1
|
Shinozaki K, Honda T, Yamaji K, Nishijima E, Ichi I, Yamane D. Impaired ApoB secretion triggers enhanced secretion of ApoE to maintain triglyceride homeostasis in hepatoma cells. J Lipid Res 2025; 66:100795. [PMID: 40180213 DOI: 10.1016/j.jlr.2025.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 03/22/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Apolipoprotein B (ApoB) is essential for the assembly and secretion of triglyceride (TG)-rich VLDL particles, and its dysfunction is linked to metabolic disorders, including dyslipidemia and liver steatosis. However, less attention has been paid to whether and how other apolipoproteins play redundant or compensatory roles when the ApoB function is compromised. Here, we investigated the effects of microsomal triglyceride transfer protein (MTP), which mediates lipidation of nascent ApoB, on ApoE function. We observed a paradoxical increase in ApoE secretion resulting from increased expression in MTP inhibitor (MTPi)-treated human hepatoma cells. This phenotype was recapitulated in APOB-knockout cells and was associated with impaired ApoB secretion. While MTP-dependent transfer of neutral lipids is dispensable for ApoE secretion, TG biosynthesis, redundantly catalyzed by DGAT1 and DGAT2, is required for efficient ApoE secretion in hepatoma cells. ApoE colocalizes with lipid droplets near the Golgi apparatus and mediates TG export in an ApoB-independent fashion. We found that simultaneous inhibition of both ApoE and ApoB, but not inhibition of either alone, led to TG accumulation in hepatoma cells, indicating that both proteins function redundantly to control TG content. Validation studies in primary human hepatocytes (PHHs) demonstrated DGAT2-dependent secretion of ApoE. While MTPi treatment did not elevate ApoE secretion, it induced increased sialylation of ApoE in the supernatants of PHHs. These results show that enhanced ApoE secretion compensates for the impaired ApoB function to maintain the lipid homeostasis, providing an alternative route to modulate lipid turnover in hepatoma cells.
Collapse
Affiliation(s)
- Kotomi Shinozaki
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Nutrition and Food Science, Ochanomizu University, Tokyo, Japan
| | - Tomoko Honda
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emi Nishijima
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan.
| |
Collapse
|
2
|
Efentakis P, Varela A, Lamprou S, Papanagnou ED, Chatzistefanou M, Christodoulou A, Davos CH, Gavriatopoulou M, Trougakos I, Dimopoulos MA, Terpos E, Andreadou I. Implications and hidden toxicity of cardiometabolic syndrome and early-stage heart failure in carfilzomib-induced cardiotoxicity. Br J Pharmacol 2024; 181:2964-2990. [PMID: 38679957 DOI: 10.1111/bph.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE Cancer therapy-related cardiovascular adverse events (CAEs) in presence of comorbidities, are in the spotlight of the cardio-oncology guidelines. Carfilzomib (Cfz), indicated for relapsed/refractory multiple myeloma (MM), presents with serious CAEs. MM is often accompanied with co-existing comorbidities. However, Cfz use in MM patients with cardiometabolic syndrome (CMS) or in heart failure with reduced ejection fraction (HFrEF), is questionable. EXPERIMENTAL APPROACH ApoE-/- and C57BL6/J male mice received 14 weeks Western Diet (WD) (CMS models). C57BL6/J male mice underwent permanent LAD ligation for 14 days (early-stage HFrEF model). CMS- and HFrEF-burdened mice received Cfz for two consecutive or six alternate days. Daily metformin and atorvastatin administrations were performed additionally to Cfz, as prophylactic interventions. Mice underwent echocardiography, while proteasome activity, biochemical and molecular analyses were conducted. KEY RESULTS CMS did not exacerbate Cfz left ventricular (LV) dysfunction, whereas Cfz led to metabolic complications in both CMS models. Cfz induced autophagy and Ca2+ homeostasis dysregulation, whereas metformin and atorvastatin prevented Cfz-mediated LV dysfunction and molecular deficits in the CMS-burdened myocardium. Early-stage HFrEF led to depressed LV function and increased protein phosphatase 2A (PP2A) activity. Cfz further increased myocardial PP2A activity, inflammation and Ca2+-cycling dysregulation. Metformin co-administration exerted an anti-inflammatory potential on the myocardium without improving LV function. CONCLUSION AND IMPLICATIONS CMS and HFrEF seem to exacerbate Cfz-induced CAEs, by presenting metabolism-related hidden toxicity and PP2A-related cardiac inflammation, respectively. Metformin retains its prophylactic potential in the presence of CMS, while mitigating inflammation and Ca2+ signalling dysregulation in the HFrEF myocardium.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Lamprou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michail Chatzistefanou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andriana Christodoulou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, Plasma Cell Dyscrasias Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis Trougakos
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasias Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, Plasma Cell Dyscrasias Unit, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
3
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
4
|
Huebbe P, Bilke S, Rueter J, Schloesser A, Campbel G, Glüer CC, Lucius R, Röcken C, Tholey A, Rimbach G. Human APOE4 Protects High-Fat and High-Sucrose Diet Fed Targeted Replacement Mice against Fatty Liver Disease Compared to APOE3. Aging Dis 2024; 15:259-281. [PMID: 37450924 PMCID: PMC10796091 DOI: 10.14336/ad.2023.0530] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Recent genome- and exome-wide association studies suggest that the human APOE ε4 allele protects against non-alcoholic fatty liver disease (NAFLD), while ε3 promotes hepatic steatosis and steatohepatitis. The present study aimed at examining the APOE genotype-dependent development of fatty liver disease and its underlying mechanisms in a targeted replacement mouse model. Male mice expressing the human APOE3 or APOE4 protein isoforms on a C57BL/6J background and unmodified C57BL/6J mice were chronically fed a high-fat and high-sucrose diet to induce obesity. After 7 months, body weight gain was more pronounced in human APOE than endogenous APOE expressing mice with elevated plasma biomarkers suggesting aggravated metabolic dysfunction. APOE3 mice exhibited the highest liver weights and, compared to APOE4, massive hepatic steatosis. An untargeted quantitative proteome analysis of the liver identified a high number of proteins differentially abundant in APOE3 versus APOE4 mice. The majority of the higher abundant proteins in APOE3 mice could be grouped to inflammation and damage-associated response, and lipid storage, amongst others. Results of the targeted qRT-PCR and Western blot analyses contribute to the overall finding that APOE3 as opposed to APOE4 promotes hepatic steatosis, inflammatory- and damage-associated response signaling and fibrosis in the liver of obese mice. Our experimental data substantiate the observation of an increased NAFLD-risk associated with the human APOEε3 allele, while APOEε4 appears protective. The underlying mechanisms of the protection possibly involve a higher capacity of nonectopic lipid deposition in subcutaneous adipose tissue and lower hepatic pathogen recognition in the APOE4 mice.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Stephanie Bilke
- Institute of Experimental Medicine, Proteomics & Bioanalytics, Kiel University, D-24105 Kiel, Germany.
| | - Johanna Rueter
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Anke Schloesser
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| | - Graeme Campbel
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, Kiel University, D-24118 Kiel, Germany.
| | - Claus-C. Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, Kiel University, D-24118 Kiel, Germany.
| | - Ralph Lucius
- Anatomical Institute, Kiel University, D-24118 Kiel, Germany.
| | - Christoph Röcken
- Department of Pathology, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, D-24105 Kiel, Germany.
| | - Andreas Tholey
- Institute of Experimental Medicine, Proteomics & Bioanalytics, Kiel University, D-24105 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Kiel University, D-24118 Kiel, Germany.
| |
Collapse
|
5
|
Wu F, Dorman B, Zeineddin A, Kozar RA. Fibrinogen Inhibits Metalloproteinase-9 Activation and Syndecan-1 Cleavage to Protect Lung Function in ApoE Null Mice After Hemorrhagic Shock. J Surg Res 2023; 288:208-214. [PMID: 37023568 PMCID: PMC10192037 DOI: 10.1016/j.jss.2023.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/05/2022] [Accepted: 02/18/2023] [Indexed: 04/08/2023]
Abstract
INTRODUCTION Obesity is associated with higher mortality following trauma, although the pathogenesis is unclear. Both obesity and trauma are associated with syndecan-1 shedding and metalloproteinase-9 (MMP-9) activation, which can adversely affect endothelial cell function. We recently demonstrated that fibrinogen stabilizes endothelial cell surface syndecan-1 to reduce shedding and maintain endothelial barrier integrity. We thus hypothesized that MMP-9 activation and syndecan-1 shedding would be exacerbated by obesity after trauma but attenuated by fibrinogen-based resuscitation. MATERIALS AND METHODS ApoE null (-/-) mice were fed a Western diet to induce obesity. Mice were subjected to hemorrhage shock and laparotomy then resuscitated with Lactated Ranger's (LR) or LR containing fibrinogen and compared to null and lean sham wild type mice. Mean arterial pressure (MAP) was monitored. Bronchial alveolar lavage protein as an indicator of permeability and lung histopathologic injury were assessed. Syndecan-1 protein and active MMP-9 protein were measured. RESULTS MAP was similar between lean sham and ApoE-/- sham mice. However, following hemorrhage, ApoE-/- mice resuscitated with fibrinogen had significantly higher MAP than LR mice. Lung histopathologic injury and permeability were increased in LR compared to fibrinogen resuscitated animals. Compared with lean sham mice, both active MMP-9 and cleaved syndecan-1 level were significantly higher in ApoE-/- sham mice. Resuscitation with fibrinogen but not lactated Ringers largely reduced these changes. CONCLUSIONS Fibrinogen as a resuscitative adjunct in ApoE-/- mice after hemorrhage shock augmented MAP and reduced histopathologic injury and lung permeability, suggesting fibrinogen protects the endothelium by inhibiting MMP-9-mediated syndecan-1 cleavage in obese mice.
