1
|
Liu X, Zhang J, Yi T, Li H, Tang X, Liu D, Wu D, Li Y. Decoding tumor angiogenesis: pathways, mechanisms, and future directions in anti-cancer strategies. Biomark Res 2025; 13:62. [PMID: 40251641 PMCID: PMC12007322 DOI: 10.1186/s40364-025-00779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/13/2025] [Indexed: 04/20/2025] Open
Abstract
Angiogenesis, a crucial process in tumor growth and metastasis, necessitates targeted therapeutic intervention. This review reviews the latest knowledge of anti-angiogenesis targets in tumors, with emphasis on the molecular mechanisms and signaling pathways that regulate this process. We emphasize the tumor microenvironment's role in angiogenesis, examine endothelial cell metabolic changes, and evaluated potential therapeutic strategies targeting the tumor vascular system. At the same time, we analyzed the signaling pathway and molecular mechanism of tumor angiogenesis in detail. In addition, this paper also looks at the development trend of tumor anti-angiogenesis drugs, including their future development direction and challenges, aiming to provide prospective insight into the development of this field. Despite their potential, anti-angiogenic therapies encounter challenges like drug resistance and side effects, necessitating ongoing research to enhance cancer treatment strategies and the efficacy of these therapies.
Collapse
Affiliation(s)
- Xueru Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Dan Liu
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China.
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China.
| |
Collapse
|
2
|
Valipour M, Zakeri Khatir Z, Ayati A, Hosseini A, Sheibani M, Irannejad H. Advances in the selective c-MET kinase inhibitors: Application of fused [5,6]-Bicyclic nitrogen-containing cores for anticancer drug design. Eur J Med Chem 2025; 284:117177. [PMID: 39724725 DOI: 10.1016/j.ejmech.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Over the past two decades, small molecules bearing [5,6]-bicyclic nitrogen-containing cores have emerged as one of the most extensively studied structures for the development of selective c-MET kinase inhibitors. Structure-activity relationship (SAR) studies have demonstrated that modifying these cores can significantly impact the biological properties of c-MET inhibitors, including safety/toxicity, potency, and metabolic stability. For example, although c-MET kinase inhibitors containing the [1,2,4]triazolo[4,3-b][1,2,4]triazine scaffold (core P) exhibit high inhibitory potency, they often face challenges due to metabolic stability defects. Alternatively, compounds containing [1,2,3]triazolo[4,5-b]pyrazine (core K) and [1,2,4]triazolo[4,3-b]pyridazine (core I) scaffolds demonstrate lower potency but improved metabolic stability, allowing some of them to progress into clinical trials and even be approved as novel anticancer drugs. Fortunately, X-ray crystallography studies have well elucidated key interactions between [5,6]-bicyclic nitrogen-containing cores and crucial amino acid residues within the c-MET active site. These insights emphasize the significance of π-π stacking interactions with Tyr1230 and hydrogen bonding with Asp1222, providing valuable guidance for the targeted design and optimization of selective c-MET kinase inhibitors. Following the identification/introduction of sixteen distinct [5,6]-bicyclic nitrogen-containing cores (cores A-P) utilized in the design of selective c-MET kinase inhibitors over the past two decades, this manuscript offers a comprehensive review of their roles in drug development of anticancer agents, and describes the various synthesis methods employed. The insights presented herein can serve as a resource for better structural optimization of c-MET kinase inhibitors in the future research.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adileh Ayati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Friedman-DeLuca M, Karagiannis GS, Condeelis JS, Oktay MH, Entenberg D. Macrophages in tumor cell migration and metastasis. Front Immunol 2024; 15:1494462. [PMID: 39555068 PMCID: PMC11563815 DOI: 10.3389/fimmu.2024.1494462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly plastic population of cells in the tumor microenvironment (TME) that have long been known to promote cancer progression. In this review, we summarize TAM ontogeny and polarization, and then explore how TAMs enhance tumor cell migration through the TME, thus facilitating metastasis. We also discuss how chemotherapy and host factors including diet, obesity, and race, impact TAM phenotype and cancer progression. In brief, TAMs induce epithelial-mesenchymal transition (EMT) in tumor cells, giving them a migratory phenotype. They promote extracellular matrix (ECM) remodeling, allowing tumor cells to migrate more easily. TAMs also provide chemotactic signals that promote tumor cell directional migration towards blood vessels, and then participate in the signaling cascade at the blood vessel that allows tumor cells to intravasate and disseminate throughout the body. Furthermore, while chemotherapy can repolarize TAMs to induce an anti-tumor response, these cytotoxic drugs can also lead to macrophage-mediated tumor relapse and metastasis. Patient response to chemotherapy may be dependent on patient-specific factors such as diet, obesity, and race, as these factors have been shown to alter macrophage phenotype and affect cancer-related outcomes. More research on how chemotherapy and patient-specific factors impact TAMs and cancer progression is needed to refine treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - George S. Karagiannis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Marilyn and Stanley M. Katz Institute for Immunotherapy of Cancer and Inflammatory Disorders, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
4
|
Anastasiadou DP, Couturier N, Goel S, Argyris DG, Vodopyanov S, Rivera-Sanchez L, Gonzalez E, Kreger J, Griffen A, Kazakov A, Burt J, Recoder N, Duran CL, Harney AS, Quesnel A, Filippou PS, Lenis VP, Shukla S, Entenberg D, Zintiridou A, Chen X, Eddy RJ, Oktay MH, Condeelis JS, Karagiannis NS, Briceno A, Guzik H, Alon R, DesMarais V, Ioannou G, Gnjatic S, Raynolds DM, Macedo R, Reshef R, Gil-Henn H, MacLean AL, Torres ER, LaFave LM, Lauvau G, Karagiannis GS. Intratumoral CXCL12 Gradients Contextualize Tumor Cell Invasion, Migration and Immune Suppression in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618571. [PMID: 39464015 PMCID: PMC11507869 DOI: 10.1101/2024.10.15.618571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Although the CXCL12/CXCR4 pathway has been prior investigated for its prometastatic and immuno- suppressive roles in the tumor microenvironment, evidence on the spatiotemporal regulation of these hallmarks has been lacking. Here, we demonstrate that CXCL12 forms a gradient specifically around cancer cell intravasation doorways, also known as Tumor Microenvironment of Metastasis (TMEM) doorways, thus facilitating the chemotactic translocation of prometastatic tumor cells expressing CXCR4 toward the perivascular TMEM doorways for subsequent entry into peripheral circulation. Fur- thermore, we demonstrate that the CXCL12-rich micro-environment around TMEM doorways may cre- ate immunosuppressive niches, whereby CD8 + T cells, despite being attracted to these regions, often exhibit reduced effector functions, limiting their efficacy. While the CXCL12/CXCR4 pathway can mini- mally influence the overall composition of immune cell populations, it biases the distribution of CD8 + T cells away from TMEM doorways, justifying its prior-established role as immunosuppressive factor for CD8 + T cells. Our research suggests that the complex interactions between CXCL12 and the various tumor and immune cell types contributes not only to the completion of the initial steps of the metastatic cascade, but also offers an immunological "sanctuary" to prometastatic tumor cells homed around TMEM doorways. Overall, our study enhances our current understanding on the mechanisms, via which CXCL12 orchestrates tumor cell behavior and immune dynamics, potentially guiding future thera- peutic strategies to combat breast cancer metastasis and improve anti-tumor immunity.
Collapse
|
5
|
Jing W, Wang G, Cui Z, Li X, Zeng S, Jiang X, Li W, Han B, Xing N, Zhao Y, Chen S, Shi B. Tumor-neutrophil cross talk orchestrates the tumor microenvironment to determine the bladder cancer progression. Proc Natl Acad Sci U S A 2024; 121:e2312855121. [PMID: 38713626 PMCID: PMC11098120 DOI: 10.1073/pnas.2312855121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/13/2024] [Indexed: 05/09/2024] Open
Abstract
The immune landscape of bladder cancer progression is not fully understood, and effective therapies are lacking in advanced bladder cancer. Here, we visualized that bladder cancer cells recruited neutrophils by secreting interleukin-8 (IL-8); in turn, neutrophils played dual functions in bladder cancer, including hepatocyte growth factor (HGF) release and CCL3highPD-L1high super-immunosuppressive subset formation. Mechanistically, c-Fos was identified as the mediator of HGF up-regulating IL-8 transcription in bladder cancer cells, which was central to the positive feedback of neutrophil recruitment. Clinically, compared with serum IL-8, urine IL-8 was a better biomarker for bladder cancer prognosis and clinical benefit of immune checkpoint blockade (ICB). Additionally, targeting neutrophils or hepatocyte growth factor receptor (MET) signaling combined with ICB inhibited bladder cancer progression and boosted the antitumor effect of CD8+ T cells in mice. These findings reveal the mechanism by which tumor-neutrophil cross talk orchestrates the bladder cancer microenvironment and provide combination strategies, which may have broad impacts on patients suffering from malignancies enriched with neutrophils.
