1
|
Jansen C, McAdams J, Kim C, De La Cruz P, Salaverria A, DaSilva NA, Grive K, James NE. Small molecule inhibition of ubiquitin C-terminal hydrolase L1 alters cell metabolism proteins and exerts anti- or pro-tumorigenic effects contingent upon chemosensitivity status in high grade serous ovarian cancer. Front Pharmacol 2025; 16:1547164. [PMID: 40078282 PMCID: PMC11897294 DOI: 10.3389/fphar.2025.1547164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
High grade serous ovarian cancer (HGSOC) is the most lethal of all gynecologic malignancies in which the majority of patients eventually develop chemoresistant recurrent disease. Ubiquitin C-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme canonically known for its involvement in neurodegeneration, but recently has been shown to play a key role in tumorigenesis. Furthermore, UCHL1 has garnered attention across a multitude of cancer subtypes as it has the ability to be targeted through small molecule inhibition. Therefore, the goal of this present study was to elucidate mechanistic consequences of small molecule UCHL1 inhibition in HGSOC. Comparative label-free proteomic analysis of HGSOC cell line, OVCAR8 revealed prominent changes in cell metabolism proteins upon treatment with UCHL1 small molecule inhibitor, LDN-57444. Further validation via Western blot analysis revealed that changes in cell metabolism proteins differed in matched chemosensitive versus chemoresistant HGSOC cells. Finally, cell viability analysis demonstrated that a combinatorial carboplatin and LDN-57444 blockade produced a promotion or conversely, inhibition of cell death, in chemoresistant, and chemosensitve HGSOC cells, respectively. This phenomenon was further corroborated by respective differences in activation levels of common tumor cell growth pathways STAT3, MAPK/ERK, and AKT in chemoresistant versus chemosensitive HGSOC cells. Overall, this investigation established that pharmacologic targeting of UCHL1 produces differential effects according to HGSOC chemosensitivity status.
Collapse
Affiliation(s)
- Corinne Jansen
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Julia McAdams
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Chloe Kim
- School of Public Health, Brown University, Providence, RI, United States
| | - Payton De La Cruz
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Angelica Salaverria
- Therapeutic Sciences Graduate Program, Brown University, Providence, RI, United States
| | - Nicholas A. DaSilva
- Division of Biology and Medicine, Proteomics Facility, Brown University, Providence, RI, United States
| | - Kathryn Grive
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| | - Nicole E. James
- Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Obstetrics and Gynecology, Warren-Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
2
|
El Mokbel N, Goyeneche AA, Prakash R, Forgie BN, Abdalbari FH, Zeng X, Tessier-Cloutier B, Annie Leung SO, Telleria CM. Comparison of two-dimensional and three-dimensional culture systems and their responses to chemotherapy in cells representing disease progression of high-grade serous ovarian cancer. Biochem Biophys Rep 2024; 40:101838. [PMID: 39469046 PMCID: PMC11513490 DOI: 10.1016/j.bbrep.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
High-grade serous cancer is the most common type of ovarian cancer and is usually diagnosed at advanced stages with high mortality due to recurrence and eventual resistance to standard platinum therapy. The aim of this study was to compare two-dimensional (2D) versus tridimensional (3D) cell culture as a preclinical model of response to carboplatin, paclitaxel and niraparib using PEO1, PEO4 and PEO6 cell lines, which were generated from the same patient along disease progression. Morphologically, cells formed flat adherent layers versus spheroidal structures with different compaction patterns in 2D and 3D respectively. In 2D, apoptosis was rare whereas in 3D cells formed a multilayered structure with an outer layer of live proliferating cells and an inner core of apoptotic cells. Furthermore, a differential capacity to produce ATP was observed among the cell lines in 3D but not in 2D. While response to carboplatin, paclitaxel and niraparib in both settings followed a similar trend, a lower sensitivity was observed in 3D with respect to 2D. Overall, 3D cell culture is likely more reflective of the in vivo cellular tumor behavior and more suitable of therapeutic evaluation given its added complexity absent in 2D.
Collapse
Affiliation(s)
- Naya El Mokbel
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Alicia A. Goyeneche
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Rewati Prakash
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Benjamin N. Forgie
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Farah H. Abdalbari
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Xing Zeng
- McGill University Health Centre, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Montreal, QC, Canada
| | - Basile Tessier-Cloutier
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
| | - Shuk On Annie Leung
- McGill University Health Centre, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, QC, Canada
| | - Carlos M. Telleria
- McGill University, Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Cancer Research Program, Montreal, QC, Canada
| |
Collapse
|
3
|
Kutz O, Drukewitz S, Krüger A, Aust D, William D, Oster S, Schröck E, Baretton G, Link T, Wimberger P, Kuhlmann JD. Exploring evolutionary trajectories in ovarian cancer patients by longitudinal analysis of ctDNA. Clin Chem Lab Med 2024; 62:2070-2081. [PMID: 38577791 DOI: 10.1515/cclm-2023-1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES We analysed whether temporal heterogeneity of ctDNA encodes evolutionary patterns in ovarian cancer. METHODS Targeted sequencing of 275 cancer-associated genes was performed in a primary tumor biopsy and in ctDNA of six longitudinal plasma samples from 15 patients, using the Illumina platform. RESULTS While there was low overall concordance between the mutational spectrum of the primary tumor biopsies vs. ctDNA, TP53 variants were the most commonly shared somatic alterations. Up to three variant clusters were detected in each tumor biopsy, likely representing predominant clones of the primary tumor, most of them harbouring a TP53 variant. By tracing these clusters in ctDNA, we propose that liquid biopsy may allow to assess the contribution of ancestral clones of the tumor to relapsed abdominal masses, revealing two evolutionary patterns. In pattern#1, clusters detected in the primary tumor biopsy were likely relapse seeding clones, as they contributed a major share to ctDNA at relapse. In pattern#2, similar clusters were present in tumors and ctDNA; however, they were entirely cleared from liquid biopsy after chemotherapy and were undetectable at relapse. ctDNA private variants were present among both patterns, with some of them mirroring subclonal expansions after chemotherapy. CONCLUSIONS We demonstrate that tracing the temporal heterogeneity of ctDNA, even below exome scale resolution, deciphers evolutionary trajectories in ovarian cancer. Furthermore, we describe two evolutionary patterns that may help to identify relapse seeding clones for targeted therapy.
Collapse
Affiliation(s)
- Oliver Kutz
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
| | - Stephan Drukewitz
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
| | - Alexander Krüger
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
| | - Daniela Aust
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- Institute for Pathology, 9169 University Hospital Carl Gustav Carus at the TU Dresden , Dresden, Germany
- 9169 Tumor- and Normal Tissue Bank of the NCT/UCC Dresden , Dresden, Germany
| | - Doreen William
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Sandra Oster
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 National Center for Tumor Diseases Dresden (NCT/UCC) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Evelin Schröck
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- Institute for Clinical Genetics, 9169 University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- ERN GENTURIS, 9169 Hereditary Cancer Syndrome Center , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- 9169 Max Planck Institute of Molecular Cell Biology and Genetics , Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), 9169 Technische Universitat Dresden , Dresden, Sachsen, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden , Dresden, Germany
| | - Gustavo Baretton
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
- Institute for Pathology, 9169 University Hospital Carl Gustav Carus at the TU Dresden , Dresden, Germany
- 9169 Tumor- and Normal Tissue Bank of the NCT/UCC Dresden , Dresden, Germany
| | - Theresa Link
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| | - Pauline Wimberger
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 National Center for Tumour Diseases (NCT) , Dresden, Germany
- 9169 German Cancer Research Center (DKFZ) , Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, 9169 Technische Universität Dresden , Dresden, Germany
- 9169 Helmholtz-Zentrum Dresden-Rossendorf (HZDR) , Dresden, Germany
- 9169 German Cancer Consortium (DKTK) , Dresden, Germany
- 9169 Faculty of Medicine and University Hospital Carl Gustav Carus at TU Dresden , Dresden, Germany
| |
Collapse
|
4
|
Sarkar S, Saha SA, Swarnakar A, Chakrabarty A, Dey A, Sarkar P, Banerjee S, Mitra P. The molecular prognostic score, a classifier for risk stratification of high-grade serous ovarian cancer. J Ovarian Res 2024; 17:159. [PMID: 39095849 PMCID: PMC11296390 DOI: 10.1186/s13048-024-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The clinicopathological parameters such as residual tumor, grade, the International Federation of Gynecology and Obstetrics (FIGO) score are often used to predict the survival of ovarian cancer patients, but the 5-year survival of high grade serous ovarian cancer (HGSOC) still remains around 30%. Hence, the relentless pursuit of enhanced prognostic tools for HGSOC, this study introduces an unprecedented gene expression-based molecular prognostic score (mPS). Derived from a novel 20-gene signature through Least Absolute Shrinkage and Selection Operator (LASSO)-Cox regression, the mPS stands out for its predictive prowess. RESULTS Validation across diverse datasets, including training and test sets (n = 491 each) and a large HGSOC patient cohort from the Ovarian Tumor Tissue Analysis (OTTA) consortium (n = 7542), consistently shows an area-under-curve (AUC) around 0.7 for predicting 5-year overall survival. The mPS's impact on prognosis resonates profoundly, yielding an adjusted hazard-ratio (HR) of 6.1 (95% CI: 3.65-10.3; p < 0.001), overshadowing conventional parameters-FIGO score, residual disease, and age. Molecular insights gleaned from mPS stratification uncover intriguing pathways, with focal-adhesion, Wnt, and Notch signaling upregulated, and antigen processing and presentation downregulated (p < 0.001) in high-risk HGSOC cohorts. CONCLUSION Positioned as a robust prognostic marker, the 20-gene signature-derived mPS emerges as a potential game-changer in clinical settings. Beyond its role in predicting overall survival, its implications extend to guiding alternative therapies, especially targeting Wnt/Notch signaling pathways and immune evasion-a promising avenue for improving outcomes in high-risk HGSOC patients.
Collapse
Affiliation(s)
- Siddik Sarkar
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| | - Sarbar Ali Saha
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Abhishek Swarnakar
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Arnab Chakrabarty
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Avipsa Dey
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
| | - Poulomi Sarkar
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
| | - Sarthak Banerjee
- Cancer Biology & Inflammatory Disorder, Translational Research Unit of Excellence (TRUE), CSIR-Indian Institute of Chemical Biology, Kolkata, WB, 700032, India
| | - Pralay Mitra
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
5
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. FANCD2 expression affects platinum response and further characteristics of high grade serous ovarian cancer in cells with different genetic backgrounds. Exp Mol Pathol 2024; 138:104916. [PMID: 38959632 DOI: 10.1016/j.yexmp.2024.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most prevalent subtype of ovarian cancer and demonstrates 5-year survival of just 40%. One of the major causes of mortality is the development of tumour resistance to platinum-based chemotherapy, which can be modulated by dysregulation of DNA damage repair pathways. We therefore investigated the contribution of the DNA interstrand crosslink repair protein FANCD2 to chemosensitivity in HGSOC. Increased FANCD2 protein expression was observed in some cell line models of platinum resistant HGSOC compared with paired platinum sensitive models. Knockdown of FANCD2 in some cell lines, including the platinum resistant PEO4, led to increased carboplatin sensitivity. Investigation into mechanisms of FANCD2 regulation showed that increased FANCD2 expression in platinum resistant cells coincides with increased expression of mTOR. Treatment with mTOR inhibitors resulted in FANCD2 depletion, suggesting that mTOR can mediate platinum sensitivity via regulation of FANCD2. Tumours from a cohort of HGSOC patients showed varied nuclear and cytoplasmic FANCD2 expression, however this was not significantly associated with clinical characteristics. Knockout of FANCD2 was associated with increased cell migration, which may represent a non-canonical function of cytoplasmic FANCD2. We conclude that upregulation of FANCD2, possibly mediated by mTOR, is a potential mechanism of chemoresistance in HGSOC and modulation of FANCD2 expression can influence platinum sensitivity and other tumour cell characteristics.