Collapse
Affiliation(s)
- Feng Wu
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brooke Dorman
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ahmad Zeineddin
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rosemary Ann Kozar
- Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
6
|
Araujo LCC, Cruz AG, Camargo FN, Sucupira FG, Moreira GV, Matos SL, Amaral AG, Murata GM, Carvalho CRO, Camporez JP. Estradiol Protects Female ApoE KO Mice against Western-Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2023; 24:9845. [PMID: 37372993 DOI: 10.3390/ijms24129845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic steatohepatitis (NASH), is higher in men than in women of reproductive age, and postmenopausal women are especially susceptible to developing the disease. AIM we evaluated if female apolipoprotein E (ApoE) KO mice were protected against Western-diet (WD)-induced NASH. METHODS Female ovariectomized (OVX) ApoE KO mice or sham-operated (SHAM) mice were fed either a WD or a regular chow (RC) for 7 weeks. Additionally, OVX mice fed a WD were treated with either estradiol (OVX + E2) or vehicle (OVX). RESULTS Whole-body fat, plasma glucose, and plasma insulin were increased and associated with increased glucose intolerance in OVX mice fed a WD (OVX + WD). Plasma and hepatic triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) hepatic enzymes were also increased in the plasma of OVX + WD group, which was associated with hepatic fibrosis and inflammation. Estradiol replacement in OVX mice reduced body weight, body fat, glycemia, and plasma insulin associated with reduced glucose intolerance. Treatment also reduced hepatic triglycerides, ALT, AST, hepatic fibrosis, and inflammation in OVX mice. CONCLUSIONS These data support the hypothesis that estradiol protects OVX ApoE KO mice from NASH and glucose intolerance.
Collapse
Affiliation(s)
- Layanne C C Araujo
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Alessandra G Cruz
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Felipe N Camargo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Felipe G Sucupira
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Gabriela V Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Sandro L Matos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Andressa G Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gilson Masahiro Murata
- Department of Medicine, School of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Carla R O Carvalho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Joao Paulo Camporez
- Department of Physiology, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| |
Collapse
|
7
|
Ji A, Trumbauer AC, Noffsinger VP, de Beer FC, Webb NR, Tannock LR, Shridas P. Serum amyloid A augments the atherogenic effects of cholesteryl ester transfer protein. J Lipid Res 2023; 64:100365. [PMID: 37004910 PMCID: PMC10165456 DOI: 10.1016/j.jlr.2023.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Serum amyloid A (SAA) is predictive of CVD in humans and causes atherosclerosis in mice. SAA has many proatherogenic effects in vitro. However, HDL, the major carrier of SAA in the circulation, masks these effects. The remodeling of HDL by cholesteryl ester transfer protein (CETP) liberates SAA restoring its proinflammatory activity. Here, we investigated whether deficiency of SAA suppresses the previously described proatherogenic effect of CETP. ApoE-/- mice and apoE-/- mice deficient in the three acute-phase isoforms of SAA (SAA1.1, SAA2.1, and SAA3; "apoE-/- SAA-TKO") with and without adeno-associated virus-mediated expression of CETP were studied. There was no effect of CETP expression or SAA genotype on plasma lipids or inflammatory markers. Atherosclerotic lesion area in the aortic arch of apoE-/- mice was 5.9 ± 1.2%; CETP expression significantly increased atherosclerosis in apoE-/- mice (13.1 ± 2.2%). However, atherosclerotic lesion area in the aortic arch of apoE-/- SAA-TKO mice (5.1 ± 1.1%) was not significantly increased by CETP expression (6.2 ± 0.9%). The increased atherosclerosis in apoE-/- mice expressing CETP was associated with markedly increased SAA immunostaining in aortic root sections. Thus, SAA augments the atherogenic effects of CETP, which suggests that inhibiting CETP may be of particular benefit in patients with high SAA.
Collapse
Affiliation(s)
- Ailing Ji
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Andrea C Trumbauer
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Victoria P Noffsinger
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Frederick C de Beer
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Nancy R Webb
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lisa R Tannock
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA; Lexington Veterans Affairs Medical Center, Lexington, KY, USA
| | - Preetha Shridas
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Internal Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Chalfant JM, Howatt DA, Johnson VB, Tannock LR, Daugherty A, Pendergast JS. Chronic environmental circadian disruption increases atherosclerosis and dyslipidemia in female, but not male, ApolipoproteinE-deficient mice. Front Physiol 2023; 14:1167858. [PMID: 37064902 PMCID: PMC10090465 DOI: 10.3389/fphys.2023.1167858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Shift work chronically disrupts circadian rhythms and increases the risk of developing cardiovascular disease. However, the mechanisms linking shift work and cardiovascular disease are largely unknown. The goal of this study was to investigate the effects of chronically shifting the light-dark (LD) cycle, which models the disordered exposure to light that may occur during shift work, on atherosclerosis. Atherosclerosis is the progressive accumulation of lipid-filled lesions within the artery wall and is the leading cause of cardiovascular disease. We studied ApolipoproteinE-deficient (ApoE -/- ) mice that are a well-established model of atherosclerosis. Male and female ApoE -/- mice were housed in control 12L:12D or chronic LD shift conditions for 12 weeks and fed low-fat diet. In the chronic LD shift condition, the light-dark cycle was advanced by 6 h every week. We found that chronic LD shifts exacerbated atherosclerosis in female, but not male, ApoE -/- mice. In females, chronic LD shifts increased total serum cholesterol concentrations with increased atherogenic VLDL/LDL particles. Chronic LD shifts did not affect food intake, activity, or body weight in male or female ApoE -/- mice. We also examined eating behavior in female ApoE -/- mice since aberrant meal timing has been linked to atherosclerosis. The phases of eating behavior rhythms, like locomotor activity rhythms, gradually shifted to the new LD cycle each week in the chronic LD shift group, but there was no effect of the LD shift on the amplitudes of the eating rhythms. Moreover, the duration of fasting intervals was not different in control 12L:12D compared to chronic LD shift conditions. Together these data demonstrate that female ApoE -/- mice have increased atherosclerosis when exposed to chronic LD shifts due to increased VLDL/LDL cholesterol, independent of changes in energy balance or feeding-fasting cycles.
Collapse
Affiliation(s)
- Jeffrey M. Chalfant
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | | | - Lisa R. Tannock
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Department of Veterans Affairs, Lexington, KY, United States
- Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, United States
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Julie S. Pendergast
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
9
|
Prenylcysteine Oxidase 1 Is a Key Regulator of Adipogenesis. Antioxidants (Basel) 2023; 12:antiox12030542. [PMID: 36978789 PMCID: PMC10045348 DOI: 10.3390/antiox12030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The process of adipogenesis involves the differentiation of preadipocytes into mature adipocytes. Excessive adipogenesis promotes obesity, a condition that increasingly threatens global health and contributes to the rapid rise of obesity-related diseases. We have recently shown that prenylcysteine oxidase 1 (PCYOX1) is a regulator of atherosclerosis-disease mechanisms, which acts through mechanisms not exclusively related to its pro-oxidant activity. To address the role of PCYOX1 in the adipogenic process, we extended our previous observations confirming that Pcyox1−/−/Apoe−/− mice fed a high-fat diet for 8 or 12 weeks showed significantly lower body weight, when compared to Pcyox1+/+/Apoe−/− mice, due to an evident reduction in visceral adipose content. We herein assessed the role of PCYOX1 in adipogenesis. Here, we found that PCYOX1 is expressed in adipose tissue, and, independently from its pro-oxidant enzymatic activity, is critical for adipogenesis. Pcyox1 gene silencing completely prevented the differentiation of 3T3-L1 preadipocytes, by acting as an upstream regulator of several key players, such as FABP4, PPARγ, C/EBPα. Proteomic analysis, performed by quantitative label-free mass spectrometry, further strengthened the role of PCYOX1 in adipogenesis by expanding the list of its downstream targets. Finally, the absence of Pcyox1 reduces the inflammatory markers in adipose tissue. These findings render PCYOX1 a novel adipogenic factor with possible pathophysiological or therapeutic potential.