Collapse
Affiliation(s)
- Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Ganyu Wang
- Department of Pediatric Surgery, Qilu Hospital Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Zhiwei Cui
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Xinyuan Li
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Shuyan Zeng
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Xin Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Wushan Li
- Department of Obstetrics, Jinan Maternity and Child Care Hospital Shandong First Medical University, Jinan, Shandong Province250000, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Nianzeng Xing
- Department of Urology and State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing10021, China
| | - Yunxue Zhao
- Department of Immunology, Shandong Provincial Key Laboratory of Infection & Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province250012, China
| |
Collapse
|
6
|
Surve CR, Duran CL, Ye X, Chen X, Lin Y, Harney AS, Wang Y, Sharma VP, Stanley ER, Cox D, McAuliffe JC, Entenberg D, Oktay MH, Condeelis JS. Signaling events at TMEM doorways provide potential targets for inhibiting breast cancer dissemination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574676. [PMID: 38260319 PMCID: PMC10802469 DOI: 10.1101/2024.01.08.574676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tumor cell intravasation is essential for metastatic dissemination, but its exact mechanism is incompletely understood. We have previously shown that in breast cancer, the direct and stable association of a tumor cell expressing Mena, a Tie2hi/VEGFhi macrophage, and a vascular endothelial cell, creates an intravasation portal, called a "tumor microenvironment of metastasis" (TMEM) doorway, for tumor cell intravasation, leading to dissemination to distant sites. The density of TMEM doorways, also called TMEM doorway score, is a clinically validated prognostic marker of distant metastasis in breast cancer patients. Although we know that tumor cells utilize TMEM doorway-associated transient vascular openings to intravasate, the precise signaling mechanisms involved in TMEM doorway function are only partially understood. Using two mouse models of breast cancer and an in vitro assay of intravasation, we report that CSF-1 secreted by the TMEM doorway tumor cell stimulates local secretion of VEGF-A from the Tie2hi TMEM doorway macrophage, leading to the dissociation of endothelial junctions between TMEM doorway associated endothelial cells, supporting tumor cell intravasation. Acute blockade of CSF-1R signaling decreases macrophage VEGF-A secretion as well as TMEM doorway-associated vascular opening, tumor cell trans-endothelial migration, and dissemination. These new insights into signaling events regulating TMEM doorway function should be explored further as treatment strategies for metastatic disease.
Collapse
Affiliation(s)
- Chinmay R. Surve
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Camille L. Duran
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Xianjun Ye
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yu Lin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Allison S. Harney
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Yarong Wang
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
| | - Ved P. Sharma
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Dianne Cox
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - John C. McAuliffe
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - David Entenberg
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
| | - Maja H. Oktay
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - John S. Condeelis
- Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, New York
- Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, New York
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York
- Department of Surgery, Albert Einstein College of Medicine, Bronx, New York
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
7
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Li X, Qi Q, Li Y, Miao Q, Yin W, Pan J, Zhao Z, Chen X, Yang F, Zhou X, Huang M, Wang C, Deng L, Huang D, Qi M, Fan S, Zhang Y, Qiu S, Deng W, Liu T, Chen M, Ye W, Zhang D. TCAF2 in Pericytes Promotes Colorectal Cancer Liver Metastasis via Inhibiting Cold-Sensing TRPM8 Channel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302717. [PMID: 37635201 PMCID: PMC10602580 DOI: 10.1002/advs.202302717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Hematogenous metastasis is the main approach for colorectal cancer liver metastasis (CRCLM). However, as the gatekeepers in the tumor vessels, the role of TPCs in hematogenous metastasis remains largely unknown, which may be attributed to the lack of specific biomarkers for TPC isolation. Here, microdissection combined with a pericyte medium-based approach is developed to obtain TPCs from CRC patients. Proteomic analysis reveals that TRP channel-associated factor 2 (TCAF2), a partner protein of the transient receptor potential cation channel subfamily M member 8 (TRPM8), is overexpressed in TPCs from patients with CRCLM. TCAF2 in TPCs is correlated with liver metastasis, short overall survival, and disease-free survival in CRC patients. Gain- and loss-of-function experiments validate that TCAF2 in TPCs promotes tumor cell motility, epithelial-mesenchymal transition (EMT), and CRCLM, which is attenuated in pericyte-conditional Tcaf2-knockout mice. Mechanistically, TCAF2 inhibits the expression and activity of TRPM8, leading to Wnt5a secretion in TPCs, which facilitates EMT via the activation of the STAT3 signaling pathway in tumor cells. Menthol, a TRPM8 agonist, significantly suppresses Wnt5a secretion in TPCs and CRCLM. This study reveals the previously unidentified pro-metastatic effects of TPCs from the perspective of cold-sensory receptors, providing a promising diagnostic biomarker and therapeutic target for CRCLM.
Collapse
Affiliation(s)
- Xiaobo Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular BiologyClinical Translational Center for Targeted DrugDepartment of PharmacologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Yong Li
- College of PharmacyJinan UniversityGuangzhou510632China
- School of PharmacyNorth Sichuan Medical CollegeNanchong637100China
| | - Qun Miao
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Wenqian Yin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Jinghua Pan
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Zhan Zhao
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Xiaoying Chen
- Department of BiophysicsKidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Fan Yang
- Department of BiophysicsKidney Disease Center of First Affiliated HospitalZhejiang University School of MedicineHangzhou310058China
| | - Xiaofeng Zhou
- MOE Key Laboratory of Tumor Molecular BiologyClinical Translational Center for Targeted DrugDepartment of PharmacologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Maohua Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Chenran Wang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Lijuan Deng
- Formula‐Pattern Research CenterSchool of Traditional Chinese MedicineJinan UniversityGuangzhou510632China
| | - Dandan Huang
- The Sixth Affiliated Hospital of Sun Yet‐Sen UniversityGuangzhou510655China
| | - Ming Qi
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Shuran Fan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Yiran Zhang
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Shenghui Qiu
- Department of General SurgeryThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Weiqing Deng
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Tongzheng Liu
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Minfeng Chen
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- College of PharmacyJinan UniversityGuangzhou510632China
| |
Collapse
|
9
|
Liu ZL, Chen HH, Zheng LL, Sun LP, Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther 2023; 8:198. [PMID: 37169756 PMCID: PMC10175505 DOI: 10.1038/s41392-023-01460-1] [Citation(s) in RCA: 391] [Impact Index Per Article: 195.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/20/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a complex and dynamic process regulated by various pro- and anti-angiogenic molecules, which plays a crucial role in tumor growth, invasion, and metastasis. With the advances in molecular and cellular biology, various biomolecules such as growth factors, chemokines, and adhesion factors involved in tumor angiogenesis has gradually been elucidated. Targeted therapeutic research based on these molecules has driven anti-angiogenic treatment to become a promising strategy in anti-tumor therapy. The most widely used anti-angiogenic agents include monoclonal antibodies and tyrosine kinase inhibitors (TKIs) targeting vascular endothelial growth factor (VEGF) pathway. However, the clinical benefit of this modality has still been limited due to several defects such as adverse events, acquired drug resistance, tumor recurrence, and lack of validated biomarkers, which impel further research on mechanisms of tumor angiogenesis, the development of multiple drugs and the combination therapy to figure out how to improve the therapeutic efficacy. Here, we broadly summarize various signaling pathways in tumor angiogenesis and discuss the development and current challenges of anti-angiogenic therapy. We also propose several new promising approaches to improve anti-angiogenic efficacy and provide a perspective for the development and research of anti-angiogenic therapy.
Collapse
Affiliation(s)
- Zhen-Ling Liu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Huan-Huan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Li Zheng
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| | - Lei Shi
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
10
|
Rios AC, van Rheenen J, Scheele CLGJ. Multidimensional Imaging of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041330. [PMID: 36167726 PMCID: PMC10153799 DOI: 10.1101/cshperspect.a041330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer is a pathological condition characterized by high morphological and molecular heterogeneity. Not only the breast cancer cells, but also their tumor micro-environment consists of a multitude of cell types and states, which continuously evolve throughout progression of the disease. To understand breast cancer evolution within this complex environment, in situ analysis of breast cancer and their co-evolving cells and structures in space and time are essential. In this review, recent technical advances in three-dimensional (3D) and intravital imaging of breast cancer are discussed. Moreover, we highlight the resulting new knowledge on breast cancer biology obtained through these innovative imaging technologies. Finally, we discuss how multidimensional imaging technologies can be integrated with molecular profiling to understand the full complexity of breast cancer and the tumor micro-environment during tumor progression and treatment response.
