1
|
Wang T, Weng M, Li K, Li G, Hu S, Hu Z, Li Y, Li M, Wu D, Liang Z, Yu F, Wang G, Li X. LIN28B enhances the chemosensitivity of colon cancer cells via inducing genomic instability by upsetting the balance between the production and removal of reactive oxygen species. Cancer Lett 2025; 616:217572. [PMID: 39986369 DOI: 10.1016/j.canlet.2025.217572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Genomic instability is an enabling characteristic that allows cancer cells to acquire additional hallmarks of cancer through the accumulation of alterations in driver genes. Furthermore, it creates opportunities to enhance the sensitivity of cancer cells to chemotherapeutic agents targeting DNA, owing to the presence of incomplete DNA damage repair pathways. This study identifies LIN28B as a crucial regulator of colon cancer cells' sensitivity to DNA damage- or repair-related compounds by promoting genomic instability. LIN28B mechanistically reduces glutathione (GSH) synthesis and activity by inhibiting the expression of four GSH metabolic enzymes (GCLC, G6PD, GSTM4, and GSTT2B), thereby reducing the capacity of cells to eliminate reactive oxygen species (ROS). LIN28B enhances the proinflammatory signaling pathway in cancer cells through the upregulation of ARID3A, a transcription factor that transactivates PTGES and PTGES2, resulting in increased production of PGE2, a key inflammatory mediator that can elevate ROS generation. In conclusion, LIN28B altered the equilibrium of ROS production and elimination in colon cancer, resulting in elevated ROS levels and subsequent genomic instability.
Collapse
Affiliation(s)
- Tianzhen Wang
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Mingjiao Weng
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen, 518000, PR China
| | - Kai Li
- Department of Oncology 2, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China
| | - Guoli Li
- Department of Anus and Intestine Surgery, Chifeng Municipal Hospital, No.1 Middle Section of Zhaowuda Road, Chifeng, Inner Mongolia, 024000, PR China
| | - Shijie Hu
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Ziyi Hu
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Yanping Li
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Muhan Li
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China
| | - Di Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Nangang District, Harbin, Heilongjiang, 150001, PR China
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen, 518000, PR China.
| | - Fei Yu
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, PR China.
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150081, PR China.
| | - Xiaobo Li
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Pathology, Harbin Medical University, No. 157 Baojian Road, Nangang District, Harbin, Heilongjiang, 150081, PR China.
| |
Collapse
|
2
|
Kashima H, Fischer A, Veronese-Paniagua DA, Gazit VA, Ma C, Yan Y, Levin MS, Madison BB, Rubin DC. A Novel CRISPR/Cas9-mediated Mouse Model of Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:101390. [PMID: 39128652 PMCID: PMC11462267 DOI: 10.1016/j.jcmgh.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND & AIMS Human sporadic colorectal cancer (CRC) results from a multistep pathway with sequential acquisition of specific genetic mutations in the colorectal epithelium. Modeling CRC in vivo is critical for understanding the tumor microenvironment. To accurately recapitulate human CRC pathogenesis, mouse models must include these multi-step genetic abnormalities. The aim of this study was to generate a sporadic CRC model that more closely mimics this multi-step process and to use this model to study the role of a novel Let7 target PLAGL2 in CRC pathogenesis. METHODS We generated a CRISPR/Cas9 somatic mutagenesis mouse model that is inducible and multiplexed for simultaneous inactivation of multiple genes involved in CRC pathogenesis. We used both a doxycycline-inducible transcriptional activator and a doxycycline-inactivated transcriptional repressor to achieve tight, non-leaky expression of the Cas9 nickase. This mouse has transgenic expression of multiple guide RNAs to induce sporadic inactivation in the gut epithelium of 4 tumor suppressor genes commonly mutated in CRC, Apc, Pten, Smad4, and Trp53. These were crossed to Vil-LCL-PLAGL2 mice, which have Cre-inducible overexpression of PLAGL2 in the gut epithelium. RESULTS These mice exhibited random somatic mutations in all 4 targeted tumor suppressor genes, resulting in multiple adenomas and adenocarcinomas in the small bowel and colon. Crosses with Vil-LCL-PLAGL2 mice demonstrated that gut-specific PLAGL2 overexpression increased colon tumor growth. CONCLUSIONS This conditional model represents a new CRISPR/Cas9-mediated mouse model of colorectal carcinogenesis. These mice can be used to investigate the role of novel, previously uncharacterized genes in CRC, in the context of multiple commonly mutated tumor suppressor genes and thus more closely mimic human CRC pathogenesis.
Collapse
Affiliation(s)
- Hajime Kashima
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Current affiliation: Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Anthony Fischer
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Daniel A Veronese-Paniagua
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Vered A Gazit
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Yan Yan
- Department of Surgery, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Marc S Levin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Veteran's Administration St. Louis Health Care System, St Louis, Missouri
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Current affiliation: Poseida Therapeutics Inc, San Diego, California
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St Louis, Missouri.
| |
Collapse
|
3
|
Gorbea C, Elhakiem A, Cazalla D. Shaping the host cell environment with viral noncoding RNAs. Semin Cell Dev Biol 2023; 146:20-30. [PMID: 36581481 PMCID: PMC10101873 DOI: 10.1016/j.semcdb.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Just like the cells they infect viruses express different classes of noncoding RNAs (ncRNAs). Viral ncRNAs come in all shapes and forms, and they usually associate with cellular proteins that are important for their functions. Viral ncRNAs have diverse functions, but they all contribute to the viral control of the cellular environment. Viruses utilize ncRNAs to regulate viral replication, to decide whether they should remain latent or reactivate, to evade the host immune responses, or to promote cellular transformation. In this review we describe the diverse functions played by different classes of ncRNAs expressed by adenoviruses and herpesviruses, how they contribute to the viral infection, and how their study led to insights into RNA-based mechanisms at play in host cells.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Abdalla Elhakiem
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Demián Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Fischer AD, Veronese Paniagua DA, Swaminathan S, Kashima H, Rubin DC, Madison BB. The oncogenic function of PLAGL2 is mediated via ASCL2 and IGF2 and a Wnt-independent mechanism in colorectal cancer. Am J Physiol Gastrointest Liver Physiol 2023; 325:G196-G211. [PMID: 37310750 PMCID: PMC10396286 DOI: 10.1152/ajpgi.00058.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Colorectal cancer (CRC) tumorigenesis and progression are linked to common oncogenic mutations, especially in the tumor suppressor APC, whose loss triggers the deregulation of TCF4/β-Catenin activity. CRC tumorigenesis is also driven by multiple epimutational modifiers such as transcriptional regulators. We describe the common (and near-universal) activation of the zinc finger transcription factor and Let-7 target PLAGL2 in CRC and find that it is a key driver of intestinal epithelial transformation. PLAGL2 drives proliferation, cell cycle progression, and anchorage-independent growth in CRC cell lines and nontransformed intestinal cells. Investigating effects of PLAGL2 on downstream pathways revealed very modest effects on canonical Wnt signaling. Alternatively, we find pronounced effects on the direct PLAGL2 target genes IGF2, a fetal growth factor, and ASCL2, an intestinal stem cell-specific bHLH transcription factor. Inactivation of PLAGL2 in CRC cell lines has pronounced effects on ASCL2 reporter activity. Furthermore, ASCL2 expression can partially rescue deficits of proliferation and cell cycle progression caused by depletion of PLAGL2 in CRC cell lines. Thus, the oncogenic effects of PLAGL2 appear to be mediated via core stem cell and onco-fetal pathways, with minimal effects on downstream Wnt signaling.NEW & NOTEWORTHY A Let-7 target called PLAGL2 drives oncogenic transformation via Wnt-independent pathways. This work illustrates the robust effects of this zinc finger transcription factor in colorectal cancer (CRC) cell lines and nontransformed intestinal epithelium, with effects mediated, in part, via the direct target genes ASCL2 and IGF2. This has implications for the role of PLAGL2 in activation of onco-fetal and onco-stem cell pathways, contributing to immature and highly proliferative phenotypes in CRC.
Collapse
Affiliation(s)
- Anthony D Fischer
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Daniel A Veronese Paniagua
- Washington University School of Medicine, Saint Louis, Missouri, United States
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, United States
| | - Shriya Swaminathan
- Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Hajime Kashima
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| |
Collapse
|
5
|
Sugiura K, Masuike Y, Suzuki K, Shin AE, Sakai N, Matsubara H, Otsuka M, Sims PA, Lengner CJ, Rustgi AK. LIN28B promotes cell invasion and colorectal cancer metastasis via CLDN1 and NOTCH3. JCI Insight 2023; 8:e167310. [PMID: 37318881 PMCID: PMC10443801 DOI: 10.1172/jci.insight.167310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
The RNA-binding protein LIN28B is overexpressed in over 30% of patients with colorectal cancer (CRC) and is associated with poor prognosis. In the present study, we unraveled a potentially novel mechanism by which LIN28B regulates colonic epithelial cell-cell junctions and CRC metastasis. Using human CRC cells (DLD-1, Caco-2, and LoVo) with either knockdown or overexpression of LIN28B, we identified claudin 1 (CLDN1) tight junction protein as a direct downstream target and effector of LIN28B. RNA immunoprecipitation revealed that LIN28B directly binds to and posttranscriptionally regulates CLDN1 mRNA. Furthermore, using in vitro assays and a potentially novel murine model of metastatic CRC, we show that LIN28B-mediated CLDN1 expression enhances collective invasion, cell migration, and metastatic liver tumor formation. Bulk RNA sequencing of the metastatic liver tumors identified NOTCH3 as a downstream effector of the LIN28B/CLDN1 axis. Additionally, genetic and pharmacologic manipulation of NOTCH3 signaling revealed that NOTCH3 was necessary for invasion and metastatic liver tumor formation. In summary, our results suggest that LIN28B promotes invasion and liver metastasis of CRC by posttranscriptionally regulating CLDN1 and activating NOTCH3 signaling. This discovery offers a promising new therapeutic option for metastatic CRC to the liver, an area where therapeutic advancements have been relatively scarce.
Collapse
Affiliation(s)
- Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Yasunori Masuike
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Kensuke Suzuki
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Department of General Surgery and
| | - Alice E. Shin
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Peter A. Sims
- Department of Systems Biology and Department of Biochemistry & Molecular Biophysics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher J. Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
6
|
Knowles T, Huang T, Qi J, An S, Burket N, Cooper S, Nazarian J, Saratsis AM. LIN28B and Let-7 in Diffuse Midline Glioma: A Review. Cancers (Basel) 2023; 15:3241. [PMID: 37370851 DOI: 10.3390/cancers15123241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Diffuse midline glioma (DMG) is the most lethal of all childhood cancers. DMGs are driven by histone-tail-mutation-mediated epigenetic dysregulation and partner mutations in genes controlling proliferation and migration. One result of this epigenetic and genetic landscape is the overexpression of LIN28B RNA binding protein. In other systems, LIN28B has been shown to prevent let-7 microRNA biogenesis; however, let-7, when available, faithfully suppresses tumorigenic pathways and induces cellular maturation by preventing the translation of numerous oncogenes. Here, we review the current literature on LIN28A/B and the let-7 family and describe their role in gliomagenesis. Future research is then recommended, with a focus on the mechanisms of LIN28B overexpression and localization in DMG.
