís Cecchini
- Department of Urology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| | - Joaquim Bellmunt
- IMIM-Hospital del Mar Research Institute, Barcelona, Spain
- Harvard Medical School, Boston, Massachusetts
| | - Josep Lloreta-Trull
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Pathology, Hospital del Mar-Parc de Salut Mar-IMIM, Barcelona, Spain
| |
Collapse
|
42
|
Bratt O, Lamb AD. Genetic Reasons to Walk the Extra Mile to Prevent Prostate Cancer. Eur Urol 2019; 76:41-42. [PMID: 30385048 DOI: 10.1016/j.eururo.2018.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ola Bratt
- Department of Urology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
43
|
Immunohistochemical expression of mismatch repair proteins (MSH2, MSH6, MLH1, and PMS2) in prostate cancer: correlation with grade groups (WHO 2016) and ERG and PTEN status. Virchows Arch 2019; 475:223-231. [DOI: 10.1007/s00428-019-02591-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/05/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
44
|
Hashmi AA, Khan EY, Irfan M, Ali R, Asif H, Naeem M, Nisar L, Faridi N, Khan A, Edhi MM. ERG oncoprotein expression in prostatic acinar adenocarcinoma; clinicopathologic significance. BMC Res Notes 2019; 12:35. [PMID: 30658688 PMCID: PMC6339396 DOI: 10.1186/s13104-019-4090-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/14/2019] [Indexed: 11/10/2022] Open
Abstract
Objectives T/E fusion results in constitutive expression of ERG oncoprotein resulting in enhanced proliferation and invasive potential of prostatic cancer cells. In the present study we aimed to evaluate the ERG overexpression in 78 cases prostate acinar adenocarcinoma and its association with other prognostic parameters. Results ERG protein expression was noted in 39.7% (31 cases), out of which 3 cases (3.8%) showed low ERG expression, 10 cases (12.8%) showed intermediate expression and 18 cases (23.1%) revealed high ERG expression. Significant association of ERG expression was noted with gleason score (p = 0.009), WHO grade group (p = 0.008) and perineural invasion (p = 0.043). We found a significant proportion of our patients of prostatic acinar adenocarcinoma to over-express ERG protein which can help in devising therapeutic protocols. Significant association of ERG protein expression with gleason score and perineural invasion signifies its prognostic significance in prostatic carcinoma. Moreover, we also suggest that molecular studies should be performed in patients with prostatic carcinoma to look for T/E fusion gene and its correlation with ERG protein expression.
Collapse
Affiliation(s)
- Atif Ali Hashmi
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Erum Yousuf Khan
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Muhammad Irfan
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Rabia Ali
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Huda Asif
- CMH Institute of Medical Sciences, Multan, Pakistan
| | - Maheen Naeem
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Laila Nisar
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Naveen Faridi
- Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Amir Khan
- Kandahar University, Kandahar, 3802, Afghanistan.
| | | |
Collapse
|
45
|
Characterize the difference between TMPRSS2-ERG and non-TMPRSS2-ERG fusion patients by clinical and biological characteristics in prostate cancer. Gene 2018; 679:186-194. [PMID: 30195632 DOI: 10.1016/j.gene.2018.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/10/2018] [Accepted: 09/05/2018] [Indexed: 11/23/2022]
Abstract
The TMPRSS2-ERG gene fusion were frequently found in prostate cancer, and thought to play some fundamental mechanisms for the development of prostate cancer. However, until now, the clinical and prognostic significance of TMPRSS2-ERG gene fusion was not fully understood. In this study, based on the 281 prostate cancers that constructed from a historical watchful waiting cohort, the statistically significant associations between TMPRSS2-ERG gene fusion and clinicopathologic characteristics were identified. In addition, the Elastic Net algorithm was used to predict the patients with TMPRSS2-ERG fusion status, and good predictive results were obtained, indicating that this algorithm was suitable to this prediction problem. The differential gene network was constructed from the network, and the KEGG enrichment analysis demonstrated that the module genes were significantly enriched in several important pathways.
