1
|
Guo Y, Shang X, Ma L, Cao Y. RNA-Binding Protein-Mediated Alternative Splicing Regulates Abiotic Stress Responses in Plants. Int J Mol Sci 2024; 25:10548. [PMID: 39408875 PMCID: PMC11477454 DOI: 10.3390/ijms251910548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The alternative splicing of pre-mRNA generates distinct mRNA variants from a pre-mRNA, thereby modulating a gene's function. The splicing of pre-mRNA depends on splice sites and regulatory elements in pre-mRNA, as well as the snRNA and proteins that recognize these sequences. Among these, RNA-binding proteins (RBPs) are the primary regulators of pre-mRNA splicing and play a critical role in the regulation of alternative splicing by recognizing the elements in pre-mRNA. However, little is known about the function of RBPs in stress response in plants. Here, we summarized the RBPs involved in the alternative splicing of pre-mRNA and their recognizing elements in pre-mRNA, and the recent advance in the role of RBP-mediated alternative splicing in response to abiotic stresses in plants. This review proposes that the regulation of pre-mRNA alternative splicing by RBPs is an important way for plants to adapt to abiotic stresses, and the regulation of alternative splicing by RBPs is a promising direction for crop breeding.
Collapse
Affiliation(s)
| | | | | | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (Y.G.); (X.S.); (L.M.)
| |
Collapse
|
2
|
Sonnemann HM, Pazdrak B, Nassif B, Sun Y, Elzohary L, Talukder AH, Katailiha AS, Bhat K, Lizée G. Placental co-transcriptional activator Vestigial-like 1 (VGLL1) drives tumorigenesis via increasing transcription of proliferation and invasion genes. Front Oncol 2024; 14:1403052. [PMID: 38912065 PMCID: PMC11190739 DOI: 10.3389/fonc.2024.1403052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Vestigial-like 1 (VGLL1) is a co-transcriptional activator that binds to TEA domain-containing transcription factors (TEADs). Its expression is upregulated in a variety of aggressive cancer types, including pancreatic and basal-like breast cancer, and increased transcription of VGLL1 is strongly correlated with poor prognosis and decreased overall patient survival. In normal tissues, VGLL1 is most highly expressed within placental trophoblast cells, which share the common attributes of rapid cellular proliferation and invasion with tumor cells. The impact of VGLL1 in cancer has not been fully elucidated and no VGLL1-targeted therapy currently exists. Methods The aim of this study was to evaluate the cellular function and downstream genomic targets of VGLL1 in placental, pancreatic, and breast cancer cells. Functional assays were employed to assess the role of VGLL1 in cellular invasion and proliferation, and ChIP-seq and RNAseq assays were performed to identify VGLL1 target genes and potential impact using pathway analysis. Results ChIP-seq analysis identified eight transcription factors with a VGLL1-binding motif that were common between all three cell types, including TEAD1-4, AP-1, and GATA6, and revealed ~3,000 shared genes with which VGLL1 interacts. Furthermore, increased VGLL1 expression led to an enhancement of cell invasion and proliferation, which was supported by RNAseq analysis showing transcriptional changes in several genes known to be involved in these processes. Discussion This work expands our mechanistic understanding of VGLL1 function in tumor cells and provides a strong rationale for developing VGLL1-targeted therapies for treating cancer patients.
Collapse
Affiliation(s)
- Heather M. Sonnemann
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Pazdrak
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara Nassif
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Yimo Sun
- University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Lama Elzohary
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Amjad H. Talukder
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Arjun S. Katailiha
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Krishna Bhat
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, United States
- Department of Immunology, UT MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers (Basel) 2024; 16:2123. [PMID: 38893242 PMCID: PMC11171328 DOI: 10.3390/cancers16112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer driver genes are either oncogenes or tumour suppressor genes that are classically activated or inactivated, respectively, by driver mutations. Alternative splicing-which produces various mature mRNAs and, eventually, protein variants from a single gene-may also result in driving neoplastic transformation because of the different and often opposed functions of the variants of driver genes. The present review analyses the different alternative splicing events that result in driving neoplastic transformation, with an emphasis on their molecular mechanisms. To do this, we collected a list of 568 gene drivers of cancer and revised the literature to select those involved in the alternative splicing of other genes as well as those in which its pre-mRNA is subject to alternative splicing, with the result, in both cases, of producing an oncogenic isoform. Thirty-one genes fall into the first category, which includes splicing factors and components of the spliceosome and splicing regulators. In the second category, namely that comprising driver genes in which alternative splicing produces the oncogenic isoform, 168 genes were found. Then, we grouped them according to the molecular mechanisms responsible for alternative splicing yielding oncogenic isoforms, namely, mutations in cis splicing-determining elements, other causes involving non-mutated cis elements, changes in splicing factors, and epigenetic and chromatin-related changes. The data given in the present review substantiate the idea that aberrant splicing may regulate the activation of proto-oncogenes or inactivation of tumour suppressor genes and details on the mechanisms involved are given for more than 40 driver genes.
Collapse
Affiliation(s)
- Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London WC1E 6DD, UK;
| | - Gerardo López-Rodas
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| | - Josefa Castillo
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis Franco
- Department of Oncology, Institute of Health Research INCLIVA, 46010 Valencia, Spain; (G.L.-R.); (J.C.)
- Department of Biochemistry and Molecular Biology, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
4
|
McCue K, Burge CB. An interpretable model of pre-mRNA splicing for animal and plant genes. SCIENCE ADVANCES 2024; 10:eadn1547. [PMID: 38718117 PMCID: PMC11078188 DOI: 10.1126/sciadv.adn1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Pre-mRNA splicing is a fundamental step in gene expression, conserved across eukaryotes, in which the spliceosome recognizes motifs at the 3' and 5' splice sites (SSs), excises introns, and ligates exons. SS recognition and pairing is often influenced by protein splicing factors (SFs) that bind to splicing regulatory elements (SREs). Here, we describe SMsplice, a fully interpretable model of pre-mRNA splicing that combines models of core SS motifs, SREs, and exonic and intronic length preferences. We learn models that predict SS locations with 83 to 86% accuracy in fish, insects, and plants and about 70% in mammals. Learned SRE motifs include both known SF binding motifs and unfamiliar motifs, and both motif classes are supported by genetic analyses. Our comparisons across species highlight similarities between non-mammals, increased reliance on intronic SREs in plant splicing, and a greater reliance on SREs in mammalian splicing.
Collapse
Affiliation(s)
- Kayla McCue
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christopher B. Burge
- Computational and Systems Biology PhD Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
5
|
Yang Q, Wang J, Chen Z. Conditional splicing system for tight control of viral overlapping genes. J Virol 2024; 98:e0024224. [PMID: 38446633 PMCID: PMC11019872 DOI: 10.1128/jvi.00242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 03/08/2024] Open
Abstract
Viral genomes frequently harbor overlapping genes, complicating the development of virus-vectored vaccines and gene therapies. This study introduces a novel conditional splicing system to precisely control the expression of such overlapping genes through recombinase-mediated conditional splicing. We refined site-specific recombinase (SSR) conditional splicing systems and explored their mechanisms. The systems demonstrated exceptional inducibility (116,700-fold increase) with negligible background expression, facilitating the conditional expression of overlapping genes in adenovirus-associated virus (AAV) and human immunodeficiency virus type 1. Notably, this approach enabled the establishment of stable AAV producer cell lines, encapsulating all necessary packaging genes. Our findings underscore the potential of the SSR-conditional splicing system to significantly advance vector engineering, enhancing the efficacy and scalability of viral-vector-based therapies and vaccines. IMPORTANCE Regulating overlapping genes is vital for gene therapy and vaccine development using viral vectors. The regulation of overlapping genes presents challenges, including cytotoxicity and impacts on vector capacity and genome stability, which restrict stable packaging cell line development and broad application. To address these challenges, we present a "loxp-splice-loxp"-based conditional splicing system, offering a novel solution for conditional expression of overlapping genes and stable cell line establishment. This system may also regulate other cytotoxic genes, representing a significant advancement in cell engineering and gene therapy as well as biomass production.