Collapse
Affiliation(s)
- Truman Knowles
- W.M. Keck Science Department, Scripps, Pitzer, and Claremont McKenna Colleges, Claremont, CA 91711, USA
| | - Tina Huang
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jin Qi
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shejuan An
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Noah Burket
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Cooper
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Javad Nazarian
- Department of Pediatrics, Children's National Hospital, Washington, DC 20010, USA
- Department of Pediatrics, Zurich Children's Hospital, 8032 Zurich, Switzerland
| | - Amanda M Saratsis
- Department of Neurosurgery, Lutheran General Hospital, Park Ridge, IL 60068, USA
| |
Collapse
|
7
|
Cao L, Duan L, Zhang R, Yang W, Yang N, Huang W, Chen X, Wang N, Niu L, Zhou W, Chen J, Li Y, Zhang Y, Liu J, Fan D, Liu H. Development and validation of an RBP gene signature for prognosis prediction in colorectal cancer based on WGCNA. Hereditas 2023; 160:10. [PMID: 36895014 PMCID: PMC9999506 DOI: 10.1186/s41065-023-00274-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs) have been implicated in oncogenesis and progression in various cancers. However, the potential value of RBPs as prognostic indicators and therapeutic targets in colorectal cancer (CRC) requires further investigation. METHODS Four thousand eighty two RBPs were collected from literature. The weighted gene co-expression network analysis (WGCNA) was performed to identify prognosis-related RBP gene modules based on the data attained from the TCGA cohorts. LASSO algorithm was conducted to establish a prognostic risk model, and the validity of the proposed model was confirmed by an independent GEO dataset. Functional enrichment analysis was performed to reveal the potential biological functions and pathways of the signature and to estimate tumor immune infiltration. Potential therapeutic compounds were inferred utilizing CMap database. Expressions of hub genes were further verified through the Human Protein Atlas (HPA) database and RT-qPCR. RESULTS One thousand seven hundred thirty four RBPs were differently expressed in CRC samples and 4 gene modules remarkably linked to the prognosis were identified, based on which a 12-gene signature was established for prognosis prediction. Multivariate Cox analysis suggested this signature was an independent predicting factor of overall survival (P < 0.001; HR:3.682; CI:2.377-5.705) and ROC curves indicated it has an effective predictive performance (1-year AUC: 0.653; 3-year AUC:0.673; 5-year AUC: 0.777). GSEA indicated that high risk score was correlated with several cancer-related pathways, including cytokine-cytokine receptor cross talk, ECM receptor cross talk, HEDGEHOG signaling cascade and JAK/STAT signaling cascade. ssGSEA analysis exhibited a significant correlation between immune status and the risk signature. Noscapine and clofazimine were screened as potential drugs for CRC patients with high-risk scores. TDRD5 and GPC1 were identified as hub genes and their expression were validated in 15 pairs of surgically resected CRC tissues. CONCLUSION Our research provides a depth insight of RBPs' role in CRC and the proposed signature are helpful to the personalized treatment and prognostic judgement.
Collapse
Affiliation(s)
- Lu Cao
- Department of Biomedical Engineering, Air Force Hospital of Eastern Theater Command, 210001, Nanjing, Jiangsu Province, China
| | - Lili Duan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Rui Zhang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Wanli Yang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Ning Yang
- Department of Biomedical Engineering, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu Province, China
| | - Wenzhe Huang
- Department of Biomedical Engineering, Jinling Hospital, Medical School of Nanjing University, 210002, Nanjing, Jiangsu Province, China
| | - Xuemin Chen
- College of Otolaryngology and Head and Neck Surgery, State Key Lab of Hearing Science, Beijing Key Lab of Hearing Impairment Prevention and Treatment, Chinese PLA General Hospital, National Clinical Research Center for Otolaryngologic Diseases, Ministry of Education, Beijing, China
| | - Nan Wang
- Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liaoran Niu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Wei Zhou
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Junfeng Chen
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yiding Li
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Yujie Zhang
- Department of Histology and Embryology, School of Basic Medicine, Xi'an Medical University, Xi'an, China
| | - Jinqiang Liu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Daiming Fan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China
| | - Hong Liu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032, Xi'an, Shaanxi Province, China.
| |
Collapse
|
8
|
Maklad A, Sedeeq M, Wilson R, Heath JA, Gueven N, Azimi I. LIN28 expression and function in medulloblastoma. J Cell Physiol 2023; 238:533-548. [PMID: 36649308 DOI: 10.1002/jcp.30946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023]
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Current treatment modalities are not completely effective and can lead to severe neurological and cognitive adverse effects. In addition to urgently needing better treatment approaches, new diagnostic and prognostic biomarkers are required to improve the therapy outcomes of MB patients. The RNA-binding proteins, LIN28A and LIN28B, are known to regulate invasive phenotypes in many different cancer types. However, the expression and function of these proteins in MB had not been studied to date. This study identified the expression of LIN28A and LIN28B in MB patient samples and cell lines and assessed the effect of LIN28 inhibition on MB cell growth, metabolism and stemness. LIN28B expression was significantly upregulated in MB tissues compared to normal brain tissues. This upregulation, which was not observed in other brain tumors, was specific for the aggressive MB subgroups and correlated with patient survival and metastasis rates. Functionally, pharmacological inhibition of LIN28 activity concentration-dependently reduced LIN28B expression, as well as the growth of D283 MB cells. While LIN28 inhibition did not affect the levels of intracellular ATP, it reduced the expression of the stemness marker CD133 in D283 cells and the sphere formation of CHLA-01R cells. LIN28B, which is highly expressed in the human cerebellum during the first few months after birth, subsequently decreased with age. The results of this study highlight the potential of LIN28B as a diagnostic and prognostic marker for MB and open the possibility to utilize LIN28 as a pharmacological target to suppress MB cell growth and stemness.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - John A Heath
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Paediatrics, Royal Hobart Hospital, Hobart, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
9
|
Sil S, Bertilla J, Rupachandra S. A comprehensive review on RNA interference-mediated targeting of interleukins and its potential therapeutic implications in colon cancer. 3 Biotech 2023; 13:18. [PMID: 36568500 PMCID: PMC9768089 DOI: 10.1007/s13205-022-03421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Colon cancer is the world's fourth leading cause of death. It is cancer of the latter part of the large intestine, i.e. the colon. Chronic inflammation over a long period also leads to the development of cancer. Cancer in the colon region is arduous to diagnose and is detected at a later stage when it metastasizes to other parts of the body like the liver, lungs, peritoneum, etc. Colon cancer is a great example of solid tumours associated with chronic inflammation. Although conventional therapies are effective, they lose their effectiveness beyond a certain point. Relapse of the disease occurs frequently. RNA interference (RNAi) is emerging as a great tool to specifically attack the cancer cells of a target site like the colon. RNAi deals with epigenetic changes made in the defective cells which ultimately leads to their death without harming the healthy cells. In this review, two types of epigenetic modulators have been considered, namely siRNA and miRNA, and their effect on interleukins. Interleukins, a class of cytokines, are major inflammatory responses of the body that are released by immune cells like leukocytes and macrophages. Some of these interleukins are pro-inflammatory, thereby promoting inflammation which eventually causes cancer. RNAi can prevent colon cancer by inhibiting pro-inflammatory interleukins.
Collapse
Affiliation(s)
- Sagari Sil
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - Janet Bertilla
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| | - S. Rupachandra
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu 603 203 India
| |
Collapse
|
10
|
Zhao Y, Zhang T, Shen X, Huang A, Li H, Wang L, Liu X, Wang X, Song X, Wang S, Dong J, Shao N. Tumor necrosis factor alpha delivers exogenous inflammation-related microRNAs to recipient cells with functional targeting capabilities. Mol Ther 2022; 30:3052-3065. [PMID: 35791880 PMCID: PMC9481991 DOI: 10.1016/j.ymthe.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a critical pro-inflammatory cytokine in a wide range of tumors and infectious diseases. This study showed for the first time that TNF-α could specifically bind to certain intracellular or circulating inflammation-related microRNAs both in vitro and in vivo. The binding sites of TNF-α to microRNAs are located at the N-terminal of TNF-α and the 3'-GGUU motif of microRNAs. TNF-α could deliver exogenous unmodified single-stranded microRNAs into recipient cells through the TNF-α receptors (TNFRs) and stabilize them from being degraded by RNase in cells. Exogenous miR-146a or let-7c delivered into HCT116 cells by TNF-α could escape from lysosomes and specifically downregulate their target genes and then affect cell proliferation and migration in vitro, as well as tumorigenesis in vivo. Based on the above findings, the concept of "non-conjugated ligand-mediated RNA delivery (ncLMRD)" was proposed, which may serve as a promising strategy for therapeutic microRNA delivery in the future.
Collapse
Affiliation(s)
- Yuechao Zhao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tan Zhang
- Non-commissioned Officer School of Army Medical University, Shijiazhuang 050000, China
| | - Xuelian Shen
- Laibin Maternity and Child Healthcare Hospital, Guangxi 546100, China
| | - Aixue Huang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Hui Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lin Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuemei Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuejun Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Xiang Song
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Shengqi Wang
- Beijing Institute of Microbiology and Epidemiology, Beijing 100850, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Ningsheng Shao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
11
|
LIN28B inhibition sensitizes cells to p53-restoring PPI therapy through unleashed translational suppression. Oncogenesis 2022; 11:37. [PMID: 35780125 PMCID: PMC9250532 DOI: 10.1038/s41389-022-00412-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
p53 is the most highly mutated tumor suppressor across multiple types of human cancers. The level and function of p53 are fine-tuned through multifaced mechanisms in which the protein–protein interaction between p53 and MDM2 is considered as a major circuit. Recent studies suggest therapeutic strategy attempts to restore p53 function by small molecule inhibitors targeting p53–MDM2 interaction can be a promising direction in treating cancers with wild-type or functional p53. Currently, clinical tests of the p53–MDM2 protein–protein interaction inhibitors (PPIs) are underway. However, it remains elusive about the biomarkers that may predict the therapeutic responses to those inhibitors. Here we report that RNA-binding protein LIN28B directly regulates p53 through binding to the 5′΄ untranslated region of p53 mRNA and blocks its translation by competing with a translation enhancer protein, ribosomal protein L26 (RPL26). This regulatory mechanism of LIN28B does not involve let-7 maturation or the canonical protein turnover pathway of p53. Furthermore, we show that inhibition of LIN28B unleashes the translational suppression of p53 through RPL26, and leads to enhanced sensitivities of cancer cells to inhibitors of p53–MDM2 interaction. Together, we demonstrate a competitive regulatory mechanism of p53 by LIN28B, which has important implications in developing biomarkers to the therapies aiming to reinstate p53 function.