Collapse
Affiliation(s)
- Sarah J Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| | - Robert L Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
6
|
Adams KM, Wendt JR, Wood J, Olson S, Moreno R, Jin Z, Gopalan S, Lang JD. Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer cell lines and isogenic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605381. [PMID: 39131380 PMCID: PMC11312449 DOI: 10.1101/2024.07.26.605381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ovarian cancers are still largely treated with platinum-based chemotherapy as the standard of care, yet few biomarkers of clinical response have had an impact on clinical decision making as of yet. Two particular challenges faced in mechanistically deciphering platinum responsiveness in ovarian cancer have been the suitability of cell line models for ovarian cancer subtypes and the availability of information on comparatively how sensitive ovarian cancer cell lines are to platinum. We performed one of the most comprehensive profiles to date on 36 ovarian cancer cell lines across over seven subtypes and integrated drug response and multiomic data to improve on our understanding of the best cell line models for platinum responsiveness in ovarian cancer. RNA-seq analysis of the 36 cell lines in a single batch experiment largely conforms with the currently accepted subtyping of ovarian cancers, further supporting other studies that have reclassified cell lines and demonstrate that commonly used cell lines are poor models of high-grade serous ovarian carcinoma. We performed drug dose response assays in the 32 of these cell lines for cisplatin and carboplatin, providing a quantitative database of IC50s for these drugs. Our results demonstrate that cell lines largely fall either well above or below the equivalent dose of the clinical maximally achievable dose (Cmax) of each compound, allowing designation of cell lines as sensitive or resistant. We performed differential expression analysis for high-grade serous ovarian carcinoma cell lines to identify gene expression correlating with platinum-response. Further, we generated two platinum-resistant derivatives each for OVCAR3 and OVCAR4, as well as leveraged clinically-resistant PEO1/PEO4/PEO6 and PEA1/PEA2 isogenic models to perform differential expression analysis for seven total isogenic pairs of platinum resistant cell lines. While gene expression changes overall were heterogeneous and vast, common themes were innate immunity/STAT activation, epithelial to mesenchymal transition and stemness, and platinum influx/efflux regulators. In addition to gene expression analyses, we performed copy number signature analysis and orthogonal measures of homologous recombination deficiency (HRD) scar scores and copy number burden, which is the first report to our knowledge applying field-standard copy number signatures to ovarian cancer cell lines. We also examined markers and functional readouts of stemness that revealed that cell lines are poor models for examination of stemness contributions to platinum resistance, likely pointing to the fact that this is a transient state. Overall this study serves as a resource to determine the best cell lines to utilize for ovarian cancer research on certain subtypes and platinum response studies, as well as sparks new hypotheses for future study in ovarian cancer.
Collapse
Affiliation(s)
- Kristin M. Adams
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae-Rim Wendt
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Josie Wood
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Olson
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Moreno
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhongmou Jin
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Srihari Gopalan
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jessica D. Lang
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Biegała Ł, Kołat D, Gajek A, Płuciennik E, Marczak A, Śliwińska A, Mikula M, Rogalska A. Uncovering miRNA-mRNA Regulatory Networks Related to Olaparib Resistance and Resensitization of BRCA2MUT Ovarian Cancer PEO1-OR Cells with the ATR/CHK1 Pathway Inhibitors. Cells 2024; 13:867. [PMID: 38786089 PMCID: PMC11119970 DOI: 10.3390/cells13100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Resistance to olaparib is the major obstacle in targeted therapy for ovarian cancer (OC) with poly(ADP-ribose) polymerase inhibitors (PARPis), prompting studies on novel combination therapies to enhance olaparib efficacy. Despite identifying various mechanisms, understanding how OC cells acquire PARPi resistance remains incomplete. This study investigated microRNA (miRNA) expression in olaparib-sensitive (PEO1, PEO4) and previously established olaparib-resistant OC cell lines (PEO1-OR) using high-throughput RT-qPCR and bioinformatic analyses. The role of miRNAs was explored regarding acquired resistance and resensitization with the ATR/CHK1 pathway inhibitors. Differentially expressed miRNAs were used to construct miRNA-mRNA regulatory networks and perform functional enrichment analyses for target genes with miRNet 2.0. TCGA-OV dataset was analyzed to explore the prognostic value of selected miRNAs and target genes in clinical samples. We identified potential processes associated with olaparib resistance, including cell proliferation, migration, cell cycle, and growth factor signaling. Resensitized PEO1-OR cells were enriched in growth factor signaling via PDGF, EGFR, FGFR1, VEGFR2, and TGFβR, regulation of the cell cycle via the G2/M checkpoint, and caspase-mediated apoptosis. Antibody microarray analysis confirmed dysregulated growth factor expression. The addition of the ATR/CHK1 pathway inhibitors to olaparib downregulated FGF4, FGF6, NT-4, PLGF, and TGFβ1 exclusively in PEO1-OR cells. Survival and differential expression analyses for serous OC patients revealed prognostic miRNAs likely associated with olaparib resistance (miR-99b-5p, miR-424-3p, and miR-505-5p) and resensitization to olaparib (miR-324-5p and miR-424-3p). Essential miRNA-mRNA interactions were reconstructed based on prognostic miRNAs and target genes. In conclusion, our data highlight distinct miRNA profiles in olaparib-sensitive and olaparib-resistant cells, offering molecular insights into overcoming resistance with the ATR/CHK1 inhibitors in OC. Moreover, some miRNAs might serve as potential predictive signature molecules of resistance and therapeutic response.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Jana Matejki 21/23, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (D.K.); (E.P.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland;
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (Ł.B.); (A.G.); (A.M.)
| |
Collapse
|
8
|
Schneider MP, Cullen AE, Pangonyte J, Skelton J, Major H, Van Oudenhove E, Garcia MJ, Chaves Urbano B, Piskorz AM, Brenton JD, Macintyre G, Markowetz F. scAbsolute: measuring single-cell ploidy and replication status. Genome Biol 2024; 25:62. [PMID: 38438920 PMCID: PMC10910719 DOI: 10.1186/s13059-024-03204-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/22/2024] [Indexed: 03/06/2024] Open
Abstract
Cancer cells often exhibit DNA copy number aberrations and can vary widely in their ploidy. Correct estimation of the ploidy of single-cell genomes is paramount for downstream analysis. Based only on single-cell DNA sequencing information, scAbsolute achieves accurate and unbiased measurement of single-cell ploidy and replication status, including whole-genome duplications. We demonstrate scAbsolute's capabilities using experimental cell multiplets, a FUCCI cell cycle expression system, and a benchmark against state-of-the-art methods. scAbsolute provides a robust foundation for single-cell DNA sequencing analysis across different technologies and has the potential to enable improvements in a number of downstream analyses.
Collapse
Affiliation(s)
- Michael P Schneider
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Amy E Cullen
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Justina Pangonyte
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Jason Skelton
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Harvey Major
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Elke Van Oudenhove
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Maria J Garcia
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Anna M Piskorz
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - James D Brenton
- University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK
| | - Geoff Macintyre
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Florian Markowetz
- University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, UK.
| |
Collapse
|
9
|
Abdalbari FH, Martinez-Jaramillo E, Forgie BN, Tran E, Zorychta E, Goyeneche AA, Sabri S, Telleria CM. Auranofin Induces Lethality Driven by Reactive Oxygen Species in High-Grade Serous Ovarian Cancer Cells. Cancers (Basel) 2023; 15:5136. [PMID: 37958311 PMCID: PMC10650616 DOI: 10.3390/cancers15215136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70% of ovarian cancer cases, and the survival rate remains remarkably low due to the lack of effective long-term consolidation therapies. Clinical remission can be temporarily induced by platinum-based chemotherapy, but death subsequently results from the extensive growth of a platinum-resistant component of the tumor. This work explores a novel treatment against HGSOC using the gold complex auranofin (AF). AF primarily functions as a pro-oxidant by inhibiting thioredoxin reductase (TrxR), an antioxidant enzyme overexpressed in ovarian cancer. We investigated the effect of AF on TrxR activity and the various mechanisms of cytotoxicity using HGSOC cells that are clinically sensitive or resistant to platinum. In addition, we studied the interaction between AF and another pro-oxidant, L-buthionine sulfoximine (L-BSO), an anti-glutathione (GSH) compound. We demonstrated that AF potently inhibited TrxR activity and reduced the vitality and viability of HGSOC cells regardless of their sensitivities to platinum. We showed that AF induces the accumulation of reactive oxygen species (ROS), triggers the depolarization of the mitochondrial membrane, and kills HGSOC cells by inducing apoptosis. Notably, AF-induced cell death was abrogated by the ROS-scavenger N-acetyl cysteine (NAC). In addition, the lethality of AF was associated with the activation of caspases-3/7 and the generation of DNA damage, effects that were also prevented by the presence of NAC. Finally, when AF and L-BSO were combined, we observed synergistic lethality against HGSOC cells, which was mediated by a further increase in ROS and a decrease in the levels of the antioxidant GSH. In summary, our results support the concept that AF can be used alone or in combination with L-BSO to kill HGSOC cells regardless of their sensitivity to platinum, suggesting that the depletion of antioxidants is an efficient strategy to mitigate the course of this disease.
Collapse
Affiliation(s)
- Farah H. Abdalbari
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Elvis Martinez-Jaramillo
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Benjamin N. Forgie
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Estelle Tran
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Edith Zorychta
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
| | - Alicia A. Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Siham Sabri
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Carlos M. Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 2B4, Canada; (F.H.A.); (E.M.-J.); (B.N.F.); (E.T.); (E.Z.); (A.A.G.)
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
10
|
Arias-Diaz AE, Ferreiro-Pantin M, Barbazan J, Perez-Beliz E, Ruiz-Bañobre J, Casas-Arozamena C, Muinelo-Romay L, Lopez-Lopez R, Vilar A, Curiel T, Abal M. Ascites-Derived Organoids to Depict Platinum Resistance in Gynaecological Serous Carcinomas. Int J Mol Sci 2023; 24:13208. [PMID: 37686015 PMCID: PMC10487816 DOI: 10.3390/ijms241713208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Gynaecological serous carcinomas (GSCs) constitute a distinctive entity among female tumours characterised by a very poor prognosis. In addition to late-stage diagnosis and a high rate of recurrent disease associated with massive peritoneal carcinomatosis, the systematic acquisition of resistance to first-line chemotherapy based on platinum determines the unfavourable outcome of GSC patients. To explore the molecular mechanisms associated with platinum resistance, we generated patient-derived organoids (PDOs) from liquid biopsies of GSC patients. PDOs are emerging as a relevant preclinical model system to assist in clinical decision making, mainly from tumoural tissue and particularly for personalised therapeutic options. To approach platinum resistance in a GSC context, proficient PDOs were generated from the ascitic fluid of ovarian, primary peritoneal and uterine serous carcinoma patients in platinum-sensitive and platinum-resistant clinical settings from the uterine aspirate of a uterine serous carcinoma patient, and we also induced platinum resistance in vitro in a representative platinum-sensitive PDO. Histological and immunofluorescent characterisation of these ascites-derived organoids showed resemblance to the corresponding original tumours, and assessment of platinum sensitivity in these preclinical models replicated the clinical setting of the corresponding GSC patients. Differential gene expression profiling of a panel of 770 genes representing major canonical cancer pathways, comparing platinum-sensitive and platinum-resistant PDOs, revealed cellular response to DNA damage stimulus as the principal biological process associated with the acquisition of resistance to the first-line therapy for GSC. Additionally, candidate genes involved in regulation of cell adhesion, cell cycles, and transcription emerged from this proof-of-concept study. In conclusion, we describe the generation of PDOs from liquid biopsies in the context of gynaecological serous carcinomas to explore the molecular determinants of platinum resistance.