Collapse
|
10
|
Khalili L, Centner AM, Salazar G. Effects of Berries, Phytochemicals, and Probiotics on Atherosclerosis through Gut Microbiota Modification: A Meta-Analysis of Animal Studies. Int J Mol Sci 2023; 24:ijms24043084. [PMID: 36834497 PMCID: PMC9960548 DOI: 10.3390/ijms24043084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Atherosclerosis is a major cause of death and disability. The beneficial effects of phytochemicals and probiotics on atherosclerosis have gained significant interest since these functional foods can improve inflammation, oxidative stress, and microbiome dysbiosis. The direct effect of the microbiome in atherosclerosis, however, needs further elucidation. The objective of this work was to investigate the effects of polyphenols, alkaloids, and probiotics on atherosclerosis using a meta-analysis of studies with mouse models of atherosclerosis. Identification of eligible studies was conducted through searches on PubMed, Embase, Web of Science, and Science Direct until November 2022. The results showed that phytochemicals reduced atherosclerosis, which was significant in male mice, but not in females. Probiotics, on the other hand, showed significant reductions in plaque in both sexes. Berries and phytochemicals modulated gut microbial composition by reducing the Firmicutes/Bacteroidetes (F/B) ratio and by upregulating health-promoting bacteria, including Akkermansia muciniphila. This analysis suggests that phytochemicals and probiotics can reduce atherosclerosis in animal models, with a potentially greater effect on male animals. Thus, consumption of functional foods rich in phytochemicals as well as probiotics are viable interventions to improve gut health and reduce plaque burden in patients suffering from cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Leila Khalili
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Ann Marie Centner
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
- Center for Advancing Exercise and Nutrition Research on Aging (CAENRA), Florida State University, Tallahassee, FL 32306, USA
- Correspondence:
| |
Collapse
|
11
|
Qiao S, Liu C, Sun L, Wang T, Dai H, Wang K, Bao L, Li H, Wang W, Liu SJ, Liu H. Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nat Metab 2022; 4:1271-1286. [PMID: 36253620 DOI: 10.1038/s42255-022-00649-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 08/30/2022] [Indexed: 01/20/2023]
Abstract
Obesity, dyslipidemia and gut dysbiosis are all linked to cardiovascular diseases. A Ganoderma meroterpene derivative (GMD) has been shown to alleviate obesity and hyperlipidemia through modulating the gut microbiota in obese mice. Here we show that GMD protects against obesity-associated atherosclerosis by increasing the abundance of Parabacteroides merdae in the gut and enhancing branched-chain amino acid (BCAA) catabolism. Administration of live P. merdae to high-fat-diet-fed ApoE-null male mice reduces atherosclerotic lesions and enhances intestinal BCAA degradation. The degradation of BCAAs is mediated by the porA gene expressed in P. merdae. Deletion of porA from P. merdae blunts its capacity to degrade BCAAs and leads to inefficacy in fighting against atherosclerosis. We further show that P. merdae inhibits the mTORC1 pathway in atherosclerotic plaques. In support of our preclinical findings, an in silico analysis of human gut metagenomic studies indicates that P. merdae and porA genes are depleted in the gut microbiomes of individuals with atherosclerosis. Our results provide mechanistic insights into the therapeutic potential of GMD through P. merdae in treating obesity-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Shanshan Qiao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Li Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Tao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kai Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Li Bao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Hantian Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Shuang-Jiang Liu
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
| | - Hongwei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
12
|
Serum Amyloid A is not obligatory for high-fat, high-sucrose, cholesterol-fed diet-induced obesity and its metabolic and inflammatory complications. PLoS One 2022; 17:e0266688. [PMID: 35436297 PMCID: PMC9015120 DOI: 10.1371/journal.pone.0266688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Several studies in the past have reported positive correlations between circulating Serum amyloid A (SAA) levels and obesity. However, based on limited number of studies involving appropriate mouse models, the role of SAA in the development of obesity and obesity-related metabolic consequences has not been established. Accordingly, herein, we have examined the role of SAA in the development of obesity and its associated metabolic complications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1 and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet. Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid metabolism or adipose tissue inflammation. However, there was a modest effect on glucose metabolism. The results of this study confirm previous findings that SAA levels are elevated in adipose tissues as well as in the circulation in diet-induced obese mice. However, the three acute phase SAAs do not play a causative role in the development of obesity or obesity-associated adipose tissue inflammation and dyslipidemia.
Collapse
|
13
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
14
|
Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci 2022; 23:ijms23020786. [PMID: 35054972 PMCID: PMC8775991 DOI: 10.3390/ijms23020786] [Citation(s) in RCA: 638] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic syndrome (MetS) forms a cluster of metabolic dysregulations including insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension. The pathogenesis of MetS encompasses multiple genetic and acquired entities that fall under the umbrella of insulin resistance and chronic low-grade inflammation. If left untreated, MetS is significantly associated with an increased risk of developing diabetes and cardiovascular diseases (CVDs). Given that CVDs constitute by far the leading cause of morbidity and mortality worldwide, it has become essential to investigate the role played by MetS in this context to reduce the heavy burden of the disease. As such, and while MetS relatively constitutes a novel clinical entity, the extent of research about the disease has been exponentially growing in the past few decades. However, many aspects of this clinical entity are still not completely understood, and many questions remain unanswered to date. In this review, we provide a historical background and highlight the epidemiology of MetS. We also discuss the current and latest knowledge about the histopathology and pathophysiology of the disease. Finally, we summarize the most recent updates about the management and the prevention of this clinical syndrome.
Collapse
|
15
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2021; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
16
|
Dragoljevic D, Veiga CB, Michell DL, Shihata WA, Al-Sharea A, Head GA, Murphy AJ, Kraakman MJ, Lee MKS. A spontaneously hypertensive diet-induced atherosclerosis-prone mouse model of metabolic syndrome. Biomed Pharmacother 2021; 139:111668. [PMID: 34243630 DOI: 10.1016/j.biopha.2021.111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic Syndrome (MetS) is a complex and multifactorial condition often characterised by obesity, hypertension, hyperlipidaemia, insulin resistance, glucose intolerance and fasting hyperglycaemia. Collectively, MetS can increase the risk of atherosclerotic-cardiovascular disease, which is the leading cause of death worldwide. However, no animal model currently exists to study MetS in the context of atherosclerosis. In this study we developed a pre-clinical mouse model that recapitulates the spectrum of MetS features while developing atherosclerosis. When BPHx mice were placed on a western type diet for 16 weeks, all the classical characteristics of MetS were observed. Comprehensive metabolic analyses and atherosclerotic imaging revealed BPHx mice to be obese and hypertensive, with elevated total plasma cholesterol and triglyceride levels, that accelerated atherosclerosis. Altogether, we demonstrate that the BPHx mouse has all the major components of MetS, and accelerates the development of atherosclerosis.
Collapse
Affiliation(s)
- Dragana Dragoljevic
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | - Camilla Bertuzzo Veiga
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia
| | | | - Waled A Shihata
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Annas Al-Sharea
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia
| | | | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; The University of Melbourne, Melbourne, VIC, Australia; Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Biphasic Production of Anti-ApoB100 Autoantibodies in Obese Humans and Mice. Pharmaceuticals (Basel) 2021; 14:ph14040330. [PMID: 33916621 PMCID: PMC8065440 DOI: 10.3390/ph14040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 12/03/2022] Open
Abstract
Obesity is associated with autoimmunity, a phenomenon considered as harmful. Here we show that obese mice and humans produce IgG-type autoantibodies that specifically recognize apolipoprotein B-100 (ApoB100), its native epitope p210, and the synthetic p210 mimotope pB1. By contrast, antibodies against epitopes p45 and p240, which have been associated with atherosclerosis, were not detected in either the humans or mice. In a longitudinal analysis of high fat diet-fed mice, autoantibody production rose with increasing body weight, then decreased and plateaued at morbid obesity. Likewise, in a cross-sectional analysis of sera from 148 human volunteers spanning a wide BMI range and free of comorbidities, the immunoreactivity increased and then decreased with increasing BMI. Thus, the obesity-related ApoB100-specific natural autoantibodies characteristically showed the same epitope recognition, IgG-type, and biphasic serum levels in humans and mice. We previously reported that a pB1-based vaccine induces similar antibodies and can prevent obesity in mice. Therefore, our present results suggest that autoantibodies directed against native ApoB100 may mitigate obesity, and that the vaccination approach may be effective in humans.
Collapse
|
18
|
Administration of Protein Hydrolysates from Anchovy ( Engraulis Encrasicolus) Waste for Twelve Weeks Decreases Metabolic Dysfunction-Associated Fatty Liver Disease Severity in ApoE -/-Mice. Animals (Basel) 2020; 10:ani10122303. [PMID: 33291840 PMCID: PMC7762029 DOI: 10.3390/ani10122303] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasing concern worldwide. It currently represents the main cause of chronic liver disease in humans in Western countries. Nutritional strategies based on fish-rich diets are considered helpful in the prevention of MAFLD, and are also thought to be beneficial for human health. In particular, cholesterol- and triacylglycerol-lowering effects are associated with fish-derived proteins or hydrolysates. Our findings suggest that supplementing the diet with 10% (w/w) anchovy protein hydrolysates has an anti-obesity effect together with an improvement in lipid metabolism and a reduction in liver fat content and high-fat diet-induced liver disease. By virtue of their nutritional value and functional proprieties, anchovy by-product protein hydrolysates may be an efficient nutritional strategy in MAFLD prevention and treatment. Abstract Metabolic dysfunction-associated fatty liver disease (MAFLD) includes several diseases, ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. Fish-rich diets are considered helpful in the prevention of MAFLD, and the enzymatic hydrolysis of fish waste has been explored as a means of obtaining high-value protein hydrolysates, which have been proven to exert beneficial bioactivities including anti-obesity and hypocholesterol effects. This study aimed to assess the effect of the administration of protein hydrolysates from anchovy waste (APH) for 12 weeks on attenuated high-fat diet-induced MAFLD in apolipoprotein E-knockout mice (ApoE–/–). Thirty ApoE–/– mice were divided into two groups (n = 15/group) and fed a high-fat diet (HFD), with and without the addition of 10% (w/w) APH. After 12 weeks, serum and hepatic lipid profiles, hepatic enzyme activities, liver histology and immunohistochemistry were analyzed to assess hepatic steatosis, inflammation and fibrosis. Twelve-weeks on a 10% (w/w) APH diet reduces total cholesterol and triglyceride serum levels, hepatic enzyme activity and hepatic triacylglycerol content (p < 0.0001), and results in a reduction in hepatic fat accumulation and macrophage recruitment (p < 0.0001). The results suggest that a 10% APH diet has an anti-obesity effect, with an improvement in lipid metabolism, hepatic steatosis and liver injury as a result of a high-fat diet. Protein hydrolysates from fish waste may represent an efficient nutritional strategy in several diseases, and their use as nutraceuticals is worthy of future investigation.