Collapse
|
12
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
13
|
Dohmen J, Semaan A, Kobilay M, Zaleski M, Branchi V, Schlierf A, Hettwer K, Uhlig S, Hartmann G, Kalff JC, Matthaei H, Lingohr P, Holdenrieder S. Diagnostic Potential of Exosomal microRNAs in Colorectal Cancer. Diagnostics (Basel) 2022; 12:diagnostics12061413. [PMID: 35741223 PMCID: PMC9221658 DOI: 10.3390/diagnostics12061413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Despite the significance of colonoscopy for early diagnosis of colorectal adenocarcinoma (CRC), population-wide screening remains challenging, mainly because of low acceptance rates. Herein, exosomal (exo-miR) and free circulating microRNA (c-miR) may be used as liquid biopsies in CRC to identify individuals at risk. Direct comparison of both compartments has shown inconclusive results, which is why we directly compared a panel of 10 microRNAs in this entity. Methods: Exo-miR and c-miR levels were measured using real-time quantitative PCR after isolation from serum specimens in a cohort of 69 patients. Furthermore, results were compared to established tumor markers CEA and CA 19-9. Results: Direct comparison of exo- and c-miR biopsy results showed significantly higher microRNA levels in the exosomal compartment (p < 0.001). Exo-Let7, exo-miR-16 and exo-miR-23 significantly differed between CRC and healthy controls (all p < 0.05), while no c-miR showed this potential. Sensitivity and specificity can be further enhanced using combinations of multiple exosomal miRNAs. Conclusions: Exosomal microRNA should be considered as a promising biomarker in CRC for future studies. Nonetheless, results may show interference with common comorbidities, which must be taken into account in future studies.
Collapse
Affiliation(s)
- Jonas Dohmen
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Makbule Kobilay
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Martin Zaleski
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
| | - Vittorio Branchi
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
| | - Anja Schlierf
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Karina Hettwer
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Steffen Uhlig
- QuoData GmbH-Quality & Statistics, 01309 Dresden, Germany; (A.S.); (K.H.); (S.U.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Jörg C. Kalff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Hanno Matthaei
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Philipp Lingohr
- Department of General, Visceral, Thoracic and Vascular Surgery, University Hospital, 53127 Bonn, Germany; (J.D.); (A.S.); (V.B.); (J.C.K.); (H.M.); (P.L.)
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, 53127 Bonn, Germany; (M.K.); (M.Z.); (G.H.)
- CEBIO GmbH—Center for Evaluation of Biomarkers, 81679 Munich, Germany
- Center for Integrated Oncology (CIO) Cologne/Bonn, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
14
|
Puthdee N, Sriswasdi S, Pisitkun T, Ratanasirintrawoot S, Israsena N, Tangkijvanich P. The LIN28B/TGF-β/TGFBI feedback loop promotes cell migration and tumour initiation potential in cholangiocarcinoma. Cancer Gene Ther 2022; 29:445-455. [PMID: 34548635 PMCID: PMC9113936 DOI: 10.1038/s41417-021-00387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023]
Abstract
Cholangiocarcinoma (CCA), a lethal malignancy of the biliary epithelium, is the second most common primary liver cancer. The poor prognosis of CCA is due to the high rate of tumour invasion and distant metastasis. We found that the RNA-binding protein LIN28B, a known regulator of microRNA biogenesis, stem cell maintenance, and oncogenesis, is expressed in a subpopulation of CCA patients. To further investigate the potential role of LIN28B in CCA pathogenesis, we studied the effect of LIN28B overexpression in the cholangiocyte cell line MMNK-1 and cholangiocarcinoma cell lines HuCCT-1 and KKU-214. Here, we show that enhanced LIN28B expression promoted cancer stem cell-like properties in CCA, including enhanced cell migration, epithelial-to-mesenchymal transition (EMT), increased cell proliferation and spheroid formation. Proteomic analysis revealed TGF-β-induced protein (TGFBI) as a novel LIN28B target gene, and further analysis showed upregulation of other components of the TGF-β signalling pathway, including TGF-β receptor type I (TGFBRI) expression and cytokine TGFB-I, II and III secretion. Importantly, the small molecule TGF-β inhibitor SB431542 negated the effects of LIN28B on both cell migration and clonogenic potential. Overexpression of TGFBI alone promoted cholangiocarcinoma cell migration and EMT changes, but not spheroid formation, suggesting that TGFBI partially contributes to LIN28B-mediated aggressive cell behaviour. These observations are consistent with a model in which TGF-β and LIN28B work together to form a positive feedback loop during cholangiocarcinoma metastasis and provide a therapeutic intervention opportunity.
Collapse
Affiliation(s)
- Nattapong Puthdee
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Nipan Israsena
- Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
15
|
Wu K, Ahmad T, Eri R. LIN28A: A multifunctional versatile molecule with future therapeutic potential. World J Biol Chem 2022; 13:35-46. [PMID: 35432768 PMCID: PMC8966501 DOI: 10.4331/wjbc.v13.i2.35] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/06/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
An RNA-binding protein, LIN28A was initially discovered in nematodes Caenorhabditis elegans and regulated stem cell differentiation and proliferation. With the aid of mouse models and cancer stem cells models, LIN28A demonstrated a similar role in mammalian stem cells. Subsequent studies revealed LIN28A’s roles in regulating cell cycle and growth, tissue repair, and metabolism, especially glucose metabolism. Through regulation by pluripotency and neurotrophic factors, LIN28A performs these roles through let-7 dependent (binding to let-7) or independent (binding directly to mature mRNA) pathways. Elevated LIN28A levels are associated with cancers such as breast, colon, and ovarian cancers. Overexpressed LIN28A has been implicated in liver diseases and Rett syndrome whereas loss of LIN28A was linked to Parkinson’s disease. LIN28A inhibitors, LIN28A-specific nanobodies, and deubiquitinases targeting LIN28A could be feasible options for cancer treatments while drugs upregulating LIN28A could be used in regenerative therapy for neuropathies. We will review the upstream and downstream signalling pathways of LIN28A and its physiological functions. Then, we will examine current research and gaps in research regarding its mechanisms in conditions such as cancers, liver diseases, and neurological diseases. We will also look at the therapeutic potential of LIN28A in RNA-targeted therapies including small interfering RNAs and RNA-protein interactions.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Tauseef Ahmad
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Rajaraman Eri
- Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7250, Australia
| |
Collapse
|
16
|
Zou H, Luo J, Guo Y, Liu Y, Wang Y, Deng L, Li P. RNA-binding protein complex LIN28/MSI2 enhances cancer stem cell-like properties by modulating Hippo-YAP1 signaling and independently of Let-7. Oncogene 2022; 41:1657-1672. [PMID: 35102250 PMCID: PMC8913359 DOI: 10.1038/s41388-022-02198-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The RNA binding protein LIN28 directly modulates the stability and translation of target mRNAs independently of Let-7; however, the key downstream targets of LIN28 in this process are largely unknown. Here, we revealed that Hippo signaling effector YAP1 functioned as a key downstream regulator of LIN28 to modulate the cancer stem cell (CSC)-like properties and tumor progressions in triple negative breast cancer (TNBC). LIN28 was overexpressed in BC tissues and cell lines, and significantly correlated with poorer overall survivals in patients. Ectopic LIN28 expression enhanced, while knockdown of LIN28A inhibited the CSC-like properties, cell growth and invasive phenotypes of TNBC cells in vitro and in vivo. Transcriptome analysis demonstrated LIN28 overexpression significantly induced the expressions of YAP1 downstream genes, while reduced the transcripts of YAP1 upstream kinases, such as MST1/2 and LATS1/2, and knockdown of LIN28A exhibited the opposite effects. Furthermore, constitutive activation of YAP1 in LIN28 knockdown TNBC cells could rescue the cell growth and invasive phenotypes in vitro and in vivo. Mechanistically, instead of the dependence of Let-7, LIN28 recruited RNA binding protein MSI2 in a manner dependent on the LIN28 CSD domain and MSI2 RRM domain, to directly induce the mRNA decay of YAP1 upstream kinases, leading to the inhibition of Hippo pathway and activation of YAP1, which eventually gave rise to increased CSC populations, enhanced tumor cell growth and invasive phenotypes. Accordingly, co-upregulations of LIN28 and MSI2 in TNBC tissues were strongly associated with YAP1 protein level and tumor malignance. Taken together, our findings unravel a novel LIN28/MSI2-YAP1 regulatory axis to induce the CSC-like properties, tumor growth and metastasis, independently of Let-7, which may serve as a potential therapeutic strategy for the treatment of a subset of TNBC with LIN28 overexpression.
Collapse
Affiliation(s)
- Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yuhong Liu
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Liang JH, Xu QD, Gu SG. LncRNA RSU1P2-microRNA let-7a-Testis-Expressed Protein 10 axis modulates tumorigenesis and cancer stem cell-like properties in liver cancer. Bioengineered 2022; 13:4285-4300. [PMID: 35156514 PMCID: PMC8974045 DOI: 10.1080/21655979.2022.2031394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
LncRNAs exert important functions in the modulation of tumorigenesis and cancer stem cell-like properties in liver cancer. However, the role of LncRNA Ras suppressor protein 1 pseudogene 2 (RSU1P2) in modulating tumorigenesis and cancer stem cell-like properties in liver cancer is still not known. In this study, the expression of LncRNA RSU1P2 was significantly elevated in liver cancer tissues and cells. Besides, knockdown of RSU1P2 repressed cell viability, invasion, epithelial-mesenchymal transition (EMT) of liver cancer cells and the expressions of cancer stem cell-related genes, whereas facilitated the apoptosis of liver cancer cells. In addition, LncRNA RSU1P2 can interact with microRNA let-7a (let-7a), and repress let-7a expression. Testis-Expressed Protein 10 (Tex10) was identified to be a target of let-7a, and let-7a repressed Tex10 expression. Finally, RSU1P2 knockdown suppressed tumor volume, tumor weight, and EMT in a xenograft model. Therefore, LncRNA RSU1P2 promotes tumorigenesis and cancer stem cell-like properties in liver cancer through let-7a/Tex10 pathway.
Collapse
Affiliation(s)
- Jia-Hong Liang
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiao-Dong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Song-Gang Gu
- Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, Shantou, China
- CONTACT Song-Gang Gu Department of Hepatobiliary surgery, Cancer Hospital of Shantou University Medical College, ShantouChina
| |
Collapse
|
18
|
Talib WH, Mahmod AI, Kamal A, Rashid HM, Alashqar AMD, Khater S, Jamal D, Waly M. Ketogenic Diet in Cancer Prevention and Therapy: Molecular Targets and Therapeutic Opportunities. Curr Issues Mol Biol 2021; 43:558-589. [PMID: 34287243 PMCID: PMC8928964 DOI: 10.3390/cimb43020042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet's therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet's potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Hasan M. Rashid
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Aya M. D. Alashqar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Duaa Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Mostafa Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 34-123, Oman;
| |
Collapse
|
19
|
The Function and Prognostic Value of RNA-Binding Proteins in Colorectal Adenocarcinoma Were Analyzed Based on Bioinformatics of Smart Medical Big Data. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:5536330. [PMID: 34188789 PMCID: PMC8192207 DOI: 10.1155/2021/5536330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022]
Abstract
Colon cancer is the third most frequent cancer in the world and is mainly adenocarcinoma in terms of pathological type. It has been confirmed that the dysregulation of RNA-binding proteins (RBPs) significantly participates in the occurrence and development of numerous malignant tumors. Therefore, we analyzed the RBPs associated with colon adenocarcinoma (COAD) to assess their possible biological effects and prognostic value. A total of 398 COAD tissue datasets and 39 normal tissue datasets were retrieved from the TCGA data resource and screened out the RBPs, which are differentially expressed between tumor tissues and nontumor tissues. Then, bioinformatics analyses based on smart medical big data were conducted on these RBPs. Overall, 181 differentially expressed RBPs were uncovered, consisting of 121 upregulated RBPs and 60 downregulated RBPs. Finally, we selected 7 prognostic-related RBPs with research prospects and constructed a prognostic model according to the median risk score. There were remarkable differences in OS between the high-risk and low-risk groups. In addition, the performance of the prognostic model was evaluated and verified with other COAD patient data in the TCGA database. The results showed that the area under the ROC curve (AUC) for the train group was 0.744 and the one for the test group was 0.661, confirming that the model assesses patients' prognosis to some extent. And based on 7 hub RBPs, we constructed a nomogram as a reference for evaluating the survival rate of COAD patients.