Collapse
Affiliation(s)
- Anne C Rios
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jacco van Rheenen
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. Breast Cancer Res 2023; 25:37. [PMID: 37024946 PMCID: PMC10080980 DOI: 10.1186/s13058-023-01628-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently to patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin regulatory protein Mena, encoded by the ENAH gene, that endows tumor cells with transendothelial migration activity, allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer, we further determined that for maximal induction of MenaINV in cancer cells, NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling activation and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - George S Karagiannis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA
| | - Xiaoming Chen
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ved P Sharma
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Bio-Imaging Resource Center, The Rockefeller University, Box 209, 1230 York Avenue, New York City, NY, 10065, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John S Condeelis
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Cell Biology, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine / Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine / Montefiore Medical Center, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
12
|
de Pedro MÁ, Pulido M, Álvarez V, Marinaro F, Marchena AM, Sánchez-Margallo FM, Casado JG, López E. Menstrual blood-derived stromal cells: insights into their secretome in acute hypoxia conditions. Mol Med 2023; 29:48. [PMID: 37016307 PMCID: PMC10074862 DOI: 10.1186/s10020-023-00646-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Despite constant advances in regenerative medicine, the closure of chronic wounds is still challenging. Therapeutic approaches using locally administered MSCs have been considered a promising option. However, the viability of these cells is seriously threatened by acute hypoxic stress linked to wound healing. In this work, we aimed to study the tolerance of Menstrual blood-derived stromal cells (MenSCs) to acute hypoxia and their therapeutic paracrine effect. METHODS Isolated MenSCs were phenotypically characterized and evaluated in terms of proliferation, viability, and gene expression, under acute hypoxia (AH) compared with conventional cultured condition or normoxia (N). A step further, the secretome of MenSCs under acute hypoxia was analyzed with respect to their miRNAs content and by in vitro functional assays. For the analysis of differences between the two groups, Student's t-test was performed and one-way ANOVA and Tukey's multiple comparisons test for multiple groups were used. RESULTS Our results revealed that the viability of MenSCs was not affected under acute hypoxia, although proliferation rate slowed down. Gene analysis revealed 5 up-regulated (BNIP3, ANGPTL4, IL6, IL1B, and PDK1) and 4 down-regulated genes (IDO1, HMOX1, ANGPTL2, and HGF) in AH compared to N. Global gene expression analysis revealed a decrease in the gene ontology functions of migration and wound response with respect to the normoxic condition. In contrast, functions such as angiogenesis were enriched under the AH condition. Regarding the secretome analysis, two miRNAs involved in angiogenic processes (hsa-miR-148a-3p and hsa-miR-378a-3p), were significantly up-expressed when compared to the normoxic condition, being MYC gene, the unique target of both. Functional assays on HUVECs revealed a potential pro-angiogenic capacity of MenSCs cultured in both oxygen conditions (N and AH) based on the wound closure and tube formation results of their released paracrine factors. However, when compared to normoxia, the paracrine factors of MenSCs under acute hypoxia slightly reduced the proliferation, migration, and in vitro wound closure of HUVECs. CONCLUSIONS MenSC exhibited a good survival capacity under acute hypoxic conditions as well as beneficial properties applicable in the field of tissue regeneration through their secretome, which makes them a potential cell source for wound healing interventions.
Collapse
Affiliation(s)
- María Ángeles de Pedro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| | - María Pulido
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Ana María Marchena
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain.
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain.
| | - Javier G Casado
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
- Immunology Unit, University of Extremadura, 10003, Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003, Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, 10071, Cáceres, Spain
- RICORS-TERAV Network, ISCIII, 28029, Madrid, Spain
| |
Collapse
|
13
|
Genna A, Duran CL, Entenberg D, Condeelis JS, Cox D. Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections. Cancers (Basel) 2023; 15:2092. [PMID: 37046751 PMCID: PMC10093384 DOI: 10.3390/cancers15072092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Macrophages are important players involved in the progression of breast cancer, including in seeding the metastatic niche. However, the mechanism by which macrophages in the lung parenchyma interact with tumor cells in the vasculature to promote tumor cell extravasation at metastatic sites is not clear. To mimic macrophage-driven tumor cell extravasation, we used an in vitro assay (eTEM) in which an endothelial monolayer and a matrigel-coated filter separated tumor cells and macrophages from each other. The presence of macrophages promoted tumor cell extravasation, while macrophage conditioned media was insufficient to stimulate tumor cell extravasation in vitro. This finding is consistent with a requirement for direct contact between macrophages and tumor cells. We observed the presence of Thin Membranous Connections (TMCs) resembling similar structures formed between macrophages and tumor cells called tunneling nanotubes, which we previously demonstrated to be important in tumor cell invasion in vitro and in vivo. To determine if TMCs are important for tumor cell extravasation, we used macrophages with reduced levels of endogenous M-Sec (TNFAIP2), which causes a defect in tunneling nanotube formation. As predicted, these macrophages showed reduced macrophage-tumor cell TMCs. In both, human and murine breast cancer cell lines, there was also a concomitant reduction in tumor cell extravasation in vitro when co-cultured with M-Sec deficient macrophages compared to control macrophages. We also detected TMCs formed between macrophages and tumor cells through the endothelial layer in the eTEM assay. Furthermore, tumor cells were more frequently found in pores under the endothelium that contain macrophage protrusions. To determine the role of macrophage-tumor cell TMCs in vivo, we generated an M-Sec deficient mouse. Using an in vivo model of experimental metastasis, we detected a significant reduction in the number of metastatic lesions in M-Sec deficient mice compared to wild type mice. There was no difference in the size of the metastases, consistent with a defect specific to tumor cell extravasation and not metastatic outgrowth. Additionally, with an examination of time-lapse intravital-imaging (IVI) data sets of breast cancer cell extravasation in the lungs, we could detect the presence of TMCs between extravascular macrophages and vascular tumor cells. Overall, our data indicate that macrophage TMCs play an important role in promoting the extravasation of circulating tumor cells in the lungs.
Collapse
Affiliation(s)
- Alessandro Genna
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Camille L. Duran
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John S. Condeelis
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dianne Cox
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Tomasik B, Bieńkowski M, Górska Z, Gutowska K, Kumięga P, Jassem J, Duchnowska R. Molecular aspects of brain metastases in breast cancer. Cancer Treat Rev 2023; 114:102521. [PMID: 36736124 DOI: 10.1016/j.ctrv.2023.102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Brain metastases (BM) are a common and devastating manifestation of breast cancer (BC). BM are particularly frequent in the HER2-positive and triple-negative breast cancer phenotypes and usually occur following the metastatic spread to extracranial sites. Several genes mediating BM and biomarkers predicting their risk in BC have been reported in the past decade. These findings have advanced the understanding of BM pathobiology and paved the way for developing new therapeutic strategies but they still warrant a thorough clinical validation. Hence, a better understanding of the mechanistic aspects of BM and delineating the interactions of tumor cells with the brain microenvironment are of utmost importance. This review discusses the molecular basis of the metastatic cascade: the epithelial-mesenchymal transition, cancer, and tumor microenvironment interaction and intravasation, priming of the metastatic niche in the brain, and survival in the new site. We also outline the postulated mechanisms of BC cells' brain tropism. Finally, we discuss advances in the field of biomarkers (both tissue-based and liquid-based) that predict BM from BC.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Michał Bieńkowski
- Department of Pathology, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdańsk, Poland.
| | - Zuzanna Górska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| | - Klaudia Gutowska
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Paulina Kumięga
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| |
Collapse
|
15
|
Genna A, Duran CL, Entenberg D, Condeelis J, Cox D. Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528161. [PMID: 36824832 PMCID: PMC9948990 DOI: 10.1101/2023.02.16.528161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Macrophages are important players involved in the progression of breast cancer, including in seeding the metastatic niche. However, the mechanism by which macrophages in the lung parenchyma interact with tumor cells in the vasculature to promote tumor cell extravasation at metastatic sites is not clear. To mimic macrophage-driven tumor cell extravasation, we used an in vitro assay (eTEM) in which an endothelial monolayer and a matrigel-coated filter separated tumor cells and macrophages from each other. The presence of macrophages promoted tumor cell extravasation while macrophage conditioned media was insufficient to stimulate tumor cell extravasation in vitro . This finding is consistent with a requirement for direct contact between macrophages and tumor cells. We observed the presence of Thin Membranous Connections (TMCs) resembling similar structures formed between macrophages and tumor cells called tunneling nanotubes which we previously demonstrated to be important in tumor cell invasion in vitro and in vivo (Hanna 2019). To determine if TMCs are important for tumor cell extravasation, we used macrophages with reduced levels of endogenous M-Sec (TNFAIP2), which causes a defect in tunneling nanotube formation. As predicted, these macrophages showed reduced macrophage-tumor cell TMCs. In both, human and murine breast cancer cell lines, there was also a concomitant reduction in tumor cell extravasation in vitro when co-cultured with M-Sec deficient macrophages compared to control macrophages. We also detected TMCs formed between macrophages and tumor cells through the endothelial layer in the eTEM assay. Furthermore, tumor cells were more frequently found in pores under the endothelium that contain macrophage protrusions. To determine the role of macrophage-tumor cell TMCs in vivo , we generated an M-Sec deficient mouse. Using an in vivo model of experimental metastasis, we detected a significant reduction in the number of metastatic lesions in M-Sec deficient mice compared to wild type mice. There was no difference in the size of the metastases, consistent with a defect specific to tumor cell extravasation and not metastatic outgrowth. Additionally, examination of time-lapse intravital-imaging (IVI) data sets of breast cancer cell extravasation in the lung, we could detect the presence of TMCs between extravascular macrophages and vascular tumor cells. Overall, our data indicate that macrophage TMCs play an important role in promoting the extravasation of circulating tumor cells in the lung.