Collapse
|
46
|
Luca BA, Brewer DS, Edwards DR, Edward S, Whitaker HC, Merson S, Dennis N, Cooper RA, Hazell S, Warren AY, Eeles R, Lynch AG, Ross-Adams H, Lamb AD, Neal DE, Sethia K, Mills RD, Ball RY, Curley H, Clark J, Moulton V, Cooper CS. DESNT: A Poor Prognosis Category of Human Prostate Cancer. Eur Urol Focus 2018; 4:842-850. [PMID: 28753852 PMCID: PMC5669460 DOI: 10.1016/j.euf.2017.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/16/2017] [Accepted: 01/28/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND A critical problem in the clinical management of prostate cancer is that it is highly heterogeneous. Accurate prediction of individual cancer behaviour is therefore not achievable at the time of diagnosis leading to substantial overtreatment. It remains an enigma that, in contrast to breast cancer, unsupervised analyses of global expression profiles have not currently defined robust categories of prostate cancer with distinct clinical outcomes. OBJECTIVE To devise a novel classification framework for human prostate cancer based on unsupervised mathematical approaches. DESIGN, SETTING, AND PARTICIPANTS Our analyses are based on the hypothesis that previous attempts to classify prostate cancer have been unsuccessful because individual samples of prostate cancer frequently have heterogeneous compositions. To address this issue, we applied an unsupervised Bayesian procedure called Latent Process Decomposition to four independent prostate cancer transcriptome datasets obtained using samples from prostatectomy patients and containing between 78 and 182 participants. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Biochemical failure was assessed using log-rank analysis and Cox regression analysis. RESULTS AND LIMITATIONS Application of Latent Process Decomposition identified a common process in all four independent datasets examined. Cancers assigned to this process (designated DESNT cancers) are characterized by low expression of a core set of 45 genes, many encoding proteins involved in the cytoskeleton machinery, ion transport, and cell adhesion. For the three datasets with linked prostate-specific antigen failure data following prostatectomy, patients with DESNT cancer exhibited poor outcome relative to other patients (p=2.65×10-5, p=4.28×10-5, and p=2.98×10-8). When these three datasets were combined the independent predictive value of DESNT membership was p=1.61×10-7 compared with p=1.00×10-5 for Gleason sum. A limitation of the study is that only prediction of prostate-specific antigen failure was examined. CONCLUSIONS Our results demonstrate the existence of a novel poor prognosis category of human prostate cancer and will assist in the targeting of therapy, helping avoid treatment-associated morbidity in men with indolent disease. PATIENT SUMMARY Prostate cancer, unlike breast cancer, does not have a robust classification framework. We propose that this failure has occurred because prostate cancer samples selected for analysis frequently have heterozygous compositions (individual samples are made up of many different parts that each have different characteristics). Applying a mathematical approach that can overcome this problem we identify a novel poor prognosis category of human prostate cancer called DESNT.
Collapse
Affiliation(s)
- Bogdan-Alexandru Luca
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Daniel S Brewer
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- The Earlham Institute, Norwich Research Park, Norwich, Norfolk, UK
| | - Dylan R Edwards
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sandra Edward
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
| | - Hayley C Whitaker
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Sue Merson
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
| | - Nening Dennis
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
| | - Rosalin A Cooper
- Department of Pathology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Steven Hazell
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - The CancerMap Group
- A list of participants and their affiliations appears in the Supplemental Information
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute Of Cancer Research, Sutton, UK
- Royal Marsden NHS Foundation Trust, London and Sutton, UK
| | - Andy G Lynch
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Helen Ross-Adams
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Alastair D Lamb
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
- Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - David E Neal
- Urological Research Laboratory, Cancer Research UK Cambridge Research Institute, University of Cambridge, Cambridge, UK
- Department of Surgical Oncology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Krishna Sethia
- Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Robert D Mills
- Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Richard Y Ball
- Department of Histopathology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Helen Curley
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jeremy Clark
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Colin S Cooper
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
47
|
Abstract
Introduction: Epigenetic dysregulation drives or supports numerous human cancers. The chromatin landscape in cancer cells is often marked by abnormal histone post-translational modification (PTM) patterns and by aberrant assembly and recruitment of protein complexes to specific genomic loci. Mass spectrometry-based proteomic analyses can support the discovery and characterization of both phenomena. Areas covered: We broadly divide this literature into two parts: 'modification-centric' analyses that link histone PTMs to cancer biology; and 'complex-centric' analyses that examine protein-protein interactions that occur de novo as a result of oncogenic mutations. We also discuss proteomic studies of oncohistones. We highlight relevant examples, discuss limitations, and speculate about forthcoming innovations regarding each application. Expert commentary: 'Modification-centric' analyses have been used to further understanding of cancer's histone code and to identify associated therapeutic vulnerabilities. 'Complex-centric' analyses have likewise revealed insights into mechanisms of oncogenesis and suggested potential therapeutic targets, particularly in MLL-associated leukemia. Proteomic experiments have also supported some of the pioneering studies of oncohistone-mediated tumorigenesis. Additional applications of proteomics that may benefit cancer epigenetics research include middle-down and top-down histone PTM analysis, chromatin reader profiling, and genomic locus-specific protein identification. In the coming years, proteomic approaches will remain powerful ways to interrogate the biology of cancer.