Collapse
|
20
|
Arai H, Cao S, Battaglin F, Wang J, Kawanishi N, Tokunaga R, Loupakis F, Stintzing S, Soni S, Zhang W, Mancao C, Salhia B, Mumenthaler SM, Cremolini C, Heinemann V, Falcone A, Millstein J, Lenz HJ. RNA-Binding Protein Polymorphisms as Novel Biomarkers to Predict Outcomes of Metastatic Colorectal Cancer: A Meta-analysis from TRIBE, FIRE-3, and MAVERICC. Mol Cancer Ther 2021; 20:1153-1160. [PMID: 33785650 PMCID: PMC12047447 DOI: 10.1158/1535-7163.mct-20-0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/12/2020] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
RNA-binding proteins (RBPs) regulate many posttranscriptional cellular activities. Accumulating evidence suggests associations between RBPs with colonic tumorigenesis and chemosensitivity. We investigated the prognostic and predictive values of SNPs of genes encoding RBPs in metastatic colorectal cancer (mCRC), using clinical and genomic data from three randomized clinical trials of standard first-line chemotherapy for mCRC (TRIBE, FIRE-3, and MAVERICC). Genomic DNA extracted from blood samples was genotyped using an OncoArray. We tested 30 candidate SNPs of 10 major RBP-related genes with additive models. Prognostic values were estimated by meta-analysis approach. Treatment-by-SNP interactions were tested to estimate predictive values for targeted drugs and cytotoxic backbone chemotherapies. This study included 884 patients. The meta-analysis revealed prognostic values of LIN28B rs314277 [HR, 1.26; 95% confidence interval (CI), 1.06-1.49, P = 0.005, FDR-adjusted P = 0.072 for overall survival (OS)] and LIN28B rs314276 (HR, 1.25; 95% CI, 1.08-1.44, P = 0.002, FDR-adjusted P = 0.062 for OS). Although some SNPs showed potentially predictive values, these associations were not confirmed after FDR adjustment. In conclusion, the results of this study are warranting additional studies to provide the evidence that RBP-related SNPs may be associated with the prognosis of patients with mCRC treated with standard first-line chemotherapies. In addition, further studies are warranted to study the predictive value.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jingyuan Wang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Natsuko Kawanishi
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ryuma Tokunaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Fotios Loupakis
- Department of Clinical and Experimental Oncology, Medical Oncology Unit 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sebastian Stintzing
- Division of Hematology, Oncology, and Tumor Immunology (CCM), Medical Department, Charité - Universitaetsmedizin, Berlin, Germany
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Christoph Mancao
- Oncology Biomarker Development, Genentech Inc., Basel, Switzerland
| | - Bodour Salhia
- Department of Translational Genomics, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shannon M Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chiara Cremolini
- Department of Oncology, University Hospital of Pisa, Pisa, Italy; Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Volker Heinemann
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Alfredo Falcone
- Department of Oncology, University Hospital of Pisa, Pisa, Italy; Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Joshua Millstein
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
21
|
Li YP, Du XR, Zhang R, Yang Q. Interleukin-18 promotes the antitumor ability of natural killer cells in colorectal cancer via the miR-574-3p/TGF-β1 axis. Bioengineered 2021; 12:763-778. [PMID: 33660570 PMCID: PMC8806203 DOI: 10.1080/21655979.2021.1880717] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-18 has a clear antitumor effect; however, its mechanisms of action are not understood in patients with colorectal cancer (CRC). Here, we investigated the potential mechanism of IL-18 in CRC. The results showed that IL-18 treatment alone had no effect on HCT116 cells apoptosis, whereas IL-18 in the presence of natural killer (NK) cells resulted in apoptosis and inhibition of cells proliferation in vitro. Profiling of miRNA expression following coculture with NK cells and treatment with IL-18 resulted in significant downregulation of miR-574-3p expression and upregulated expression of the target gene transforming growth factor beta 1 (TGF-β1). miR-574-3p binds to TGF-β1, and miR-574-3p overexpression increased the proliferation and decreased the apoptotic rate of HCT116 cells in NK cells coculture with IL-18 treatment; overexpression of TGF-β1 restored the effect of miR-574-3p overexpression. The miRNA profile of HCT116 undergoes significant alteration before and after coculturing with NK cells and treatment with IL-18. IL-18 alone did not affect HCT116 cells apoptosis but did promote the antitumor ability of NK cells in coculture with HCT116 cells via the miR-574-3p/TGF-β1 axis. Our study suggested that IL-18 can be a new potential target for cancer immunotherapy for CRC.
Collapse
Affiliation(s)
- Yin-Peng Li
- Department of Gastroenterology, Shenzhen People's Hospital Longhua Branch (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Xian-Rong Du
- Department of Gastroenterology, Shenzhen People's Hospital Longhua Branch (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Ru Zhang
- Department of Gastroenterology, Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Qiu Yang
- Department of Gastroenterology, Shenzhen People's Hospital Longhua Branch (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
22
|
Li T, Hui W, Halike H, Gao F. RNA Binding Protein-Based Model for Prognostic Prediction of Colorectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211019504. [PMID: 34080453 PMCID: PMC8182183 DOI: 10.1177/15330338211019504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a kind of gastrointestinal tumor with serious high morbidity and mortality. Several reports have implicated the disorder of RNA-binding proteins (RBPs) in plenty of tumors, associating it to tumorigenesis and disease progression. The study is intended to construct novel prognostic biomarkers associated with CRC patients. METHODS Data of gene expression was acquired from the TCGA database, prognosis-related genes were selected. Besides, we analyzed GO and KEGG pathways. Univariate and multivariate Cox analyses were performed to generate a prognostic-related gene signature, which was evaluated by the Kaplan-Meier (K-M) and the Receiver Operating Characteristic (ROC) curve. The independent prognostic factor was established by survival analysis. GSE38832 dataset was used to validate the signature. Finally, expression of 8 genes was further confirmed by qRT-PCR in SW480 and SW620 cell lines. RESULTS We obtained 224 differentially expressed RBPS in total, of which 78 were downregulated and 146 were upregulated. Univariate COX analysis was conducted in the TCGA cohort to select 13 RBPs with P < 0.005, stepwise multivariate COX regression analysis was used to construct an 8-RBP signature (TERT, PPARGC1A, BRCA1, CELF4, TDRD7, LUZP4, PNLDC1, ZC3H12C). Based on the model, systematic analysis illustrated that a high risk score was obviously connected to a poor prognosis. The prognostic value of the risk score was validated in GSE38832 dataset, indicating that the risk model was accurate and effective. The prognostic signature-based risk score was identified as an independent prognostic indicator for CRC. The expression results of qRT-PCR were consistent with the results of differential expression analysis. CONCLUSIONS The eight-RBP signature can predict the survival of CRC patients and potentially act as CRC prognostic biomarker.
Collapse
Affiliation(s)
- Ting Li
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| | - Wenjia Hui
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| | - Halina Halike
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| | - Feng Gao
- Department of Gastroenterology, People’s Hospital of Xinjiang Uygur
Autonomous Region, Urumqi, Xinjiang Province, China
| |
Collapse
|
23
|
Differential expression of microRNAs in the hippocampi of male and female rodents after chronic alcohol administration. Biol Sex Differ 2020; 11:65. [PMID: 33228793 PMCID: PMC7684718 DOI: 10.1186/s13293-020-00342-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Background Women are more vulnerable than men to the neurotoxicity and severe brain damage caused by chronic heavy alcohol use. In addition, brain damage due to chronic heavy alcohol use may be associated with sex-dependent epigenetic modifications. This study aimed to identify microRNAs (miRNAs) and their target genes that are differentially expressed in the hippocampi of male and female animal models in response to alcohol. Methods After chronic alcohol administration (3~3.5 g/kg/day) in male (control, n = 10; alcohol, n = 12) or female (control, n = 10; alcohol, n = 12) Sprague-Dawley rats for 6 weeks, we measured body weights and doublecortin (DCX; a neurogenesis marker) concentrations and analyzed up- or downregulated miRNAs using GeneChip miRNA 4.0 arrays. The differentially expressed miRNAs and their putative target genes were validated by RT-qPCR. Results Alcohol attenuated body weight gain only in the male group. On the other hand, alcohol led to increased serum AST in female rats and decreased serum total cholesterol concentrations in male rats. The expression of DCX was significantly reduced in the hippocampi of male alcohol-treated rats. Nine miRNAs were significantly up- or downregulated in male alcohol-treated rats, including upregulation of miR-125a-3p, let-7a-5p, and miR-3541, and downregulation of their target genes (Prdm5, Suv39h1, Ptprz1, Mapk9, Ing4, Wt1, Nkx3-1, Dab2ip, Rnf152, Ripk1, Lin28a, Apbb3, Nras, and Acvr1c). On the other hand, 7 miRNAs were significantly up- or downregulated in alcohol-treated female rats, including downregulation of miR-881-3p and miR-504 and upregulation of their target genes (Naa50, Clock, Cbfb, Arih1, Ube2g1, and Gng7). Conclusions These results suggest that chronic heavy alcohol use produces sex-dependent effects on neurogenesis and miRNA expression in the hippocampus and that sex differences should be considered when developing miRNA biomarkers to diagnose or treat alcoholics. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-020-00342-3.