Collapse
Affiliation(s)
- Andrea Estrella Arias-Diaz
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Department of Medicine, Universidade de Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Miriam Ferreiro-Pantin
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
| | - Jorge Barbazan
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Edurne Perez-Beliz
- Department of Pathology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Juan Ruiz-Bañobre
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Rafael Lopez-Lopez
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Ana Vilar
- Department of Gynecology, University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - Teresa Curiel
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Trav. Choupana s/n, 15706 Santiago de Compostela, Spain; (A.E.A.-D.); (M.F.-P.); (J.B.); (J.R.-B.); (C.C.-A.); (L.M.-R.); (R.L.-L.); (T.C.)
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Monforte de Lemos 3-5, 28029 Madrid, Spain
| |
Collapse
|
11
|
Zhang X, Yao J, Li X, Niu N, Liu Y, Hajek RA, Peng G, Westin S, Sood AK, Liu J. Targeting polyploid giant cancer cells potentiates a therapeutic response and overcomes resistance to PARP inhibitors in ovarian cancer. SCIENCE ADVANCES 2023; 9:eadf7195. [PMID: 37478190 PMCID: PMC10361597 DOI: 10.1126/sciadv.adf7195] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
To understand the mechanism of acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) olaparib, we induced the formation of polyploid giant cancer cells (PGCCs) in ovarian and breast cancer cell lines, high-grade serous cancer (HGSC)-derived organoids, and patient-derived xenografts (PDXs). Time-lapse tracking of ovarian cancer cells revealed that PGCCs primarily developed from endoreplication after exposure to sublethal concentrations of olaparib. PGCCs exhibited features of senescent cells but, after olaparib withdrawal, can escape senescence via restitutional multipolar endomitosis and other noncanonical modes of cell division to generate mitotically competent resistant daughter cells. The contraceptive drug mifepristone blocked PGCC formation and daughter cell formation. Mifepristone/olaparib combination therapy substantially reduced tumor growth in PDX models without previous olaparib exposure, while mifepristone alone decreased tumor growth in PDX models with acquired olaparib resistance. Thus, targeting PGCCs may represent a promising approach to potentiate the therapeutic response to PARPi and overcome PARPi-induced resistance.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoran Li
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Na Niu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard A. Hajek
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Anchoori RK, Anchoori V, Lam B, Tseng SH, Das S, Velasquez FC, Karanam B, Poddatoori D, Patnam R, Rudek MA, Chang YN, Roden RBS. Development and anticancer properties of Up284, a spirocyclic candidate ADRM1/RPN13 inhibitor. PLoS One 2023; 18:e0285221. [PMID: 37315065 PMCID: PMC10266688 DOI: 10.1371/journal.pone.0285221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/03/2023] [Indexed: 06/16/2023] Open
Abstract
Bortezomib has been successful for treatment of multiple myeloma, but not against solid tumors, and toxicities of neuropathy, thrombocytopenia and the emergence of resistance have triggered efforts to find alternative proteasome inhibitors. Bis-benzylidine piperidones such as RA190 covalently bind ADRM1/RPN13, a ubiquitin receptor that supports recognition of polyubiquitinated substrates of the proteasome and their subsequent deububiqutination and degradation. While these candidate RPN13 inhibitors (iRPN13) show promising anticancer activity in mouse models of cancer, they have suboptimal drug-like properties. Here we describe Up284, a novel candidate iRPN13 possessing a central spiro-carbon ring in place of RA190's problematic piperidone core. Cell lines derived from diverse cancer types (ovarian, triple negative breast, colon, cervical and prostate cancers, multiple myeloma and glioblastoma) were sensitive to Up284, including several lines resistant to bortezomib or cisplatin. Up284 and cisplatin showed synergistic cytotoxicity in vitro. Up284-induced cytotoxicity was associated with mitochondrial dysfunction, elevated levels of reactive oxygen species, accumulation of very high molecular weight polyubiquitinated protein aggregates, an unfolded protein response and the early onset of apoptosis. Up284 and RA190, but not bortezomib, enhanced antigen presentation in vitro. Up284 cleared from plasma in a few hours and accumulated in major organs by 24 h. A single dose of Up284, when administered to mice intra peritoneally or orally, inhibited proteasome function in both muscle and tumor for >48 h. Up284 was well tolerated by mice in repeat dose studies. Up284 demonstrated therapeutic activity in xenograft, syngeneic and genetically-engineered murine models of ovarian cancer.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
- Up Therapeutics LLC, Frederick, MD, United States of America
| | - Vidyasagar Anchoori
- Up Therapeutics LLC, Frederick, MD, United States of America
- SV Chem Biotech, Edmonton, AB, Canada
| | - Brandon Lam
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fernanda Carrizo Velasquez
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama, United States of America
| | | | - Ramesh Patnam
- Prochem Organics, IDA Pashamylaram, Isnapur, Medak, Telangana, India
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Yung-Nien Chang
- Up Therapeutics LLC, Frederick, MD, United States of America
| | - Richard B. S. Roden
- Department of Oncology, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
13
|
Varga A, Márton É, Markovics A, Penyige A, Balogh I, Nagy B, Szilágyi M. Suppressing the PI3K/AKT Pathway by miR-30d-5p Mimic Sensitizes Ovarian Cancer Cells to Cell Death Induced by High-Dose Estrogen. Biomedicines 2022; 10:biomedicines10092060. [PMID: 36140161 PMCID: PMC9495868 DOI: 10.3390/biomedicines10092060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are short non-coding RNA molecules that are involved in tumor development and are considered to be promising candidates in cancer therapy. Here, we studied the role of miR-30s in the pathophysiology of ovarian cancer. According to our results miR-30a-5p, miR-30d-5p, and miR-30e-5p were overexpressed in the estrogen receptor α (ERα)-expressing PEO1 cell line compared to A2780 that lacks this receptor. Furthermore, the expression of miR-30a-5p, miR-30d-5p, and miR-30e-5p were induced in response to high-dose estrogen treatment in PEO1 where intensive cell death was observed according to the induction of apoptosis and autophagy. Lacking or blocking ERα function reduced tolerance to high-dose estrogen that suggests the importance of ERα-mediated estrogen response in the maintenance of proliferation. MiR-30d-5p mimic reduced cell proliferation in both A2780 and PEO1. Furthermore, it decreased the tolerance of PEO1 cells to high-dose estrogen by blocking the ERα-mediated estrogen response. This was accompanied by decreased SOX4 expression that is thought to be involved in the regulation of the PI3K/AKT pathway. Blocking this pathway by AZD8835 led to the same results. MiR-30d-5p or AZD8835 sensitized PEO1 cells to tamoxifen. We suggest that miR-30d-5p might be a promising candidate in the therapy of ovarian cancer.
Collapse
Affiliation(s)
- Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Arnold Markovics
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-416-531
| |
Collapse
|
14
|
Achimas-Cadariu P, Kubelac P, Irimie A, Berindan-Neagoe I, Rühli F. Evolutionary perspectives, heterogeneity and ovarian cancer: a complicated tale from past to present. J Ovarian Res 2022; 15:67. [PMID: 35659345 PMCID: PMC9164402 DOI: 10.1186/s13048-022-01004-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer is composed of a complex system of cells best described by features such as clonal evolution, spatial and temporal genetic heterogeneity, and development of drug resistance, thus making it the most lethal gynecologic cancer. Seminal work on cancer as an evolutionary process has a long history; however, recent cost-effective large-scale molecular profiling has started to provide novel insights coupled with the development of mathematical algorithms. In the current review, we have systematically searched for articles that focused on the clonal evolution of ovarian cancer to offer the whole landscape of research that has been done and highlight future research avenues given its characteristic features and connections to evolutionary biology.
Collapse
Affiliation(s)
- Patriciu Achimas-Cadariu
- Department of Surgery, The Oncology Institute 'Prof. Dr. Ion Chiricuta', 34-36 Republicii street, 400015 , Cluj-Napoca, Romania. .,Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| | - Paul Kubelac
- Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Medical Oncology, The Oncology Institute 'Prof. Dr. Ion Chiricuta', Cluj-Napoca, Romania
| | - Alexandru Irimie
- Department of Surgery, The Oncology Institute 'Prof. Dr. Ion Chiricuta', 34-36 Republicii street, 400015 , Cluj-Napoca, Romania.,Department of Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Centre for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Advanced Medicine Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute 'Prof. Dr. Ion Chiricuta', Cluj-Napoca, Romania
| | - Frank Rühli
- Institute of Evolutionary Medicine, Zurich, Switzerland
| |
Collapse
|
15
|
Marchocki Z, Tone A, Virtanen C, de Borja R, Clarke B, Brown T, May T. Impact of neoadjuvant chemotherapy on somatic mutation status in high-grade serous ovarian carcinoma. J Ovarian Res 2022; 15:50. [PMID: 35501919 PMCID: PMC9059396 DOI: 10.1186/s13048-022-00983-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Patients treated with neoadjuvant chemotherapy (NACT) for advanced high-grade serous ovarian carcinoma (HGSC) have a higher rate and shorter time to platinum-resistant recurrence compared to patients treated with primary cytoreductive surgery (PCS) and adjuvant chemotherapy. The purpose of this study is to determine the impact of NACT on somatic mutation status in platinum-sensitive and resistant HGSC. Patients with advanced HGSC who had a documented response to platinum-based NACT, a banked blood sample, and a banked tumor sample before and after NACT were identified. Whole exome and/or targeted deep sequencing was performed in matched normal and pre/post-NACT tumor samples from 3 platinum-resistant and 2 platinum-sensitive patients to identify somatic non-synonymous mutations at each time point. RESULTS When comparing exonic non-synonymous mutations in pre-NACT and post-NACT samples from the same patient, an average of 41% (1-68%) of genes were mutated at both time points. There were no trends detected in the mutational burden following exposure to NACT in platinum-resistant vs. platinum-sensitive cases. The majority of mutated genes were unique to each case. We identified several genes that were commonly mutated in pre-NACT samples specific to platinum-resistant (CSPG4, SLC35G5, TUBA3D) or sensitive (CYP2D6, NUTM1, DNAH5) cases. Four mutated genes emerged exclusively in the platinum-resistant cases (ADGRV1, MUC17, MUC20, PAK2) following NACT. CONCLUSIONS Patients with advanced HGSC present with significant intra-tumor heterogeneity. NACT significantly impacts the somatic mutation status irrespective of the time to recurrence. The mutated genes detected in chemo-naive pre-NACT tumor samples from either resistant or sensitive cases could potentially have a role in the prediction of chemotherapy response in patients scheduled to receive NACT; larger studies are required to further validate these genes.