Collapse
|
16
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
17
|
Duran CL, Karagiannis GS, Chen X, Sharma VP, Entenberg D, Condeelis JS, Oktay MH. Cooperative NF-κB and Notch1 signaling promotes macrophage-mediated MenaINV expression in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522642. [PMID: 36711751 PMCID: PMC9881873 DOI: 10.1101/2023.01.03.522642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metastasis is a multistep process that leads to the formation of clinically detectable tumor foci at distant organs and frequently patient demise. Only a subpopulation of breast cancer cells within the primary tumor can disseminate systemically and cause metastasis. To disseminate, cancer cells must express MenaINV, an isoform of the actin-regulatory protein Mena encoded by the ENAH gene that endows tumor cells with transendothelial migration activity allowing them to enter and exit the blood circulation. We have previously demonstrated that MenaINV mRNA and protein expression is induced in cancer cells by macrophage contact. In this study, we discovered the precise mechanism by which macrophages induce MenaINV expression in tumor cells. We examined the promoter of the human and mouse ENAH gene and discovered a conserved NF-κB transcription factor binding site. Using live imaging of an NF-κB activity reporter and staining of fixed tissues from mouse and human breast cancer we further determined that for maximal induction of MenaINV in cancer cell NF-κB needs to cooperate with the Notch1 signaling pathway. Mechanistically, Notch1 signaling does not directly increase MenaINV expression, but it enhances and sustains NF-κB signaling through retention of p65, an NF-κB transcription factor, in the nucleus of tumor cells, leading to increased MenaINV expression. In mice, these signals are augmented following chemotherapy treatment and abrogated upon macrophage depletion. Targeting Notch1 signaling in vivo decreased NF-κB signaling and MenaINV expression in the primary tumor and decreased metastasis. Altogether, these data uncover mechanistic targets for blocking MenaINV induction that should be explored clinically to decrease cancer cell dissemination and improve survival of patients with metastatic disease.
Collapse
|
18
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
19
|
Development of Tumor-Vasculature Interaction on Chip Mimicking Vessel Co-Option of Glioblastoma. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Perrin L, Gligorijevic B. Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Phys Biol 2022; 20:10.1088/1478-3975/aca0d8. [PMID: 36343366 PMCID: PMC9942491 DOI: 10.1088/1478-3975/aca0d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
Cancer invasion and metastasis require remodeling of the adjacent extracellular matrix (ECM). In this mini review, we will cover the mechanisms of proteolytic degradation and the mechanical remodeling of the ECM by cancer cells, with a focus on invadopodia. Invadopodia are membrane protrusions unique to cancer cells, characterized by an actin core and by the focal degradation of ECM via matrix metalloproteases (MMPs). While ECM can also be remodeled, at lower levels, by focal adhesions, or internal collagen digestion, invadopodia are now recognized as the major mechanism for MMP-dependent pericellular ECM degradation by cancer cells. Recent evidence suggests that the completion of epithelial-mesenchymal transition may be dispensable for invadopodia and metastasis, and that invadopodia are required not only for mesenchymal, single cell invasion, but also for collective invasion. During collective invasion, invadopodia was then shown to be located in leader cells, allowing follower cells to move via cooperation. Collectively, this suggests that invadopodia function may be a requirement not only for later steps of metastasis, but also for early invasion of epithelial cells into the stromal tissue. Over the last decade, invadopodia studies have transitioned into in 3D andin vivosettings, leading to the confirmation of their essential role in metastasis in preclinical animal models. In summary, invadopodia may hold a great potential for individual risk assessment as a prognostic marker for metastasis, as well as a therapeutic target.
Collapse
Affiliation(s)
- L. Perrin
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Present address, Institut Curie, Paris, France
| | - B. Gligorijevic
- Bioengineering Department, Temple University, Philadelphia PA, USA
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia PA, USA
| |
Collapse
|
21
|
Neill T, Xie C, Iozzo RV. Decorin evokes reversible mitochondrial depolarization in carcinoma and vascular endothelial cells. Am J Physiol Cell Physiol 2022; 323:C1355-C1373. [PMID: 36036446 PMCID: PMC9602711 DOI: 10.1152/ajpcell.00325.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Decorin, a small leucine-rich proteoglycan with multiple biological functions, is known to evoke autophagy and mitophagy in both endothelial and cancer cells. Here, we investigated the effects of soluble decorin on mitochondrial homeostasis using live cell imaging and ex vivo angiogenic assays. We discovered that decorin triggers mitochondrial depolarization in triple-negative breast carcinoma, HeLa, and endothelial cells. This bioactivity was mediated by the protein core in a time- and dose-dependent manner and was specific for decorin insofar as biglycan, the closest homolog, failed to trigger depolarization. Mechanistically, we found that the bioactivity of decorin to promote depolarization required the MET receptor and its tyrosine kinase. Moreover, two mitochondrial interacting proteins, mitostatin and mitofusin 2, were essential for downstream decorin effects. Finally, we found that decorin relied on the canonical mitochondrial permeability transition pore to trigger tumor cell mitochondrial depolarization. Collectively, our study implicates decorin as a soluble outside-in regulator of mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Delprat V, Huart C, Feron O, Soncin F, Michiels C. The impact of macrophages on endothelial cells is potentiated by cycling hypoxia: Enhanced tumor inflammation and metastasis. Front Oncol 2022; 12:961753. [PMID: 36248978 PMCID: PMC9554541 DOI: 10.3389/fonc.2022.961753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cycling hypoxia (cyH), neo-angiogenesis, and tumor-associated macrophages are key features of the tumor microenvironment. In this study, we demonstrate that cyH potentiates the induction by unpolarized and M1-like macrophages of endothelial inflammatory phenotype and adhesiveness for monocytes and cancer cells. This process triggers a positive feedback loop sustaining tumor inflammation. This work opens the door for innovative therapeutic strategies to treat tumor inflammation and metastasis. In cancers, the interaction between macrophages and endothelial cells (ECs) regulates tumor inflammation and metastasis. These cells are both affected by cycling hypoxia (cyH), also called intermittent hypoxia, a feature of the tumor microenvironment. cyH is also known to favor tumor inflammation and metastasis. Nonetheless, the potential impact of cyH on the dialog between macrophages and ECs is still unknown. In this work, the effects of unpolarized, M1-like, and M2-like macrophages exposed to normoxia, chronic hypoxia (chH), and cyH on endothelial adhesion molecule expression, pro-inflammatory gene expression, and EC adhesiveness for monocytes and cancer cells were investigated. cyH increased the ability of unpolarized and M1-like macrophages to induce EC inflammation and to increase the expression of the EC endothelial adhesion molecule ICAM1, respectively. Unpolarized, M1-like, and M2-like macrophages were all able to promote EC adhesive properties toward cancer cells. Furthermore, the ability of macrophages (mostly M1-like) to shift EC phenotype toward one allowing cancer cell and monocyte adhesion onto ECs was potentiated by cyH. These effects were specific to cyH because they were not observed with chH. Together, these results show that cyH amplifies the effects of macrophages on ECs, which may promote tumor inflammation and metastasis.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Camille Huart
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH 5349), Institut de recherche expérimentale et clinique, UCLouvain, Brussels, Belgium
| | - Fabrice Soncin
- Laboratory for Integrated Micro Mechatronics Systems/Centre National de la Recherche scientifique- International Collaborative Research Center (LIMMS/CNRS-IIS) (Unité Mixte Internationale (UMI) 2820), Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- Centre National de la Recherche Scientifique/International Collaborative Research Center (CNRS/IIS/COL) Lille University Seeding Microsystems in Medecine in Lille (SMMiL) – European-Japanese Technologies against Cancer-E Project, CNRS Délégation Nord-Pas de Calais et Picardie, Cedex, France
- Institut pour la Recherche sur le Cancer de Lille (IRCL), Université de Lille, CNRS, Lille, France
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for LIfe Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
- *Correspondence: Carine Michiels,
| |
Collapse
|
23
|
Burkel BM, Inman DR, Virumbrales-Muñoz M, Hoffmann EJ, Ponik SM. A Label-Free Segmentation Approach for Intravital Imaging of Mammary Tumor Microenvironment. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/63413. [PMID: 35695521 PMCID: PMC9327791 DOI: 10.3791/63413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability to visualize complex and dynamic physiological interactions between numerous cell types and the extracellular matrix (ECM) within a live tumor microenvironment is an important step toward understanding mechanisms that regulate tumor progression. While this can be accomplished through current intravital imaging techniques, it remains challenging due to the heterogeneous nature of tissues and the need for spatial context within the experimental observation. To this end, we have developed an intravital imaging workflow that pairs collagen second harmonic generation imaging, endogenous fluorescence from the metabolic co-factor NAD(P)H, and fluorescence lifetime imaging microscopy (FLIM) as a means to non-invasively compartmentalize the tumor microenvironment into basic domains of the tumor nest, the surrounding stroma or ECM, and the vasculature. This non-invasive protocol details the step-by-step process ranging from the acquisition of time-lapse images of mammary tumor models to post-processing analysis and image segmentation. The primary advantage of this workflow is that it exploits metabolic signatures to contextualize the dynamically changing live tumor microenvironment without the use of exogenous fluorescent labels, making it advantageous for human patient-derived xenograft (PDX) models and future clinical use where extrinsic fluorophores are not readily applicable.