Collapse
|
24
|
Fan X, Liu L, Shi Y, Guo F, Wang H, Zhao X, Zhong D, Li G. Integrated analysis of RNA-binding proteins in human colorectal cancer. World J Surg Oncol 2020; 18:222. [PMID: 32828126 PMCID: PMC7443297 DOI: 10.1186/s12957-020-01995-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Although RNA-binding proteins play an essential role in a variety of different tumours, there are still limited efforts made to systematically analyse the role of RNA-binding proteins (RBPs) in the survival of colorectal cancer (CRC) patients. Methods Analysis of CRC transcriptome data collected from the TCGA database was conducted, and RBPs were extracted from CRC. R software was applied to analyse the differentially expressed genes (DEGs) of RBPs. To identify related pathways and perform functional annotation of RBP DEGs, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the database for annotation, visualization and integrated discovery. Protein-protein interactions (PPIs) of these DEGs were analysed based on the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Based on the Cox regression analysis of the prognostic value of RBPs (from the PPI network) with survival time, the RBPs related to survival were identified, and a prognostic model was constructed. To verify the model, the data stored in the TCGA database were designated as the training set, while the chip data obtained from the GEO database were treated as the test set. Then, both survival analysis and ROC curve verification were conducted. Finally, the risk curves and nomograms of the two groups were generated to predict the survival period. Results Among RBP DEGs, 314 genes were upregulated while 155 were downregulated, of which twelve RBPs (NOP14, MRPS23, MAK16, TDRD6, POP1, TDRD5, TDRD7, PPARGC1A, LIN28B, CELF4, LRRFIP2, MSI2) with prognostic value were obtained. Conclusions The twelve identified genes may be promising predictors of CRC and play an essential role in the pathogenesis of CRC. However, further investigation of the underlying mechanism is needed.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yue Shi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Fanghan Guo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Haining Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Xiuli Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
25
|
Li Q, Shi J, Liu W. The role of Wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun Signal 2020; 18:108. [PMID: 32650795 PMCID: PMC7353806 DOI: 10.1186/s12964-020-00562-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background The pre-implantation embryo in a competent status and post-implantation fully differentiation of the inner cell mass (ICM) and trophectoderm (TE) are prerequisites of successful implantation. Type I embryonic epithelial-mesenchymal transition (EMT) involves in these processes. A high level of the mir-let-7 family was found in the dormant mouse embryo of implantation failure in our previous study. Besides, its natural inhibitor lin28a was found to function in maintained stem cell pluripotency and involved in early embryo nucleolus construction. Until now, few studies got involved in the exact molecular mechanism that affects embryo implantation potential. In this study, the possible function of Wnt/β-catenin-lin28a/let-7 pathway in mouse embryo implantation was studied. Methods ICR mouse, Lin28a/Let-7 g transgenic mice (Lin28a-TG/Let-7 g-TG), and implanting dormant mice models were used for the study. Results Wnt/β-catenin signaling is essential in embryo implantation, which promotes embryo implantation through directly trigger lin28a expression, thus represses the mir-let-7 family. Lin28a and mir-let-7 both participate in implantation via an inverse function. Lin28a and mir-let-7 participate in embryo implantation through embryonic EMT. Conclusions Wnt/β-catenin signaling promotes embryo implantation and accompanying embryonic EMT, which is mediated by directly activate lin28a/let-7 axis. Video abstract
Collapse
Affiliation(s)
- Qian Li
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.,Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Juanzi Shi
- Assisted Reproductive Center, Women & Children's Hospital of Northwest China, 73 Hou zai Road, Xi'an, China
| | - Weimin Liu
- Department of Obstetrics and Gynaecology, Laboratory Block, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, SAR, China.
| |
Collapse
|
26
|
LIN28B regulates transcription and potentiates MYCN-induced neuroblastoma through binding to ZNF143 at target gene promotors. Proc Natl Acad Sci U S A 2020; 117:16516-16526. [PMID: 32601179 PMCID: PMC7368283 DOI: 10.1073/pnas.1922692117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
LIN28B is well known as a RNA-binding protein and a suppressor of microRNA biogenesis by selectively blocking the processing of let-7 precursors. However, little is known about let-7–independent roles of LIN28B. Here, we show that LIN28B is recruited to active promoters by binding to the zinc-finger transcription factor ZNF143. LIN28B acts as a cofactor to upregulate expression of a subset of downstream target genes that are essential for neuroblastoma cell survival and migration. Our paper reveals an unexpected role of LIN28B in transcriptional regulation that is independent of let-7 during neuroblastoma pathogenesis. LIN28B is highly expressed in neuroblastoma and promotes tumorigenesis, at least, in part, through inhibition of let-7 microRNA biogenesis. Here, we report that overexpression of either wild-type (WT) LIN28B or a LIN28B mutant that is unable to inhibit let-7 processing increases the penetrance of MYCN-induced neuroblastoma, potentiates the invasion and migration of transformed sympathetic neuroblasts, and drives distant metastases in vivo. Genome-wide chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) and coimmunoprecipitation experiments show that LIN28B binds active gene promoters in neuroblastoma cells through protein–protein interaction with the sequence-specific zinc-finger transcription factor ZNF143 and activates the expression of downstream targets, including transcription factors forming the adrenergic core regulatory circuitry that controls the malignant cell state in neuroblastoma as well as GSK3B and L1CAM that are involved in neuronal cell adhesion and migration. These findings reveal an unexpected let-7–independent function of LIN28B in transcriptional regulation during neuroblastoma pathogenesis.
Collapse
|
27
|
Han Q, Sang J, Fan X, Wang X, Zeng L, Zhang X, Zhang K, Li N, Lv Y, Liu Z. Association of LIN28B polymorphisms with chronic hepatitis B virus infection. Virol J 2020; 17:81. [PMID: 32571380 PMCID: PMC7310063 DOI: 10.1186/s12985-020-01353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND LIN28B is involved in multiple cellular developmental processes, tissue inflammatory response and tumourigenesis. The association of LIN28B polymorphisms with hepatitis B virus (HBV) infection remains unknown. METHODS This study investigated the association of LIN28B rs314277, rs314280, rs369065 and rs7759938 polymorphisms in patients with chronic HBV infection, a major cause of liver disease including hepatocellular carcinoma (HCC). A total of 781 individuals including 515 cases of chronic HBV infection (91 asymptomatic carrier status, 128 chronic hepatitis, 127 cirrhosis and 169 HCC), 97 HBV infection resolvers and 169 healthy controls were investigated. RESULTS LIN28 rs314280 genotypes GA + AA were higher in resolver and controls than patients (P = 0.011). Patients had significantly lower rs314280 allele A than resolvers (P = 0.031, OR 0.689, 95%CI 0.491-0.969) or controls (P = 0.034, OR 0.741, 95%CI 0.561-0.978). In dominant model, patients had significantly lower rs314280 genotypes AA+GA than controls (P = 0.008, OR 0.623, 95%CI 0.439-0.884). LIN28 rs7759938 genotypes TC + CC were higher in resolvers and controls than patients (P = 0.015). Patients had significantly lower rs7759938 allele C than resolvers (P = 0.048, OR 0.708, 95%CI 0.503-0.999). In dominant model, patients had significantly lower rs7759938 genotypes TC + CC than controls (P = 0.010, OR 0.632, 95%CI 0.445-0.897). Chronic hepatitis patients had lower frequency of rs369065 genotype TC than asymptomatic carriers, cirrhosis and HCC (P = 0.019). CONCLUSIONS These results suggest that LIN28 rs314280 and rs7759938 may be related to the susceptibility of chronic HBV infection. Further studies are warranted to examine the association of LIN28B polymorphisms with HBV-related diseases, especially HCC.
Collapse
Affiliation(s)
- Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Xiaoyun Wang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Lu Zeng
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Xiaoge Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Kun Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
- Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
- Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| |
Collapse
|
28
|
Altaf-Ul-Amin M, Karim MB, Hu P, ONO N, Kanaya S. Discovery of inflammatory bowel disease-associated miRNAs using a novel bipartite clustering approach. BMC Med Genomics 2020; 13:10. [PMID: 32093721 PMCID: PMC7038528 DOI: 10.1186/s12920-020-0660-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multidimensional data mining from an integrated environment of different data sources is frequently performed in computational system biology. The molecular mechanism from the analysis of a complex network of gene-miRNA can aid to diagnosis and treatment of associated diseases. METHODS In this work, we mainly focus on finding inflammatory bowel disease (IBD) associated microRNAs (miRNAs) by biclustering the miRNA-target interactions aided by known IBD risk genes and their associated miRNAs collected from several sources. We rank different miRNAs by attributing to the dataset size and connectivity of IBD associated genes in the miRNA regulatory modules from biclusters. We search the association of some top-ranking miRNAs to IBD related diseases. We also search the network of discovered miRNAs to different diseases and evaluate the similarity of those diseases to IBD. RESULTS According to different literature, our results show the significance of top-ranking miRNA to IBD or related diseases. The ratio analysis supports our ranking method where the top 20 miRNA has approximately tenfold attachment to IBD genes. From disease-associated miRNA network analysis we found that 71% of different diseases attached to those miRNAs show more than 0.75 similarity scores to IBD. CONCLUSION We successfully identify some miRNAs related to IBD where the scoring formula and disease-associated network analysis show the significance of our method. This method can be a promising approach for isolating miRNAs for similar types of diseases.
Collapse
Affiliation(s)
| | | | | | - Naoaki ONO
- Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | | |
Collapse
|
29
|
West RC, McWhorter ES, Ali A, Goetzman LN, Russ JE, Gonzalez-Berrios CL, Anthony RV, Bouma GJ, Winger QA. HMGA2 is regulated by LIN28 and BRCA1 in human placental cells. Biol Reprod 2020; 100:227-238. [PMID: 30137214 DOI: 10.1093/biolre/ioy183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
The chromatin associated transcription factor HMGA2 is a downstream target of let-7 miRNAs and binds to chromatin to regulate gene expression. Inhibition of let-7 miRNAs by RNA-binding proteins LIN28A and LIN28B is necessary during early embryogenesis to ensure stable expression of HMGA2. In addition to LIN28, HMGA2 is regulated by a BRCA1/ZNF350/CtIP repressor complex. In normal tissues, the BRCA1/ZNF350/CtIP complex binds to the HMGA2 promoter to prevent transcription. However, in many cancers the oncomiR miR-182 targets BRCA1, preventing BRCA1 translation and allowing for increased HMGA2. Little is known about the regulation of HMGA2 during early placental development; therefore, we hypothesized that both LIN28 and BRCA1 can regulate HMGA2 in placental cells. Using siRNA and CRISPR gene editing techniques, we found that knockdowns of both LIN28A and LIN28B increase HMGA2 levels in ACH-3P cells. These cells also demonstrated deficiencies in cell differentiation, seemingly differentiating solely towards the syncytiotrophoblast sublineage, secreting higher amounts of hCG, and displaying upregulated ERVW-1. Additionally, we found that a knockout of both LIN28A and LIN28B caused a significant increase of miR-182 and a decrease in BRCA1 allowing HMGA2 mRNA levels to increase and protein levels to remain the same. Using chromatin immunoprecipitation, we saw binding of the BRCA1 repressor complex to HMGA2. We also saw a decrease in binding to HMGA2's promoter in the LIN28A/B knockout cells. These findings suggest a novel role for BRCA1 during early human placental development.