Collapse
Affiliation(s)
- Dylan M Marchione
- a Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - John Wojcik
- b Department of Pathology and Laboratory Medicine, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
48
|
Song C, Chen H. Predictive significance of TMRPSS2- ERG fusion in prostate cancer: a meta-analysis. Cancer Cell Int 2018; 18:177. [PMID: 30459527 PMCID: PMC6233278 DOI: 10.1186/s12935-018-0672-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022] Open
Abstract
Background Prostate cancer is a major malignancy in males. TMPRSS2-ERG is a high-frequency fusion gene expressed in prostate cancer and plays a vital role in carcinogenesis. Recent studies showed that TMPRSS2-ERG is a potential predictive biomarker for prostate cancer. However, the predictive value of TMPRSS2-ERG fusion is yet unclear. Methods A total of 76 relevant articles, published from 2015 to 2017, were obtained from PubMed, Web of Science, EMBASE, Scopus, the Cochrane Library, and CNKI databases to investigate the predictive significance of TMPRSS2-ERG fusion in prostate cancer. Pooled odds ratio (ORs) with 95% confidence intervals (CIs) were calculated to estimate the correlation between TMPRSS2-ERG fusion gene and tumor features. Results The pooled or stratified analysis showed that the TMPRSS2-ERG fusion gene had a highly predictive potential. First, TMPRSS2-ERG fusion was associated with T-stage at diagnosis (T3–4 vs. T1–2 OR: 1.40; 95% CI 1.33–1.48) and metastasis (M1 vs. M0 OR: 1.35; 95% CI 1.02–1.78) but not with biochemical recurrence or prostate cancer-specific mortality. Furthermore, the subgroup analysis found that the TMPRSS2-ERG fusion gene was correlated with Gleason (G) scores, and the fusion was common in prostate cancer with G ≤ 7. Additionally, the meta-analysis demonstrated that the fusion was likely to occur in young patients (> 65 vs. ≤ 65 OR: 0.68; 95% CI 0.52–0.89), in patients with high PSA levels (> 10 vs. ≤ 10 OR: 1.30; 95% CI 1.21–1.38), and in patients with peripheral involvement (positive vs. negative OR: 1.17; 95% CI 1.08–1.28), while not associated with tumor volume. Finally, the subgroup analysis of different fusion types demonstrated that the deletion-type fusion was significantly associated with the malignant degree of prostate cancer (pooled OR: 5.67; 95% CI 2.85–11.28). Moreover, the deletion-type was common in Africa patients, followed by Caucasian patients, and no significant difference was observed in the incidence of different fusion types in the Asian population. Conclusions The meta-analysis findings suggested that the TMPRSS2-ERG fusion gene might be a predictive marker for prostate cancer patients, and might be valuable for assessing the characteristics of prostate cancer for individualized treatment and prognosis evaluation. Electronic supplementary material The online version of this article (10.1186/s12935-018-0672-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunjiao Song
- 1Medical Research Center, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), No. 568 Zhongxing Bei Road, Shaoxing, 312000 Zhejiang People's Republic of China
| | - Huan Chen
- 2Zhejiang Institute of Microbiology (Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province), Hangzhou, Zhejiang China
| |
Collapse
|
49
|
Xu Z, Wang Y, Xiao ZG, Zou C, Zhang X, Wang Z, Wu D, Yu S, Chan FL. Nuclear receptor ERRα and transcription factor ERG form a reciprocal loop in the regulation of TMPRSS2:ERG fusion gene in prostate cancer. Oncogene 2018; 37:6259-6274. [PMID: 30042415 PMCID: PMC6265259 DOI: 10.1038/s41388-018-0409-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/17/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022]
Abstract