Collapse
Affiliation(s)
- Zibi Marchocki
- Department of Surgical Oncology, Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Alicia Tone
- Department of Surgical Oncology, Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Carl Virtanen
- Bioinformatics and HPC Services Core, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Richard de Borja
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Blaise Clarke
- Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Theodore Brown
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Taymaa May
- Department of Surgical Oncology, Division of Gynecologic Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Radiogenomics: A Valuable Tool for the Clinical Assessment and Research of Ovarian Cancer. J Comput Assist Tomogr 2022; 46:371-378. [DOI: 10.1097/rct.0000000000001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Quesada S, Fabbro M, Solassol J. Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer Part 2: Medical Perspectives. Cancers (Basel) 2022; 14:cancers14041098. [PMID: 35205846 PMCID: PMC8870335 DOI: 10.3390/cancers14041098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC—the most frequent and aggressive form of ovarian cancer) represents an important challenge for clinicians. Half of HGSOC cases exhibit homologous recombination deficiency (HRD), mainly through alterations in BRCA1 and BRCA2. This leads to sensitivity to PARP inhibitors, a novel class of breakthrough molecules that improved HGSOC prognoses. To date, three companion diagnostic assays have received FDA approval for the evaluation of HRD status, but their use remains controversial. In this companion review (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative perspective, from translational research to clinical application, that could help physicians and researchers manage HGSOC. Abstract High-grade serous ovarian cancer (HGSOC) is the most frequent and aggressive form of ovarian cancer, representing an important challenge for clinicians. Half of HGSOC cases have homologous recombination deficiency (HRD), which has specific causes (mainly alterations in BRCA1/2, but also other alterations encompassed by the BRCAness concept) and consequences, both at molecular (e.g., genomic instability) and clinical (e.g., sensitivity to PARP inhibitor) levels. Based on its prevalence and clinical impact, HRD status merits investigation. To date, three PARP inhibitors have received FDA/EMA approval. For some approvals, the presence of specific molecular alterations is required. Three companion diagnostic (CDx) assays based on distinct technical and medical considerations have received FDA approval to date. However, their use remains controversial due to their technical and medical limitations. In this companion and integrated review, we take a “bench-to-bedside” perspective on HRD definition and evaluation in the context of HGSOC. Part 1 of the review adopts a molecular perspective regarding technical considerations and the development of CDx. Part 2 focuses on the clinical impact of HRD evaluation, primarily through currently validated CDx and prescription of PARP inhibitors, outlining achievements, limitations and medical perspectives.
Collapse
Affiliation(s)
- Stanislas Quesada
- Medical Oncology Department, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France;
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France;
- Correspondence:
| | - Michel Fabbro
- Medical Oncology Department, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France;
- Montpellier Research Cancer Institute (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1194, University of Montpellier, 34298 Montpellier, France
| | - Jérôme Solassol
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France;
- Montpellier Research Cancer Institute (IRCM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1194, University of Montpellier, 34298 Montpellier, France
- Department of Pathology and Onco-Biology, Centre Hospitalier Universitaire (CHU) Montpellier, 34295 Montpellier, France
| |
Collapse
|
18
|
Mo J, Moye SL, McKay RM, Le LQ. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene 2022; 41:1235-1251. [PMID: 35066574 PMCID: PMC9063229 DOI: 10.1038/s41388-021-02156-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.
Collapse
Affiliation(s)
- Juan Mo
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Stefanie L Moye
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Renee M McKay
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
19
|
Nelfinavir Induces Cytotoxicity towards High-Grade Serous Ovarian Cancer Cells, Involving Induction of the Unfolded Protein Response, Modulation of Protein Synthesis, DNA Damage, Lysosomal Impairment, and Potentiation of Toxicity Caused by Proteasome Inhibition. Cancers (Basel) 2021; 14:cancers14010099. [PMID: 35008264 PMCID: PMC8750028 DOI: 10.3390/cancers14010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) accounts for 70% of all ovarian-cancer-related deaths. Mainstay treatment with platinum-based drugs following surgery results in favorable outcomes in the majority of patients; however, in >80% of cases, the disease relapses with eventual drug resistance. As such, urgent development of improved alternative therapies is necessary for HGSOC patients with lower life expectancy. Rapid repurposing of market available drugs for cancer therapy is a cost-effective alternative to bypass the decade-long traditional drug development pipeline. Among potential drug-repurposing candidates, nelfinavir (NFV)—an anti-infective agent to treat acquired immunodeficiency syndrome (AIDS)—has shown anti-cancer effects against diverse cancers; however, its remedial benefits against HGSOC are unknown. In this study, we explored how NFV targets HGSOC cells obtained from patients at platinum-sensitive and -resistant stages. We observed beneficial efficacy elicited by NFV against HGSOC in both disease conditions through multiple mechanistic avenues, suggesting positive drug-repurposing prospects. Abstract High-grade serous ovarian cancer (HGSOC) is a significant cause of mortality among women worldwide. Traditional treatment consists of platinum-based therapy; however, rapid development of platinum resistance contributes to lower life expectancy, warranting newer therapies to supplement the current platinum-based protocol. Repurposing market-available drugs as cancer therapeutics is a cost- and time-effective way to avail new therapies to drug-resistant patients. The anti-HIV agent nelfinavir (NFV) has shown promising toxicity against various cancers; however, its role against HGSOC is unknown. Here, we studied the effect of NFV against HGSOC cells obtained from patients along disease progression and carrying different sensitivities to platinum. NFV triggered, independently of platinum sensitivity, a dose-dependent reduction in the HGSOC cell number and viability, and a parallel increase in hypo-diploid DNA content. Moreover, a dose-dependent reduction in clonogenic survival of cells escaping the acute toxicity was indicative of long-term residual damage. In addition, dose- and time-dependent phosphorylation of H2AX indicated NFV-mediated DNA damage, which was associated with decreased survival and proliferation signals driven by the AKT and ERK pathways. NFV also mediated a dose-dependent increase in endoplasmic reticulum stress-related molecules associated with long-term inhibition of protein synthesis and concurrent cell death; such events were accompanied by a proapoptotic environment, signaled by increased phospho-eIF2α, ATF4, and CHOP, increased Bax/Bcl-2 ratio, and cleaved executer caspase-7. Finally, we show that NFV potentiates the short-term cell cycle arrest and long-term toxicity caused by the proteasome inhibitor bortezomib. Overall, our in vitro study demonstrates that NFV can therapeutically target HGSOC cells of differential platinum sensitivities via several mechanisms, suggesting its prospective repurposing benefit considering its good safety profile.
Collapse
|
20
|
Huang D, Chowdhury S, Wang H, Savage SR, Ivey RG, Kennedy JJ, Whiteaker JR, Lin C, Hou X, Oberg AL, Larson MC, Eskandari N, Delisi DA, Gentile S, Huntoon CJ, Voytovich UJ, Shire ZJ, Yu Q, Gygi SP, Hoofnagle AN, Herbert ZT, Lorentzen TD, Calinawan A, Karnitz LM, Weroha SJ, Kaufmann SH, Zhang B, Wang P, Birrer MJ, Paulovich AG. Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Rep Med 2021; 2:100471. [PMID: 35028612 PMCID: PMC8714940 DOI: 10.1016/j.xcrm.2021.100471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).
Collapse
Affiliation(s)
- Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hong Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Najmeh Eskandari
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Davide A Delisi
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Saverio Gentile
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | - Uliana J Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zahra J Shire
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N Hoofnagle
- Department of Lab Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Travis D Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Larry M Karnitz
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Birrer
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
21
|
Abdalbari FH, Telleria CM. The gold complex auranofin: new perspectives for cancer therapy. Discov Oncol 2021; 12:42. [PMID: 35201489 PMCID: PMC8777575 DOI: 10.1007/s12672-021-00439-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced stages of cancer are highly associated with short overall survival in patients due to the lack of long-term treatment options following the standard form of care. New options for cancer therapy are needed to improve the survival of cancer patients without disease recurrence. Auranofin is a clinically approved agent against rheumatoid arthritis that is currently enrolled in clinical trials for potential repurposing against cancer. Auranofin mainly targets the anti-oxidative system catalyzed by thioredoxin reductase (TrxR), which protects the cell from oxidative stress and death in the cytoplasm and the mitochondria. TrxR is over-expressed in many cancers as an adaptive mechanism for cancer cell proliferation, rendering it an attractive target for cancer therapy, and auranofin as a potential therapeutic agent for cancer. Inhibiting TrxR dysregulates the intracellular redox state causing increased intracellular reactive oxygen species levels, and stimulates cellular demise. An alternate mechanism of action of auranofin is to mimic proteasomal inhibition by blocking the ubiquitin-proteasome system (UPS), which is critically important in cancer cells to prevent cell death when compared to non-cancer cells, because of its role on cell cycle regulation, protein degradation, gene expression, and DNA repair. This article provides new perspectives on the potential mechanisms used by auranofin alone, in combination with diverse other compounds, or in combination with platinating agents and/or immune checkpoint inhibitors to combat cancer cells, while assessing the feasibility for its repurposing in the clinical setting.
Collapse
Affiliation(s)
- Farah H Abdalbari
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Carlos M Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
22
|
Leveraging Genomics, Transcriptomics, and Epigenomics to Understand the Biology and Chemoresistance of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13164029. [PMID: 34439181 PMCID: PMC8391219 DOI: 10.3390/cancers13164029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is a major cause of fatality due to a gynecological malignancy. This lethality is largely due to the unspecific clinical manifestations of ovarian cancer, which lead to late detection and to high resistance to conventional therapies based on platinum. In recent years, we have advanced our understanding of the mechanisms provoking tumor relapse, and the advent of so-called omics technologies has provided exceptional tools to evaluate molecular mechanisms leading to therapy resistance in ovarian cancer. Here, we review the contribution of genomics, transcriptomics, and epigenomics techniques to our knowledge about the biology and molecular features of ovarian cancers, with a focus on therapy resistance. The use of these technologies to identify molecular markers and mechanisms leading to chemoresistance in these tumors is discussed, as well as potential further applications.
Collapse
|
23
|
Mascheroni P, Savvopoulos S, Alfonso JCL, Meyer-Hermann M, Hatzikirou H. Improving personalized tumor growth predictions using a Bayesian combination of mechanistic modeling and machine learning. COMMUNICATIONS MEDICINE 2021; 1:19. [PMID: 35602187 PMCID: PMC9053281 DOI: 10.1038/s43856-021-00020-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In clinical practice, a plethora of medical examinations are conducted to assess the state of a patient's pathology producing a variety of clinical data. However, investigation of these data faces two major challenges. Firstly, we lack the knowledge of the mechanisms involved in regulating these data variables, and secondly, data collection is sparse in time since it relies on patient's clinical presentation. The former limits the predictive accuracy of clinical outcomes for any mechanistic model. The latter restrains any machine learning algorithm to accurately infer the corresponding disease dynamics. METHODS Here, we propose a novel method, based on the Bayesian coupling of mathematical modeling and machine learning, aiming at improving individualized predictions by addressing the aforementioned challenges. RESULTS We evaluate the proposed method on a synthetic dataset for brain tumor growth and analyze its performance in predicting two relevant clinical outputs. The method results in improved predictions in almost all simulated patients, especially for those with a late clinical presentation (>95% patients show improvements compared to standard mathematical modeling). In addition, we test the methodology in two additional settings dealing with real patient cohorts. In both cases, namely cancer growth in chronic lymphocytic leukemia and ovarian cancer, predictions show excellent agreement with reported clinical outcomes (around 60% reduction of mean squared error). CONCLUSIONS We show that the combination of machine learning and mathematical modeling approaches can lead to accurate predictions of clinical outputs in the context of data sparsity and limited knowledge of disease mechanisms.