Collapse
Affiliation(s)
- Qing Yang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jinlin Wang
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
6
|
Kwon MJ. Role of epithelial splicing regulatory protein 1 in cancer progression. Cancer Cell Int 2023; 23:331. [PMID: 38110955 PMCID: PMC10729575 DOI: 10.1186/s12935-023-03180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
As aberrant alternative splicing by either dysregulation or mutations of splicing factors contributes to cancer initiation and progression, splicing factors are emerging as potential therapeutic targets for cancer therapy. Therefore, pharmacological modulators targeting splicing factors have been under development. Epithelial splicing regulatory protein 1 (ESRP1) is an epithelial cell-specific splicing factor, whose downregulation is associated with epithelial-mesenchymal transition (EMT) by regulating alternative splicing of multiple genes, such as CD44, CTNND1, ENAH, and FGFR2. Consistent with the downregulation of ESRP1 during EMT, it has been initially revealed that high ESRP1 expression is associated with favorable prognosis and ESRP1 plays a tumor-suppressive role in cancer progression. However, ESRP1 has been found to promote cancer progression in some cancers, such as breast and ovarian cancers, indicating that it plays a dual role in cancer progression depending on the type of cancer. Furthermore, recent studies have reported that ESRP1 affects tumor growth by regulating the metabolism of tumor cells or immune cell infiltration in the tumor microenvironment, suggesting the novel roles of ESRP1 in addition to EMT. ESRP1 expression was also associated with response to anticancer drugs. This review describes current understanding of the roles and mechanisms of ESRP1 in cancer progression, and further discusses the emerging novel roles of ESRP1 in cancer and recent attempts to target splicing factors for cancer therapy.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Stepankiw N, Yang AWH, Hughes TR. The human genome contains over a million autonomous exons. Genome Res 2023; 33:1865-1878. [PMID: 37945377 PMCID: PMC10760453 DOI: 10.1101/gr.277792.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Mammalian mRNA and lncRNA exons are often small compared to introns. The exon definition model predicts that exons splice autonomously, dependent on proximal exon sequence features, explaining their delineation within large introns. This model has not been examined on a genome-wide scale, however, leaving open the question of how often mRNA and lncRNA exons are autonomous. It is also unknown how frequently such exons can arise by chance. Here, we directly assayed large fragments (500-1000 bp) of the human genome by exon trapping, which detects exons spliced into a heterologous transgene, here designed with a large intron context. We define the trapped exons as "autonomous." We obtained ∼1.25 million trapped exons, including most known mRNA and well-annotated lncRNA internal exons, demonstrating that human exons are predominantly autonomous. mRNA exons are trapped with the highest efficiency. Nearly a million of the trapped exons are unannotated, most located in intergenic regions and antisense to mRNA, with depletion from the forward strand of introns. These exons are not conserved, suggesting they are nonfunctional and arose from random mutations. They are nonetheless highly enriched with known splicing promoting sequence features that delineate known exons. Novel autonomous exons are more numerous than annotated lncRNA exons, and computational models also indicate they will occur with similar frequency in any randomly generated sequence. These results show that most human coding exons splice autonomously, and provide an explanation for the existence of many unconserved lncRNAs, as well as a new annotation and inclusion levels of spliceable loci in the human genome.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Ally W H Yang
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Timothy R Hughes
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada M5S 3E1;
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
8
|
Liu Y, Li Q, Yan T, Chen H, Wang J, Wang Y, Yang Y, Xiang L, Chi Z, Ren K, Lin B, Lin G, Li J, Liu Y, Gu F. Adenine base editor-mediated splicing remodeling activates noncanonical splice sites. J Biol Chem 2023; 299:105442. [PMID: 37949222 PMCID: PMC10704375 DOI: 10.1016/j.jbc.2023.105442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Adenine base editors (ABEs) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. The discovery of split genes revealed that all introns contain two highly conserved dinucleotides, canonical "AG" (acceptor) and "GT" (donor) splice sites. ABE can directly edit splice acceptor sites of the adenine (A) base, leading to aberrant gene splicing, which may be further adopted to remodel splicing. However, spliced isoforms triggered with ABE have not been well explored. To address it, we initially generated a cell line harboring C-terminal enhanced GFP (eGFP)-tagged β-actin (ACTB), in which the eGFP signal can track endogenous β-actin expression. Expectedly, after the editing of splice acceptor sites, we observed a dramatical decrease in the percentage of eGFP-positive cells and generation of splicing products with the noncanonical splice site. Furthermore, we manipulated Peroxidasin in mouse embryos with ABE, in which a noncanonical acceptor was activated to remodel splicing, successfully generating a mouse disease model of anophthalmia and severely malformed microphthalmia. Collectively, we demonstrate that ABE-mediated splicing remodeling can activate a noncanonical acceptor to manipulate human and mouse genomes, which will facilitate the investigation of basic and translational medicine studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Tong Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Haoran Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jiahua Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yingyi Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yeqin Yang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lue Xiang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Zailong Chi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Kaiqun Ren
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, China
| | - Bin Lin
- School of Optometry, Hong Kong Polytechnic University, Hong Kong, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yong Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China; Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, China; Guangxiu Hospital Affiliated with Hunan Normal University (Hunan Guangxiu Hospital), Changsha, China.
| |
Collapse
|
9
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
10
|
He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet 2023; 24:276-294. [PMID: 36418462 DOI: 10.1038/s41576-022-00550-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
Abstract
RNA-binding proteins (RBPs) regulate essentially every event in the lifetime of an RNA molecule, from its production to its destruction. Whereas much has been learned about RNA sequence specificity and general functions of individual RBPs, the ways in which numerous RBPs instruct a much smaller number of effector molecules, that is, the core engines of RNA processing, as to where, when and how to act remain largely speculative. Here, we survey the known modes of communication between RBPs and their effectors with a particular focus on converging RBP-effector interactions and their roles in reducing the complexity of RNA networks. We discern the emerging unifying principles and discuss their utility in our understanding of RBP function, regulation of biological processes and contribution to human disease.
Collapse
Affiliation(s)
- Shiyang He
- Department of Biochemistry, University of California, Riverside, CA, USA
- Center for RNA Biology and Medicine, Riverside, CA, USA
| | - Eugene Valkov
- RNA Biology Laboratory & Center for Structural Biology, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, USA
| | - Sihem Cheloufi
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
- Stem Cell Center, University of California, Riverside, CA, USA.
| | - Jernej Murn
- Department of Biochemistry, University of California, Riverside, CA, USA.
- Center for RNA Biology and Medicine, Riverside, CA, USA.
| |
Collapse
|
11
|
Kuroiwa K, Danilo B, Perrot L, Thenault C, Veillet F, Delacote F, Duchateau P, Nogué F, Mazier M, Gallois J. An iterative gene-editing strategy broadens eIF4E1 genetic diversity in Solanum lycopersicum and generates resistance to multiple potyvirus isolates. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:918-930. [PMID: 36715107 PMCID: PMC10106848 DOI: 10.1111/pbi.14003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 05/04/2023]
Abstract
Resistance to potyviruses in plants has been largely provided by the selection of natural variant alleles of eukaryotic translation initiation factors (eIF) 4E in many crops. However, the sources of such variability for breeding can be limited for certain crop species, while new virus isolates continue to emerge. Different methods of mutagenesis have been applied to inactivate the eIF4E genes to generate virus resistance, but with limited success due to the physiological importance of translation factors and their redundancy. Here, we employed genome editing approaches at the base level to induce non-synonymous mutations in the eIF4E1 gene and create genetic diversity in cherry tomato (Solanum lycopersicum var. cerasiforme). We sequentially edited the genomic sequences coding for two regions of eIF4E1 protein, located around the cap-binding pocket and known to be important for susceptibility to potyviruses. We show that the editing of only one of the two regions, by gene knock-in and base editing, respectively, is not sufficient to provide resistance. However, combining amino acid mutations in both regions resulted in resistance to multiple potyviruses without affecting the functionality in translation initiation. Meanwhile, we report that extensive base editing in exonic region can alter RNA splicing pattern, resulting in gene knockout. Altogether our work demonstrates that precision editing allows to design plant factors based on the knowledge on evolutionarily selected alleles and enlarge the gene pool to potentially provide advantageous phenotypes such as pathogen resistance.
Collapse
Affiliation(s)
| | | | - Laura Perrot
- Toulouse Biotechnology Institute, Université de ToulouseToulouseFrance
| | | | - Florian Veillet
- INRAE, Agrocampus OuestUniversité de Rennes, IGEPPPloudanielFrance
| | | | | | - Fabien Nogué
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | | | | |
Collapse
|
12
|
Mechanism and modeling of human disease-associated near-exon intronic variants that perturb RNA splicing. Nat Struct Mol Biol 2022; 29:1043-1055. [PMID: 36303034 DOI: 10.1038/s41594-022-00844-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
It is estimated that 10%-30% of disease-associated genetic variants affect splicing. Splicing variants may generate deleteriously altered gene product and are potential therapeutic targets. However, systematic diagnosis or prediction of splicing variants is yet to be established, especially for the near-exon intronic splice region. The major challenge lies in the redundant and ill-defined branch sites and other splicing motifs therein. Here, we carried out unbiased massively parallel splicing assays on 5,307 disease-associated variants that overlapped with branch sites and collected 5,884 variants across the 5' splice region. We found that strong splice sites and exonic features preserve splicing from intronic sequence variation. Whereas the splice-altering mechanism of the 3' intronic variants is complex, that of the 5' is mainly splice-site destruction. Statistical learning combined with these molecular features allows precise prediction of altered splicing from an intronic variant. This statistical model provides the identity and ranking of biological features that determine splicing, which serves as transferable knowledge and out-performs the benchmarking predictive tool. Moreover, we demonstrated that intronic splicing variants may associate with disease risks in the human population. Our study elucidates the mechanism of splicing response of intronic variants, which classify disease-associated splicing variants for the promise of precision medicine.