Collapse
|
19
|
Gwon MH, Im YS, Seo AR, Kim KY, Moon HR, Yun JM. Phenethyl Isothiocyanate Protects against High Fat/Cholesterol Diet-Induced Obesity and Atherosclerosis in C57BL/6 Mice. Nutrients 2020; 12:nu12123657. [PMID: 33261070 PMCID: PMC7761196 DOI: 10.3390/nu12123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study concerns obesity-related atherosclerosis, hyperlipidemia, and chronic inflammation. We studied the anti-obesity and anti-atherosclerosis effects of phenethyl isothiocyanate (PEITC) and explored their underlying mechanisms. We established an animal model of high fat/cholesterol-induced obesity in C57BL/6 mice fed for 13 weeks. We divided the mice into five groups: control (CON), high fat/cholesterol (HFCD), HFCD with 3 mg/kg/day gallic acid (HFCD + G), and HFCD with PEITC (30 and 75 mg/kg/day; HFCD + P30 and P75). The body weight, total cholesterol, and triglyceride were significantly lower in the HFCD + P75 group than in the HFCD group. Hepatic lipid accumulation and atherosclerotic plaque formation in the aorta were significantly lower in both HFCD + PEITC groups than in the HFCD group, as revealed by hematoxylin and eosin (H&E) staining. To elucidate the mechanism, we identified the expression of genes related to inflammation, reverse cholesterol transport, and lipid accumulation pathway in the liver. The expression levels of peroxisome proliferator activated receptor gamma (PPARγ), liver-X-receptor α (LXR-α), and ATP binding cassette subfamily A member 1 (ABCA1) were increased, while those of scavenger receptor A (SR-A1), cluster of differentiation 36 (CD36), and nuclear factor-kappa B (NF-κB) were decreased in the HFCD + P75 group compared with those in the HFCD group. Moreover, PEITC modulated H3K9 and H3K27 acetylation, H3K4 dimethylation, and H3K27 di-/trimethylation in the HFCD + P75 group. We, therefore, suggest that supplementation with PEITC may be a potential candidate for the treatment and prevention of atherosclerosis and obesity.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Sun Im
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - A-Reum Seo
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Kyoung Yun Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
- Correspondence: ; Tel.: +82-62-530-1332
| |
Collapse
|
20
|
Obesity Drives Delayed Infarct Expansion, Inflammation, and Distinct Gene Networks in a Mouse Stroke Model. Transl Stroke Res 2020; 12:331-346. [PMID: 32588199 DOI: 10.1007/s12975-020-00826-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023]
Abstract
Obesity is associated with chronic peripheral inflammation, is a risk factor for stroke, and causes increased infarct sizes. To characterize how obesity increases infarct size, we fed a high-fat diet to wild-type C57BL/6J mice for either 6 weeks or 15 weeks and then induced distal middle cerebral artery strokes. We found that infarct expansion happened late after stroke. There were no differences in cortical neuroinflammation (astrogliosis, microgliosis, or pro-inflammatory cytokines) either prior to or 10 h after stroke, and also no differences in stroke size at 10 h. However, by 3 days after stroke, animals fed a high-fat diet had a dramatic increase in microgliosis and astrogliosis that was associated with larger strokes and worsened functional recovery. RNA sequencing revealed a dramatic increase in inflammatory genes in the high-fat diet-fed animals 3 days after stroke that were not present prior to stroke. Genetic pathways unique to diet-induced obesity were primarily related to adaptive immunity, extracellular matrix components, cell migration, and vasculogenesis. The late appearance of neuroinflammation and infarct expansion indicates that there may be a therapeutic window between 10 and 36 h after stroke where inflammation and obesity-specific transcriptional programs could be targeted to improve outcomes in people with obesity and stroke.
Collapse
|
21
|
Chalfant JM, Howatt DA, Tannock LR, Daugherty A, Pendergast JS. Circadian disruption with constant light exposure exacerbates atherosclerosis in male ApolipoproteinE-deficient mice. Sci Rep 2020; 10:9920. [PMID: 32555251 PMCID: PMC7303111 DOI: 10.1038/s41598-020-66834-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
Disruption of the circadian system caused by disordered exposure to light is pervasive in modern society and increases the risk of cardiovascular disease. The mechanisms by which this happens are largely unknown. ApolipoproteinE-deficient (ApoE−/−) mice are studied commonly to elucidate mechanisms of atherosclerosis. In this study, we determined the effects of light-induced circadian disruption on atherosclerosis in ApoE−/− mice. We first characterized circadian rhythms of behavior, light responsiveness, and molecular timekeeping in tissues from ApoE−/− mice that were indistinguishable from rhythms in ApoE+/+ mice. These data showed that ApoE−/− mice had no inherent circadian disruption and therefore were an appropriate model for our study. We next induced severe disruption of circadian rhythms by exposing ApoE−/− mice to constant light for 12 weeks. Constant light exposure exacerbated atherosclerosis in male, but not female, ApoE−/− mice. Male ApoE−/− mice exposed to constant light had increased serum cholesterol concentrations due to increased VLDL/LDL fractions. Taken together, these data suggest that ApoE−/− mice are an appropriate model for studying light-induced circadian disruption and that exacerbated dyslipidemia may mediate atherosclerotic lesion formation caused by constant light exposure.
Collapse
Affiliation(s)
| | - Deborah A Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa R Tannock
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA.,Department of Veterans Affairs, Lexington, Kentucky, USA.,Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA.,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Julie S Pendergast
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA. .,Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, USA. .,Barnstable Brown Diabetes Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
22
|
Neyrinck AM, Catry E, Taminiau B, Cani PD, Bindels LB, Daube G, Dessy C, Delzenne NM. Chitin-glucan and pomegranate polyphenols improve endothelial dysfunction. Sci Rep 2019; 9:14150. [PMID: 31578395 PMCID: PMC6775069 DOI: 10.1038/s41598-019-50700-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
The vascular dysfunction is the primary event in the occurrence of cardio-vascular risk, and no treatment exists until now. We tested for the first time the hypothesis that chitin-glucan (CG) - an insoluble fibre with prebiotic properties- and polyphenol-rich pomegranate peel extract (PPE) can improve endothelial and inflammatory disorders in a mouse model of cardiovascular disease (CVD), namely by modulating the gut microbiota. Male Apolipoprotein E knock-out (ApoE-/-) mice fed a high fat (HF) diet developed a significant endothelial dysfunction attested by atherosclerotic plaques and increasing abundance of caveolin-1 in aorta. The supplementation with CG + PPE in the HF diet reduced inflammatory markers both in the liver and in the visceral adipose tissue together with a reduction of hepatic triglycerides. In addition, it increased the activating form of endothelial NO-synthase in mesenteric arteries and the heme-nitrosylated haemoglobin (Hb-NO) blood levels as compared with HF fed ApoE-/- mice, suggesting a higher capacity of mesenteric arteries to produce nitric oxide (NO). This study allows to pinpoint gut bacteria, namely Lactobacillus and Alistipes, that could be implicated in the management of endothelial and inflammatory dysfunctions associated with CVD, and to unravel the role of nutrition in the modulation of those bacteria.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Emilie Catry
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Catholic University of Louvain for Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition research group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
23
|
Flanagan TW, Sebastian MN, Battaglia DM, Foster TP, Maillet EL, Nichols CD. Activation of 5-HT 2 Receptors Reduces Inflammation in Vascular Tissue and Cholesterol Levels in High-Fat Diet-Fed Apolipoprotein E Knockout Mice. Sci Rep 2019; 9:13444. [PMID: 31530895 PMCID: PMC6748996 DOI: 10.1038/s41598-019-49987-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/25/2019] [Indexed: 01/14/2023] Open
Abstract
Coronary artery disease (CAD) is a progressive cardiovascular syndrome characterized by cholesterol-induced focal arterial lesions that impair oxygen delivery to the heart. As both innate and adaptive immune cells play critical roles in the formation and progression of arterial plaques and endothelial cell dysfunction, CAD is commonly viewed as a chronic inflammatory disorder. Our lab has previously discovered that 5-HT2A receptor activation with the 5-HT2 receptor selective agonist (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] has potent anti-inflammatory activity in both cell culture and whole animal models. Here we have examined the putative therapeutic effects of (R)-DOI in the ApoE−/− high fat model of cardiovascular disease. Subcutaneously implanted osmotic minipumps were used to infuse sustained low rates (0.15 μg / hr) of (R)-DOI∙HCl to mice fed a high-fat “Western” diet. (R)-DOI treated mice had significant reductions in expression levels of mRNA for inflammatory markers like Il6 in vascular tissue, normalized glucose homeostasis, and reduced circulating cholesterol levels. As cardiovascular disease is a leading cause of death both globally and in the Western world, activation of 5-HT2A receptors at sub-behavioral levels may represent a new strategy to treat inflammation-based cardiovascular disease.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Melaine N Sebastian
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Diana M Battaglia
- Department of Microbiology, Immunology, and Parasitology Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Timothy P Foster
- Department of Microbiology, Immunology, and Parasitology Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA
| | - Emeline L Maillet
- Eleusis Benefit Corporation 11 East 44th St., Suite 104, New York, NY, 10017, USA
| | - Charles D Nichols
- Department of Pharmacology and Experimental Therapeutics Louisiana State University Health Sciences Center 1901 Perdido St, New Orleans, LA, 70112, USA.
| |
Collapse
|
24
|
Caro-Gómez E, Sierra JA, Escobar JS, Álvarez-Quintero R, Naranjo M, Medina S, Velásquez-Mejía EP, Tabares-Guevara JH, Jaramillo JC, León-Varela YM, Muñoz-Durango K, Ramírez-Pineda JR. Green Coffee Extract Improves Cardiometabolic Parameters and Modulates Gut Microbiota in High-Fat-Diet-Fed ApoE -/- Mice. Nutrients 2019; 11:E497. [PMID: 30818779 PMCID: PMC6470615 DOI: 10.3390/nu11030497] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Chlorogenic acids (CGA) are the most abundant phenolic compounds in green coffee beans and in the human diet and have been suggested to mitigate several cardiometabolic risk factors. Here, we aimed to evaluate the effect of a water-based standardized green coffee extract (GCE) on cardiometabolic parameters in ApoE-/- mice and to explore the potential underlying mechanisms. Mice were fed an atherogenic diet without (vehicle) or with GCE by gavage (equivalent to 220 mg/kg of CGA) for 14 weeks. We assessed several metabolic, pathological, and inflammatory parameters and inferred gut microbiota composition, diversity, and functional potential. Although GCE did not reduce atherosclerotic lesion progression or plasma lipid levels, it induced important favorable changes. Specifically, improved metabolic parameters, including fasting glucose, insulin resistance, serum leptin, urinary catecholamines, and liver triglycerides, were observed. These changes were accompanied by reduced weight gain, decreased adiposity, lower inflammatory infiltrate in adipose tissue, and protection against liver damage. Interestingly, GCE also modulated hepatic IL-6 and total serum IgM and induced shifts in gut microbiota. Altogether, our results reveal the cooccurrence of these beneficial cardiometabolic effects in response to GCE in the same experimental model and suggest potential mediators and pathways involved.