The TMPRSS2:ERG (T:E) fusion gene is generally believed to be mainly regulated by the activated androgen receptor (AR) signaling in androgen-dependent prostate cancer. However, its persistent expression in castration-resistant and neuroendocrine prostate cancers implies that other transcription factors might also regulate its expression. Here, we showed that up-regulation of nuclear receptor estrogen-related receptor alpha (ERRα) was closely associated with the oncogenic transcription factor ERG expression in prostate cancer, and their increased coexpression patterns were closely associated with high Gleason scores and metastasis in patients. Both ERRα and ERG exhibited a positive expression correlation in a castration-resistant prostate cancer (CRPC) xenograft model VCaP-CRPC. We showed that ERRα could directly transactivate T:E fusion gene in both AR-positive and -negative prostate cancer cells via both ERR-binding element- and AR-binding element-dependent manners. Ectopic T:E expression under ERRα regulation could promote both in vitro invasion and in vivo metastasis capacities of AR-negative prostatic cells. Intriguingly, ERG expressed by the T:E fusion could also transactivate the ERRα (ESRRA) gene. Hereby, ERRα and ERG can synergistically regulate each other and form a reciprocal regulatory loop to promote the advanced growth of prostate cancer. Inhibition of ERRα activity by ERRα inverse agonist could suppress T:E expression in prostate cancer cells, implicating that targeting ERRα could be a potential therapeutic strategy for treating the aggressive T:E-positive prostate cancer.
Collapse
Affiliation(s)
- Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, Anhui, China
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhan Gang Xiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Chang Zou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Clinical Medical Research Center, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Xian Zhang
- Department of Pharmacy, Yijishan Affiliated Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Zhu Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dinglan Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
50
|
Shin SH, Lee GY, Lee M, Kang J, Shin HW, Chun YS, Park JW. Aberrant expression of CITED2 promotes prostate cancer metastasis by activating the nucleolin-AKT pathway. Nat Commun 2018; 9:4113. [PMID: 30291252 PMCID: PMC6173745 DOI: 10.1038/s41467-018-06606-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Despite many efforts to develop hormone therapy and chemotherapy, no effective strategy to suppress prostate cancer metastasis has been established because the metastasis is not well understood. We here investigate a role of CBP/p300-interacting transactivator with E/D-rich carboxy-terminal domain-2 (CITED2) in prostate cancer metastasis. CITED2 is highly expressed in metastatic prostate cancer, and its expression is correlated with poor survival. The CITED2 gene is highly activated by ETS-related gene that is overexpressed due to chromosomal translocation. CITED2 acts as a molecular chaperone to guide PRMT5 and p300 to nucleolin, thereby activating nucleolin. Informatics and experimental data suggest that the CITED2-nucleolin axis is involved in prostate cancer metastasis. This axis stimulates cell migration through the epithelial-mesenchymal transition and promotes cancer metastasis in a xenograft mouse model. Our results suggest that CITED2 plays a metastasis-promoting role in prostate cancer and thus could be a target for preventing prostate cancer metastasis.
Collapse
Affiliation(s)
- Seung-Hyun Shin
- Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ga Young Lee
- Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mingyu Lee
- Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jengmin Kang
- Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Woo Shin
- Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yang-Sook Chun
- Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Wan Park
- Department of Biomedical Science, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.
- Cancer Research Institute and Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|