Collapse
|
13
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3'-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3'-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
Affiliation(s)
- Jianguo Feng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
- Laboratory of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jianlong Zhou
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
- Department of Oncology, Guangxi International Zhuang Medicine Hospital, Nanning, China
| | - Yunxiao Lin
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Affiliated Xinhui Hospital, People’s Hospital of Xinhui District, Southern Medical University, Jiangmen, Guangdong Province, China
| |
Collapse
|
14
|
Zhang S, Mao M, Lv Y, Yang Y, He W, Song Y, Wang Y, Yang Y, Al Abo M, Freedman JA, Patierno SR, Wang Y, Wang Z. A widespread length-dependent splicing dysregulation in cancer. SCIENCE ADVANCES 2022; 8:eabn9232. [PMID: 35977015 PMCID: PMC9385142 DOI: 10.1126/sciadv.abn9232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Dysregulation of alternative splicing is a key molecular hallmark of cancer. However, the common features and underlying mechanisms remain unclear. Here, we report an intriguing length-dependent splicing regulation in cancers. By systematically analyzing the transcriptome of thousands of cancer patients, we found that short exons are more likely to be mis-spliced and preferentially excluded in cancers. Compared to other exons, cancer-associated short exons (CASEs) are more conserved and likely to encode in-frame low-complexity peptides, with functional enrichment in GTPase regulators and cell adhesion. We developed a CASE-based panel as reliable cancer stratification markers and strong predictors for survival, which is clinically useful because the detection of short exon splicing is practical. Mechanistically, mis-splicing of CASEs is regulated by elevated transcription and alteration of certain RNA binding proteins in cancers. Our findings uncover a common feature of cancer-specific splicing dysregulation with important clinical implications in cancer diagnosis and therapies.
Collapse
Affiliation(s)
- Sirui Zhang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miaowei Mao
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuesheng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Yingqun Yang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Tech University, Shanghai 200031, China
| | - Weijing He
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yun Yang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
15
|
Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun 2022; 13:3751. [PMID: 35768398 PMCID: PMC9242994 DOI: 10.1038/s41467-022-31327-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
Some circular RNAs (circRNAs) were found to be translated through IRES-driven mechanism, however the scope and functions of circRNA translation are unclear because endogenous IRESs are rare. To determine the prevalence and mechanism of circRNA translation, we develop a cell-based system to screen random sequences and identify 97 overrepresented hexamers that drive cap-independent circRNA translation. These IRES-like short elements are significantly enriched in endogenous circRNAs and sufficient to drive circRNA translation. We further identify multiple trans-acting factors that bind these IRES-like elements to initiate translation. Using mass-spectrometry data, hundreds of circRNA-coded peptides are identified, most of which have low abundance due to rapid degradation. As judged by mass-spectrometry, 50% of translatable endogenous circRNAs undergo rolling circle translation, several of which are experimentally validated. Consistently, mutations of the IRES-like element in one circRNA reduce its translation. Collectively, our findings suggest a pervasive translation of circRNAs, providing profound implications in translation control. Unbiased screen of random sequences identified many short IRES-like elements to drive circular RNA translation and hundreds of rolling circle translation events, suggesting a pervasive cap-independent translation in human transcriptome.
Collapse
Affiliation(s)
- Xiaojuan Fan
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yun Yang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China.,CirCode BioMedicine, Pudong, Shanghai, China
| | - Chuyun Chen
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Zefeng Wang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Shanghai, China. .,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Vo T, Brownmiller T, Hall K, Jones TL, Choudhari S, Grammatikakis I, Ludwig K, Caplen N. HNRNPH1 destabilizes the G-quadruplex structures formed by G-rich RNA sequences that regulate the alternative splicing of an oncogenic fusion transcript. Nucleic Acids Res 2022; 50:6474-6496. [PMID: 35639772 PMCID: PMC9226515 DOI: 10.1093/nar/gkac409] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the presence of physiological monovalent cations, thousands of RNA G-rich sequences can form parallel G-quadruplexes (G4s) unless RNA-binding proteins inhibit, destabilize, or resolve the formation of such secondary RNA structures. Here, we have used a disease-relevant model system to investigate the biophysical properties of the RNA-binding protein HNRNPH1's interaction with G-rich sequences. We demonstrate the importance of two EWSR1-exon 8 G-rich regions in mediating the exclusion of this exon from the oncogenic EWS-FLI1 transcripts expressed in a subset of Ewing sarcomas, using complementary analysis of tumor data, long-read sequencing, and minigene studies. We determined that HNRNPH1 binds the EWSR1-exon 8 G-rich sequences with low nM affinities irrespective of whether in a non-G4 or G4 state but exhibits different kinetics depending on RNA structure. Specifically, HNRNPH1 associates and dissociates from G4-folded RNA faster than the identical sequences in a non-G4 state. Importantly, we demonstrate using gel shift and spectroscopic assays that HNRNPH1, particularly the qRRM1-qRRM2 domains, destabilizes the G4s formed by the EWSR1-exon 8 G-rich sequences in a non-catalytic fashion. Our results indicate that HNRNPH1's binding of G-rich sequences favors the accumulation of RNA in a non-G4 state and that this contributes to its regulation of RNA processing.
Collapse
Affiliation(s)
- Tam Vo
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Hall
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sulbha Choudhari
- CCR-SF Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katelyn R Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Kumar J, Lackey L, Waldern JM, Dey A, Mustoe AM, Weeks KM, Mathews DH, Laederach A. Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing. eLife 2022; 11:73888. [PMID: 35695373 PMCID: PMC9236610 DOI: 10.7554/elife.73888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.
Collapse
Affiliation(s)
- Jayashree Kumar
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Lela Lackey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, United States
| | - Justin M Waldern
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Abhishek Dey
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center (THINC), and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, United States
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
18
|
Ehlers FAI, Olieslagers TI, Groeneweg M, Bos GMJ, Tilanus MGJ, Voorter CEM, Wieten L. Polymorphic differences within HLA-C alleles contribute to alternatively spliced transcripts lacking exon 5. HLA 2022; 100:232-243. [PMID: 35650170 PMCID: PMC9546215 DOI: 10.1111/tan.14695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/06/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
The HLA genes are amongst the most polymorphic in the human genome. Alternative splicing could add an extra layer of complexity, but has not been studied extensively. Here, we applied an RNA based approach to study the influence of allele polymorphism on alternative splicing of HLA‐C in peripheral blood. RNA was isolated from these peripheral cells, converted into cDNA and amplified specifically for 12 common HLA‐C allele groups. Through subsequent sequencing of HLA‐C, we observed alternative splicing variants of HLA‐C*04 and *16 that resulted in exon 5 skipping and were co‐expressed with the mature transcript. Investigation of intron 4 sequences of HLA‐C*04 and *16 compared with other HLA‐C alleles demonstrated no effect on predicted splice sites and branch point. To further investigate if the unique polymorphic positions in exon 5 of HLA‐C*04 or *16 may facilitate alternative splicing by acting on splicing regulatory elements (SRE), in‐silico splicing analysis was performed. While the HLA‐C*04 specific SNP in exon 5 had no effect on predicted exonic SRE, the HLA‐C*16 specific exon 5 SNP did alter exonic SRE. Our findings provide experimental and theoretical support for the concept that polymorphisms within the HLA‐C alleles influence the alternative splicing of HLA‐C.
Collapse
Affiliation(s)
- Femke A I Ehlers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Tumor Immunology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Tumor Immunology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marcel G J Tilanus
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Christina E M Voorter
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
19
|
p73α1, a p73 C-terminal isoform, regulates tumor suppression and the inflammatory response via Notch1. Proc Natl Acad Sci U S A 2022; 119:e2123202119. [PMID: 35617425 DOI: 10.1073/pnas.2123202119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Significance p73 is expressed as multiple C-terminal isoforms, but their expression and activity are largely unknown. Here, we identified p73α1 as a p73 C-terminal isoform that results from exon 12 (E12) exclusion. We showed that E12 deficiency in mice leads to systemic inflammation but not spontaneous tumors. We also showed that Notch1 is regulated by p73α1 and plays a critical role in p73-dependent tumor suppression and systemic inflammation.
Collapse
|
20
|
Wang X, Hua J, Li J, Zhang J, Dzakah EE, Cao G, Lin W. Mechanisms of non-coding RNA-modulated alternative splicing in cancer. RNA Biol 2022; 19:541-547. [PMID: 35427215 PMCID: PMC9037454 DOI: 10.1080/15476286.2022.2062846] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alternative splicing (AS) is a common and pivotal process for eukaryotic gene expression regulation, which enables a precursor RNA to produce multiple transcript variants with diverse cellular functions. Aberrant AS represents a hallmark of cancer, engaged in all stages of tumorigenesis from initiation to metastasis. Accumulating pieces of evidence have revealed the involvement of non-coding RNAs (ncRNAs) in regulating AS in human cancers. In this review, we overview the underlying mechanisms of non-coding RNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) modulated AS at diverse levels in human cancers, and summarize their regulatory functions in tumorigenesis.
Collapse
Affiliation(s)
- Xiaolin Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HIPS, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui, P. R. China
| | - Jinghan Hua
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jingxin Li
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jiahui Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Emmanuel Enoch Dzakah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Guozhen Cao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science (Hips), Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, HIPS, Chinese Academy of Sciences, Hefei, Anhui, P. R. China
- High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui, P. R. China
| |
Collapse
|
21
|
Yépez VA, Gusic M, Kopajtich R, Mertes C, Smith NH, Alston CL, Ban R, Beblo S, Berutti R, Blessing H, Ciara E, Distelmaier F, Freisinger P, Häberle J, Hayflick SJ, Hempel M, Itkis YS, Kishita Y, Klopstock T, Krylova TD, Lamperti C, Lenz D, Makowski C, Mosegaard S, Müller MF, Muñoz-Pujol G, Nadel A, Ohtake A, Okazaki Y, Procopio E, Schwarzmayr T, Smet J, Staufner C, Stenton SL, Strom TM, Terrile C, Tort F, Van Coster R, Vanlander A, Wagner M, Xu M, Fang F, Ghezzi D, Mayr JA, Piekutowska-Abramczuk D, Ribes A, Rötig A, Taylor RW, Wortmann SB, Murayama K, Meitinger T, Gagneur J, Prokisch H. Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Med 2022; 14:38. [PMID: 35379322 PMCID: PMC8981716 DOI: 10.1186/s13073-022-01019-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.