Collapse
Affiliation(s)
- Pietro Mascheroni
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Centre for Infectious Research, Braunschweig, Germany
| | - Symeon Savvopoulos
- grid.5596.f0000 0001 0668 7884KU Leuven, Department of Chemical Engineering, Leuven, Belgium
| | - Juan Carlos López Alfonso
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Centre for Infectious Research, Braunschweig, Germany
| | - Michael Meyer-Hermann
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Centre for Infectious Research, Braunschweig, Germany ,Centre for Individualized Infection Medicine, Hannover, Germany ,grid.6738.a0000 0001 1090 0254Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Haralampos Hatzikirou
- grid.440568.b0000 0004 1762 9729Mathematics Department, Khalifa University, Abu Dhabi, UAE ,grid.4488.00000 0001 2111 7257Centre for Information Services and High Performance Computing, TU Dresden, Dresden, Germany
| |
Collapse
|
24
|
Su KM, Gao HW, Chang CM, Lu KH, Yu MH, Lin YH, Liu LC, Chang CC, Li YF, Chang CC. Synergistic AHR Binding Pathway with EMT Effects on Serous Ovarian Tumors Recognized by Multidisciplinary Integrated Analysis. Biomedicines 2021; 9:866. [PMID: 34440070 PMCID: PMC8389648 DOI: 10.3390/biomedicines9080866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancers (EOCs) are fatal and obstinate among gynecological malignancies in advanced stage or relapsed status, with serous carcinomas accounting for the vast majority. Unlike EOCs, borderline ovarian tumors (BOTs), including serous BOTs, maintain a semimalignant appearance. Using gene ontology (GO)-based integrative analysis, we analyzed gene set databases of serous BOTs and serous ovarian carcinomas for dysregulated GO terms and pathways and identified multiple differentially expressed genes (DEGs) in various aspects. The SRC (SRC proto-oncogene, non-receptor tyrosine kinase) gene and dysfunctional aryl hydrocarbon receptor (AHR) binding pathway consistently influenced progression-free survival and overall survival, and immunohistochemical staining revealed elevated expression of related biomarkers (SRC, ARNT, and TBP) in serous BOT and ovarian carcinoma samples. Epithelial-mesenchymal transition (EMT) is important during tumorigenesis, and we confirmed the SNAI2 (Snail family transcriptional repressor 2, SLUG) gene showing significantly high performance by immunohistochemistry. During serous ovarian tumor formation, activated AHR in the cytoplasm could cooperate with SRC, enter cell nuclei, bind to AHR nuclear translocator (ARNT) together with TATA-Box Binding Protein (TBP), and act on DNA to initiate AHR-responsive genes to cause tumor or cancer initiation. Additionally, SNAI2 in the tumor microenvironment can facilitate EMT accompanied by tumorigenesis. Although it has not been possible to classify serous BOTs and serous ovarian carcinomas as the same EOC subtype, the key determinants of relevant DEGs (SRC, ARNT, TBP, and SNAI2) found here had a crucial role in the pathogenetic mechanism of both tumor types, implying gradual evolutionary tendencies from serous BOTs to ovarian carcinomas. In the future, targeted therapy could focus on these revealed targets together with precise detection to improve therapeutic effects and patient survival rates.
Collapse
Affiliation(s)
- Kuo-Min Su
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Hong-Wei Gao
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chia-Ming Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei 112, Taiwan;
| | - Mu-Hsien Yu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yi-Hsin Lin
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Li-Chun Liu
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
- Division of Obstetrics and Gynecology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Chia-Ching Chang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| | - Yao-Feng Li
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Cheng-Chang Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (K.-M.S.); (M.-H.Y.)
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-H.L.); (L.-C.L.); (C.-C.C.)
| |
Collapse
|
25
|
Zhang G, Zhang J, Zhu Y, Liu H, Shi Y, Mi K, Li M, Zhao Q, Huang Z, Huang J. Association of somatic mutations in BRCA2 BRC domain with chemotherapy sensitivity and survival in high grade serous ovarian cancer. Exp Cell Res 2021; 406:112742. [PMID: 34302857 DOI: 10.1016/j.yexcr.2021.112742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mutations at sites crucial for the interaction between RAD51 and BRC domains impair the ability of BRCA2 homologous recombination. We aimed to clarify whether BRCA2 BRC domain-associated mutation correlates with sensibility of platinum-based chemotherapy and survival in high-grade serous ovarian cancer (HGSOC). METHODS We identified BRCA2 BRC domain mutations by sequencing PCR-amplified amplicons of genomic DNA isolated from tumor tissues and peripheral blood leukocytes (PBL)in 113 patients with advanced EOC, and assessed platinum-free interval (PFI), progression-free survival (PFS) and overall survival (OS). RESULTS 21.23% (24 of 113) cases with somatic missense mutation but not germline mutation were identified. Among 24 cases with mutation, 33.3% (8 of 24) cases with nonsense mutation (C-terminal truncation) significantly prolonged median PFI (37 vs 8 months,P = 0.000), PFS (43 vs 14 months, p = 0.000) and OS (56 vs 31 months, P = 0.002); 66.7% (16 of 24) cases with missense mutation also prolonged median PFI (15 vs 8 months, P = 0.044), PFS (21 vs 14 months, P = 0.049) and OS (38 vs 31 months, P = 0.037), compared to those without any mutation. CONCLUSIONS Somatic mutations in BRCA2 BRC domain confer a higher sensitivity to platinum-based therapy and are associated with a favourable survival in HGSOC.
Collapse
Affiliation(s)
- Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, Chengdu, 610041, PR China
| | - Jie Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, Chengdu, 610041, PR China
| | - Yi Zhu
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, Chengdu, 610041, PR China; Department of Ultrasound, Sichuan Cancer Hospital, Chengdu, 610041, PR China
| | - Hong Liu
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, Chengdu, 610041, PR China
| | - Yu Shi
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, Chengdu, 610041, PR China
| | - Kun Mi
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Institute, Chengdu, 610041, PR China
| | - Meiying Li
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Institute, Chengdu, 610041, PR China
| | - Qi Zhao
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Institute, Chengdu, 610041, PR China
| | - Ziyi Huang
- Department of Bioinformatics, Basic Medical College of Chongqing Medical University, Chongqing, PR China
| | - Jianming Huang
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Institute, Chengdu, 610041, PR China.
| |
Collapse
|
26
|
Nougaret S, McCague C, Tibermacine H, Vargas HA, Rizzo S, Sala E. Radiomics and radiogenomics in ovarian cancer: a literature review. Abdom Radiol (NY) 2021; 46:2308-2322. [PMID: 33174120 DOI: 10.1007/s00261-020-02820-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 01/25/2023]
Abstract
Ovarian cancer remains one of the most lethal gynecological cancers in the world despite extensive progress in the areas of chemotherapy and surgery. Many studies have postulated that this is because of the profound heterogeneity that underpins response to therapy and prognosis. Standard imaging evaluation using CT or MRI does not take into account this tumoral heterogeneity especially in advanced stages with peritoneal carcinomatosis. As such, newly emergent fields in the assessment of tumor heterogeneity have been proposed using radiomics to evaluate the whole tumor burden heterogeneity as opposed to single biopsy sampling. This review provides an overview of radiomics, radiogenomics, and proteomics and examines the use of these newly emergent fields in assessing tumor heterogeneity and its implications in ovarian cancer.
Collapse
Affiliation(s)
- S Nougaret
- IRCM, Montpellier Cancer Research Institute, INSERM, U1194, University of Montpellier, 208 Ave des Apothicaires, 34295, Montpellier, France. .,Department of Radiology, Montpellier Cancer institute, 208 Ave des Apothicaires, 34295, Montpellier, France.
| | - Cathal McCague
- Department of Radiology, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Hichem Tibermacine
- IRCM, Montpellier Cancer Research Institute, INSERM, U1194, University of Montpellier, 208 Ave des Apothicaires, 34295, Montpellier, France.,Department of Radiology, Montpellier Cancer institute, 208 Ave des Apothicaires, 34295, Montpellier, France
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Stefania Rizzo
- Istituto di Imaging della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), Via Tesserete 46, 6900, Lugano, CH, Switzerland.,Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, CH, Switzerland
| | - E Sala
- Department of Radiology, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| |
Collapse
|
27
|
Bååth M, Jönsson JM, Westbom Fremer S, Martín de la Fuente L, Tran L, Malander S, Kannisto P, Måsbäck A, Honeth G, Hedenfalk I. MET Expression and Cancer Stem Cell Networks Impact Outcome in High-Grade Serous Ovarian Cancer. Genes (Basel) 2021; 12:742. [PMID: 34069138 PMCID: PMC8155853 DOI: 10.3390/genes12050742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023] Open
Abstract
Overexpression of the receptor tyrosine kinase MET has been linked to poor survival in several cancer types, and MET has been suggested to interact with stem cell networks. In vitro studies have further suggested a possible benefit of a combined treatment using PARP and MET inhibitors. We used a tissue microarray (TMA) with 130 samples of advanced-stage high-grade serous fallopian tube/ovarian cancer (HGSC) to investigate the prognostic value of MET protein expression alone and in combination with the stem cell factor SOX2. The possible synergistic effects of a PARP and MET inhibitor treatment were evaluated in two cell lines with BRCA1 or BRCA2 deficiency and in their BRCA1/2-proficient counterparts. Patients with tumors positive for MET had worse overall survival (log-rank test, p = 0.015) compared to patients with MET-negative tumors. The prognostic role of MET was even more prominent in the subgroup of patients with SOX2-negative tumors (p = 0.0081). No synergistic effects of the combined treatment with PARP and MET inhibitors were found in the cell lines examined. We conclude that MET expression could be used as a marker for OS in HGSC and that stemness should be taken into consideration when evaluating the mechanisms of this effect.
Collapse
Affiliation(s)
- Maria Bååth
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
| | - Jenny-Maria Jönsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
| | - Sofia Westbom Fremer
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
- Department of Surgical Pathology, Division of Laboratory Medicine, Skåne University Hospital, 222 42 Lund, Sweden;
| | - Laura Martín de la Fuente
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
| | - Lena Tran
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
| | - Susanne Malander
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
| | - Päivi Kannisto
- Division of Obstetrics and Gynaecology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 222 42 Lund, Sweden;
| | - Anna Måsbäck
- Department of Surgical Pathology, Division of Laboratory Medicine, Skåne University Hospital, 222 42 Lund, Sweden;
| | - Gabriella Honeth
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, 223 81 Lund, Sweden; (M.B.); (J.-M.J.); (S.W.F.); (L.M.d.l.F.); (L.T.); (S.M.); (G.H.)
| |
Collapse
|
28
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
29
|
Peng D, Gleyzer R, Tai WH, Kumar P, Bian Q, Isaacs B, da Rocha EL, Cai S, DiNapoli K, Huang FW, Cahan P. Evaluating the transcriptional fidelity of cancer models. Genome Med 2021; 13:73. [PMID: 33926541 PMCID: PMC8086312 DOI: 10.1186/s13073-021-00888-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cancer researchers use cell lines, patient-derived xenografts, engineered mice, and tumoroids as models to investigate tumor biology and to identify therapies. The generalizability and power of a model derive from the fidelity with which it represents the tumor type under investigation; however, the extent to which this is true is often unclear. The preponderance of models and the ability to readily generate new ones has created a demand for tools that can measure the extent and ways in which cancer models resemble or diverge from native tumors. METHODS We developed a machine learning-based computational tool, CancerCellNet, that measures the similarity of cancer models to 22 naturally occurring tumor types and 36 subtypes, in a platform and species agnostic manner. We applied this tool to 657 cancer cell lines, 415 patient-derived xenografts, 26 distinct genetically engineered mouse models, and 131 tumoroids. We validated CancerCellNet by application to independent data, and we tested several predictions with immunofluorescence. RESULTS We have documented the cancer models with the greatest transcriptional fidelity to natural tumors, we have identified cancers underserved by adequate models, and we have found models with annotations that do not match their classification. By comparing models across modalities, we report that, on average, genetically engineered mice and tumoroids have higher transcriptional fidelity than patient-derived xenografts and cell lines in four out of five tumor types. However, several patient-derived xenografts and tumoroids have classification scores that are on par with native tumors, highlighting both their potential as faithful model classes and their heterogeneity. CONCLUSIONS CancerCellNet enables the rapid assessment of transcriptional fidelity of tumor models. We have made CancerCellNet available as a freely downloadable R package ( https://github.com/pcahan1/cancerCellNet ) and as a web application ( http://www.cahanlab.org/resources/cancerCellNet_web ) that can be applied to new cancer models that allows for direct comparison to the cancer models evaluated here.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Gleyzer
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wen-Hsin Tai
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pavithra Kumar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qin Bian
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bradley Isaacs
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Stephanie Cai
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kathleen DiNapoli
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine; Helen Diller Family Cancer Center; Bakar Computational Health Sciences Institute; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Chesnokov MS, Khan I, Park Y, Ezell J, Mehta G, Yousif A, Hong LJ, Buckanovich RJ, Takahashi A, Chefetz I. The MEK1/2 Pathway as a Therapeutic Target in High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:1369. [PMID: 33803586 PMCID: PMC8003094 DOI: 10.3390/cancers13061369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the deadliest of gynecological cancers due to its high recurrence rate and acquired chemoresistance. RAS/MEK/ERK pathway activation is linked to cell proliferation and therapeutic resistance, but the role of MEK1/2-ERK1/2 pathway in HGSOC is poorly investigated. We evaluated MEK1/2 pathway activity in clinical HGSOC samples and ovarian cancer cell lines using immunohistochemistry, immunoblotting, and RT-qPCR. HGSOC cell lines were used to assess immediate and lasting effects of MEK1/2 inhibition with trametinib in vitro. Trametinib effect on tumor growth in vivo was investigated using mouse xenografts. MEK1/2 pathway is hyperactivated in HGSOC and is further stimulated by cisplatin treatment. Trametinib treatment causes cell cycle arrest in G1/0-phase and reduces tumor growth rate in vivo but does not induce cell death or reduce fraction of CD133+ stem-like cells, while increasing expression of stemness-associated genes instead. Transient trametinib treatment causes long-term increase in a subpopulation of cells with high aldehyde dehydrogenase (ALDH)1 activity that can survive and grow in non-adherent conditions. We conclude that MEK1/2 inhibition may be a promising approach to suppress ovarian cancer growth as a maintenance therapy. Promotion of stem-like properties upon MEK1/2 inhibition suggests a possible mechanism of resistance, so a combination with CSC-targeting drugs should be considered.