Collapse
Affiliation(s)
- Erika Caro-Gómez
- Grupo Inmunomodulación-GIM, Universidad de Antioquia. Calle 70 No. 52-21, 050010 Medellín, Colombia.
| | - Jelver A Sierra
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa. Calle 8 Sur No. 50-67, 050023 Medellín, Colombia.
| | - Juan S Escobar
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa. Calle 8 Sur No. 50-67, 050023 Medellín, Colombia.
| | - Rafael Álvarez-Quintero
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia. Calle 70 No. 52-21, 050010 Medellín, Colombia.
| | - Mauricio Naranjo
- Colcafé Research Coffee Group, Industria Colombiana de Café S.A.S. Calle 8 Sur No. 50-19, 050023 Medellín, Colombia.
| | - Sonia Medina
- Facultad de Ingeniería, Corporación Universitaria Lasallista, Carrera 51 N°118Sur-57, 055440 Caldas, Colombia.
| | - Eliana P Velásquez-Mejía
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa. Calle 8 Sur No. 50-67, 050023 Medellín, Colombia.
| | - Jorge H Tabares-Guevara
- Grupo Inmunomodulación-GIM, Universidad de Antioquia. Calle 70 No. 52-21, 050010 Medellín, Colombia.
| | - Julio C Jaramillo
- Grupo Inmunomodulación-GIM, Universidad de Antioquia. Calle 70 No. 52-21, 050010 Medellín, Colombia.
| | - Yudy M León-Varela
- Grupo Inmunomodulación-GIM, Universidad de Antioquia. Calle 70 No. 52-21, 050010 Medellín, Colombia.
| | - Katalina Muñoz-Durango
- Vidarium⁻Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa. Calle 8 Sur No. 50-67, 050023 Medellín, Colombia.
| | - José R Ramírez-Pineda
- Grupo Inmunomodulación-GIM, Universidad de Antioquia. Calle 70 No. 52-21, 050010 Medellín, Colombia.
| |
Collapse
|
25
|
Wilson PG, Thompson JC, Shridas P, McNamara PJ, de Beer MC, de Beer FC, Webb NR, Tannock LR. Serum Amyloid A Is an Exchangeable Apolipoprotein. Arterioscler Thromb Vasc Biol 2018; 38:1890-1900. [PMID: 29976766 PMCID: PMC6202200 DOI: 10.1161/atvbaha.118.310979] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective- SAA (serum amyloid A) is a family of acute-phase reactants that have proinflammatory and proatherogenic activities. SAA is more lipophilic than apoA-I (apolipoprotein A-I), and during an acute-phase response, <10% of plasma SAA is found lipid-free. In most reports, SAA is found exclusively associated with high-density lipoprotein; however, we and others have reported SAA on apoB (apolipoprotein B)-containing lipoproteins in both mice and humans. The goal of this study was to determine whether SAA is an exchangeable apolipoprotein. Approach and Results- Delipidated human SAA was incubated with SAA-free human lipoproteins; then, samples were reisolated by fast protein liquid chromatography, and SAA analyzed by ELISA and immunoblot. Both in vitro and in vivo, we show that SAA associates with any lipoprotein and does not remain in a lipid-free form. Although SAA is preferentially found on high-density lipoprotein, it can exchange between lipoproteins. In the presence of CETP (cholesterol ester transfer protein), there is greater exchange of SAA between lipoproteins. Subjects with diabetes mellitus, but not those with metabolic syndrome, showed altered SAA lipoprotein distribution postprandially. Proteoglycan-mediated lipoprotein retention is thought to be an underlying mechanism for atherosclerosis development. SAA has a proteoglycan-binding domain. Lipoproteins containing SAA had increased proteoglycan binding compared with SAA-free lipoproteins. Conclusions- Thus, SAA is an exchangeable apolipoprotein and increases apoB-containing lipoproteins' proteoglycan binding. We and others have previously reported the presence of SAA on low-density lipoprotein in individuals with obesity, diabetes mellitus, and metabolic syndrome. We propose that the presence of SAA on apoB-containing lipoproteins may contribute to cardiovascular disease development in these populations.
Collapse
Affiliation(s)
- Patricia G Wilson
- Department of Veterans Affairs, Lexington, KY
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Joel C Thompson
- Department of Veterans Affairs, Lexington, KY
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Preetha Shridas
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Patrick J McNamara
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky
| | - Maria C de Beer
- Department of Physiology, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Frederick C de Beer
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Nancy R Webb
- Department of Veterans Affairs, Lexington, KY
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| | - Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY
- Department of Internal Medicine, College of Medicine, University of Kentucky
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky
- Barnstable Brown Diabetes Center, College of Medicine, University of Kentucky
| |
Collapse
|
26
|
Rong S, Zhao S, Kai X, Zhang L, Zhao Y, Xiao X, Bao W, Liu L. Procyanidins extracted from the litchi pericarp attenuate atherosclerosis and hyperlipidemia associated with consumption of a high fat diet in apolipoprotein-E knockout mice. Biomed Pharmacother 2017; 97:1639-1644. [PMID: 29793326 DOI: 10.1016/j.biopha.2017.10.139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/15/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of red wine against cardiovascular disease are associated with the abundant antioxidant polyphenols such as procyanidins. Recently, procyanidins extracted from the litchi pericarp (LPPC), a new source of procyanidins showed strong antioxidant activities in vitro, have been isolated and identified in our laboratory. The aim of present study was to investigate the anti-atherosclerotic effects of LPPC on atherosclerosis and hyperlipidemia in apolipoprotein E knockout (ApoE KO) mice fed a high fat diet (HFD, 21% fat, 0.15% cholesterol) for 24 weeks. The results showed that LPPC intervention alleviated atherosclerosis, fat accumulation and hyperlipidemia in ApoE KO mice. Furthermore, real-time RT-PCR results showed that LPPC can regulate several key genes involved in hepatic lipid homeostasis, such as increasing mRNA levels of farnesoid X receptor (FXR) and small heterodimer partner (SHP) which emerge as key regulators of lipid homeostasis at the transcriptional level, decreasing mRNA levels of 3-hydroxy-3-Methylglutaryl (HMG)-CoA reductase which mediates cholestrol biosynthesis, and up-regulating the mRNA expressions of ATP-binding cassette transporter-1 (ABCA1) which modulates cholesterol efflux. Thus, these results elucidated that LPPC could alleviate the lipid disorder especially hypercholesteromia and ameliorate atherosclerosis in ApoE-KO mice fed a WTD via regulating gene expression involved in hepatic lipid homeostasis effectively.
Collapse
Affiliation(s)
- Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China; Institute of Nutrition and Chronic Diseases, Wuhan University of Science & Technology, Wuhan, China
| | - Siqi Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China; Institute of Nutrition and Chronic Diseases, Wuhan University of Science & Technology, Wuhan, China
| | - Xu Kai
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China; Institute of Nutrition and Chronic Diseases, Wuhan University of Science & Technology, Wuhan, China
| | - Li Zhang
- Hubei province hospitals of Chinese and Western medicine, Wuhan, 430015, China
| | - Yanting Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Xiao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Bao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models. Int J Mol Sci 2016; 17:ijms17091511. [PMID: 27618031 PMCID: PMC5037788 DOI: 10.3390/ijms17091511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies.
Collapse
|
28
|
Catry E, Neyrinck AM, Lobysheva I, Pachikian BD, Van Hul M, Cani PD, Dessy C, Delzenne NM. Nutritional depletion in n-3 PUFA in apoE knock-out mice: A new model of endothelial dysfunction associated with fatty liver disease. Mol Nutr Food Res 2016; 60:2198-2207. [PMID: 27136390 DOI: 10.1002/mnfr.201500930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/04/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
SCOPE Western diets are characterized by low intake of n-3 PUFA compensated by constant amounts of n-6 PUFA. Reduced intake of n-3 PUFA is associated with increased cardiovascular risk, as observed in nonalcoholic fatty liver disease patients. The study aimed to evaluating the impact of dietary n-3 PUFA depletion on endothelial function, an early key event of cardiovascular diseases. METHODS AND RESULTS C57Bl/6J or apolipoprotein E knock-out (apoE-/- ) were fed control (CT) or n-3 PUFA-depleted diets (DEF) for 12 wks. Mice fed n-3 DEF diet developed a hepatic steatosis, linked to changes in hepatic expression of genes controlled by Sterol Regulatory Element Binding Protein-1 and -2. Vascular function was assessed on second- and third-order mesenteric arteries and n-3 PUFA-depleted apoE-/- mice presented endothelial dysfunction characterized by decreased vasorelaxation in response of acetylcholine. The presence of a nitric oxide synthase (NOS) inhibitor blunted the relaxation in each groups and heme-nitrosylated hemoglobin blood (Hb-NO) level was significantly lower in n-3 PUFA-depleted apoE-/- mice. CONCLUSION Twelve weeks of n-3 DEF diet promote steatosis and accelerate the process of endothelial dysfunction in apoE-/- mice by a mechanism involving the NOS/NO pathway. We propose n-3 PUFA-depleted apoE-/- mice as a new model to study endothelial dysfunction related to hepatic steatosis independently of obesity.