Collapse
Affiliation(s)
- Vicente A. Yépez
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Quantitative Biosciences Munich, Department of Biochemistry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Mirjana Gusic
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Mertes
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Nicholas H. Smith
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Rui Ban
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Skadi Beblo
- Department of Women and Child Health, Hospital for Children and Adolescents, Center for Pediatric Research Leipzig (CPL), Center for Rare Diseases, University Hospitals, University of Leipzig, Leipzig, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Blessing
- Department for Inborn Metabolic Diseases, Children’s and Adolescents’ Hospital, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elżbieta Ciara
- Department of Medical Genetics, Children’s Memorial Health Institute, Warsaw, Poland
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zürich, Switzerland
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Yoshihito Kishita
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Life Science, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Dominic Lenz
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Makowski
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Signe Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michaela F. Müller
- Department of Informatics, Technical University of Munich, Garching, Germany
| | - Gerard Muñoz-Pujol
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnieszka Nadel
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Akira Ohtake
- Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Elena Procopio
- Inborn Metabolic and Muscular Disorders Unit, Anna Meyer Children Hospital, Florence, Italy
| | - Thomas Schwarzmayr
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Christian Staufner
- Division of Neuropediatrics and Pediatric Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah L. Stenton
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M. Strom
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Caterina Terrile
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Frederic Tort
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Manting Xu
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fang Fang
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Johannes A. Mayr
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
| | | | - Antonia Ribes
- Section of Inborn Errors of Metabolism-IBC, Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain
| | - Agnès Rötig
- Université de Paris, Institut Imagine, INSERM UMR 1163, Paris, France
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
- NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP UK
| | - Saskia B. Wortmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- University Children’s Hospital, Paracelsus Medical University Salzburg, Salzburg, Austria
- Amalia Children’s Hospital, Radboudumc Nijmegen, Nijmegen, The Netherlands
| | - Kei Murayama
- Department of Metabolism, Chiba Children’s Hospital, Chiba, Japan
| | - Thomas Meitinger
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julien Gagneur
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Informatics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Pediatric Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
22
|
Pervasive misannotation of microexons that are evolutionarily conserved and crucial for gene function in plants. Nat Commun 2022; 13:820. [PMID: 35145097 PMCID: PMC8831610 DOI: 10.1038/s41467-022-28449-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
It is challenging to identify the smallest microexons (≤15-nt) due to their small size. Consequently, these microexons are often misannotated or missed entirely during genome annotation. Here, we develop a pipeline to accurately identify 2,398 small microexons in 10 diverse plant species using 990 RNA-seq datasets, and most of them have not been annotated in the reference genomes. Analysis reveals that microexons tend to have increased detained flanking introns that require post-transcriptional splicing after polyadenylation. Examination of 45 conserved microexon clusters demonstrates that microexons and associated gene structures can be traced back to the origin of land plants. Based on these clusters, we develop an algorithm to genome-wide model coding microexons in 132 plants and find that microexons provide a strong phylogenetic signal for plant organismal relationships. Microexon modeling reveals diverse evolutionary trajectories, involving microexon gain and loss and alternative splicing. Our work provides a comprehensive view of microexons in plants. The small size (≤15-nt) of micorexons poses difficulties for genome annotation and identification using standard RNA sequence mapping approaches. Here, the authors develop computational pipelines to discover and predict microexons in plants and reveal diverse evolutionary trajectories via genomewide microexon modeling.
Collapse
|
23
|
Gao Y, Lin KT, Jiang T, Yang Y, Rahman MA, Gong S, Bai J, Wang L, Sun J, Sheng L, Krainer AR, Hua Y. Systematic characterization of short intronic splicing-regulatory elements in SMN2 pre-mRNA. Nucleic Acids Res 2022; 50:731-749. [PMID: 35018432 PMCID: PMC8789036 DOI: 10.1093/nar/gkab1280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Intronic splicing enhancers and silencers (ISEs and ISSs) are two groups of splicing-regulatory elements (SREs) that play critical roles in determining splice-site selection, particularly for alternatively spliced introns or exons. SREs are often short motifs; their mutation or dysregulation of their cognate proteins frequently causes aberrant splicing and results in disease. To date, however, knowledge about SRE sequences and how they regulate splicing remains limited. Here, using an SMN2 minigene, we generated a complete pentamer-sequence library that comprises all possible combinations of 5 nucleotides in intron 7, at a fixed site downstream of the 5′ splice site. We systematically analyzed the effects of all 1023 mutant pentamers on exon 7 splicing, in comparison to the wild-type minigene, in HEK293 cells. Our data show that the majority of pentamers significantly affect exon 7 splicing: 584 of them are stimulatory and 230 are inhibitory. To identify actual SREs, we utilized a motif set enrichment analysis (MSEA), from which we identified groups of stimulatory and inhibitory SRE motifs. We experimentally validated several strong SREs in SMN1/2 and other minigene settings. Our results provide a valuable resource for understanding how short RNA sequences regulate splicing. Many novel SREs can be explored further to elucidate their mechanism of action.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Kuan-Ting Lin
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | - Tao Jiang
- Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Yang Yang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Mohammad A Rahman
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | - Shuaishuai Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jialin Bai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Li Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Junjie Sun
- Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Lei Sheng
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China.,Institute of Neuroscience, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, China
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, PO Box 100, Cold Spring Harbor, NY 11724, USA
| | - Yimin Hua
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
24
|
Saulnier O, Guedri-Idjouadiene K, Aynaud MM, Chakraborty A, Bruyr J, Pineau J, O'Grady T, Mirabeau O, Grossetête S, Galvan B, Claes M, Al Oula Hassoun Z, Sadacca B, Laud K, Zaïdi S, Surdez D, Baulande S, Rambout X, Tirode F, Dutertre M, Delattre O, Dequiedt F. ERG transcription factors have a splicing regulatory function involving RBFOX2 that is altered in the EWS-FLI1 oncogenic fusion. Nucleic Acids Res 2021; 49:5038-5056. [PMID: 34009296 PMCID: PMC8136815 DOI: 10.1093/nar/gkab305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023] Open
Abstract
ERG family proteins (ERG, FLI1 and FEV) are a subfamily of ETS transcription factors with key roles in physiology and development. In Ewing sarcoma, the oncogenic fusion protein EWS-FLI1 regulates both transcription and alternative splicing of pre-messenger RNAs. However, whether wild-type ERG family proteins might regulate splicing is unknown. Here, we show that wild-type ERG proteins associate with spliceosomal components, are found on nascent RNAs, and induce alternative splicing when recruited onto a reporter minigene. Transcriptomic analysis revealed that ERG and FLI1 regulate large numbers of alternative spliced exons (ASEs) enriched with RBFOX2 motifs and co-regulated by this splicing factor. ERG and FLI1 are associated with RBFOX2 via their conserved carboxy-terminal domain, which is present in EWS-FLI1. Accordingly, EWS-FLI1 is also associated with RBFOX2 and regulates ASEs enriched in RBFOX2 motifs. However, in contrast to wild-type ERG and FLI1, EWS-FLI1 often antagonizes RBFOX2 effects on exon inclusion. In particular, EWS-FLI1 reduces RBFOX2 binding to the ADD3 pre-mRNA, thus increasing its long isoform, which represses the mesenchymal phenotype of Ewing sarcoma cells. Our findings reveal a RBFOX2-mediated splicing regulatory function of wild-type ERG family proteins, that is altered in EWS-FLI1 and contributes to the Ewing sarcoma cell phenotype.