Collapse
Affiliation(s)
- R C West
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - E S McWhorter
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - A Ali
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - L N Goetzman
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - J E Russ
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - C L Gonzalez-Berrios
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - R V Anthony
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - G J Bouma
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Q A Winger
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
30
|
Bader El Din NG, Ibrahim MK, El-Shenawy R, Salum GM, Farouk S, Zayed N, Khairy A, El Awady M. MicroRNAs expression profiling in Egyptian colorectal cancer patients. IUBMB Life 2020; 72:275-284. [PMID: 31512372 DOI: 10.1002/iub.2164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
Abstract
Egypt has increased incidence and high rate of early onset colorectal cancer (CRC). This study aimed to profile the expression levels of 84 circulating microRNAs (miRNAs) in Egyptian CRC patients and to evaluate the diagnostic accuracy of some selected miRNAs as diagnostic biomarkers for CRC patients. A total of 129 subjects (84 CRC patients and 45 healthy controls) were enrolled in two independent sample sets: the screening set (39 subjects) and the validation set (90 subjects). The expression profiles of 84 miRNAs were studied by miRNA PCR array in the screening set. Then four miRNAs (let-7c, 21, 26a, 146a) were selected to be studied by quantitative real-time PCR in the validation set. The PCR array results revealed significant up regulation of 20 miRNAs and downregulation of two miRNAs in CRC patients compared to the healthy subjects. Moreover, the expression levels of the four selected miRNAs were significantly higher in CRC serum samples than controls. The ROC analysis revealed that miRNAs (let-7c, 21, 26a and 146a) can effectively discriminate between CRC patients and the controls. The combination of the four miRNAs showed AUC of 0.950 (95% CI [0.898-1.002], p = .001). However, the combination of miR-21 and miR-26a showed the best diagnostic accuracy with AUC of 0.953 (95% CI [0.908-0.999], p = .001). The current data suggest that miRNAs (let-7c, 21, 26a, 146a) could play an important role in CRC development and they can be used as diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
| | - Marwa K Ibrahim
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Reem El-Shenawy
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Ghada M Salum
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Sally Farouk
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| | - Naglaa Zayed
- Endemic Medicine Department, Cairo University Kasr Alainy Faculty of Medicine, Giza, Egypt
| | - Ahmed Khairy
- Endemic Medicine Department, Cairo University Kasr Alainy Faculty of Medicine, Giza, Egypt
| | - Mostafa El Awady
- Microbial Biotechnology Department, National Research Centre, Giza, Egypt
| |
Collapse
|
31
|
Corallo D, Donadon M, Pantile M, Sidarovich V, Cocchi S, Ori M, De Sarlo M, Candiani S, Frasson C, Distel M, Quattrone A, Zanon C, Basso G, Tonini GP, Aveic S. LIN28B increases neural crest cell migration and leads to transformation of trunk sympathoadrenal precursors. Cell Death Differ 2019; 27:1225-1242. [PMID: 31601998 DOI: 10.1038/s41418-019-0425-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 01/25/2023] Open
Abstract
The RNA-binding protein LIN28B regulates developmental timing and determines stem cell identity by suppressing the let-7 family of microRNAs. Postembryonic reactivation of LIN28B impairs cell commitment to differentiation, prompting their transformation. In this study, we assessed the extent to which ectopic lin28b expression modulates the physiological behavior of neural crest cells (NCC) and governs their transformation in the trunk region of developing embryos. We provide evidence that the overexpression of lin28b inhibits sympathoadrenal cell differentiation and accelerates NCC migration in two vertebrate models, Xenopus leavis and Danio rerio. Our results highlight the relevance of ITGA5 and ITGA6 in the LIN28B-dependent regulation of the invasive motility of tumor cells. The results also establish that LIN28B overexpression supports neuroblastoma onset and the metastatic potential of malignant cells through let-7a-dependent and let-7a-independent mechanisms.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy.
| | - Michael Donadon
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Marcella Pantile
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Viktoryia Sidarovich
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Simona Cocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Ori
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Miriam De Sarlo
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Chiara Frasson
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Martin Distel
- Innovative Cancer Models, Children's Cancer Research Institute (CCRI), Wien, Austria
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Giuseppe Basso
- Department of Women and Child Health, Haematology-Oncology Clinic, University of Padua, Padova, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy. .,Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
32
|
MicroRNA Biogenesis Pathway Genes Are Deregulated in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20184460. [PMID: 31510013 PMCID: PMC6770105 DOI: 10.3390/ijms20184460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression. Each step of their production and maturation has to be strictly regulated, as any disruption of control mechanisms may lead to cancer. Thus, we have measured the expression of 19 genes involved in miRNAs biogenesis pathway in tumor tissues of 239 colorectal cancer (CRC) patients, 17 CRC patients with liver metastases and 239 adjacent tissues using real-time PCR. Subsequently, the expression of analyzed genes was correlated with the clinical-pathological features as well as with the survival of patients. In total, significant over-expression of all analyzed genes was observed in tumor tissues as well as in liver metastases except for LIN28A/B. Furthermore, it was shown that the deregulated levels of some of the analyzed genes significantly correlate with tumor stage, grade, location, size and lymph node positivity. Finally, high levels of DROSHA and TARBP2 were associated with shorter disease-free survival, while the over-expression of XPO5, TNRC6A and DDX17 was detected in tissues of patients with shorter overall survival and poor prognosis. Our data indicate that changed levels of miRNA biogenesis genes may contribute to origin as well as progression of CRC; thus, these molecules could serve as potential therapeutic targets.
Collapse
|
33
|
García-Cárdenas JM, Guerrero S, López-Cortés A, Armendáriz-Castillo I, Guevara-Ramírez P, Pérez-Villa A, Yumiceba V, Zambrano AK, Leone PE, Paz-y-Miño C. Post-transcriptional Regulation of Colorectal Cancer: A Focus on RNA-Binding Proteins. Front Mol Biosci 2019; 6:65. [PMID: 31440515 PMCID: PMC6693420 DOI: 10.3389/fmolb.2019.00065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major health problem with an estimated 1. 8 million new cases worldwide. To date, most CRC studies have focused on DNA-related aberrations, leaving post-transcriptional processes under-studied. However, post-transcriptional alterations have been shown to play a significant part in the maintenance of cancer features. RNA binding proteins (RBPs) are uprising as critical regulators of every cancer hallmark, yet little is known regarding the underlying mechanisms and key downstream oncogenic targets. Currently, more than a thousand RBPs have been discovered in humans and only a few have been implicated in the carcinogenic process and even much less in CRC. Identification of cancer-related RBPs is of great interest to better understand CRC biology and potentially unveil new targets for cancer therapy and prognostic biomarkers. In this work, we reviewed all RBPs which have a role in CRC, including their control by microRNAs, xenograft studies and their clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - César Paz-y-Miño
- Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Universidad UTE, Quito, Ecuador
| |
Collapse
|
34
|
Hu XB, Ouyang LZ, He Y, Xia MZ. Numb confers to inhibit epithelial mesenchymal transition via β-catenin/Lin28 signaling pathway in breast cancer. Exp Mol Pathol 2019; 109:104262. [PMID: 31095937 DOI: 10.1016/j.yexmp.2019.104262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 04/13/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study aimed to investigate role of Numb in the epithelial mesenchymal transition (EMT) of breast cancer. METHODS Numb and β-catenin were inhibited in MCF-7 cells using sh-RNA and overexpressed in T47D cells by pcDNA3.0-Numb, pcDNA3.0-β-catenin. Cell proliferation, invasion and migration were evaluated using MTT and Transwell assay, respectively. β-catenin, Lin28, and EMT related markers were determined using qRT-PCR and Western Blotting. RESULTS Knockdown of Numb significantly promoted the proliferation, invasion and migration of MCF-7 cells, further increased the expression of β-catenin, Lin28, Snail-1, and N-cadherin, as well as decreased E-cadherin. In T47D cells transfected with pcDNA3.0-Numb, the results were quite the reverse. CONCLUSIONS Knockdown of Numb could promote the EMT of breast cancer cells via β-cateni/Lin28 signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bo Hu
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan 410013, PR China; Department of Mammary Gland of Hunan Tumor Hospital, Changsha 410013, PR China.
| | - Li-Zhi Ouyang
- Department of Mammary Gland of Hunan Tumor Hospital, Changsha 410013, PR China
| | - Yue He
- Department of Mammary Gland of Hunan Tumor Hospital, Changsha 410013, PR China
| | - Ming-Zhi Xia
- Breast Surgery Department I, Hunan Cancer Hospital, Changsha, Hunan 410013, PR China; Department of Mammary Gland of Hunan Tumor Hospital, Changsha 410013, PR China.
| |
Collapse
|
35
|
Guo W, Hu Z, Bao Y, Li Y, Li S, Zheng Q, Lyu D, Chen D, Yu T, Li Y, Zhu X, Ding J, Zhao Y, He X, Huang S. A LIN28B Tumor-Specific Transcript in Cancer. Cell Rep 2019; 22:2016-2025. [PMID: 29466730 DOI: 10.1016/j.celrep.2018.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/14/2017] [Accepted: 01/30/2018] [Indexed: 01/12/2023] Open
Abstract
The diversity and complexity of the cancer transcriptome may contain transcripts unique to the tumor environment. Here, we report a LIN28B variant, LIN28B-TST, which is specifically expressed in hepatocellular carcinoma (HCC) and many other cancer types. Expression of LIN28B-TST is associated with significantly poor prognosis in HCC patients. LIN28B-TST initiates from a de novo alternative transcription initiation site that harbors a strong promoter regulated by NFYA but not c-Myc. Demethylation of the LIN28B-TST promoter might be a prerequisite for its transcription and transcriptional regulation. LIN28B-TST encodes a protein isoform with additional N-terminal amino acids and is critical for cancer cell proliferation and tumorigenesis. Our findings reveal a mechanism of LIN28B activation in cancer and the potential utility of LIN28B-TST for clinical purposes.
Collapse
Affiliation(s)
- Weijie Guo
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Zhixiang Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yichao Bao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuchen Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shengli Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiupeng Zheng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dongbin Lyu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Di Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tao Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yan Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaodong Zhu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
36
|
Wang G, Zhang ZJ, Jian WG, Liu PH, Xue W, Wang TD, Meng YY, Yuan C, Li HM, Yu YP, Liu ZX, Wu Q, Zhang DM, Zhang C. Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/β-catenin signaling pathway. Mol Cancer 2019; 18:15. [PMID: 30670025 PMCID: PMC6341572 DOI: 10.1186/s12943-019-0942-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/01/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The long noncoding RNA (lncRNA) OTUD6B antisense RNA 1 (OTUD6B-AS1) is oriented in an antisense direction to the protein-coding gene OTUD6B on the opposite DNA strand. TCGA database data show that the expression of the lncRNA OTUD6B-AS1 is downregulated and that OTUD6B-AS1 acts as an antioncogene in a variety of tumors. However, the expression and biological functions of the lncRNA OTUD6B-AS1 are still unknown in tumors, including clear cell renal cell carcinoma (ccRCC). METHODS The expression level of OTUD6B-AS1 was measured in 75 paired human ccRCC tissue and corresponding adjacent normal renal tissue samples. The correlations between the OTUD6B-AS1 expression level and clinicopathological features were evaluated using the chi-square test. The effects of OTUD6B-AS1 on ccRCC cells were determined via MTT assay, clone formation assay, transwell assay, and flow cytometry. Furthermore, the impact of OTUD6B-AS1 overexpression on the activation of the Wnt/β-catenin signaling pathway was investigated. Finally, ACHN cells with OTUD6B-AS1 overexpression were subcutaneously injected into nude mice to evaluate the influence of OTUD6B-AS1 on tumor growth in vivo. RESULTS In this study, we found that the expression of the lncRNA OTUD6B-AS1 was downregulated in ccRCC tissue samples and that patients with low OTUD6B-AS1 expression had shorter overall survival than patients with high OTUD6B-AS1 expression, which showed that the different expression level of OTUD6B-AS1 indirectly correlated with survival of patients. Lentivirus-mediated OTUD6B-AS1 overexpression significantly decreased the proliferation of ccRCC cells and promoted the apoptosis of the cells. Furthermore, OTUD6B-AS1 overexpression partly inhibited cell migration and invasion. The overexpression of OTUD6B-AS1 decreased the activity of the Wnt/β-catenin pathway and suppressed the expression of epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin, N-cadherin and Snail) in ccRCC cells. In addition, compared with the parental ACHN cells, OTUD6B-AS1-overexpressing ACHN cells injected into nude mice exhibited decreased tumor growth in vivo. CONCLUSIONS Taken together, our findings present a road map for targeting the newly identified lncRNA OTUD6B-AS1 to suppress ccRCC progression in cell lines, and these results elucidate a novel potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Zi-jian Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Wen-gang Jian
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Pan-hong Liu
- Department of Cardiology, KaiFeng Central Hospital, KaiFeng, Henan Province China
| | - Wei Xue
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Teng-da Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Yu-yang Meng
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Chao Yuan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Hao-ming Li
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Yi-peng Yu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Zhan-xin Liu
- Department of Venous Injection Distribution Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Da-ming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang China
| |
Collapse
|
37
|
He Z, Deng W, Jiang B, Liu S, Tang M, Liu Y, Zhang J. Hsa-let-7b inhibits cell proliferation by targeting PLK1 in HCC. Gene 2018; 673:46-55. [PMID: 29913237 DOI: 10.1016/j.gene.2018.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that high levels of PLK1 are expressed in HCC, and PLK1 inhibitors are being tested in clinical trials. However, the mechanisms, which regulate PLK1 expression in HCC, have not been clarified. Here, we show that induction of let-7b over-expression inhibits the PLK1-regulated luciferase activity in HEK-293T cells, and decreases the levels of PLK1 expression in HCC cells. Furthermore, the levels of let-7b expression were negatively correlated with PLK1 expression in HCC tissues. Let-7b over-expression inhibited the proliferation of HCC cells and promoted their apoptosis, which were partially rescued by increased PLK1 expression. Let-7b over-expression decreased the levels of PLK1, CDC25C and Survivin phosphorylation and CDC2, β-catenin, TCF-4 expression, which were mitigated by increased PLK1 expression in MHCC-97H cells. Let-7b over-expression inhibited the development and growth of implanted HCC tumors in mice by decreasing PLK1 and Survivin expression in the tumors. Together, our data indicated that let-7b targeted PLK1 to inhibit HCC growth and induce their apoptosis by attenuating the PLK1-mediated Survivin phosphorylation. Our findings may provide new insights into the pathogenesis of HCC.