Collapse
Affiliation(s)
- Brian M. Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - David R. Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - María Virumbrales-Muñoz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison,Department of Pathology, University of Wisconsin-Madison
| | - Erica J. Hoffmann
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison,Carbone Cancer Center, University of Wisconsin-Madison
| |
Collapse
|
24
|
Ye X, Oktay MH, Xue X, Rohan TE, Ginter PS, D’Alfonso T, Kornaga EN, Morris DG, Entenberg D, Condeelis JS. Combining TMEM Doorway Score and Mena Calc Score Improves the Prediction of Distant Recurrence Risk in HR+/HER2- Breast Cancer Patients. Cancers (Basel) 2022; 14:2168. [PMID: 35565297 PMCID: PMC9101795 DOI: 10.3390/cancers14092168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
PURPOSE to develop several digital pathology-based machine vision algorithms for combining TMEM and MenaCalc scores and determine if a combination of these biomarkers improves the ability to predict development of distant metastasis over and above that of either biomarker alone. METHODS This retrospective study included a subset of 130 patients (65 patients with no recurrence and 65 patients with a recurrence at 5 years) from the Calgary Tamoxifen cohort of breast cancer patients. Patients had confirmed invasive breast cancer and received adjuvant tamoxifen therapy. Of the 130 patients, 86 cases were suitable for analysis in this study. Sequential sections of formalin-fixed paraffin-embedded patient samples were stained for TMEM doorways (immunohistochemistry triple staining) and MenaCalc (immunofluorescence staining). Stained sections were imaged, aligned, and then scored for TMEM doorways and MenaCalc. Different ways of combining TMEM doorway and MenaCalc scores were evaluated and compared to identify the best performing combined marker by using the restricted mean survival time (RMST) difference method. RESULTS the best performing combined marker gave an RMST difference of 5.27 years (95% CI: 1.71-8.37), compared to 3.56 years (95% CI: 0.95-6.1) for the associated standalone TMEM doorway analysis and 2.94 years (95% CI: 0.25-5.87) for the associated standalone MenaCalc analysis. CONCLUSIONS combining TMEM doorway and MenaCalc scores as a new biomarker improves prognostication over that observed with TMEM doorway or MenaCalc Score alone in this cohort of 86 patients.
Collapse
Affiliation(s)
- Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (X.Y.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Maja H. Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (X.Y.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (X.X.); (T.E.R.)
| | - Thomas E. Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (X.X.); (T.E.R.)
| | - Paula S. Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA;
| | - Timothy D’Alfonso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Elizabeth N. Kornaga
- Translational Laboratories, Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (E.N.K.); (D.G.M.)
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Don G. Morris
- Translational Laboratories, Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada; (E.N.K.); (D.G.M.)
- Department of Oncology, University of Calgary, Calgary, AB T2N 4N2, Canada
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (X.Y.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| | - John S. Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA; (X.Y.); (M.H.O.)
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY 10461, USA
| |
Collapse
|
25
|
Damalanka VC, Voss JJLP, Mahoney MW, Primeau T, Li S, Klampfer L, Janetka JW. Macrocyclic Inhibitors of HGF-Activating Serine Proteases Overcome Resistance to Receptor Tyrosine Kinase Inhibitors and Block Lung Cancer Progression. J Med Chem 2021; 64:18158-18174. [PMID: 34902246 DOI: 10.1021/acs.jmedchem.1c01671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatocyte growth factor (HGF), the ligand for the MET receptor tyrosine kinase, is a tumor-promoting factor that is abundant in the tumor microenvironment. Proteolytic activation of inactive pro-HGF by one or more of the serine endopeptidases matriptase, hepsin, and HGF activator is the rate-limiting step in HGF/MET signaling. Herein, we have rationally designed a novel class of side chain cyclized macrocyclic peptide inhibitors. The new series of cyclic tripeptides has superior metabolic stability and significantly improved pharmacokinetics in mice relative to the corresponding linear peptides. We identified the lead compound VD2173 that potently inhibits matriptase and hepsin, which was tested in parallel alongside the acyclic inhibitor ZFH7116 using both in vitro and in vivo models of lung cancer. We demonstrated that both compounds block pro-HGF activation, abrogate HGF-mediated wound healing, and overcome resistance to EGFR- and MET-targeted therapy in lung cancer models. Furthermore, VD2173 inhibited HGF-dependent growth of lung cancer tumors in mice.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Jorine J L P Voss
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Matthew W Mahoney
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - Tina Primeau
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Lidija Klampfer
- ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| | - James W Janetka
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, United States.,ProteXase Therapeutics, Inc., Saint Louis, Missouri 63108, United States
| |
Collapse
|
26
|
Sharma VP, Tang B, Wang Y, Duran CL, Karagiannis GS, Xue EA, Entenberg D, Borriello L, Coste A, Eddy RJ, Kim G, Ye X, Jones JG, Grunblatt E, Agi N, Roy S, Bandyopadhyaya G, Adler E, Surve CR, Esposito D, Goswami S, Segall JE, Guo W, Condeelis JS, Wakefield LM, Oktay MH. Live tumor imaging shows macrophage induction and TMEM-mediated enrichment of cancer stem cells during metastatic dissemination. Nat Commun 2021; 12:7300. [PMID: 34911937 PMCID: PMC8674234 DOI: 10.1038/s41467-021-27308-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) play an important role during metastasis, but the dynamic behavior and induction mechanisms of CSCs are not well understood. Here, we employ high-resolution intravital microscopy using a CSC biosensor to directly observe CSCs in live mice with mammary tumors. CSCs display the slow-migratory, invadopod-rich phenotype that is the hallmark of disseminating tumor cells. CSCs are enriched near macrophages, particularly near macrophage-containing intravasation sites called Tumor Microenvironment of Metastasis (TMEM) doorways. Substantial enrichment of CSCs occurs on association with TMEM doorways, contributing to the finding that CSCs represent >60% of circulating tumor cells. Mechanistically, stemness is induced in non-stem cancer cells upon their direct contact with macrophages via Notch-Jagged signaling. In breast cancers from patients, the density of TMEM doorways correlates with the proportion of cancer cells expressing stem cell markers, indicating that in human breast cancer TMEM doorways are not only cancer cell intravasation portals but also CSC programming sites.
Collapse
Affiliation(s)
- Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Binwu Tang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Robert J Eddy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gina Kim
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xianjun Ye
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eli Grunblatt
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Nathan Agi
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Sweta Roy
- Department of Biology, Yeshiva University, New York, NY, USA
| | | | - Esther Adler
- Department of Pathology, NYU Langone Medical Center, New York, NY, USA
| | - Chinmay R Surve
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sumanta Goswami
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Biology, Yeshiva University, New York, NY, USA
| | - Jeffrey E Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wenjun Guo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
27
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ''tumor debulking'' rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting 'natural agents' that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
28
|
Wessels DJ, Pujol C, Pradhan N, Lusche DF, Gonzalez L, Kelly SE, Martin EM, Voss ER, Park YN, Dailey M, Sugg SL, Phadke S, Bashir A, Soll DR. Directed movement toward, translocation along, penetration into and exit from vascular networks by breast cancer cells in 3D. Cell Adh Migr 2021; 15:224-248. [PMID: 34338608 PMCID: PMC8331046 DOI: 10.1080/19336918.2021.1957527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We developed a computer-assisted platform using laser scanning confocal microscopy to 3D reconstruct in real-time interactions between metastatic breast cancer cells and human umbilical vein endothelial cells (HUVECs). We demonstrate that MB-231 cancer cells migrate toward HUVEC networks, facilitated by filopodia, migrate along the network surfaces, penetrate into and migrate within the HUVEC networks, exit and continue migrating along network surfaces. The system is highly amenable to 3D reconstruction and computational analyses, and assessments of the effects of potential anti-metastasis monoclonal antibodies and other drugs. We demonstrate that an anti-RHAMM antibody blocks filopodium formation and all of the behaviors that we found take place between MB-231 cells and HUVEC networks.