Collapse
Affiliation(s)
- Olivier Saulnier
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Katia Guedri-Idjouadiene
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| | - Marie-Ming Aynaud
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405 Orsay, France.,Équipe Labellisée Ligue Nationale Contre le Cancer, F-91405 Orsay, France
| | - Jonathan Bruyr
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| | - Joséphine Pineau
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Tina O'Grady
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| | - Olivier Mirabeau
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Sandrine Grossetête
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Bartimée Galvan
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| | - Margaux Claes
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| | - Zahra Al Oula Hassoun
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| | - Benjamin Sadacca
- INSERM U932, RT2Lab Team, Translational Research Department, PSL Research University, Institut Curie, F-75005 Paris, France.,CNRS UMR5219, Institut de Mathématiques de Toulouse; Université de Toulouse; F-31062 Toulouse, France
| | - Karine Laud
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Sakina Zaïdi
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie, PSL Research University, NGS Platform, 26 rue d'Ulm, F-75005 Paris, France
| | - Xavier Rambout
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| | - Franck Tirode
- Claude Bernard University Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Lyon University, Lyon, France
| | - Martin Dutertre
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, F-91405 Orsay, France.,Université Paris-Saclay, CNRS UMR3348, INSERM U1278, F-91405 Orsay, France.,Équipe Labellisée Ligue Nationale Contre le Cancer, F-91405 Orsay, France
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, PSL Research University, SIREDO Oncology Centre, Institut Curie, 75005 Paris, France
| | - Franck Dequiedt
- University of Liège, Interdisciplinary Cluster for Applied Genoproteomics (GIGA), Liège, Belgium.,University of Liège, GIGA-Molecular Biology of Diseases, Liège, Belgium
| |
Collapse
|
25
|
El Marabti E, Abdel-Wahab O. Therapeutic Modulation of RNA Splicing in Malignant and Non-Malignant Disease. Trends Mol Med 2021; 27:643-659. [PMID: 33994320 DOI: 10.1016/j.molmed.2021.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 01/24/2023]
Abstract
RNA splicing is the enzymatic process by which non-protein coding sequences are removed from RNA to produce mature protein-coding mRNA. Splicing is thereby a major mediator of proteome diversity as well as a dynamic regulator of gene expression. Genetic alterations disrupting splicing of individual genes or altering the function of splicing factors contribute to a wide range of human genetic diseases as well as cancer. These observations have resulted in the development of therapies based on oligonucleotides that bind to RNA sequences and modulate splicing for therapeutic benefit. In parallel, small molecules that bind to splicing factors to alter their function or modify RNA processing of individual transcripts are being pursued for monogenic disorders as well as for cancer.
Collapse
Affiliation(s)
- Ettaib El Marabti
- Clinical Transplant Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
26
|
Chao Y, Jiang Y, Zhong M, Wei K, Hu C, Qin Y, Zuo Y, Yang L, Shen Z, Zou C. Regulatory roles and mechanisms of alternative RNA splicing in adipogenesis and human metabolic health. Cell Biosci 2021; 11:66. [PMID: 33795017 PMCID: PMC8017860 DOI: 10.1186/s13578-021-00581-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) regulates gene expression patterns at the post-transcriptional level and generates a striking expansion of coding capacities of genomes and cellular protein diversity. RNA splicing could undergo modulation and close interaction with genetic and epigenetic machinery. Notably, during the adipogenesis processes of white, brown and beige adipocytes, AS tightly interplays with the differentiation gene program networks. Here, we integrate the available findings on specific splicing events and distinct functions of different splicing regulators as examples to highlight the directive biological contribution of AS mechanism in adipogenesis and adipocyte biology. Furthermore, accumulating evidence has suggested that mutations and/or altered expression in splicing regulators and aberrant splicing alterations in the obesity-associated genes are often linked to humans’ diet-induced obesity and metabolic dysregulation phenotypes. Therefore, significant attempts have been finally made to overview novel detailed discussion on the prospects of splicing machinery with obesity and metabolic disorders to supply featured potential management mechanisms in clinical applicability for obesity treatment strategies.
Collapse
Affiliation(s)
- Yunqi Chao
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yonghui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mianling Zhong
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Kaiyan Wei
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chenxi Hu
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yifang Qin
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Yiming Zuo
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Lili Yang
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Zheng Shen
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China
| | - Chaochun Zou
- Department of Endocrinology, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
27
|
Wang L, Wrobel JA, Xie L, Chen X. Protocol for proteogenomic dissection of intronic splicing enhancer interactome for prediction of individualized cancer prognosis. STAR Protoc 2021; 2:100338. [PMID: 33644773 PMCID: PMC7887646 DOI: 10.1016/j.xpro.2021.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Inter- or intra-patient tumor heterogeneity hinders the discovery of biomarkers for predicting individualized prognosis. Here, we present a protocol for an alternative splicing activity-based proteogenomic approach for identification of candidate prognostic markers in cancer cell lines and human breast cancer specimens. The pull-down of protein complexes with intronic splicing enhancer (ISE) probes is followed by tandem mass spectrometry (MS/MS) peptide sequencing. The proteogenomic analysis of data from these ISE-MS/MS assays identifies new prognostic markers that can be utilized to stratify patients with poor prognosis. For complete details on the use and execution of this protocol, please refer to Wang et al. (2018).
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John A. Wrobel
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Chen J, Liu Y, Min J, Wang H, Li F, Xu C, Gong A, Xu M. Alternative splicing of lncRNAs in human diseases. Am J Cancer Res 2021; 11:624-639. [PMID: 33791145 PMCID: PMC7994174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023] Open
Abstract
Alternative splicing (AS), a vital post-transcription process for eukaryote gene expression regulating, can efficiently improve gene utilization and increase the variety of RNA transcripts and proteins. However, AS of non-coding RNAs (ncRNAs) has not been paid enough attention to compared with that of protein-coding RNAs (mRNAs) for a long time. In fact, AS of ncRNAs, especially long noncoding RNAs (lncRNAs), also plays a significant regulatory role in the human disease. Recently, some bifunctional genes transcribed into both mRNA and lncRNA transcripts by AS have been observed. Here, we focus on the AS of lncRNAs and bifunctional genes producing lncRNA transcripts and propose a strategy for the future research of lncRNA AS.
Collapse
Affiliation(s)
- Jiaxi Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Yawen Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Jingyu Min
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Huizhi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Feifan Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Chunhui Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu UniversityZhenjiang 212001, Jiangsu, China
| |
Collapse
|
29
|
Jung H, Lee KS, Choi JK. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene 2021; 40:1347-1361. [PMID: 33420369 PMCID: PMC7892346 DOI: 10.1038/s41388-020-01614-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Previous studies studying mis-splicing mutations were based on exome data and thus our current knowledge is largely limited to exons and the canonical splice sites. To comprehensively characterise intronic mis-splicing mutations, we analysed 1134 pan-cancer whole genomes and transcriptomes together with 3022 normal control samples. The ratio-based splicing analysis resulted in 678 somatic intronic mutations, with 46% residing in deep introns. Among the 309 deep intronic single nucleotide variants, 245 altered core splicing codes, with 38% activating cryptic splice sites, 12% activating cryptic polypyrimidine tracts, and 36% and 12% disrupting authentic polypyrimidine tracts and branchpoints, respectively. All the intronic cryptic splice sites were created at pre-existing GT/AG dinucleotides or by GC-to-GT conversion. Notably, 85 deep intronic mutations indicated gain of splicing enhancers or loss of splicing silencers. We found that 64 tumour suppressors were affected by intronic mutations and blood cancers showed higher proportion of deep intronic mutations. In particular, a telomere maintenance gene, POT1, was recurrently mis-spliced by deep intronic mutations in blood cancers. We validated a pseudoexon activation involving a splicing silencer in POT1 by CRISPR/Cas9. Our results shed light on previously unappreciated mechanisms by which noncoding mutations acting on splicing codes in deep introns contribute to tumourigenesis.
Collapse
Affiliation(s)
- Hyunchul Jung
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK.
| | - Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam-si, Gyeongi-do, 13449, Republic of Korea.
| |
Collapse
|
30
|
Doshi J, Willis K, Madurga A, Stelzer C, Benenson Y. Multiple Alternative Promoters and Alternative Splicing Enable Universal Transcription-Based Logic Computation in Mammalian Cells. Cell Rep 2020; 33:108437. [PMID: 33264624 DOI: 10.1016/j.celrep.2020.108437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/04/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022] Open
Abstract
Multi-input logic gene circuits can enable sophisticated control of cell function, yet large-scale synthetic circuitry in mammalian cells has relied on post-transcriptional regulation or recombinase-triggered state transitions. Large-scale transcriptional logic, on the other hand, has been challenging to implement. Inspired by a naturally found regulatory strategy of using multiple alternative promoters, followed by alternative splicing, we developed a scalable and compact platform for transcriptional OR logic using inputs to those promoters. The platform is extended to implement disjunctive normal form (DNF) computations capable of implementing arbitrary logic rules. Specifically, AND logic is implemented at individual promoters using synergistic transcriptional inputs, and NOT logic via microRNA inputs targeting unique exon sequences driven by those promoters. Together, these regulatory programs result in DNF-like logic control of output gene expression. The approach offers flexibility for building complex logic programs in mammalian cells.