Collapse
Affiliation(s)
- Mikhail S. Chesnokov
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Yeonjung Park
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Jessica Ezell
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Abdelrahman Yousif
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Linda J. Hong
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Ronald J. Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
- Division of Hematology Oncology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Akimasa Takahashi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga 5202152, Japan
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Shui L, Ren H, Yang X, Li J, Chen Z, Yi C, Zhu H, Shui P. The Era of Radiogenomics in Precision Medicine: An Emerging Approach to Support Diagnosis, Treatment Decisions, and Prognostication in Oncology. Front Oncol 2021; 10:570465. [PMID: 33575207 PMCID: PMC7870863 DOI: 10.3389/fonc.2020.570465] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
With the rapid development of new technologies, including artificial intelligence and genome sequencing, radiogenomics has emerged as a state-of-the-art science in the field of individualized medicine. Radiogenomics combines a large volume of quantitative data extracted from medical images with individual genomic phenotypes and constructs a prediction model through deep learning to stratify patients, guide therapeutic strategies, and evaluate clinical outcomes. Recent studies of various types of tumors demonstrate the predictive value of radiogenomics. And some of the issues in the radiogenomic analysis and the solutions from prior works are presented. Although the workflow criteria and international agreed guidelines for statistical methods need to be confirmed, radiogenomics represents a repeatable and cost-effective approach for the detection of continuous changes and is a promising surrogate for invasive interventions. Therefore, radiogenomics could facilitate computer-aided diagnosis, treatment, and prediction of the prognosis in patients with tumors in the routine clinical setting. Here, we summarize the integrated process of radiogenomics and introduce the crucial strategies and statistical algorithms involved in current studies.
Collapse
Affiliation(s)
- Lin Shui
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haoyu Ren
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Xi Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ziwei Chen
- Department of Nephrology, Chengdu Integrated TCM and Western Medicine Hospital, Chengdu, China
| | - Cheng Yi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pixian Shui
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Ding DC, Chang YH, Wu KC, Harnod T. The organoid: A research model for ovarian cancer. Tzu Chi Med J 2021; 34:255-260. [PMID: 35912056 PMCID: PMC9333109 DOI: 10.4103/tcmj.tcmj_63_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous disease with a variety of distinct clinical and molecular characteristics. The currently available and common research models for EOC include tumor cell lines and patient-derived xenografts. However, these models have certain shortcomings: establishing a cell line is time-consuming, loss of genetic traits after long-term culture is a possibility, and investment is required in terms of animal care facilities. Therefore, better research models are required. Organoid technology was originally developed from colorectal cancer. Tumor organoid is a three-dimensional culture system and can help accurately recapture the tumor phenotype from the original tumor. Tumor organoid systems can overcome the above-mentioned shortcomings of the currently available research models. The organoid model can be used for culturing ovarian cancer subtypes, screening drugs, assessing genomes, and establishing biobanks. However, the currently available organoid models can only culture one type of cells, epithelial cells. Therefore, an organoid-on-a-chip device can be developed in the future to provide a microenvironment for cell–cell, cell–matrix, and cell–media interactions. Thus, organoid models can be used in ovarian cancer research and can generate a simulated in vivo system, enabling studies on the heterogeneity of ovarian cancer.
Collapse
|
33
|
A highly annotated database of genes associated with platinum resistance in cancer. Oncogene 2021; 40:6395-6405. [PMID: 34645978 PMCID: PMC8602037 DOI: 10.1038/s41388-021-02055-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023]
Abstract
Platinum-based chemotherapy, including cisplatin, carboplatin, and oxaliplatin, is prescribed to 10-20% of all cancer patients. Unfortunately, platinum resistance develops in a significant number of patients and is a determinant of clinical outcome. Extensive research has been conducted to understand and overcome platinum resistance, and mechanisms of resistance can be categorized into several broad biological processes, including (1) regulation of drug entry, exit, accumulation, sequestration, and detoxification, (2) enhanced repair and tolerance of platinum-induced DNA damage, (3) alterations in cell survival pathways, (4) alterations in pleiotropic processes and pathways, and (5) changes in the tumor microenvironment. As a resource to the cancer research community, we provide a comprehensive overview accompanied by a manually curated database of the >900 genes/proteins that have been associated with platinum resistance over the last 30 years of literature. The database is annotated with possible pathways through which the curated genes are related to platinum resistance, types of evidence, and hyperlinks to literature sources. The searchable, downloadable database is available online at http://ptrc-ddr.cptac-data-view.org .
Collapse
|
34
|
Association between MRI histogram features and treatment response in locally advanced cervical cancer treated by chemoradiotherapy. Eur Radiol 2020; 31:1727-1735. [PMID: 32885298 DOI: 10.1007/s00330-020-07217-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To examine the associations of histogram features of T2-weighted (T2W) images and apparent diffusion coefficient (ADC) with treatment response in locally advanced cervical cancer (LACC) following concurrent chemoradiotherapy (CCRT). MATERIALS AND METHODS Fifty-eight patients who underwent a 4-week CCRT regimen with MRI prior to treatment (pre-CCRT) and after treatment (post-CCRT) were retrospectively analysed. Histogram features were calculated from volumes of interest (VOIs) from one radiologist on T2W images and ADC maps. VOIs from two radiologists were used to assess observer repeatability in delineation and feature values at both time-points with the Dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC). Treatment response was defined as a 90% reduction in tumour volume. Paired Mann-Whitney U tests were used to determine if features changed significantly between examinations. Two-sample Mann-Whitney U tests were used to identify features that were significantly different between response groups. Receiver operating characteristic (ROC) analysis was done on significantly different MRI features between treatment response groups. RESULTS Pre-CCRT delineation and feature repeatability were generally good (DSC > 0.700; ICC > 0.750). Post-CCRT repeatability was low (DSC < 0.700; ICC < 0.750), but ADC mean and percentiles retained good ICC scores. All features, except for T2WKurtosis, significantly changed between examinations. Post-CCRT ADC50 was the only feature that demonstrated both good observer variability and significant differences between treatment response groups (p = 0.036) and had an AUC of 0.701 with a cut-off of 1.357 × 10-6 mm2/s. CONCLUSION ADC and T2W histogram features could be used to track changes in LACC tumours undergoing CCRT. Post-CCRT ADC50 was associated with treatment response with good observer repeatability. KEY POINTS • Pre-treatment tumour delineation and histogram feature values had good observer repeatability, while these were less repeatable at post-treatment. • MRI histogram analysis could be used to track changes in the tumour as it undergoes concurrent chemoradiotherapy. • Post-treatment median ADC was associated with treatment response and had good repeatability.
Collapse
|
35
|
Mota A, S Oltra S, Moreno-Bueno G. Insight updating of the molecular hallmarks in ovarian carcinoma. EJC Suppl 2020; 15:16-26. [PMID: 33240439 PMCID: PMC7573468 DOI: 10.1016/j.ejcsup.2019.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background and purpose Ovarian cancer (OC) is the deadliest gynaecologic cancer characterised by a high heterogeneity not only at the clinical point of view but also at the molecular level. This review focuses on the new insights about the OC molecular classification. Materials and methods We performed a bibliographic search for different indexed articles focused on the new molecular classification of OC. All of them have been published in PubMed and included information about the most frequent molecular alterations in OC confirmed by omics approaches. In addition, we have extracted information about the role of liquid biopsy in the OC diagnosis and prognosis. Results New molecular insights into OC have allowed novel clinical entities to be defined. Among OC, high-grade serous ovarian carcinoma (HGSOC) which is the most common OC is characterised by omics approaches, mutations in TP53 and in other genes involved in the homologous recombination repair, especially BRCA1/2. Recent studies in HGSOC have allowed a new molecular classification in subgroups according to their mutational, transcriptional, methylation and copy number variation signatures with a real impact in the characterisation of new therapeutic targets for OC to be defined. Furthermore, despite the intrinsic intra-tumour heterogeneity, the advances in next generation sequencing (NGS) analyses of ascetic liquid from OC have opened new ways for its characterisation and treatment. Conclusions The advances in genomic approaches have been used for the identification of new molecular profiling techniques which define OC subgroups and has supposed advances in the diagnosis and in the personalised treatment of OC. Classification of ovarian cancer regarding to widespread genetic and genomic data. Highlighted role of p53 and BRCA1/2 in ovarian cancer for diagnosis and treatment. Intra-tumour genetic heterogeneity in ovarian cancer. Useful of liquid biopsy study in ovarian cancer diagnosis.
Collapse
Affiliation(s)
- Alba Mota
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Sara S Oltra
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), IdiPaz, MD Anderson International Foundation Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
- Corresponding author: Departamento de Bioquímica, Facultad de Medicina (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Arzobispo Morcillo 4, Madrid, 28029, Spain. Fax: +34 91-5854401.
| |
Collapse
|
36
|
Natoli M, Bonito N, Robinson JD, Ghaem-Maghami S, Mao Y. Human ovarian cancer intrinsic mechanisms regulate lymphocyte activation in response to immune checkpoint blockade. Cancer Immunol Immunother 2020; 69:1391-1401. [PMID: 32200422 PMCID: PMC7347689 DOI: 10.1007/s00262-020-02544-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
Immune checkpoint blocking antibodies are currently being tested in ovarian cancer (OC) patients and have shown some responses in early clinical trials. However, it remains unclear how human OC cancer cells regulate lymphocyte activation in response to therapy. In this study, we have established and optimised an in vitro tumour-immune co-culture system (TICS), which is specifically designed to quantify the activation of multiple primary human lymphocyte subsets and human cancer cell killing in response to PD-1/L1 blockade. Human OC cell lines and treatment naïve patient ascites show differential effects on lymphocyte activation and respond differently to PD-1 blocking antibody nivolumab in TICS. Using paired OC cell lines established prior to and after chemotherapy relapse, our data reveal that the resistant cells express low levels of HLA and respond poorly to nivolumab, relative to the treatment naïve cells. In accordance, knockdown of IFNγ receptor expression compromises response to nivolumab in the treatment naïve OC cell line, while enhanced HLA expression induced by a DNA methyltransferase inhibitor promotes lymphocyte activation in TICS. Altogether, our results suggest a ‘cross resistance’ model, where the acquired chemotherapy resistance in cancer cells may confer resistance to immune checkpoint blockade therapy through down-regulation of antigen presentation machinery. As such, agents that can restore HLA expression may be a suitable combination partner for immunotherapy in chemotherapy-relapsed human ovarian cancer patients.