Collapse
Affiliation(s)
- Deborah J Wessels
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Claude Pujol
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Nikash Pradhan
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Luis Gonzalez
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sydney E Kelly
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Elizabeth M Martin
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Edward R Voss
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Yang-Nim Park
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Michael Dailey
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Sonia L Sugg
- Department of Surgery, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sneha Phadke
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Amani Bashir
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank and W.M. Keck Dynamic Image Analysis Facility, Department of Biology, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
29
|
Secretome and Tunneling Nanotubes: A Multilevel Network for Long Range Intercellular Communication between Endothelial Cells and Distant Cells. Int J Mol Sci 2021; 22:ijms22157971. [PMID: 34360735 PMCID: PMC8347715 DOI: 10.3390/ijms22157971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
As a cellular interface between the blood and tissues, the endothelial cell (EC) monolayer is involved in the control of key functions including vascular tone, permeability and homeostasis, leucocyte trafficking and hemostasis. EC regulatory functions require long-distance communications between ECs, circulating hematopoietic cells and other vascular cells for efficient adjusting thrombosis, angiogenesis, inflammation, infection and immunity. This intercellular crosstalk operates through the extracellular space and is orchestrated in part by the secretory pathway and the exocytosis of Weibel Palade Bodies (WPBs), secretory granules and extracellular vesicles (EVs). WPBs and secretory granules allow both immediate release and regulated exocytosis of messengers such as cytokines, chemokines, extracellular membrane proteins, coagulation or growth factors. The ectodomain shedding of transmembrane protein further provide the release of both receptor and ligands with key regulatory activities on target cells. Thin tubular membranous channels termed tunneling nanotubes (TNTs) may also connect EC with distant cells. EVs, in particular exosomes, and TNTs may contain and transfer different biomolecules (e.g., signaling mediators, proteins, lipids, and microRNAs) or pathogens and have emerged as a major triggers of horizontal intercellular transfer of information.
Collapse
|
30
|
Directional cues in the tumor microenvironment due to cell contraction against aligned collagen fibers. Acta Biomater 2021; 129:96-109. [PMID: 33965625 PMCID: PMC8848478 DOI: 10.1016/j.actbio.2021.04.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
It is well established that collagen alignment in the breast tumor microenvironment provides biophysical cues to drive disease progression. Numerous mechanistic studies have demonstrated that tumor cell behavior is driven by the architecture and stiffness of the collagen matrix. However, the mechanical properties within a 3D collagen microenvironment, particularly at the scale of the cell, remain poorly defined. To investigate cell-scale mechanical cues with respect to local collagen architecture, we employed a combination of intravital imaging of the mammary tumor microenvironment and a 3D collagen gel system with both acellular pNIPAAm microspheres and MDA-MB-231 breast carcinoma cells. Within the in vivo tumor microenvironment, the displacement of collagen fiber was identified in response to tumor cells migrating through the stromal matrix. To further investigate cell-scale stiffness in aligned fiber architectures and the propagation of cell-induced fiber deformations, precise control of collagen architecture was coupled with innovative methodology to measure mechanical properties of the collagen fiber network. This method revealed up to a 35-fold difference in directional cell-scale stiffness resulting from contraction against aligned fibers. Furthermore, the local anisotropy of the matrix dramatically altered the rate at which contractility-induced fiber displacements decayed over distance. Together, our results reveal mechanical properties in aligned matrices that provide dramatically different cues to the cell in perpendicular directions. These findings are supported by the mechanosensing behavior of tumor cells and have important implications for cell-cell communication within the tissue microenvironment. STATEMENT OF SIGNIFICANCE: It is widely appreciated that the architecture of the extracellular matrix impacts cellular behavior in normal and disease states. Numerous studies have determined the fundamental role of collagen matrix architecture on cellular mechanosensing, but effectively quantifying anisotropic mechanical properties of the collagen matrix at the cell-scale remains challenging. Here, we developed innovative methodology to discover that collagen alignment results in a 35-fold difference in cell-scale stiffness and alters contractile force transmission through the fiber network. Furthermore, we identified bias in cell response along the axis of alignment, where local stiffness is highest. Overall, our results define cell-scale stiffness and fiber deformations due to collagen architecture that may instruct cell communication within a broad range of tissue microenvironments.
Collapse
|
31
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
32
|
Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity 2021; 54:885-902. [PMID: 33979586 DOI: 10.1016/j.immuni.2021.03.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Tumor cells metastasize to distant organs through a complex series of events that are driven by tumor intrinsic and extrinsic factors. In particular, non-malignant stromal cells, including immune cells, modify tumor metastatic behavior. Of these cells, tumor-associated innate immune cells, particularly macrophages and neutrophils, suppress the cytotoxic activity of innate and adaptive killer cells and interact with tumor cells to promote their growth and malignancy. These findings in mouse cancer models suggest that targeting these sub-populations of immune cells holds therapeutic promise in treating metastatic disease. In this review, we describe the origin and role of the macrophages, neutrophils, and their progenitors in the metastatic cascade and suggest strategies that might enhance cancer therapy.
Collapse
Affiliation(s)
- Esra Güç
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
34
|
Stiffness increases with myofibroblast content and collagen density in mesenchymal high grade serous ovarian cancer. Sci Rep 2021; 11:4219. [PMID: 33603134 PMCID: PMC7892556 DOI: 10.1038/s41598-021-83685-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Women diagnosed with high-grade serous ovarian cancers (HGSOC) are still likely to exhibit a bad prognosis, particularly when suffering from HGSOC of the Mesenchymal molecular subtype (50% cases). These tumors show a desmoplastic reaction with accumulation of extracellular matrix proteins and high content of cancer-associated fibroblasts. Using patient-derived xenograft mouse models of Mesenchymal and Non-Mesenchymal HGSOC, we show here that HGSOC exhibit distinct stiffness depending on their molecular subtype. Indeed, tumor stiffness strongly correlates with tumor growth in Mesenchymal HGSOC, while Non-Mesenchymal tumors remain soft. Moreover, we observe that tumor stiffening is associated with high stromal content, collagen network remodeling, and MAPK/MEK pathway activation. Furthermore, tumor stiffness accompanies a glycolytic metabolic switch in the epithelial compartment, as expected based on Warburg's effect, but also in stromal cells. This effect is restricted to the central part of stiff Mesenchymal tumors. Indeed, stiff Mesenchymal tumors remain softer at the periphery than at the core, with stromal cells secreting high levels of collagens and showing an OXPHOS metabolism. Thus, our study suggests that tumor stiffness could be at the crossroad of three major processes, i.e. matrix remodeling, MEK activation and stromal metabolic switch that might explain at least in part Mesenchymal HGSOC aggressiveness.
Collapse
|
35
|
Abstract
Neuregulins, members of the largest subclass of growth factors of the epidermal growth factor family, mediate a myriad of cellular functions including survival, proliferation, and differentiation in normal tissues through binding to receptor tyrosine kinases of the ErbB family. However, aberrant neuregulin signaling in the tumor microenvironment is increasingly recognized as a key player in initiation and malignant progression of human cancers. In this chapter, we focus on the role of neuregulin signaling in the hallmarks of cancer, including cancer initiation and development, metastasis, as well as therapeutic resistance. Moreover, role of neuregulin signaling in the regulation of tumor microenvironment and targeting of neuregulin signaling in cancer from the therapeutic perspective are also briefly discussed.
Collapse
|
36
|
Lin DQ, Zhu JG, Xu XH, Xiao K, Wen XQ, Zheng QF, Zhou YH, Cai XY. Chronic Progression of Lung Cancer Recurrence After Surgery: Warning Role of Postoperative Pneumonia. Cancer Manag Res 2021; 13:7387-7398. [PMID: 34602824 PMCID: PMC8481098 DOI: 10.2147/cmar.s327646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/11/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE The association between the process of postoperative pneumonia and lung cancer recurrence remains elusive in lung cancer surgery. Herein, the association between postoperative pneumonia and lung cancer recurrence was investigated, emphasizing the warning role of postoperative specific pneumonia in primary lung cancer resection patients. METHODS The occurrence of postoperative pneumonia was assessed in 4-6 months (PPFS), 7-12 months (PPST), and lung cancer recurrence within 1 year (LRO) in 332 patients. The primary outcome was the development of PPST and LRO according to PPFS occurrence. The relevant risk factors of PPFS, PPST, and LRO were identified through multivariable regression analysis. RESULTS During follow-up, 151 (45.48%) participants experienced PPFS. Irrespective of the existing postoperative pneumonia in 1-3 months (PPOT), PPFS significantly increased the risk of PPST (P < 0.01) and LRO (P < 0.01), and persistent PPST further increased the risk of LRO (P < 0.001). The generalized estimating equation identified chemotherapy as an independent risk factor for PPFS and PPST. CONCLUSION PPFS was associated with the increased risk of PPST and LRO. Postoperative pulmonary inflammation assessed 4 months post-surgery also significantly influenced LRO development, indicating a need for close follow-up of lung inflammatory conditions to improve patient outcomes.