Collapse
Affiliation(s)
- Jiten Doshi
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Katie Willis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Angela Madurga
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Christoph Stelzer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
31
|
Joynt AT, Evans TA, Pellicore MJ, Davis-Marcisak EF, Aksit MA, Eastman AC, Patel SU, Paul KC, Osorio DL, Bowling AD, Cotton CU, Raraigh KS, West NE, Merlo CA, Cutting GR, Sharma N. Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies. PLoS Genet 2020; 16:e1009100. [PMID: 33085659 PMCID: PMC7605713 DOI: 10.1371/journal.pgen.1009100] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/02/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Elucidating the functional consequence of molecular defects underlying genetic diseases enables appropriate design of therapeutic options. Treatment of cystic fibrosis (CF) is an exemplar of this paradigm as the development of CFTR modulator therapies has allowed for targeted and effective treatment of individuals harboring specific genetic variants. However, the mechanism of these drugs limits effectiveness to particular classes of variants that allow production of CFTR protein. Thus, assessment of the molecular mechanism of individual variants is imperative for proper assignment of these precision therapies. This is particularly important when considering variants that affect pre-mRNA splicing, thus limiting success of the existing protein-targeted therapies. Variants affecting splicing can occur throughout exons and introns and the complexity of the process of splicing lends itself to a variety of outcomes, both at the RNA and protein levels, further complicating assessment of disease liability and modulator response. To investigate the scope of this challenge, we evaluated splicing and downstream effects of 52 naturally occurring CFTR variants (exonic = 15, intronic = 37). Expression of constructs containing select CFTR intronic sequences and complete CFTR exonic sequences in cell line models allowed for assessment of RNA and protein-level effects on an allele by allele basis. Characterization of primary nasal epithelial cells obtained from individuals harboring splice variants corroborated in vitro data. Notably, we identified exonic variants that result in complete missplicing and thus a lack of modulator response (e.g. c.2908G>A, c.523A>G), as well as intronic variants that respond to modulators due to the presence of residual normally spliced transcript (e.g. c.4242+2T>C, c.3717+40A>G). Overall, our data reveals diverse molecular outcomes amongst both exonic and intronic variants emphasizing the need to delineate RNA, protein, and functional effects of each variant in order to accurately assign precision therapies. Genetic variants that impact pre-mRNA splicing are a common cause of genetic disease and have varying downstream molecular consequences. As a result, precision therapies that function at the protein level are not always effective for these variants and thus careful assessment is necessary. Here we evaluate RNA-level effects of 52 variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and show that study of splicing and its consequences allows for more accurate assignment of precision therapies.
Collapse
Affiliation(s)
- Anya T. Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Taylor A. Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew J. Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily F. Davis-Marcisak
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melis A. Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alice C. Eastman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shivani U. Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Kathleen C. Paul
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Derek L. Osorio
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alyssa D. Bowling
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Calvin U. Cotton
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karen S. Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Natalie E. West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Christian A. Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (GRC); (NS)
| | - Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (GRC); (NS)
| |
Collapse
|
32
|
Riedmayr LM, Böhm S, Biel M, Becirovic E. Enigmatic rhodopsin mutation creates an exceptionally strong splice acceptor site. Hum Mol Genet 2020; 29:295-304. [PMID: 31816042 DOI: 10.1093/hmg/ddz291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/16/2023] Open
Abstract
The c.620 T > G mutation in rhodopsin found in the first mapped autosomal dominant retinitis pigmentosa (adRP) locus is associated with severe, early-onset RP. Intriguingly, another mutation affecting the same nucleotide (c.620 T > A) is related to a mild, late-onset RP. Assuming that both mutations are missense mutations (Met207Arg and Met207Lys) hampering the ligand-binding pocket, previous work addressed how they might differentially impair rhodopsin function. Here, we investigated the impact of both mutations at the mRNA and protein level in HEK293 cells and in the mouse retina. We show that, in contrast to c.620 T > A, c.620 T > G is a splicing mutation, which generates an exceptionally strong splice acceptor site (SAS) resulting in a 90 bp in-frame deletion and protein mislocalization in vitro and in vivo. Moreover, we identified the core element underlying the c.620 T > G SAS strength. Finally, we demonstrate that the c.620 T > G SAS is very flexible in branch point choice, which might explain its remarkable performance. Based on these results, we suggest that (i) point mutations should be routinely tested for mRNA splicing to avoid dispensable analysis of mutations on protein level, which do not naturally exist. (ii) Puzzling disease courses of mutations in other genes might also correlate with their effects on mRNA splicing. (iii) Flexibility in branch point choice might be another factor influencing the SAS strength. (iv) The core splice element identified in this study could be useful for biotechnological applications requiring effective SAS.
Collapse
Affiliation(s)
- Lisa M Riedmayr
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sybille Böhm
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
33
|
Xie Z, Tang L, Xie Z, Sun C, Shuai H, Zhou C, Liu Y, Yu M, Zheng Y, Meng L, Zhang W, Leal SM, Wang Z, Schrauwen I, Yuan Y. Splicing Characteristics of Dystrophin Pseudoexons and Identification of a Novel Pathogenic Intronic Variant in the DMD Gene. Genes (Basel) 2020; 11:genes11101180. [PMID: 33050418 PMCID: PMC7650627 DOI: 10.3390/genes11101180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudoexon (PE) inclusion has been implicated in various dystrophinopathies; however, its splicing characteristics have not been fully investigated. This study aims to analyze the splicing characteristics of dystrophin PEs and compare them with those of dystrophin canonical exons (CEs). Forty-two reported dystrophin PEs were divided into a splice site (ss) group and a splicing regulatory element (SRE) group. Five dystrophin PEs with characteristics of poison exons were identified and categorized as the possible poison exon group. The comparative analysis of each essential splicing signal among different groups of dystrophin PEs and dystrophin CEs revealed that the possible poison exon group had a stronger 3′ ss compared to any other group. As for auxiliary SREs, different groups of dystrophin PEs were found to have a smaller density of diverse types of exonic splicing enhancers and a higher density of several types of exonic splicing silencers compared to dystrophin CEs. In addition, the possible poison exon group had a smaller density of 3′ ss intronic splicing silencers compared to dystrophin CEs. To our knowledge, our findings indicate for the first time that poison exons might exist in DMD (the dystrophin gene) and present with different splicing characteristics than other dystrophin PEs and CEs.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Liuqin Tang
- Science and Technology, Running Gene Inc., Beijing 100085, China; (L.T.); (C.Z.)
| | - Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China;
| | - Chengyue Sun
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Haoyue Shuai
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; (H.S.); (S.M.L.)
| | - Chao Zhou
- Science and Technology, Running Gene Inc., Beijing 100085, China; (L.T.); (C.Z.)
| | - Yilin Liu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Suzanne M. Leal
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; (H.S.); (S.M.L.)
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Sergievsky Center, Taub Institute for Alzheimer’s Disease and the Aging Brain, and the Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; (H.S.); (S.M.L.)
- Correspondence: (I.S.); (Y.Y.)
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing 100034, China; (Z.X.); (C.S.); (Y.L.); (M.Y.); (Y.Z.); (L.M.); (W.Z.); (Z.W.)
- Correspondence: (I.S.); (Y.Y.)
| |
Collapse
|
34
|
Brandt M, Gokden A, Ziosi M, Lappalainen T. A polyclonal allelic expression assay for detecting regulatory effects of transcript variants. Genome Med 2020; 12:79. [PMID: 32912286 PMCID: PMC7488413 DOI: 10.1186/s13073-020-00777-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
We present an assay to experimentally test the regulatory effects of genetic variants within transcripts using CRISPR/Cas9 followed by targeted sequencing. We applied the assay to 32 premature stop-gained variants across the genome and in two Mendelian disease genes, 33 putative causal variants of eQTLs, and 62 control variants in HEK293T cells, replicating a subset of variants in HeLa cells. We detected significant effects in the expected direction (in 60% of variants), demonstrating the ability of the assay to capture regulatory effects of eQTL variants and nonsense-mediated decay triggered by premature stop-gained variants. The results suggest a utility for validating transcript-level effects of genetic variants.
Collapse
Affiliation(s)
- Margot Brandt
- New York Genome Center, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA
| | | | | | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA. .,Department of Systems Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
35
|
Sternburg EL, Karginov FV. Global Approaches in Studying RNA-Binding Protein Interaction Networks. Trends Biochem Sci 2020; 45:593-603. [DOI: 10.1016/j.tibs.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
|
36
|
Bai H, Chen B. Abnormal PTBP1 Expression Sustains the Disease Progression of Multiple Myeloma. DISEASE MARKERS 2020; 2020:4013658. [PMID: 32655719 PMCID: PMC7321530 DOI: 10.1155/2020/4013658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022]
Abstract
Multiple myeloma (MM) is a hematopoietic malignancy characterized by heterogeneity, which corresponds to alternative splicing (AS) profiles and disadjust gene expression. Bioinformatics analysis of AS factors possibly related to MM progression identified the polypyrimidine tract binding protein (PTBP1) as candidate. The purpose of this study was to confirm the incidence and prognostic value of PTBP1 in MM patients. Several cohorts of 2971 patients presenting newly diagnosed and relapsed MM were enrolled. Correlations between PTBP1 expression and clinicopathological characteristics, proliferative activity, and response to therapy of myeloma cells were analyzed. Moreover, the effect of PTBP1 on the AS pattern of specific aerobic glycolysis-related genes was explored in MM patients. Clinically, PTBP1 expression was present at all stages; it increased with disease progression and poor prognosis, which was even stronger elevated in patients with high tumor burden and drug resistance. Mechanistically, PTBP1 modulated AS of PKM2 and aerobic glycolysis-related genes in MM patients, which play synergistic or additive effects in clinical outcome. PTBP1 may be a novel marker for prognostic prediction and a promising therapeutic target for the development of anti-MM treatments.
Collapse
Affiliation(s)
- Hua Bai
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
37
|
Regulations on Messenger RNA: Wires and Nodes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:251-263. [PMID: 32185714 DOI: 10.1007/978-981-15-3266-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Somatic cells of an organism virtually share the same DNA but it is the timely expression of specific genes that determine their phenotype and cellular identity. A series of complex molecular machinery allows for the regulated process of RNA transcription, splicing, and translation. In addition, microRNAs and specialized RNA binding proteins can trigger the degradation of mRNAs. Long non-coding RNAs can also regulate mRNA fate in multiple ways. In this chapter, we reviewed the RNA processing mechanisms directly regulating immune checkpoint genes. We also cover RNA-based therapeutic strategies aiming at restoring immunity by targeting immune checkpoint genes.