Collapse
Affiliation(s)
- Emilie Catry
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Irina Lobysheva
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Barbara D Pachikian
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.,Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Chantal Dessy
- Pôle de Pharmacologie et Thérapeutique, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
29
|
Moon JR, Song J, Huh J, Kang IS, Park SW, Chang SA, Yang JH, Jun TG. Analysis of Cardiovascular Risk Factors in Adults with Congenital Heart Disease. Korean Circ J 2015; 45:416-23. [PMID: 26413110 PMCID: PMC4580701 DOI: 10.4070/kcj.2015.45.5.416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/21/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
Background and Objectives The objective of this study was to analyze cardiovascular risk factors in adults with congenital heart disease (ACHD). Subjects and Methods The subjects for this study comprised 135 patients, aged 18 years and above, who visited the ACHD clinic at the Samsung Medical Center and 135 adults with a structurally normal heart who were randomly selected from the Center for Health Promotion during the same period. For the analysis, the ACHD group was further divided into an ACHD group that underwent correction by cardiac surgery and a cyanotic group. Results The mean (standard diviation) age (years) of patients in the surgically corrected group was 48.4 (10.9) years, while that of patients in the cyanotic group was 43.1 (9.0) years and that of patients in the control group was 47.1 (10.3) years (p=0.042). The adjusted odds ratios (ORs) for past smoking, hypertension, diabetes mellitus, hypercholesterolemia, obesity, and metabolic syndrome were significantly higher in the surgically corrected patients than in the controls. However, the ORs for all variables excluding past smoking were significantly lower in the cyanotic group compared with the control group. After adjustment for age, gender, smoking, alcohol use, and exercise, the ORs for metabolic syndrome were 0.46 (0.35-0.57, p<0.001) and 1.48 (1.14-1.92, p=0.003) in the cyanotic and surgically corrected groups, respectively. Conclusion Cardiovascular risk factors need to be considered in surgically corrected ACHD patients as well as in adults with a structurally normal heart. A further study with a long-term follow-up is needed for developing guidelines for prevention.
Collapse
Affiliation(s)
- Ju Ryoung Moon
- Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Seoul, Korea
| | - Jinyoung Song
- Department of Pediatrics, Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Seoul, Korea
| | - June Huh
- Department of Pediatrics, Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Seoul, Korea
| | - I-Seok Kang
- Department of Pediatrics, Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Seoul, Korea
| | - Seung Woo Park
- Division of Cardiology, Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Seoul, Korea
| | - Sung-A Chang
- Division of Cardiology, Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Seoul, Korea
| | - Ji-Hyuk Yang
- Department of Thoracic & Cardiovascular Surgery, Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae-Gook Jun
- Department of Thoracic & Cardiovascular Surgery, Grown-Up Congenital Heart Clinic, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Seven weeks of Western diet in apolipoprotein-E-deficient mice induce metabolic syndrome and non-alcoholic steatohepatitis with liver fibrosis. Sci Rep 2015; 5:12931. [PMID: 26263022 PMCID: PMC4531783 DOI: 10.1038/srep12931] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/14/2015] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis, inflammation and fibrosis, which might progress to cirrhosis. Human NASH is associated with metabolic syndrome (MS). Currently, rodent NASH models either lack significant fibrosis or MS. ApoE−/− mice are a MS model used in cardiovascular research. The aim of this work was to establish and characterise a novel mouse NASH model with significant fibrosis and MS. ApoE−/− and wild-type mice (wt) were fed either a western-diet (WD), methionine-choline-deficient-diet (MCD) or normal chow. Liver histology, RT-PCR, hepatic hydroxyproline content, triglycerides and cholesterol levels, and fasting glucose levels assessed hepatic steatosis, inflammation and fibrosis. Further, portal pressure was measured invasively, and kidney pathology was assessed by histology. ApoE−/− mice receiving WD showed abnormal glucose tolerance, hepatomegaly, weight gain and full spectrum of NASH including hepatic steatosis, fibrosis and inflammation, with no sign of renal damage. MCD-animals showed less severe liver fibrosis, but detectable renal pathological changes, besides weight loss and unchanged glucose tolerance. This study describes a murine NASH model with distinct hepatic steatosis, inflammation and fibrosis, without renal pathology. ApoE−/− mice receiving WD represent a novel and fast model with all characteristic features of NASH and MS well suitable for NASH research.
Collapse
|
31
|
Maimaitiyiming H, Clemons K, Zhou Q, Norman H, Wang S. Thrombospondin1 deficiency attenuates obesity-associated microvascular complications in ApoE-/- mice. PLoS One 2015; 10:e0121403. [PMID: 25803585 PMCID: PMC4372557 DOI: 10.1371/journal.pone.0121403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/31/2015] [Indexed: 12/02/2022] Open
Abstract
Obesity is associated with insulin resistance and the increased development of vascular complications. Previously, we have demonstrated that thrombospondin1 (TSP1) regulates macrophage function and contributes to obesity associated inflammation and insulin resistance. However, the role of TSP1 in the development of obesity associated vascular complications is not clear. Therefore, in the current study, we investigated whether TSP1 deficiency protects mice from obesity associated micro as well as macro-vascular complications in ApoE-/- mice. In this study, male ApoE-/- mice and ApoE-/-TSP1-/- mice were fed with a low-fat (LF) or a high-fat (HF) diet for 16 weeks. We found that body weight and fat mass increased similarly between the ApoE-/-TSP1-/- mice and ApoE-/- mice under HF feeding conditions. However, as compared to obese ApoE-/- mice, obese ApoE-/-TSP1-/- mice had improved glucose tolerance, increased insulin sensitivity, and reduced systemic inflammation. Aortic atherosclerotic lesion formation was similar in these two groups of mice. In contrast, albuminuria was attenuated and kidney fibrosis was reduced in obese ApoE-/-TSP1-/- mice compared to obese ApoE-/- mice. The improved kidney function in obese ApoE-/-TSP1-/- mice was associated with decreased renal lipid accumulation. Together, these data suggest that TSP1 deficiency did not affect the development of obesity associated macro-vascular complication, but attenuated obesity associated micro-vascular complications.
Collapse
Affiliation(s)
- Hasiyeti Maimaitiyiming
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Kate Clemons
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Qi Zhou
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Heather Norman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- Lexington Veterans Affairs Medical Center, Lexington, Kentucky, United States of America
| |
Collapse
|
32
|
Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E, Chen YE. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine. Pharmacol Ther 2015; 146:104-19. [PMID: 25277507 PMCID: PMC4304984 DOI: 10.1016/j.pharmthera.2014.09.009] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Laboratory animal models play an important role in the study of human diseases. Using appropriate animals is critical not only for basic research but also for the development of therapeutics and diagnostic tools. Rabbits are widely used for the study of human atherosclerosis. Because rabbits have a unique feature of lipoprotein metabolism (like humans but unlike rodents) and are sensitive to a cholesterol diet, rabbit models have not only provided many insights into the pathogenesis and development of human atherosclerosis but also made a great contribution to translational research. In fact, rabbit was the first animal model used for studying human atherosclerosis, more than a century ago. Currently, three types of rabbit model are commonly used for the study of human atherosclerosis and lipid metabolism: (1) cholesterol-fed rabbits, (2) Watanabe heritable hyperlipidemic rabbits, analogous to human familial hypercholesterolemia due to genetic deficiency of LDL receptors, and (3) genetically modified (transgenic and knock-out) rabbits. Despite their importance, compared with the mouse, the most widely used laboratory animal model nowadays, the use of rabbit models is still limited. In this review, we focus on the features of rabbit lipoprotein metabolism and pathology of atherosclerotic lesions that make it the optimal model for human atherosclerotic disease, especially for the translational medicine. For the sake of clarity, the review is not an attempt to be completely inclusive, but instead attempts to summarize substantial information concisely and provide a guideline for experiments using rabbits.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Shimokato 1110, Chuo-City 409-3898, Japan.
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Teruo Watanabe
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
|
34
|
Heinonen SE, Genové G, Bengtsson E, Hübschle T, Åkesson L, Hiss K, Benardeau A, Ylä-Herttuala S, Jönsson-Rylander AC, Gomez MF. Animal models of diabetic macrovascular complications: key players in the development of new therapeutic approaches. J Diabetes Res 2015; 2015:404085. [PMID: 25785279 PMCID: PMC4345079 DOI: 10.1155/2015/404085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/26/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a lifelong, incapacitating metabolic disease associated with chronic macrovascular complications (coronary heart disease, stroke, and peripheral vascular disease) and microvascular disorders leading to damage of the kidneys (nephropathy) and eyes (retinopathy). Based on the current trends, the rising prevalence of diabetes worldwide will lead to increased cardiovascular morbidity and mortality. Therefore, novel means to prevent and treat these complications are needed. Under the auspices of the IMI (Innovative Medicines Initiative), the SUMMIT (SUrrogate markers for Micro- and Macrovascular hard end points for Innovative diabetes Tools) consortium is working on the development of novel animal models that better replicate vascular complications of diabetes and on the characterization of the available models. In the past years, with the high level of genomic information available and more advanced molecular tools, a very large number of models has been created. Selecting the right model for a specific study is not a trivial task and will have an impact on the study results and their interpretation. This review gathers information on the available experimental animal models of diabetic macrovascular complications and evaluates their pros and cons for research purposes as well as for drug development.