Collapse
Affiliation(s)
- Zili He
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China; Key Laboratory of Protein Chemistry, Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China; Laboratory of Hepatobiliary Molecular Oncology, Hunan Provincial People's Hospital, Changsha, Hunan 410005, People's Republic of China.
| | - Wen Deng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Bo Jiang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Mingchun Tang
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Yi Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry, Developmental Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China.
| |
Collapse
|
38
|
Strubberg AM, Veronese Paniagua DA, Zhao T, Dublin L, Pritchard T, Bayguinov PO, Fitzpatrick JAJ, Madison BB. The Zinc Finger Transcription Factor PLAGL2 Enhances Stem Cell Fate and Activates Expression of ASCL2 in Intestinal Epithelial Cells. Stem Cell Reports 2018; 11:410-424. [PMID: 30017821 PMCID: PMC6092695 DOI: 10.1016/j.stemcr.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023] Open
Abstract
Intestinal epithelial stem cell (IESC) fate is promoted by two major transcriptional regulators, the TCF4/β-catenin complex and ASCL2, which drive expression of IESC-specific factors, including Lgr5, Ephb2, and Rnf43. Canonical Wnt signaling via TCF4/β-catenin directly transactivates Ascl2, which in turn auto-regulates its own expression. Conversely, Let-7 microRNAs antagonize the IESC lineage by repressing specific mRNA targets. Here, we identify the zinc finger transcription factor PLAGL2 as a Let-7 target that regulates IESC fate. PLAGL2 drives an IESC expression signature, activates Wnt gene expression, and enhances a TCF/LEF reporter in intestinal organoids. In parallel, via cell-autonomous mechanisms, PLAGL2 is required for lineage clonal expansion and directly enhances expression of ASCL2. PLAGL2 also supports enteroid growth and survival in the context of Wnt ligand depletion. PLAGL2 expression is strongly associated with an IESC signature in colorectal cancer and may be responsible for contributing to the aberrant activation of an immature phenotype.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA
| | - Daniel A Veronese Paniagua
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA
| | - Tingting Zhao
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Leeran Dublin
- Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Thomas Pritchard
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, MO 63110, USA; Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63105, USA
| | - Blair B Madison
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8124, CSRB NT 923, Saint Louis, MO 63110, USA.
| |
Collapse
|
39
|
Chatterji P, Hamilton KE, Liang S, Andres SF, Wijeratne HRS, Mizuno R, Simon LA, Hicks PD, Foley SW, Pitarresi JR, Klein-Szanto AJ, Mah AT, Van Landeghem L, Gregory BD, Lengner CJ, Madison BB, Shah P, Rustgi AK. The LIN28B-IMP1 post-transcriptional regulon has opposing effects on oncogenic signaling in the intestine. Genes Dev 2018; 32:1020-1034. [PMID: 30068703 PMCID: PMC6075153 DOI: 10.1101/gad.314369.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.
Collapse
Affiliation(s)
- Priya Chatterji
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Kathryn E Hamilton
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shun Liang
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Sarah F Andres
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - H R Sagara Wijeratne
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Rei Mizuno
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Lauren A Simon
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Pediatrics, Division of Gastroenterology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Philip D Hicks
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Shawn W Foley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Jason R Pitarresi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| | - Andres J Klein-Szanto
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Amanda T Mah
- Department of Medicine, Hematology Division, Stanford University, Stanford, California 94305, USA
| | - Laurianne Van Landeghem
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Blair B Madison
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, New Brunswick, New Jersey 08901, USA
- Human Genetics Institute of New Jersey, Piscataway, New Jersey 08854 USA
| | - Anil K Rustgi
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
- Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19014, USA
| |
Collapse
|
40
|
The Molecular Basis and Therapeutic Potential of Let-7 MicroRNAs against Colorectal Cancer. Can J Gastroenterol Hepatol 2018; 2018:5769591. [PMID: 30018946 PMCID: PMC6029494 DOI: 10.1155/2018/5769591] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Although a number of studies have revealed the underlying mechanisms which regulate the development of colorectal cancer (CRC), we have not completely overcome this disease yet. Accumulating evidence has shown that the posttranscriptional regulation by the noncoding RNAs such as microRNAs plays an important role in the development or progression of CRC. Among a number of microRNAs, the let-7 microRNA family that was first discovered in C. elegans and conserved from worms to humans has been linked with the development of many types of cancers including CRC. The expression level of let-7 microRNAs is temporally low during the normal developmental processes, while elevated in the differentiated tissues. The let-7 microRNAs regulate the cell proliferation, cell cycle, apoptosis, metabolism, and stemness. In CRC, expressions of let-7 microRNAs have been reported to be reduced, and so let-7 microRNAs are considered to be a tumor suppressor. In this review, we discuss the mechanisms regulating the let-7 microRNA expression and the downstream targets of let-7 in the context of intestinal tumorigenesis. The application of let-7 mimics is also highlighted as a novel therapeutic agent.
Collapse
|
41
|
Yuan L, Tian J. LIN28B promotes the progression of colon cancer by increasing B-cell lymphoma 2 expression. Biomed Pharmacother 2018; 103:355-361. [PMID: 29669301 DOI: 10.1016/j.biopha.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 02/07/2023] Open
Abstract
RNA-binding protein LIN28B is frequently overexpressed in human colon cancer and is associated with the tumor progression and poor prognosis. The potential molecular mechanisms underlying the role of LIN28B in colon cancer remain unclear. The present study aimed to explore the role of B-cell lymphoma 2 (BCL-2) in promoting colon cancer development associated with LIN28B. The expression pattern of LIN28B in colon cancer tissues and cell lines was detected by RT-PCR, Western blotting analysis, and immunohistochemical staining. A log rank test was carried out to compare the survival times of patients with high/low levels of LIN28B. The effects of LIN28B on cell clonal formation, growth, and apoptosis were detected by clone formation, MTT and flow cytometry assays, respectively. BCL-2 expression and protein stability after LIN28B up-regulation were assessed by Western blotting. The effects of LIN28B and BCL-2 on tumorigenesis were evaluated by an in vivo xenograft assay. The results showed that LIN28B was highly expressed in colon cancer tissues and cell lines, which could promote cell clonal formation and growth and inhibit cell apoptosis. Up-regulation of LIN28B increased BCL-2 expression, enhanced its stability, and reduced its ubiquitination. Overexpression of LIN28B promoted cell tumorigenesis, whereas this effect was repressed by knockdown of BCL-2. This study suggests that overexpression of LIN28B promotes colon cancer development by increasing BCL-2 expression, potentially opening up new avenues for therapeutic approaches to colon cancer treatment.
Collapse
Affiliation(s)
- Leilei Yuan
- Department of Oncology, Jining No.1 People's Hospital, Jining, Shandong, 272000, China
| | - Junhong Tian
- Department of Colorectal and Anal Surgery, Jining No.1 People's Hospital, Jining, Shandong, 272000, China.
| |
Collapse
|
42
|
Chatterji P, Rustgi AK. RNA Binding Proteins in Intestinal Epithelial Biology and Colorectal Cancer. Trends Mol Med 2018; 24:490-506. [PMID: 29627433 DOI: 10.1016/j.molmed.2018.03.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
The intestinal epithelium is highly proliferative and consists of crypt invaginations that house stem cells and villus projections with differentiated cells. There exists a dynamic equilibrium between proliferation, migration, differentiation, and senescence that is regulated by several factors. Among these are RNA binding proteins (RBPs) that bind their targets in a both context dependent and independent manner. RBP-RNA complexes act as rheostats by regulating expression of RNAs both co- and post-transcriptionally. This is important, especially in response to intestinal injury, to fuel regeneration. The manner in which these RBPs function in the intestine and their interactions with other pivotal pathways in colorectal cancer may provide a framework for new insights and potential therapeutic applications.
Collapse
Affiliation(s)
- Priya Chatterji
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania, Perelman School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
43
|
Oncogene Lin28B increases chemosensitivity of colon cancer cells in a let-7-independent manner. Oncol Lett 2018; 15:6975-6981. [PMID: 29725425 PMCID: PMC5920276 DOI: 10.3892/ol.2018.8250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Lin-28 homolog B (Lin28B) is a RNA binding protein conserved between Caenorhabditis elegans and humans, and it has important roles in regulating development. The overexpression of Lin28B has been observed in various human malignant tumors and the upregulation of Lin28B predicts tumor progression and/or poor prognosis. The majority of studies suggested that Lin28B is an oncogene that promotes the proliferation and metastasis of cancer cells. However, few studies have focused on the function of Lin28B in chemotherapy. In the present study, the role of Lin28B in the chemosensitivity of colon cancer cells to 5-fluorouracil (5-FU) was detected by establishing a Lin28B over-expressing HCT116 (EGFP-Lin28B-HCT116) cell line. In accordance with the immunohistochemistry results, Lin28B-GFP expression was predominantly distributed in the cytoplasm, and the overexpression of Lin28B was confirmed using quantitative polymerase chain reaction and western blot analysis. The control EGFP-HCT116 and Lin28B over-expressing EGFP-Lin28B-HCT116 cells were then exposed to various concentrations of 5-FU for 48 h. A luminescence-based cell viability assay was used to detect the effect of Lin28B on the chemotherapeutic sensitivity of colon cancer cells. It was demonstrated that overexpression of Lin28B improved the chemotherapeutic sensitivity of colon cancer cells to 5-FU. Additional investigation revealed that Lin28B enhanced the chemosensitivity of colon cancer cells by promoting cell apoptosis induced by 5-FU; however, this effect was independent of Lin28B inhibiting the biogenesis of let-7, the well-known target of Lin28B. The mechanism of this effect of Lin28B on the chemosensitivity of cells requires additional investigation. The present study suggested that Lin28B may act as a biomarker for predicting chemotherapy sensitivity in patients with colon cancer.