Collapse
Affiliation(s)
- Dong-qi Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Jin-guo Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xiao-hua Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Ke Xiao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Xu-qing Wen
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qi-fa Zheng
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Yu-hua Zhou
- Nursing Department, Shantou Central Hospital, Shantou, Guangdong, People’s Republic of China
| | - Xin-ying Cai
- Clinical Research Center, Shantou Central Hospital, Shantou, Guangdong, People’s Republic of China
- Correspondence: Xin-ying Cai Clinical Research Center, Shantou Central Hospital, Wai-ma Road 114, Shantou, Guangdong, People’s Republic of ChinaTel +86 754-88903584Fax +86 754-88548117 Email
| |
Collapse
|
37
|
HGF/c-Met Signalling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:31-44. [PMID: 33123991 DOI: 10.1007/978-3-030-47189-7_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently, it has become clearer that tumor plasticity increases the chance that cancer cells could acquire new mechanisms to escape immune surveillance, become resistant to conventional drugs, and spread to distant sites.Effectively, tumor plasticity drives adaptive response of cancer cells to hypoxia and nutrient deprivation leading to stimulation of neoangionesis or tumor escape. Therefore, tumor plasticity is believed to be a great contributor in recurrence and metastatic dissemination of cancer cells. Importantly, it could be an Achilles' heel of cancer if we could identify molecular mechanisms dictating this phenotype.The reactivation of stem-like signalling pathways is considered a great determinant of tumor plasticity; in addition, a key role has been also attributed to tumor microenvironment (TME). Indeed, it has been proved that cancer cells interact with different cells in the surrounding extracellular matrix (ECM). Interestingly, well-established communication represents a potential allied in maintenance of a plastic phenotype in cancer cells supporting tumor growth and spread. An important signalling pathway mediating cancer cell-TME crosstalk is represented by the HGF/c-Met signalling.Here, we review the role of the HGF/c-Met signalling in tumor-stroma crosstalk focusing on novel findings underlying its role in tumor plasticity, immune escape, and development of adaptive mechanisms.
Collapse
|
38
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
39
|
Sohn SH, Sul HJ, Kim B, Kim BJ, Kim HS, Zang DY. Tepotinib Inhibits the Epithelial-Mesenchymal Transition and Tumor Growth of Gastric Cancers by Increasing GSK3β, E-Cadherin, and Mucin 5AC and 6 Levels. Int J Mol Sci 2020; 21:ijms21176027. [PMID: 32825724 PMCID: PMC7503648 DOI: 10.3390/ijms21176027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of mucins (MUCs) can promote the epithelial–mesenchymal transition (EMT), which leads to enhanced tumorigenesis. Carcinogenesis-related pathways involving c-MET and β-catenin are associated with MUCs. In this study, we characterized the expression of EMT-relevant proteins including MET, β-catenin, and E-cadherin in human gastric cancer (GC) cell lines, and further characterized the differential susceptibility of these cell lines compared with the c-MET inhibitor tepotinib. We assessed the antitumor activity of tepotinib in GC cell lines. The effects of tepotinib on cell viability, apoptotic cell death, EMT, and c-MET and β-catenin signaling were evaluated by 3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS), flow cytometry, Western blotting, and qRT-PCR. The antitumor efficacy was assessed in MKN45 xenograft mice. Tepotinib treatment induced apoptosis in c-MET-amplified SNU620, MKN45, and KATO III cells, but had no effect on c-MET-reduced MKN28 or AGS cells. Tepotinib treatment also significantly reduced the protein levels of phosphorylated and total c-MET, phosphorylated and total ERK, β-catenin, and c-MYC in SNU620 and MKN45 cells. In contrast, this drug was only slightly active against KATO III cells. Notably, tepotinib significantly reduced the expression of EMT-promoting genes such as MMP7, COX-2, WNT1, MUC5B, and c-MYC in c-MET-amplified GC cells and increased the expression of EMT-suppressing genes such as MUC5AC, MUC6, GSK3β, and E-cadherin. In a mouse model, tepotinib exhibited good antitumor growth activity along with increased E-cadherin and decreased phosphorylated c-MET (phospho-c-MET) protein levels. Collectively, these results suggest that tepotinib suppresses tumor growth and migration by negatively regulating c-MET-induced EMT. These findings provide new insights into the mechanism by which MUC5AC and MUC6 contribute to GC progression.
Collapse
Affiliation(s)
- Sung-Hwa Sohn
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Hee Jung Sul
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Bohyun Kim
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
| | - Bum Jun Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
| | - Hyeong Su Kim
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
| | - Dae Young Zang
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang 14066, Korea; (S.-H.S.); (H.J.S.); (B.K.)
- Department of Internal Medicine, Hallym University Medical Center, Hallym University College of Medicine, Anyang-si, Gyeonggi-do 14068, Korea; (B.J.K.); (H.S.K.)
- Correspondence: ; Tel.: +82-31-380-4167
| |
Collapse
|
40
|
Kariri YA, Aleskandarany MA, Joseph C, Kurozumi S, Mohammed OJ, Toss MS, Green AR, Rakha EA. Molecular Complexity of Lymphovascular Invasion: The Role of Cell Migration in Breast Cancer as a Prototype. Pathobiology 2020; 87:218-231. [PMID: 32645698 DOI: 10.1159/000508337] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022] Open
Abstract
Lymphovascular invasion (LVI) is associated with poor outcome in breast cancer (BC); however, its underlying mechanisms remain ill-defined. LVI in BC develops through complex molecular pathways involving not only the interplay with the surrounding microenvironment along with endothelial cells lining the lymphovascular spaces but also changes in the malignant epithelial cells with the acquisition of more invasive and migration abilities. In this review, we focus on the key features that enable tumour cell detachment from the primary niche, their migration and interaction with the surrounding microenvironment as well as the crosstalk with the vascular endothelial cells, which eventually lead to intravasation of tumour cells and LVI. Intravascular tumour cell survival and migration, their distant site extravasation, stromal invasion and growth are part of the metastatic cascade. Cancer cell migration commences with loss of tumour cells' cohesion initiating the invasion and migration processes which are usually accompanied by the accumulation of specific cellular and molecular changes that enable tumour cells to overcome the blockades of the extracellular matrix, spread into surrounding tissues and interact with stromal cells and immune cells. Thereafter, tumour cells migrate further via interacting with lymphovascular endothelial cells to penetrate the vessel wall leading ultimately to intravasation of cancer cells. Exploring the potential factors influencing cell migration in LVI can help in understanding the underlying mechanisms of LVI to identify targeted therapy in BC.
Collapse
Affiliation(s)
- Yousif A Kariri
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Mohammed A Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Sasagu Kurozumi
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Omar J Mohammed
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham, United Kingdom,
| |
Collapse
|
41
|
Borriello L, Karagiannis GS, Duran CL, Coste A, Oktay MH, Entenberg D, Condeelis JS. The role of the tumor microenvironment in tumor cell intravasation and dissemination. Eur J Cell Biol 2020; 99:151098. [PMID: 32800278 DOI: 10.1016/j.ejcb.2020.151098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Metastasis, a process that requires tumor cell dissemination followed by tumor growth, is the primary cause of death in cancer patients. An essential step of tumor cell dissemination is intravasation, a process by which tumor cells cross the blood vessel endothelium and disseminate to distant sites. Studying this process is of utmost importance given that intravasation in the primary tumor, as well as the secondary and tertiary metastases, is the key step in the systemic spread of tumor cells, and that this process continues even after removal of the primary tumor. High-resolution intravital imaging of the tumor microenvironment of breast carcinoma has revealed that tumor cell intravasation exclusively occurs at doorways, termed "Tumor MicroEnvironment of Metastasis" (TMEM), composed of three different cell types: a Tie2high/VEGFhigh perivascular macrophage, a Mena overexpressing tumor cell, and an endothelial cell, all in direct contact. In this review article, we discuss the interactions between these cell types, the subsequent signaling events which lead to tumor cell intravasation, and the role of invadopodia in supporting tumor cell invasion and dissemination. We end our review by discussing how the knowledge acquired from the use of intravital imaging is now leading to new clinical trials targeting tumor cell dissemination and preventing metastatic progression.