Collapse
Affiliation(s)
- Marina Natoli
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Nair Bonito
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - James D Robinson
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sadaf Ghaem-Maghami
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.
| | - Yumeng Mao
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK. .,Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
37
|
The Capacity of High-Grade Serous Ovarian Cancer Cells to Form Multicellular Structures Spontaneously along Disease Progression Correlates with Their Orthotopic Tumorigenicity in Immunosuppressed Mice. Cancers (Basel) 2020; 12:cancers12030699. [PMID: 32188032 PMCID: PMC7140084 DOI: 10.3390/cancers12030699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Many studies have examined the biology, genetics, and chemotherapeutic response of ovarian cancer's solid component; its liquid facet, however, remains critically underinvestigated. Floating within peritoneal effusions known as ascites, ovarian cancer cells form multicellular structures, creating a cancer niche in suspension. This study explores the pathobiology of spontaneously formed, multicellular, ovarian cancer structures derived from serous ovarian cancer cells isolated along disease evolution. It also tests their capacity to cause peritoneal disease in immunosuppressed mice. Results stem from an analysis of cell lines representing the most frequently diagnosed ovarian cancer histotype (high-grade serous ovarian cancer), derived from ascites of the same patient at distinct stages of disease progression. When cultured under adherent conditions, in addition to forming cellular monolayers, the cultures developed areas in which the cells grew upwards, forming densely packed multilayers that ultimately detached from the bottom of the plates and lived as free-floating, multicellular structures. The capacity to form foci and to develop multicellular structures was proportional to disease progression at the time of ascites extraction. Self-assembled in culture, these structures varied in size, were either compact or hollow, irregular, or spheroidal, and exhibited replicative capacity and an epithelial nature. Furthermore, they fully recreated ovarian cancer disease in immunosuppressed mice: accumulation of malignant ascites and pleural effusions; formation of discrete, solid, macroscopic, peritoneal tumors; and microscopic growths in abdominal organs. They also reproduced the histopathological features characteristic of high-grade serous ovarian cancer when diagnosed in patients. The following results encourage the development of therapeutic interventions to interrupt the formation and/or survival of multicellular structures that constitute a floating niche in the peritoneal fluid, which in turn halts disease progression and prevents recurrence.
Collapse
|
38
|
Weigelt B, Vargas HA, Selenica P, Geyer FC, Mazaheri Y, Blecua P, Conlon N, Hoang LN, Jungbluth AA, Snyder A, Ng CKY, Papanastasiou AD, Sosa RE, Soslow RA, Chi DS, Gardner GJ, Shen R, Reis-Filho JS, Sala E. Radiogenomics Analysis of Intratumor Heterogeneity in a Patient With High-Grade Serous Ovarian Cancer. JCO Precis Oncol 2019; 3:1800410. [PMID: 32914032 DOI: 10.1200/po.18.00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | - Pier Selenica
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Pedro Blecua
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Niamh Conlon
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lien N Hoang
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Charlotte K Y Ng
- Memorial Sloan Kettering Cancer Center, New York, NY.,University Hospital Basel, Basel, Switzerland
| | | | - Ramon E Sosa
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Dennis S Chi
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Ronglai Shen
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Evis Sala
- Memorial Sloan Kettering Cancer Center, New York, NY.,Cancer Research UK Cambridge Center, Cambridge, United Kingdom
| |
Collapse
|
39
|
Ceppi L, Bardhan NM, Na Y, Siegel A, Rajan N, Fruscio R, Del Carmen MG, Belcher AM, Birrer MJ. Real-Time Single-Walled Carbon Nanotube-Based Fluorescence Imaging Improves Survival after Debulking Surgery in an Ovarian Cancer Model. ACS NANO 2019; 13:5356-5365. [PMID: 31009198 DOI: 10.1021/acsnano.8b09829] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Improved cytoreductive surgery for advanced stage ovarian cancer (OC) represents a critical challenge in the treatment of the disease. Optimal debulking reaching no evidence of macroscopic disease is the primary surgical end point with a demonstrated survival advantage. Targeted molecule-based fluorescence imaging offers complete tumor resection down to the microscopic scale. We used a custom-built reflectance/fluorescence imaging system with an orthotopic OC mouse model to both quantify tumor detectability and evaluate the effect of fluorescence image-guided surgery on post-operative survival. The contrast agent is an intraperitoneal injectable nanomolecular probe, composed of single-walled carbon nanotubes, coupled to an M13 bacteriophage carrying a modified peptide binding to the SPARC protein, an extracellular protein overexpressed in OC. The imaging system is capable of detecting a second near-infrared window fluorescence (1000-1700 nm) and can display real-time video imagery to guide intraoperative tumor debulking. We observed high microscopic tumor detection with a pixel-limited resolution of 200 μm. Moreover, in a survival-surgery orthotopic OC mouse model, we demonstrated an increased survival benefit for animals treated with fluorescence image-guided surgical resection compared to standard surgery.
Collapse
Affiliation(s)
- Lorenzo Ceppi
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
- Department of Medicine and Surgery , University of Milan-Bicocca , 20126 Milan , Italy
| | - Neelkanth M Bardhan
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- The David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
- Department of Biological Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - YoungJeong Na
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Andrew Siegel
- Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Nandini Rajan
- Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Robert Fruscio
- Department of Medicine and Surgery , University of Milan-Bicocca , 20126 Milan , Italy
| | - Marcela G Del Carmen
- Division of Gynecologic Oncology, Vincent Obstetrics and Gynecology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
| | - Angela M Belcher
- Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
- The David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02142 , United States
- Department of Biological Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Michael J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology , Massachusetts General Hospital, Harvard Medical School , Boston , Massachusetts 02114 , United States
- O'Neal Comprehensive Cancer Center, Division of Hematology-Oncology , University of Alabama at Birmingham , Birmingham , Alabama 35294 , United States
| |
Collapse
|
40
|
Biological Insights into Chemotherapy Resistance in Ovarian Cancer. Int J Mol Sci 2019; 20:ijms20092131. [PMID: 31052165 PMCID: PMC6547356 DOI: 10.3390/ijms20092131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/24/2022] Open
Abstract
The majority of patients with high-grade serous ovarian cancer (HGSOC) initially respond to chemotherapy; however, most will develop chemotherapy resistance. Gene signatures may change with the development of chemotherapy resistance in this population, which is important as it may lead to tailored therapies. The objective of this study was to compare tumor gene expression profiles in patients before and after treatment with neoadjuvant chemotherapy (NACT). Tumor samples were collected from six patients diagnosed with HGSOC before and after administration of NACT. RNA extraction and whole transcriptome sequencing was performed. Differential gene expression, hierarchical clustering, gene set enrichment analysis, and pathway analysis were examined in all of the samples. Tumor samples clustered based on exposure to chemotherapy as opposed to patient source. Pre-NACT samples were enriched for multiple pathways involving cell cycle growth. Post-NACT samples were enriched for drug transport and peroxisome pathways. Molecular subtypes based on the pre-NACT sample (differentiated, mesenchymal, proliferative and immunoreactive) changed in four patients after administration of NACT. Multiple changes in tumor gene expression profiles after exposure to NACT were identified from this pilot study and warrant further attention as they may indicate early changes in the development of chemotherapy resistance.
Collapse
|
41
|
Lampert EJ, Hays JL, Kohn EC, Annunziata CM, Minasian L, Yu M, Gordon N, Sissung TM, Chiou VL, Figg WD, Houston N, Lee JM. Phase I/Ib study of olaparib and carboplatin in heavily pretreated recurrent high-grade serous ovarian cancer at low genetic risk. Oncotarget 2019; 10:2855-2868. [PMID: 31080557 PMCID: PMC6499601 DOI: 10.18632/oncotarget.26869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/04/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose: To investigate maximum tolerated dose (MTD), activity and predictive biomarkers of olaparib with carboplatin in BRCA wild-type (BRCAwt) high grade serous ovarian carcinoma (HGSOC) patients. Methods: A 3+3 dose escalation study examined olaparib capsules (400 mg twice daily [BID], days 1-7) with carboplatin (AUC3-5 on day 1) every 21 days for 8 cycles, followed by olaparib 400 mg BID maintenance. Blood and tumor biopsy samples were collected pre- and on-treatment in the expansion cohort for PAR levels and proteomic endpoints. Results: 30 patients (median 7 prior regimens [2-12], 63% (19/30) platinum-resistant) were enrolled. Dose-limiting toxicity was thrombocytopenia/neutropenia, and infection with carboplatin AUC5 (2/6 patients). MTD was olaparib 400 mg BID + carboplatin AUC4. Grade 3/4 adverse events (>10%) included neutropenia (23%), thrombocytopenia (20%), and anemia (13%). Five of 25 (20%) evaluable patients had partial response (PR; median 4.5 months [3.3-9.5]). Clinical benefit rate (PR + stable disease ≥4 months) was 64% (16/25). A greater decrease in tissue PAR levels was seen in the clinical benefit group versus no benefit (median normalized linear change -1.84 [-3.39- -0.28] vs 0.51 [-0.27- 1.29], p = 0.001) and a DNA repair score by proteomics did not correlate with response. Conclusions: The olaparib and carboplatin combination is tolerable and has clinical benefit in subsets of heavily pretreated BRCAwt HGSOC, independent of platinum sensitivity.