Collapse
Affiliation(s)
- Suvi E. Heinonen
- Bioscience, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, 43183 Mölndal, Sweden
- *Suvi E. Heinonen:
| | - Guillem Genové
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| | - Thomas Hübschle
- R&D Diabetes Division, Translational Medicine, Sanofi-Aventis, 65926 Frankfurt am Main, Germany
| | - Lina Åkesson
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| | - Katrin Hiss
- R&D Diabetes Division, Translational Medicine, Sanofi-Aventis, 65926 Frankfurt am Main, Germany
| | - Agnes Benardeau
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Pharmaceutical Division, pRED, CV and Metabolic Disease, Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Ann-Cathrine Jönsson-Rylander
- Bioscience, Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca R&D, 43183 Mölndal, Sweden
| | - Maria F. Gomez
- Department of Clinical Sciences, Lund University Diabetes Centre (LUDC), Lund University, 20502 Malmö, Sweden
| |
Collapse
|
35
|
Lee SM, Lee YJ, Choi JH, Kho MC, Yoon JJ, Shin SH, Kang DG, Lee HS. Gal-geun-dang-gwi-tang improves diabetic vascular complication in apolipoprotein E KO mice fed a western diet. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:453. [PMID: 25416139 PMCID: PMC4247676 DOI: 10.1186/1472-6882-14-453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 09/18/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Gal-geun-dang-gwi-tang (GGDGT), an herbal medicine, is used to treat hypertension, stroke, and other inflammatory disorders in the clinical setting. Recently, GGDGT was recognized by the Korea Institute of Oriental Medicine. This study aimed to evaluate the effects of GGDGT in a diabetic atherosclerosis model using apolipoprotein E knockout (ApoE-/-) mice fed a Western diet. METHODS The mice were divided into four groups: control group, C57BL6J mice receiving a regular diet (RD); ApoE-/- group, ApoE-/- mice receiving a Western diet (WD); rosiglitazone group, ApoE-/- mice receiving rosiglitazone (WD + 10 mg · kg(-1) · day(-1)); GGDGT group, ApoE-/- mice receiving GGDGT (WD + 200 mg · kg(-1) · day(-1)). RESULTS Treatment with GGDGT significantly improved glucose tolerance and plasma lipid levels. In addition, GGDGT ameliorated acetylcholine-induced vascular relaxation of the aortic rings. Immunohistochemical staining showed that GGDGT suppressed intercellular adhesion molecule (ICAM)-1 expression; however, expression of endothelial nitric oxide synthase (eNOS) and insulin receptor substrate (IRS)-1 were restored in the thoracic aorta and skeletal muscle, respectively. CONCLUSIONS These findings suggest that GGDGT attenuates endothelial dysfunction via improvement of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway and improves insulin sensitivity in diabetic atherosclerosis.
Collapse
|
36
|
Kaynar AM, Yende S, Zhu L, Frederick DR, Chambers R, Burton CL, Carter M, Stolz DB, Agostini B, Gregory AD, Nagarajan S, Shapiro SD, Angus DC. Effects of intra-abdominal sepsis on atherosclerosis in mice. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:469. [PMID: 25182529 PMCID: PMC4172909 DOI: 10.1186/s13054-014-0469-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/22/2014] [Indexed: 11/10/2022]
Abstract
Introduction Sepsis and other infections are associated with late cardiovascular events. Although persistent inflammation is implicated, a causal relationship has not been established. We tested whether sepsis causes vascular inflammation and accelerates atherosclerosis. Methods We performed prospective, randomized animal studies at a university research laboratory involving adult male ApoE-deficient (ApoE−/−) and young C57B/L6 wild-type (WT) mice. In the primary study conducted to determine whether sepsis accelerates atherosclerosis, we fed ApoE−/− mice (N = 46) an atherogenic diet for 4 months and then performed cecal ligation and puncture (CLP), followed by antibiotic therapy and fluid resuscitation or a sham operation. We followed mice for up to an additional 5 months and assessed atheroma in the descending aorta and root of the aorta. We also exposed 32 young WT mice to CLP or sham operation and followed them for 5 days to determine the effects of sepsis on vascular inflammation. Results ApoE−/− mice that underwent CLP had reduced activity during the first 14 days (38% reduction compared to sham; P < 0.001) and sustained weight loss compared to the sham-operated mice (−6% versus +9% change in weight after CLP or sham surgery to 5 months; P < 0.001). Despite their weight loss, CLP mice had increased atheroma (46% by 3 months and 41% increase in aortic surface area by 5 months; P = 0.03 and P = 0.004, respectively) with increased macrophage infiltration into atheroma as assessed by immunofluorescence microscopy (0.52 relative fluorescence units (rfu) versus 0.97 rfu; P = 0.04). At 5 months, peritoneal cultures were negative; however, CLP mice had elevated serum levels of interleukin 6 (IL-6) and IL-10 (each at P < 0.05). WT mice that underwent CLP had increased expression of intercellular adhesion molecule 1 in the aortic lumen versus sham at 24 hours (P = 0.01) that persisted at 120 hours (P = 0.006). Inflammatory and adhesion genes (tumor necrosis factor α, chemokine (C-C motif) ligand 2 and vascular cell adhesion molecule 1) and the adhesion assay, a functional measure of endothelial activation, were elevated at 72 hours and 120 hours in mice that underwent CLP versus sham-operations (all at P <0.05). Conclusions Using a combination of existing murine models for atherosclerosis and sepsis, we found that CLP, a model of intra-abdominal sepsis, accelerates atheroma development. Accelerated atheroma burden was associated with prolonged systemic, endothelial and intimal inflammation and was not explained by ongoing infection. These findings support observations in humans and demonstrate the feasibility of a long-term follow-up murine model of sepsis. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0469-1) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Venegas-Pino DE, Banko N, Khan MI, Shi Y, Werstuck GH. Quantitative analysis and characterization of atherosclerotic lesions in the murine aortic sinus. J Vis Exp 2013:50933. [PMID: 24335758 DOI: 10.3791/50933] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a disease of the large arteries and a major underlying cause of myocardial infarction and stroke. Several different mouse models have been developed to facilitate the study of the molecular and cellular pathophysiology of this disease. In this manuscript we describe specific techniques for the quantification and characterization of atherosclerotic lesions in the murine aortic sinus and ascending aorta. The advantage of this procedure is that it provides an accurate measurement of the cross-sectional area and total volume of the lesion, which can be used to compare atherosclerotic progression across different treatment groups. This is possible through the use of the valve leaflets as an anatomical landmark, together with careful adjustment of the sectioning angle. We also describe basic staining methods that can be used to begin to characterize atherosclerotic progression. These can be further modified to investigate antigens of specific interest to the researcher. The described techniques are generally applicable to a wide variety of existing and newly created dietary and genetically-induced models of atherogenesis.
Collapse
|
38
|
De Beer MC, Wroblewski JM, Noffsinger VP, Rateri DL, Howatt DA, Balakrishnan A, Ji A, Shridas P, Thompson JC, van der Westhuyzen DR, Tannock LR, Daugherty A, Webb NR, De Beer FC. Deficiency of endogenous acute phase serum amyloid A does not affect atherosclerotic lesions in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2013; 34:255-61. [PMID: 24265416 DOI: 10.1161/atvbaha.113.302247] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. APPROACH AND RESULTS Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1, were fed a normal rodent diet for 50 weeks. Female mice, but not male apoE-/- mice deficient in SAA1.1 and SAA2.1, had a modest increase (22%; P≤0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared with apoE-/- mice expressing SAA1.1 and SAA2.1 that did not affect the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not affect lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between apoE-/- mice deficient in SAA1.1 and SAA2.1 and apoE-/- mice expressing SAA1.1 and SAA2.1 in either sex. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had effect neither on diet-induced alterations in plasma cholesterol, triglyceride, or cytokine concentrations nor on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. CONCLUSIONS The absence of endogenous SAA1.1 and 2.1 does not affect atherosclerotic lipid deposition in apolipoprotein E-deficient mice fed either normal or Western diets.
Collapse
Affiliation(s)
- Maria C De Beer
- From the Graduate Center for Nutritional Science (M.C.D.B., J.M.W., V.P.N., A.J., P.S., J.C.T., D.R.v.d.W., L.R.T., N.R.W., F.C.D.B.), Saha Cardiovascular Research Center (M.C.D.B., J.M.W., V.P.N., D.L.R., D.A.H., A.B., A.J., P.S., J.C.T., D.R.v.d.W., L.R.T., A.D., N.R.W., F.C.D.B.), and the Departments of Physiology (M.C.D.B.) and Internal Medicine (J.M.W., V.P.N., D.L.R., D.A.H., A.B., A.J., P.S., J.C.T., D.R.v.d.W., L.R.T., A.D., N.R.W., F.C.D.B.), University of Kentucky Medical Center, Lexington, KY; and Department of Veterans Affairs Medical Center, Lexington, KY (D.R.v.d.W., L.R.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kawai H, Kurata T, Deguchi K, Deguchi S, Yamashita T, Ohta Y, Omote Y, Kono S, Abe K. Combination benefit of amlodipine plus atorvastatin treatment on carotid atherosclerosis in Zucker metabolic rats. Neurol Res 2013; 35:181-6. [DOI: 10.1179/1743132812y.0000000131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hiromi Kawai
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Tomoko Kurata
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Kentaro Deguchi
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Shoko Deguchi
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Toru Yamashita
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yasuyuki Ohta
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yoshio Omote
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Syoichiro Kono
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Koji Abe
- Department of NeurologyOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
40
|
Jahangiri A, Wilson PG, Hou T, Brown A, King VL, Tannock LR. Serum amyloid A is found on ApoB-containing lipoproteins in obese humans with diabetes. Obesity (Silver Spring) 2013; 21:993-6. [PMID: 23784902 PMCID: PMC3695410 DOI: 10.1002/oby.20126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 09/06/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE In murine models of obesity/diabetes, there is an increase in plasma serum amyloid A (SAA) levels along with redistribution of SAA from high-density lipoprotein (HDL) to apolipoprotein B (apoB)-containing lipoprotein particles, namely, low-density lipoprotein and very low-density lipoprotein. The goal of this study was to determine if obesity is associated with similar SAA lipoprotein redistribution in humans. DESIGN AND METHODS Three groups of obese individuals were recruited from a weight loss clinic: healthy obese (n = 14), metabolic syndrome (MetS) obese (n = 8), and obese with type 2 diabetes (n = 6). Plasma was separated into lipoprotein fractions by fast protein liquid chromatography, and SAA was measured in lipid fractions using enzyme-linked immunosorbent assay and Western blotting. RESULTS Only the obese diabetic group had SAA detectable in apoB-containing lipoproteins, and SAA reverted back to HDL with active weight loss. CONCLUSIONS In human subjects, SAA is found in apoB-containing lipoprotein particles only in obese subjects with type 2 diabetes, but not in healthy obese or obese subjects with MetS.