Collapse
|
38
|
Chen Y, Lu Y, Ren Y, Yuan J, Zhang N, Kimball H, Zhou L, Yang M. Starvation-induced suppression of DAZAP1 by miR-10b integrates splicing control into TSC2-regulated oncogenic autophagy in esophageal squamous cell carcinoma. Theranostics 2020; 10:4983-4996. [PMID: 32308763 PMCID: PMC7163442 DOI: 10.7150/thno.43046] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/21/2020] [Indexed: 12/14/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of all incident esophageal cancers, with a 5-year survival rate of < 20%. Autophagy is of particular importance in cancers; however, the detailed regulatory mechanisms of oncogenic autophagy in ESCC have not been fully elucidated. In the present study, we address how splicing control of TSC2 is involved in mTOR-regulated oncogenic autophagy. Methods: Alternative splicing events controlled by DAZAP1 in ESCC cells were identified via RNAseq. Differential phosphorylation of short or long TSC2 splicing variants by AKT and their impacts on mTOR signaling were also examined. Results: We found that starvation-induced miR-10b could enhance autophagy via silencing DAZAP1, a key regulator of pre-mRNA alternative splicing. Intriguingly, we observed a large number of significantly changed alternative splicing events, especially exon skipping, upon RNAi of DAZAP1. TSC2 was verified as one of the crucial target genes of DAZAP1. Silencing of DAZAP1 led to the exclusion of TSC2 exon 26 (from Leu947 to Arg988), producing a short TSC2 isoform. The short TSC2 isoform cannot be phosphorylated at Ser981 by AKT, which resulted in continuous activation of TSC2 in ESCC. The active TSC2 inhibited mTOR via RHEB, leading to continually stimulated oncogenic autophagy of ESCC cells. Conclusions: Our data revealed an important physiological function of tumor suppressor DAZAP1 in autophagy regulation and highlighted the potential of controlling mRNA alternative splicing as an effective therapeutic application for cancers.
Collapse
|
39
|
Abrahams L, Hurst LD. A Depletion of Stop Codons in lincRNA is Owing to Transfer of Selective Constraint from Coding Sequences. Mol Biol Evol 2020; 37:1148-1164. [PMID: 31841162 PMCID: PMC7086181 DOI: 10.1093/molbev/msz299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the constraints on a gene’s sequence are often assumed to reflect the functioning of that gene, here we propose transfer selection, a constraint operating on one class of genes transferred to another, mediated by shared binding factors. We show that such transfer can explain an otherwise paradoxical depletion of stop codons in long intergenic noncoding RNAs (lincRNAs). Serine/arginine-rich proteins direct the splicing machinery by binding exonic splice enhancers (ESEs) in immature mRNA. As coding exons cannot contain stop codons in one reading frame, stop codons should be rare within ESEs. We confirm that the stop codon density (SCD) in ESE motifs is low, even accounting for nucleotide biases. Given that serine/arginine-rich proteins binding ESEs also facilitate lincRNA splicing, a low SCD could transfer to lincRNAs. As predicted, multiexon lincRNA exons are depleted in stop codons, a result not explained by open reading frame (ORF) contamination. Consistent with transfer selection, stop codon depletion in lincRNAs is most acute in exonic regions with the highest ESE density, disappears when ESEs are masked, is consistent with stop codon usage skews in ESEs, and is diminished in both single-exon lincRNAs and introns. Owing to low SCD, the maximum lengths of pseudo-ORFs frequently exceed null expectations. This has implications for ORF annotation and the evolution of de novo protein-coding genes from lincRNAs. We conclude that not all constraints operating on genes need be explained by the functioning of the gene but may instead be transferred owing to shared binding factors.
Collapse
Affiliation(s)
- Liam Abrahams
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
40
|
Pei Y, Lu M. Programmable RNA manipulation in living cells. Cell Mol Life Sci 2019; 76:4861-4867. [PMID: 31367845 PMCID: PMC11105762 DOI: 10.1007/s00018-019-03252-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
RNAs are responsible for mediating genetic information flow within the cell. RNA splicing, modification, trafficking, translation, and stability are all controlled at the transcript level. However, biological tools to study and manipulate them in a programmable fashion are currently limited. In this review, we summarize recent advances regarding available RNA-targeting systems discovered so far, including CRISPR-based technologies-Cas9 and Cas13, and programmable RNA-binding proteins-PUF and PPR. These tools allow transcript-specific manipulation in gene expression.
Collapse
Affiliation(s)
- Yu Pei
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mingxing Lu
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong.
| |
Collapse
|
41
|
Wheway G, Lord J, Baralle D. Splicing in the pathogenesis, diagnosis and treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194433. [PMID: 31698098 DOI: 10.1016/j.bbagrm.2019.194433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Primary cilia are essential signalling organelles found on the apical surface of epithelial cells, where they coordinate chemosensation, mechanosensation and light sensation. Motile cilia play a central role in establishing fluid flow in the respiratory tract, reproductive tract, brain ventricles and ear. Genetic defects affecting the structure or function of cilia can lead to a broad range of developmental and degenerative diseases known as ciliopathies. Splicing contributes to the pathogenesis, diagnosis and treatment of ciliopathies. Tissue-specific alternative splicing contributes to the tissue-specific manifestation of ciliopathy phenotypes, for example the retinal-specific effects of some genetic defects, due to specific transcript expression in the highly specialised ciliated cells of the retina, the photoreceptor cells. Ciliopathies can arise both as a result of genetic variants in spliceosomal proteins, or as a result of variants affecting splicing of specific cilia genes. Here we discuss the opportunities and challenges in diagnosing ciliopathies using RNA sequence analysis and the potential for treating ciliopathies in a relatively mutation-neutral way by targeting splicing. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Jenny Lord
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
42
|
Ptok J, Müller L, Theiss S, Schaal H. Context matters: Regulation of splice donor usage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194391. [PMID: 31202784 DOI: 10.1016/j.bbagrm.2019.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 11/16/2022]
Abstract
Elaborate research on splicing, starting in the late seventies, evolved from the discovery that 5' splice sites are recognized by their complementarity to U1 snRNA towards the realization that RNA duplex formation cannot be the sole basis for 5'ss selection. Rather, their recognition is highly influenced by a number of context factors including transcript architecture as well as splicing regulatory elements (SREs) in the splice site neighborhood. In particular, proximal binding of splicing regulatory proteins highly influences splicing outcome. The importance of SRE integrity especially becomes evident in the light of human pathogenic mutations where single nucleotide changes in SREs can severely affect the resulting transcripts. Bioinformatics tools nowadays greatly assist in the computational evaluation of 5'ss, their neighborhood and the impact of pathogenic mutations. Although predictions are already quite robust, computational evaluation of the splicing regulatory landscape still faces challenges to increase future reliability. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
43
|
Yong H, Zhao W, Zhou X, Liu Z, Tang Q, Shi H, Cheng R, Zhang X, Qiu Z, Zhu J, Feng Z. RNA-Binding Motif 4 (RBM4) Suppresses Tumor Growth and Metastasis in Human Gastric Cancer. Med Sci Monit 2019; 25:4025-4034. [PMID: 31145716 PMCID: PMC6559002 DOI: 10.12659/msm.914513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Dysregulation of the splicing activator, RNA-binding motif 4 (RBM4), has recently been reported to be involved in the progression of several cancers. However, the mechanisms that underpin the activity of RBM4 in gastric cancer (GC) remain unknown. The purpose of our study was to explore how RBM4 affects the biological behavior of GC through in vivo and in vitro experiments. MATERIAL AND METHODS Western blot and flow cytometry analyses were used to investigate the RBM4 protein levels in normal gastric epithelial cells and 5 types of GC cells. Cell Counting Kit-8 assay, flow cytometry analysis, wound-healing, and migration and invasion assays were evaluated in vitro in BGC823 and MGC803 GC cells. A xenograft tumor model was used to assess whether RBM4 inhibits GC growth in vivo. Mitogen-activated protein kinase (MAPK) protein levels were determined using western blot analyses. RESULTS Our study revealed that RBM4 protein was downregulated in GC cells. Re-expression of RBM4 inhibited the proliferation, migration, and invasion of GC cells, while promoting apoptosis. Thus, the overexpression of RBM4 can inhibit tumor growth in GC mouse models. We also report that RBM4 was involved in the activation of MAPK-dependent signaling pathways in human GC. CONCLUSIONS It is hoped that these findings will improve our understanding of GC pathogenesis while also helping us to explore the feasibility of RBM4-targeted therapy for GC treatment.