Collapse
Affiliation(s)
- Erika J. Lampert
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Elise C. Kohn
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christina M. Annunziata
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lori Minasian
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Minshu Yu
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nicolas Gordon
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Tristan M. Sissung
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Victoria L. Chiou
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William D. Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nicole Houston
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jung-Min Lee
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
42
|
Chu D, Wei L. Nonsynonymous, synonymous and nonsense mutations in human cancer-related genes undergo stronger purifying selections than expectation. BMC Cancer 2019; 19:359. [PMID: 30991970 PMCID: PMC6469204 DOI: 10.1186/s12885-019-5572-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Background Nonsynonymous mutations change the protein sequences and are frequently subjected to natural selection. The same goes for nonsense mutations that introduce pre-mature stop codons into CDSs (coding sequences). Synonymous mutations, however, are intuitively thought to be functionally silent and evolutionarily neutral. Now researchers know that the optimized synonymous codon usage is advantageous in the speedy mRNA translation process. With the advent of NGS technique, the explosion of NGS data generated from the tumor tissues help researchers identify driver mutations in cancer-related genes, but relatively less attention is paid to the SNP data in healthy human populations when studying cancer. Methods Here, we analyzed the publically available human SNPs. We classified these SNPs according to their functional and evolutionary categories. By simply dividing the human genes into cancer-related genes and other genes, we compared the features of nonsynonymous, synonymous and nonsense mutations in these two gene sets from multiple aspects. Results We provided lines of evidence that the nonsynonymous, synonymous and nonsense mutations in cancer-related genes undergo stronger purifying selection when compared to the expected pattern in other genes. The lower nonsynonymous to synonymous ratio observed in cancer-related genes suggests the suppression of amino acid substitutions in these genes. The synonymous SNPs, after excluding those in splicing regions, exhibit preferred changes in codon usage and higher codon frequencies in cancer-related genes compared to other genes, indicating the constraint exerted on these mutations. Nonsense mutations are less frequent and located closer to stop codons in cancer-related genes than in other genes, which putatively minimize their deleterious effects. Conclusion Our study demonstrated the evolutionary constraint on mutations in CDS of cancer-related genes without the requirement of data from cancer tissues or patients. Our work provides novel perspectives on interpreting the constraint on mutations in cancer-related genes. We reveal extra constraint on synonymous mutations in cancer-related genes which is related to codon usage bias and is in addition to the splicing effect. Electronic supplementary material The online version of this article (10.1186/s12885-019-5572-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
43
|
Raab M, Sanhaji M, Zhou S, Rödel F, El-Balat A, Becker S, Strebhardt K. Blocking Mitotic Exit of Ovarian Cancer Cells by Pharmaceutical Inhibition of the Anaphase-Promoting Complex Reduces Chromosomal Instability. Neoplasia 2019; 21:363-375. [PMID: 30851646 PMCID: PMC6407080 DOI: 10.1016/j.neo.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 01/28/2023]
Abstract
Paclitaxel is a frontline drug for the treatment of epithelial ovarian cancer (EOC). However, following paclitaxel-platinum based chemotherapy, tumor recurrence occurs in most ovarian cancer patients. Chromosomal instability (CIN) is a hallmark of cancer and represents genetic variation fueling tumor adaptation to cytotoxic effects of anticancer drugs. In this study, our Kaplan-Meier analysis including 263 ovarian cancer patients (stages I/II) revealed that high Polo-like kinase (PLK) 1 expression correlates with bad prognosis. To evaluate the role of PLK1 as potential cancer target within a combinatorial trial, we induced strong mitotic arrest in ovarian cancer cell lines by synergistically co-targeting microtubules (paclitaxel) and PLK1 (BI6727) followed by pharmaceutical inhibition of the Anaphase-Promoting Complex (APC/C) using proTAME. In short- and long-term experiments, this triple treatment strongly activated apoptosis in cell lines and primary ovarian cells derived from cancer patients. Mechanistically, BI6727/paclitaxel/proTAME stabilize Cyclin B1 and trigger mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by activation of caspase-dependent effector pathways. This triple treatment prevented endoreduplication and reduced CIN, two mechanisms that are associated with aggressive tumors and the acquisition of drug resistance. This "two-punch strategy" (strong mitotic arrest followed by blocking mitotic exit) has important implications for developing paclitaxel-based combinatorial treatments in ovarian cancer.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, Goethe-University, Frankfurt am Main
| | - Mourad Sanhaji
- Department of Gynecology, Goethe-University, Frankfurt am Main
| | - Shengtao Zhou
- State Key Laboratory of Biotherapy, Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University; German Cancer Consortium (DKTK) / German Cancer Research Center, partner site, Frankfurt a. M
| | - Ahmed El-Balat
- Department of Gynecology, Goethe-University, Frankfurt am Main
| | - Sven Becker
- Department of Gynecology, Goethe-University, Frankfurt am Main
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, Frankfurt am Main; German Cancer Consortium (DKTK) / German Cancer Research Center, partner site, Frankfurt a. M..
| |
Collapse
|
44
|
Krzyzanowski PM, Sircoulomb F, Yousif F, Normand J, La Rose J, E Francis K, Suarez F, Beck T, McPherson JD, Stein LD, Rottapel RK. Regional perturbation of gene transcription is associated with intrachromosomal rearrangements and gene fusion transcripts in high grade ovarian cancer. Sci Rep 2019; 9:3590. [PMID: 30837567 PMCID: PMC6401071 DOI: 10.1038/s41598-019-39878-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
Genomic rearrangements are a hallmark of cancer biology and progression, allowing cells to rapidly transform through alterations in regulatory structures, changes in expression patterns, reprogramming of signaling pathways, and creation of novel transcripts via gene fusion events. Though functional gene fusions encoding oncogenic proteins are the most dramatic outcomes of genomic rearrangements, we investigated the relationship between rearrangements evidenced by fusion transcripts and local expression changes in cancer using transcriptome data alone. 9,953 gene fusion predictions from 418 primary serious ovarian cancer tumors were analyzed, identifying depletions of gene fusion breakpoints within coding regions of fused genes as well as an N-terminal enrichment of breakpoints within fused genes. We identified 48 genes with significant fusion-associated upregulation and furthermore demonstrate that significant regional overexpression of intact genes in patient transcriptomes occurs within 1 megabase of 78 novel gene fusions that function as central markers of these regions. We reveal that cancer transcriptomes select for gene fusions that preserve protein and protein domain coding potential. The association of gene fusion transcripts with neighboring gene overexpression supports rearrangements as mechanism through which cancer cells remodel their transcriptomes and identifies a new way to utilize gene fusions as indicators of regional expression changes in diseased cells with only transcriptomic data.
Collapse
Affiliation(s)
- Paul M Krzyzanowski
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.
| | - Fabrice Sircoulomb
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Fouad Yousif
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Josee Normand
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jose La Rose
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Kyle E Francis
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Fernando Suarez
- Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada
| | - Tim Beck
- Human Longevity Inc., San Diego, California, USA
| | - John D McPherson
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.,University of California, Davis Medical Center, Sacramento, California, USA
| | - Lincoln D Stein
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| | - Robert K Rottapel
- Department of Medicine, University of Toronto, Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Princess Margaret Cancer Center, MaRS Centre, Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Kapperman HE, Goyeneche AA, Telleria CM. Mifepristone inhibits non-small cell lung carcinoma cellular escape from DNA damaging cisplatin. Cancer Cell Int 2018; 18:185. [PMID: 30479564 PMCID: PMC6238342 DOI: 10.1186/s12935-018-0683-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer deaths in the world. The major histopathological subtype of lung cancer is non-small cell lung cancer (NSCLC). Platinum-based therapy is the standard of care for patients with advanced stage NSCLC. However, even with treatment, most patients will die of this disease within 5 years and most of these deaths are due to recurrence. One strategy to inhibit recurrence is to use cytostatic compounds following courses of lethal chemotherapy. We have shown in various cancer cell types that mifepristone (MF), an anti-progestin/anti-glucocorticoid, is a powerful cytostatic anti-cancer agent. Thus, in this work we tested the hypothesis that MF should be efficacious in inducing cytostasis and preventing repopulation of NSCLC following cisplatin (CDDP) therapy. Methods We established an in vitro approach wherein human NSCLC cells with different genetic backgrounds and sensitivities to CDDP (A549 and H23) were exposed to rounds of lethal concentrations of CDDP for 1 h followed or not by MF monotherapy. Every 2 days, cell number, cell viability, and colony-forming ability of viable cells were studied. Results CDDP killed the majority of cells, yet there were remnant cells escaping CDDP lethality and repopulating the culture, as evidenced by the improved clonogenic survival of viable cells. In contrast, when cells exposed to CDDP where further treated with MF following CDDP removal, their number and clonogenic capacity were reduced drastically. Conclusion This study reports that there is repopulation of NSCLC cells following a lethal concentration of CDDP monotherapy, that NSCLC cells are sensitive to the growth inhibition properties of MF, and that MF abrogates the repopulation of NSCLC cells following CDDP therapy. Our study supports further evaluating MF as an adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Heather E Kapperman
- 2Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069 USA.,3Present Address: Eisenhower Army Medical Center, Ft. Gordon, GA USA
| | - Alicia A Goyeneche
- 1Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4 Canada
| | - Carlos M Telleria
- 1Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4 Canada
| |
Collapse
|
46
|
STAT3 regulated miR-216a promotes ovarian cancer proliferation and cisplatin resistance. Biosci Rep 2018; 38:BSR20180547. [PMID: 30061175 PMCID: PMC6131203 DOI: 10.1042/bsr20180547] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/06/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022] Open
Abstract
Cisplatin is the first-line treatment for ovarian cancer. However, the clinical outcome of cisplatin treatment in ovarian cancer is hindered by cancer resistance. Here we aim to explore the role and mechanism of miR-216a in the cisplatin resistance of ovarian cancer. The effects of miR-216a overexpression and inhibition on ovarian cell proliferation, colony formation, and cisplatin resistance were investigated by MTT assay and soft agar colony formation assay. Bioinformatics analyses using TargetScan and rVista, qPCR, and luciferase assay were also used to explore and verify downstream effectors and regulators of miR-216a. Proliferation, colony formation, and cisplatin resistance of ovarian cancer cells are promoted by miR-216a overexpression but inhibited by miR-216a inhibition. PTEN is a direct target of miR-216a and PTEN expression antagonizes the tumor-promoting function of miR-216a. STAT3 is a regulator of miR-216a, and PTEN is also regulated by STAT3. miR-216a up-regulation is associated with cisplatin resistance in ovarian cancer and this effect is mediated by PTEN. STAT3 is a regulator of miR-216a. Strategies that inhibit miR-216a is a potential strategy for overcoming the cisplatin resistance in ovarian cancer.
Collapse
|
47
|
Lindsay CR, Jamal-Hanjani M, Forster M, Blackhall F. KRAS: Reasons for optimism in lung cancer. Eur J Cancer 2018; 99:20-27. [PMID: 29894909 DOI: 10.1016/j.ejca.2018.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 05/13/2018] [Indexed: 01/07/2023]
Abstract
Despite being the most frequent gain-of-function genetic alteration in human cancer, KRAS mutation has to date offered only limited potential as a prognostic and predictive biomarker. Results from the phase III SELECT-1 trial in non-small cell lung cancer (NSCLC) recently added to a number of historical and more contemporary disappointments in targeting KRAS mutant disease, including farnesyl transferase inhibition and synthetic lethality partners such as STK33. This narrative review uses the context of these previous failures to demonstrate how the knowledge gained from these experiences can be used as a platform for exciting advances in NSCLC on the horizon. It now seems clear that mutational subtype (most commonly G12C) of individual mutations is of greater relevance than the categorical evaluation of KRAS mutation presence or otherwise. A number of direct small molecules targeted to these subtypes are in development and have shown promising biological activity, with some in the late stages of preclinical validation.
Collapse
Affiliation(s)
- C R Lindsay
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, London and Manchester, UK.
| | - M Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, London and Manchester, UK; Department of Oncology, University College of London Hospital and UCL Cancer Institute, London, UK
| | - M Forster
- Cancer Research UK Lung Cancer Centre of Excellence, London and Manchester, UK; Department of Oncology, University College of London Hospital and UCL Cancer Institute, London, UK
| | - F Blackhall
- Division of Molecular and Clinical Cancer Sciences, University of Manchester, Manchester, UK; Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK; Cancer Research UK Lung Cancer Centre of Excellence, London and Manchester, UK
| |
Collapse
|
48
|
DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018; 11:50. [PMID: 29925418 PMCID: PMC6011341 DOI: 10.1186/s13048-018-0424-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 01/13/2023] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications. A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents. Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
|
49
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|
50
|
Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018. [PMID: 29925418 DOI: 10.1186/s13048-018-0424-x]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Treatment for advanced ovarian cancer is rarely curative; three quarters of patients with advanced disease relapse and ultimately die with resistant disease. Improving patient outcomes will require the introduction of new treatments and better patient selection. Abrogations in the DNA damage response (DDR) may allow such stratifications.A defective DNA-damage response (DDR) is a defining hallmark of high grade serous ovarian cancer (HGSOC). Indeed, current evidence indicates that all HGSOCs harbour a defect in at least one major DDR pathway. However, defective DDR is not mediated through a single mechanism but rather results from a variety of (epi)genetic lesions affecting one or more of the five major DNA repair pathways. Understanding the relationship between these pathways and how these are abrogated will be necessary in order to facilitate appropriate selection of both existing and novel agents.Here we review the current understanding of the DDR with regard to ovarian, and particularly high grade serous, cancer, with reference to existing and emerging treatments as appropriate.
Collapse
Affiliation(s)
- Mary Ellen Gee
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK.,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK
| | - Zahra Faraahi
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK
| | - Aiste McCormick
- Northern Institute for Cancer Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Richard J Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary's Hospital, Manchester, UK. .,Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, St Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Level 5, Research, Oxford Road, Manchester, UK.
| |
Collapse
|