Collapse
Affiliation(s)
- Anisa Jahangiri
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | - Patricia G Wilson
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | - Tianfei Hou
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Aparna Brown
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | - Victoria L. King
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lisa R. Tannock
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Veterans Affairs, Lexington, KY, USA
| |
Collapse
|
41
|
Bogdanski P, Szulinska M, Suliburska J, Pupek-Musialik D, Jablecka A, Witmanowski H. Supplementation with L-arginine favorably influences plasminogen activator inhibitor type 1 concentration in obese patients. A randomized, double blind trial. J Endocrinol Invest 2013; 36:221-6. [PMID: 22732180 DOI: 10.3275/8467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Elevated plasminogen activator inhibitor type 1 (PAI 1) plays an important role in the pathogenesis of excess blood coagulability in obese patients. L-arginine supplementation has shown to be associated with enhanced cardiovascular and metabolic health. The aim of the study was to assess the effect of L-arginine supplementation on PAI 1 concentration and to evaluate the relation to changes in nitric oxide (NO) plasma level, insulin sensitivity (M value), and total antioxidant status (TAS) in obese patients. MATERIAL/SUBJECTS AND METHODS A randomized, double-blind, placebo-controlled study was conducted from March 2010 to June 2011. Eightyeight obese patients were randomly assigned to receive either 9 g of L-arginine or placebo daily for 6 months. At baseline and after 6 months, selected anthropometrical measurements and blood biochemical analyses were performed, and PAI 1, NO, TAS levels were assessed. Insulin sensitivity was evaluated using the hyperinsulinemic euglycemic clamp technique. RESULTS We found that 6-month L-arginine supplementation resulted in significant decrease of PAI 1. Significant increase of NO, TAS, and insulin sensitivity level were noticed. In a group of patients treated with L-arginine, negative correlation between a change of insulin sensitivity value and a change of PAI 1 concentration was found. CONCLUSIONS The present findings demonstrate favorable influence of L-arginine supplementation on PAI 1 concentration in obese patients. Beneficial influence is related to insulin sensitivity improvement. The potential therapeutic role of L-arginine administration in patients with obesity needs further investigation.
Collapse
Affiliation(s)
- P Bogdanski
- Department of Internal Medicine, Metabolic Disorders and Hypertension, Poznan University of Medical Sciences, Szamarzewskiego 84 Str., 60-569 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
42
|
von Toerne C, Kahle M, Schäfer A, Ispiryan R, Blindert M, Hrabe De Angelis M, Neschen S, Ueffing M, Hauck SM. Apoe, Mbl2, and Psp Plasma Protein Levels Correlate with Diabetic Phenotype in NZO Mice—An Optimized Rapid Workflow for SRM-Based Quantification. J Proteome Res 2013; 12:1331-43. [DOI: 10.1021/pr3009836] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Marius Ueffing
- Centre of Ophthalmology, Institute
for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
43
|
Sujkowski A, Saunders S, Tinkerhess M, Piazza N, Jennens J, Healy L, Zheng L, Wessells R. dFatp regulates nutrient distribution and long-term physiology in Drosophila. Aging Cell 2012; 11:921-32. [PMID: 22809097 PMCID: PMC3533766 DOI: 10.1111/j.1474-9726.2012.00864.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2012] [Indexed: 12/31/2022] Open
Abstract
Nutrient allocation and usage plays an important part in regulating the onset and progression of age-related functional declines. Here, we describe a heterozygous mutation in Drosophila (dFatp) that alters nutrient distribution and multiple aspects of physiology. dFatp mutants have increased lifespan and stress resistance, altered feeding behavior and fat storage, and increased mobility. Concurrently, mutants experience impairment of cardiac function. We show that endurance exercise reverses increased lipid storage in the myocardium and the deleterious cardiac function conferred by dFatp mutation. These findings establish a novel conserved genetic target for regulating lifespan and physiology in aging animals. These findings also highlight the importance of varying exercise conditions in assessing aging functions of model organisms.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Internal Medicine, Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Urokinase receptor surface expression regulates monocyte migration and is associated with accelerated atherosclerosis. Int J Cardiol 2012; 161:103-10. [DOI: 10.1016/j.ijcard.2011.12.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 11/29/2011] [Accepted: 12/24/2011] [Indexed: 11/18/2022]
|
45
|
Mencarelli A, Cipriani S, Renga B, Bruno A, D'Amore C, Distrutti E, Fiorucci S. VSL#3 resets insulin signaling and protects against NASH and atherosclerosis in a model of genetic dyslipidemia and intestinal inflammation. PLoS One 2012; 7:e45425. [PMID: 23029000 PMCID: PMC3448636 DOI: 10.1371/journal.pone.0045425] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Signals generated by the inflammed intestine are thought to contribute to metabolic derangement. The intestinal microbiota contributes to instructing the immune system beyond the intestinal wall and its modulation is a potential target for treating systemic disorders. AIMS To investigate the pathogenetic role of low grade intestinal inflammation in the development of steatohepatitis and atherosclerosis in a model of genetic dyslipidemia and to test the therapeutic potential of a probiotics intervention in protecting against development of these disorders. RESULTS ApoE(-/-) mice were randomized to receive vehicle or VSL#3, a mixture of eight probiotics, at the dose of 20×10(9) colony-forming units/kg/day for three months alone or in combination with 0.2% of dextran sulfate sodium (DSS) in drinking water. Administering DSS to ApoE(-/-) mice failed to induce signs and symptoms of colitis but increased intestinal permeability to dextran FITC and, while had no effect on serum lipids, increased the blood levels of markers of liver injury and insulin resistance. DSS administration associated with low level inflammation of intestinal and mesenteric adipose tissues, caused liver histopathology features of steatohepatitis and severe atherosclerotic lesions in the aorta. These changes were prevented by VSL#3 intervention. Specifically, VSL#3 reversed insulin resistance, prevented development of histologic features of mesenteric adipose tissue inflammation, steatohepatitis and reduced the extent of aortic plaques. Conditioned media obtained from cultured probiotics caused the direct transactivation of peroxisome proliferator-activated receptor-γ, Farnesoid-X-receptors and vitamin D receptor. CONCLUSIONS Low grade intestinal inflammation drives a transition from steatosis to steatohepatitis and worsens the severity of atherosclerosis in a genetic model of dyslipidemia. VSL#3 intervention modulates the expression of nuclear receptors, corrects for insulin resistance in liver and adipose tissues and protects against development of steatohepatitis and atherosclerosis.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Facoltà di Medicina e Chirurgia, Perugia, Italy
| | - Sabrina Cipriani
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Facoltà di Medicina e Chirurgia, Perugia, Italy
| | - Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Facoltà di Medicina e Chirurgia, Perugia, Italy
| | - Angela Bruno
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Facoltà di Medicina e Chirurgia, Perugia, Italy
| | - Claudio D'Amore
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Facoltà di Medicina e Chirurgia, Perugia, Italy
| | | | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, University of Perugia, Facoltà di Medicina e Chirurgia, Perugia, Italy
- * E-mail:
| |
Collapse
|
46
|
Endogenous androgen deficiency enhances diet-induced hypercholesterolemia and atherosclerosis in low-density lipoprotein receptor-deficient mice. ACTA ACUST UNITED AC 2012; 9:319-28. [PMID: 22981166 DOI: 10.1016/j.genm.2012.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 01/14/2023]
Abstract
BACKGROUND Despite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial. OBJECTIVE We sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol. METHODS Male and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development. RESULTS Female mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice. CONCLUSIONS These data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in low-density lipoprotein receptor-deficient mice in response to a low-fat diet.
Collapse
|
47
|
Abstract
Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy - hallmarks of personalized medicine - plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on the identification of unequivocal correlations between critical disease states and specific EMV signatures, which in future may be determined in rapid and convenient fashion using nanoparticle-driven biosensors.
Collapse
Affiliation(s)
- Günter Müller
- Department of Biology I, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, Germany
| |
Collapse
|
48
|
|
49
|
Huang Y, Dai Y, Zhang J, Wang C, Li D, Cheng J, Lu Y, Ma K, Tan L, Xue F, Qin B. Circulating microRNAs as potential biomarkers for smoking-related interstitial fibrosis. Biomarkers 2012; 17:435-40. [DOI: 10.3109/1354750x.2012.680611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Bolton K, Segal D, Walder K. The small leucine-rich proteoglycan, biglycan, is highly expressed in adipose tissue of Psammomys obesus and is associated with obesity and type 2 diabetes. Biologics 2012; 6:67-72. [PMID: 22532774 PMCID: PMC3333821 DOI: 10.2147/btt.s27925] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have previously demonstrated that the small leucine-rich proteoglycan decorin may play a role in adipose tissue homeostasis and the pathophysiology of obesity. Biglycan is highly similar in structure to decorin, therefore we hypothesized it would have a similar expression profile and role to decorin in adipose tissue. Real time polymerase chain reaction was used to measure biglycan mRNA levels in adipose tissue from normal glucose tolerant and impaired glucose tolerant and type 2 diabetic (T2D) Psammomys obesus. Biglycan mRNA was found to be highly expressed in adipose tissue, and gene expression was significantly higher in visceral compared to subcutaneous adipose tissue, with elevated levels in obese, T2D compared to lean normal glucose tolerant P. obesus (P < 0.04). Biglycan mRNA was predominantly expressed by stromal/vascular cells of fractionated adipose tissue (P = 0.023). Biglycan expression in adipose tissue, particularly in the obese state, was markedly upregulated. Collectively, our data suggest that the small leucine-rich proteoglycan family proteins biglycan and decorin may play a role in the development of obesity and T2D, possibly by facilitating expansion of adipose tissue mass.
Collapse
Affiliation(s)
- Kristy Bolton
- Metabolic Research Unit, School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | |
Collapse
|