Collapse
|
44
|
Yin J, Kim TH, Park N, Shin D, Choi HI, Cho S, Park JB, Kim JH. TRIM71 suppresses tumorigenesis via modulation of Lin28B-let-7-HMGA2 signaling. Oncotarget 2018; 7:79854-79868. [PMID: 27821801 PMCID: PMC5346756 DOI: 10.18632/oncotarget.13036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/14/2016] [Indexed: 01/17/2023] Open
Abstract
TRIM71 (tripartite motif-containing 71) belongs to the TRIM-NHL protein family, which plays a conserved role in regulating early development and differentiation. However, the molecular functions of TRIM71 have remained largely unknown. Here, we explored the role of TRIM71 together with modulation of Lin28B-let-7-HMGA2 (high-mobility group AT-hook 2) signaling in tumorigenesis. TRIM71 overexpression opposed Lin28B-induced transformation in primary cells and inhibited tumor formation in a mouse model. Specific knockdown of TRIM71 expression increased cancer cell proliferation and invasion. Conversely, overexpression of wild-type TRIM71 in non-small cell lung carcinoma (NSCLC) cells in which Lin28B-let-7-HMGA2 signaling was conserved decreased both cancer cell phenotypes. More importantly, overexpression of an ubiquitin transfer activity-deficient TRIM71 mutant in NSCLC cells had no effect on proliferation or invasion, regardless of the conservation status of Lin28B-let-7-HMGA2 signaling. The tumorigenic inhibitory action of TRIM71 was antagonized by overexpression of the TRIM71 downstream targets, Lin28B and HMGA2. Furthermore, a bioinformatics analysis revealed that TRIM71 expression was downregulated in various types of cancer tissue from patients. Taken together, these data indicate that TRIM71 acts through post-transcriptional repression of Lin28B and subsequent modulation of let-7-HMGA2 signaling during tumorigenesis to potentially function as a tumor suppressor.
Collapse
Affiliation(s)
- Jinlong Yin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Tae-Hoon Kim
- Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Nayun Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Daye Shin
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Hae In Choi
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Ochang, Korea
| | - Jong Bae Park
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Specific Organs Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Jong Heon Kim
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Gyeonggi, Korea.,Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| |
Collapse
|
45
|
Eguchi T, Sogawa C, Okusha Y, Uchibe K, Iinuma R, Ono K, Nakano K, Murakami J, Itoh M, Arai K, Fujiwara T, Namba Y, Murata Y, Ohyama K, Shimomura M, Okamura H, Takigawa M, Nakatsura T, Kozaki KI, Okamoto K, Calderwood SK. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment. PLoS One 2018; 13:e0191109. [PMID: 29415026 PMCID: PMC5802492 DOI: 10.1371/journal.pone.0191109] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/28/2017] [Indexed: 12/12/2022] Open
Abstract
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kenta Uchibe
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - Kisho Ono
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Keisuke Nakano
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jun Murakami
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
- Department of Oral Diagnosis and Dent-maxillofacial Radiology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Manabu Itoh
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Kazuya Arai
- JSR Life Sciences Corporation, Tsukuba, Japan
| | - Toshifumi Fujiwara
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yuri Namba
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoshiki Murata
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazumi Ohyama
- Radio Isotope Research Center, Okayama University Dental School, Okayama, Japan
| | - Manami Shimomura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Ken-ichi Kozaki
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
46
|
Mizuno R, Chatterji P, Andres S, Hamilton K, Simon L, Foley SW, Jeganathan A, Gregory BD, Madison B, Rustgi AK. Differential Regulation of LET-7 by LIN28B Isoform-Specific Functions. Mol Cancer Res 2018; 16:403-416. [PMID: 29330293 DOI: 10.1158/1541-7786.mcr-17-0514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/07/2017] [Accepted: 11/29/2017] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein LIN28B plays an important role in development, stem cell biology, and tumorigenesis. LIN28B has two isoforms: the LIN28B-long and -short isoforms. Although studies have revealed the functions of the LIN28B-long isoform in tumorigenesis, the role of the LIN28B-short isoform remains unclear and represents a major gap in the field. The LIN28B-long and -short isoforms are expressed in a subset of human colorectal cancers and adjacent normal colonic mucosa, respectively. To elucidate the functional and mechanistic aspects of these isoforms, colorectal cancer cells (Caco-2 and LoVo) were generated to either express no LIN28B or the -short or -long isoform. Interestingly, the long isoform suppressed LET-7 expression and activated canonical RAS/ERK signaling, whereas the short isoform did not. The LIN28B-long isoform-expressing cells demonstrated increased drug resistance to 5-fluorouracil and cisplatin through the upregulation of ERCC1, a DNA repair gene, in a LET-7-dependent manner. The LIN28B-short isoform preserved its ability to bind pre-let-7, without inhibiting the maturation of LET-7, and competed with the LIN28B-long isoform for binding to pre-let-7 Coexpression of the short isoform in the LIN28B-long isoform-expressing cells rescued the phenotypes induced by the LIN28B-long isoform.Implications: This study demonstrates the differential antagonistic functions of the LIN28B-short isoform against the LIN28B-long isoform through an inability to degrade LET-7, which leads to the novel premise that the short isoform may serve to counterbalance the long isoform during normal colonic epithelial homeostasis, but its downregulation during colonic carcinogenesis may reveal the protumorigenic effects of the long isoform. Mol Cancer Res; 16(3); 403-16. ©2018 AACR.
Collapse
Affiliation(s)
- Rei Mizuno
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Priya Chatterji
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sarah Andres
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn Hamilton
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lauren Simon
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shawn W Foley
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arjun Jeganathan
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Blair Madison
- Division of Gastroenterology, Department of Medicine, Washington University, St. Louis, Missouri
| | - Anil K Rustgi
- Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Xu M, Bian S, Li J, He J, Chen H, Ge L, Jiao Z, Zhang Y, Peng W, Du F, Mo Y, Gong A. MeCP2 suppresses LIN28A expression via binding to its methylated-CpG islands in pancreatic cancer cells. Oncotarget 2018; 7:14476-85. [PMID: 26910839 PMCID: PMC4924729 DOI: 10.18632/oncotarget.7507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
LIN28A aberrant expression contributes to the development of human malignancies. However, the LIN28A expression profile remains to be clarified. Herein, we report that LIN28A expression is directly associated with the methylation status of its two CpG island sites in pancreatic cancer cells. First, Bisulfite sequencing reveals that PANC1 cells possess the higher methylation rate at LIN28A CpG islands compared with SW1990 and PaTu8988 cells. Subsequently, LIN28A expression is increased at both mRNA and protein levels in pancreatic cancer cells treated with 5-Aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor. Further Chromatin immunoprecipitation (ChIP) assays indicate that methyl-CpG-binding protein 2 (MeCP2) binds preferentially to the two hypermethylated CpG islands sites at LIN28A promoter compare to MBD3. Expectedly, MeCP2 knockdown transcriptionally activates LIN28A expression in above cells, rather than MBD3 knockdown. Moreover, LIN28A overexpression remarkably improves OCT4, NANOG and SOX2 expression, and the ability of sphere and colony formation, and enhances the capacities of invasion in PaTu8988 and SW1990 cells, whereas LIN28A knockdown significantly inhibits the above malignant behaviors in PANC1 cells. These findings suggest that LIN28A is epigenetically regulated via MeCP2 binding to methylated-CpG islands, and may play a crucial role in pancreatic cancer progression.
Collapse
Affiliation(s)
- Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Shihui Bian
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Jie Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Junbo He
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Hui Chen
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Lu Ge
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Zhijun Jiao
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Youli Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Wanxin Peng
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fengyi Du
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yinyuan Mo
- Department of Pharmacology Toxicology and Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Aihua Gong
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
48
|
Vlachos A. Acquired ribosomopathies in leukemia and solid tumors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:716-719. [PMID: 29222326 PMCID: PMC6142526 DOI: 10.1182/asheducation-2017.1.716] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A mutation in the gene encoding the small subunit-associated ribosomal protein RPS19, leading to RPS19 haploinsufficiency, is one of the ribosomal protein gene defects responsible for the rare inherited bone marrow failure syndrome Diamond Blackfan anemia (DBA). Additional inherited and acquired defects in ribosomal proteins (RPs) continue to be identified and are the basis for a new class of diseases called the ribosomopathies. Acquired RPS14 haploinsufficiency has been found to be causative of the bone marrow failure found in 5q- myelodysplastic syndromes. Both under- and overexpression of RPs have also been implicated in several malignancies. This review will describe the somatic ribosomopathies that have been found to be associated with a variety of solid tumors as well as leukemia and will review cancers in which over- or underexpression of these proteins seem to be associated with outcome.
Collapse
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, Zucker School of Medicine, Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
49
|
Strubberg AM, Madison BB. MicroRNAs in the etiology of colorectal cancer: pathways and clinical implications. Dis Model Mech 2017; 10:197-214. [PMID: 28250048 PMCID: PMC5374322 DOI: 10.1242/dmm.027441] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded RNAs that repress mRNA translation
and trigger mRNA degradation. Of the ∼1900 miRNA-encoding genes present
in the human genome, ∼250 miRNAs are reported to have changes in
abundance or altered functions in colorectal cancer. Thousands of studies have
documented aberrant miRNA levels in colorectal cancer, with some miRNAs reported
to actively regulate tumorigenesis. A recurrent phenomenon with miRNAs is their
frequent participation in feedback loops, which probably serve to reinforce or
magnify biological outcomes to manifest a particular cellular phenotype. Here,
we review the roles of oncogenic miRNAs (oncomiRs), tumor suppressive miRNAs
(anti-oncomiRs) and miRNA regulators in colorectal cancer. Given their stability
in patient-derived samples and ease of detection with standard and novel
techniques, we also discuss the potential use of miRNAs as biomarkers in the
diagnosis of colorectal cancer and as prognostic indicators of this disease.
MiRNAs also represent attractive candidates for targeted therapies because their
function can be manipulated through the use of synthetic antagonists and miRNA
mimics. Summary: This Review provides an overview of some important
microRNAs and their roles in colorectal cancer.
Collapse
Affiliation(s)
- Ashlee M Strubberg
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Blair B Madison
- Division of Gastroenterology, Washington University School of Medicine, Washington University, Saint Louis, MO 63110, USA
| |
Collapse
|
50
|
Liu TP, Huang CC, Yeh KT, Ke TW, Wei PL, Yang JR, Cheng YW. Down-regulation of let-7a-5p predicts lymph node metastasis and prognosis in colorectal cancer: Implications for chemotherapy. Surg Oncol 2016; 25:429-434. [DOI: 10.1016/j.suronc.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/15/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023]
|