Collapse
Affiliation(s)
- Hongmei Yong
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xueyi Zhou
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Zhenyun Liu
- Sinobioway Cell Therapy Co., Ltd., Wuhu, Anhui, China (mainland)
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Huichang Shi
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Ronghui Cheng
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China (mainland)
| | - Xiao Zhang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Zhenning Qiu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu, China (mainland)
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu, China (mainland).,Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
44
|
Coomer AO, Black F, Greystoke A, Munkley J, Elliott DJ. Alternative splicing in lung cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194388. [PMID: 31152916 DOI: 10.1016/j.bbagrm.2019.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022]
Abstract
Lung cancer has the highest mortality rate of all cancers worldwide. Lung cancer is a very heterogeneous disease that is often diagnosed at later stages which have a poor prognosis. Aberrant alternative splicing patterns found in lung cancer contribute to important cell functions. These include changes in splicing for the BCL2L1, MDM2, MDM4, NUMB and MET genes during lung tumourigenesis, to affect pathways involved in apoptosis, cell proliferation and cellular cohesion. Global analyses of RNASeq datasets suggest there may be many more potentially influential aberrant splicing events that need to be investigated in lung cancer. Changes in expression of the splicing factors that regulate alternative splicing events have also been identified in lung cancer. Of these, changes in expression of QKI, RBM4, RBM5, RBM6, RBM10 and SRSF1 proteins regulate many of the most frequently referenced aberrant splicing events in lung cancer. The expanding list of genes known to be aberrantly spliced in lung cancer along with the altered expression of splicing factors that regulate them are providing new clues as to how lung cancer develops, and how these events can be exploited for better treatment. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Alice O Coomer
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| | - Fiona Black
- Cellular Pathology Department, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom of Great Britain and Northern Ireland
| | - Alastair Greystoke
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom of Great Britain and Northern Ireland
| | - Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
45
|
Takayama KI. Splicing Factors Have an Essential Role in Prostate Cancer Progression and Androgen Receptor Signaling. Biomolecules 2019; 9:biom9040131. [PMID: 30939845 PMCID: PMC6523118 DOI: 10.3390/biom9040131] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Although inhibition of the androgen–androgen receptor (AR) axis effectively represses the growth of prostate cancer, most of all cases eventually become castration-resistant prostate cancers (CRPCs). Enhancement of the expression of AR and its variants along with the downstream signals is important for disease progression. AR-V7, a constitutive active form of AR, is generated as a result of RNA splicing. RNA splicing creates multiple transcript variants from one pre-messenger RNA (mRNA) by removing introns/exons to allow mRNA translation. The molecular mechanisms leading to marked increases of AR and generation of AR-V7 have been unclear. However, recent papers highlighted the roles of RNA splicing factors which promote AR expression and production of variants. Notably, a broad range of splicing components were aberrantly regulated in CRPC tissues. Interestingly, expression of various spliceosome genes is enhanced by RNA-binding protein splicing factor proline- and glutamine-rich (PSF/SFPQ), leading to changes in the expression of AR transcript variants. Moreover, inhibition of several splicing factors repressed tumor growth in vivo. Altered expression of splicing factors is correlated to biochemical recurrence in prostate cancer patients. Thus, these findings suggest that splicing factors would be a potential therapeutic target. This review focuses on the emerging roles of splicing factors in prostate cancer progression and AR signaling.
Collapse
Affiliation(s)
- Ken-Ichi Takayama
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
- Department of Geriatric Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Japan.
| |
Collapse
|
46
|
Xia X. RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns. Methods 2019; 176:25-33. [PMID: 30926533 DOI: 10.1016/j.ymeth.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 01/21/2023] Open
Abstract
Introns in different genes, or even different introns within the same gene, often have different splice sites and differ in splicing efficiency (SE). One expects mass-transcribed genes to have introns with higher SE than weakly transcribed genes. However, such a simple expectation cannot be tested directly because variable SE for these genes is often not measured. Mechanistically, SE should depend on signal strength at key splice sites (SS) such as 5'SS, 3'SS and branchpoint site (BPS), i.e., SE = F(5'SS, 3'SS, BPS). However, without SE, we again cannot model how these splice sites contribute to SE. Here I present an RNA-Seq approach to quantify SE for each of the 304 introns in yeast (Saccharomyces cerevisiae) genes, including 24 in the 5'UTR, by measuring 1) number of reads mapped to exon-exon junctions (NEE) as a proxy for the abundance of spliced form, and 2) number of reads mapped to exon-intron junction (NEI5 and NEI3 at 5' and 3' ends of intron) as a proxy for the abundance of unspliced form. The total mRNA is NTotal = NEE + p * NEI5 + (1-p) * NEI3, with the simplest p = 0.5 but statistical methods were presented to estimate p from data. An estimated p is needed because NEI5 is expected to be smaller than NEI3 due to 1) step 1 splicing occurs before step 2 so EI5 is broken before EI3, 2) enrichment of poly(A) mRNA by oligo-dT, and 3) 5' degradation. SE is defined as the proportion (NEE/NTotal). Application of the method shows that ribosomal protein messages are efficiently and mostly cotranscriptionally spliced. Yeast genes with long introns are also spliced efficiently. HAC1/YFL031W is poorly spliced partly because its splicing involves a nonspliceosome mechanism and partly because Ire1p, which participate in splicing HAC1, is hardly expressed. Many putative yeast genes have low SE, and some splice sites are incorrectly annotated.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa K1N 6N5, Canada; Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
47
|
Coltri PP, Dos Santos MGP, da Silva GHG. Splicing and cancer: Challenges and opportunities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1527. [PMID: 30773852 DOI: 10.1002/wrna.1527] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Cancer arises from alterations in several metabolic processes affecting proliferation, growth, replication and death of cells. A fundamental challenge in the study of cancer biology is to uncover molecular mechanisms that lead to malignant cellular transformation. Recent genomic analyses revealed that many molecular alterations observed in cancers come from modifications in the splicing process, including mutations in pre-mRNA regulatory sequences, mutations in spliceosome components, and altered ratio of specific splicing regulators. While alterations in splice site preferences might generate alternative isoforms enabling different biological functions, these might also be responsible for nonfunctional isoforms that can eventually cause dysregulation in cellular processes. Molecular characteristics of regulatory sequences and proteins might also be important prognostic tools revealing a cancer-specific splicing pattern and linking splicing control to cancer development. The connection between cancer biology and splicing regulation is of primary importance to understand the mechanisms leading to disease and also to improve development of therapeutic approaches. Splicing modulation is being explored in new anti-cancer therapies and further investigation of targeted splicing factors is critical for the success of these strategies. This article is categorized under: RNA Processing > Splicing Mechanisms RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patricia P Coltri
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria G P Dos Santos
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Guilherme H G da Silva
- Department of Cell and Developmental Biology, Institute for Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Krchňáková Z, Thakur PK, Krausová M, Bieberstein N, Haberman N, Müller-McNicoll M, Staněk D. Splicing of long non-coding RNAs primarily depends on polypyrimidine tract and 5' splice-site sequences due to weak interactions with SR proteins. Nucleic Acids Res 2019; 47:911-928. [PMID: 30445574 PMCID: PMC6344860 DOI: 10.1093/nar/gky1147] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Many nascent long non-coding RNAs (lncRNAs) undergo the same maturation steps as pre-mRNAs of protein-coding genes (PCGs), but they are often poorly spliced. To identify the underlying mechanisms for this phenomenon, we searched for putative splicing inhibitory sequences using the ncRNA-a2 as a model. Genome-wide analyses of intergenic lncRNAs (lincRNAs) revealed that lincRNA splicing efficiency positively correlates with 5'ss strength while no such correlation was identified for PCGs. In addition, efficiently spliced lincRNAs have higher thymidine content in the polypyrimidine tract (PPT) compared to efficiently spliced PCGs. Using model lincRNAs, we provide experimental evidence that strengthening the 5'ss and increasing the T content in PPT significantly enhances lincRNA splicing. We further showed that lincRNA exons contain less putative binding sites for SR proteins. To map binding of SR proteins to lincRNAs, we performed iCLIP with SRSF2, SRSF5 and SRSF6 and analyzed eCLIP data for SRSF1, SRSF7 and SRSF9. All examined SR proteins bind lincRNA exons to a much lower extent than expression-matched PCGs. We propose that lincRNAs lack the cooperative interaction network that enhances splicing, which renders their splicing outcome more dependent on the optimality of splice sites.
Collapse
Affiliation(s)
- Zuzana Krchňáková
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Prasoon Kumar Thakur
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michaela Krausová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Nicole Bieberstein
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Nejc Haberman
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London W12 0NN, UK
| | | | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
49
|
Mao M, Hu Y, Yang Y, Qian Y, Wei H, Fan W, Yang Y, Li X, Wang Z. Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning. Cell Syst 2018; 7:510-520.e4. [PMID: 30414922 DOI: 10.1016/j.cels.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS) is generally regulated by trans-splicing factors that specifically bind to cis-elements in pre-mRNAs. The human genome encodes ∼1,500 RNA binding proteins (RBPs) that potentially regulate AS, yet their functions remain largely unknown. To explore their potential activities, we fused the putative functional domains of RBPs to a sequence-specific RNA-binding domain and systemically analyzed how these engineered factors affect splicing. We discovered that ∼80% of low-complexity domains in endogenous RBPs displayed distinct context-dependent activities in regulating splicing, indicating that AS is under more extensive regulation than previously expected. We developed a machine learning approach to classify and predict the activities of RBPs based on their sequence compositions and further validated this model using endogenous RBPs and synthetic polypeptides. These results represent a systematic inspection, modeling, prediction, and validation of how RBP sequences affect their activities in controlling splicing, paving the way for de novo engineering of artificial splicing factors.
Collapse
Affiliation(s)
- Miaowei Mao
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yue Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun Yang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yajie Qian
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huanhuan Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
50
|
|