Collapse
Affiliation(s)
- Lucia Borriello
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Camille L Duran
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Anouchka Coste
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Pathology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Integrated Imaging Program, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA; Department of Surgery, Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
42
|
Nasrollahzadeh E, Razi S, Keshavarz-Fathi M, Mazzone M, Rezaei N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol Immunother 2020; 69:1673-1697. [PMID: 32500231 DOI: 10.1007/s00262-020-02616-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment (TME) not only facilitates cancer progression from the early formation to distant metastasis, but also it differs itself from time to time alongside the tumor evolution. Tumor-associated macrophages (TAMs), whether as pre-existing tissue-resident macrophages or recruited monocytes, are an inseparable part of this microenvironment. As their parents are broadly classified into a dichotomic, simplistic M1 and M2 subtypes, TAMs also exert paradoxical and diverse phenotypes as they are settled in different regions of TME and receive different microenvironmental signals. Briefly, M1 macrophages induce an inflammatory precancerous niche and flame the early oncogenic mutations, whereas their M2 counterparts are reprogrammed to release various growth factors and providing an immunosuppressive state in TME as long as abetting hypoxic cancer cells to set up a new vasculature. Further, they mediate stromal micro-invasion and co-migrate with invasive cancer cells to invade the vascular wall and neural sheath, while another subtype of TAMs prepares suitable niches much earlier than metastatic cells arrive at the target tissues. Accordingly, at the neoplastic transformation, during the benign-to-malignant transition and through the metastatic cascade, macrophages are involved in shaping the primary, micro-invasive and pre-metastatic TMEs. Whether their behavioral plasticity is derived from distinct genotypes or is fueled by microenvironmental cues, it could define these cells as remarkably interesting therapeutic targets.
Collapse
Affiliation(s)
- Elaheh Nasrollahzadeh
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, Center for Cancer Biology, VIB, KU Leuven, Louvain, B3000, Belgium
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, 14194, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
43
|
Al Shahrani M, Balasubramaniam M, Alshahrani MY, Saif A, Dera AA, Alasmari S, Abohassan M, Makkawi M, Radhakrishnan S, Rajagopalan P. Computational and in vitro characterization of ICY-5: A potential candidate promoting mitochondrial apoptosis via the c-MET and STAT3 pathways. J Cell Physiol 2020; 236:146-156. [PMID: 32484605 DOI: 10.1002/jcp.29830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Targeted chemotherapy remains the primary choice in controlling various forms of breast cancer (BC) due to its heterogenous gene expressions in various subtypes. In silico and in vitro evaluation of ICY-5, a novel arylidene analogue against c-MET, was performed. ICY-5 exhibited a docking score of -9.6 kcal/mol in inactive conformation and, - 8.6 kcal/mol in active conformation for c-MET. ICY-5 inhibited c-MET enzyme with an IC50 of 34.34 nM. The compound effectively inhibited MDA-MB 231 and MCF-7 cell proliferation, with GI50 values of 62.61 and 75.31 nM, respectively, and hepatocyte growth factor (HGF)/R c-MET phosphorylation with IC50 s of 71.41 and 83.77 nM, respectively. ICY-5 dose-dependently inhibited HGF-induced transmigration, cell scattering, invasion and altered cell cycle. An increase in apoptotic populations of these cells, with a dose-dependent decease in phosphorylation of STAT3 protein was observed. Furthermore, ICY-5 upregulated the caspase-3, caspase-9, Bcl-2-associated X and survivin, and downregulated Bcl-2, vascular endothelial growth factor, matrix metalloproteinase-2 (MMP-2), and MMP-9 in both BC cell lines. In summary, ICY-5 exhibited excellent efficacy in BC cells, targeting c-MET/SAT-3-mediated mitochondrial apoptosis. Further research will be required to ascertain ICY-5 suitability as a targeted chemotherapeutic against multiple forms of BC.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Saif
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sultan Alasmari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Makkawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Suresh Radhakrishnan
- Postgraduation and Research Department of Chemistry, Presidency College, Chennai, Tamil Nadu, India
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
44
|
Hoffmann EJ, Ponik SM. Biomechanical Contributions to Macrophage Activation in the Tumor Microenvironment. Front Oncol 2020; 10:787. [PMID: 32509583 PMCID: PMC7251173 DOI: 10.3389/fonc.2020.00787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Alterations in extracellular matrix composition and organization are known to promote tumor growth and metastatic progression in breast cancer through interactions with tumor cells as well as stromal cell populations. Macrophages display a spectrum of behaviors from tumor-suppressive to tumor-promoting, and their function is spatially and temporally dependent upon integrated signals from the tumor microenvironment including, but not limited to, cytokines, metabolites, and hypoxia. Through years of investigation, the specific biochemical cues that recruit and activate tumor-promoting macrophage functions within the tumor microenvironment are becoming clear. In contrast, the impact of biomechanical stimuli on macrophage activation has been largely underappreciated, however there is a growing body of evidence that physical cues from the extracellular matrix can influence macrophage migration and behavior. While the complex, heterogeneous nature of the extracellular matrix and the transient nature of macrophage activation make studying macrophages in their native tumor microenvironment challenging, this review highlights the importance of investigating how the extracellular matrix directly and indirectly impacts tumor-associated macrophage activation. Additionally, recent advances in investigating macrophages in the tumor microenvironment and future directions regarding mechano-immunomodulation in cancer will also be discussed.
Collapse
Affiliation(s)
- Erica J. Hoffmann
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
45
|
Van den Bossche V, Jadot G, Grisay G, Pierrard J, Honoré N, Petit B, Augusto D, Sauvage S, Laes JF, Seront E. c-MET as a Potential Resistance Mechanism to Everolimus in Breast Cancer: From a Case Report to Patient Cohort Analysis. Target Oncol 2020; 15:139-146. [PMID: 32020516 DOI: 10.1007/s11523-020-00704-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We describe in a patient with breast cancer the change in c-MET expression during everolimus treatment, opening a better understanding of the resistance to everolimus and a role for cabozantinib. OBJECTIVE The objective of this study was to evaluate c-MET as a potential predictive biomarker for everolimus efficacy in breast cancer. METHODS We first selected a patient with breast cancer with a long-lasting response to everolimus and retrospectively profiled biopsies that were taken before everolimus initiation (Biopsy 1) and at progression on everolimus (Biopsy 2) using amplicon sequencing and immunohistochemistry. We then retrospectively evaluated c-MET expression in a cohort of patients with breast cancer treated with everolimus. RESULTS While not expressed in Biopsy 1, c-MET was highly expressed in Biopsy 2, suggesting a role for c-MET in breast cancer progression. Cabozantinib resulted in a rapid radiological response in this patient. Twenty-nine patients were included (12 c-MET-positive and 17 c-MET-negative patients) in the second part of the study. Baseline c-MET expression was associated with higher tumor grade, higher frequency of visceral metastases, and lower endocrine sensitivity. The c-MET-positive patients presented with a shorter progression-free survival (6.1 vs 10.5 months, respectively; p = 0.002) and a lower response rate (0% vs 12%) to everolimus, compared with c-MET-negative patients. CONCLUSIONS c-MET could play a role in the resistance to everolimus and its inhibition should be evaluated in breast cancer.
Collapse
Affiliation(s)
| | - Gaspard Jadot
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Guillaume Grisay
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Julien Pierrard
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Natasha Honoré
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Bénédicte Petit
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - David Augusto
- Anatomopathology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | | | | | - Emmanuel Seront
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium.
| |
Collapse
|
46
|
Abstract
Asthma is a chronic lower respiratory disease that is very common worldwide, and its incidence is increasing year by year. Since the 1970s, asthma has become widespread, with approximately 300 million people affected worldwide and about 250,000 people have lost their lives. Asthma seriously affects people's physical and mental health, resulting in reduced learning efficiency, limited physical activities, and decreased quality of life. Therefore, raising awareness of the risk of asthma and how to effectively treat asthma have become important targets for the prevention and management of asthma in recent years. For patients with asthma, exercise training is a widely accepted adjunct to drug-based and non-pharmacological treatment. It has been recommended abroad that exercise prescriptions are an important part of asthma management.
Collapse
Affiliation(s)
- Shengguang Ding
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
47
|
Zaky MY, Liu X, Wang T, Wang S, Liu F, Wang D, Wu Y, Zhang Y, Guo D, Sun Q, Li Q, Zhang J, Zhang Y, Dong W, Liu Z, Liu S, Liu H. Dynasore potentiates c-Met inhibitors against hepatocellular carcinoma through destabilizing c-Met. Arch Biochem Biophys 2019; 680:108239. [PMID: 31881189 DOI: 10.1016/j.abb.2019.108239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/22/2022]
Abstract
c-Met receptor is frequently overexpressed in hepatocellular carcinoma and thus considered as an attractive target for pharmacological intervention with small molecule tyrosine kinase inhibitors. Albeit with the development of multiple c-Met inhibitors, none reached clinical application in the treatment of hepatoma so far. To improve the efficacy of c-Met inhibitors towards hepatocellular carcinoma, we investigated the combined effects of the dynamin inhibitor dynasore with several c-Met inhibitors, including tivantinib, PHA-665752, and JNJ-38877605. We provide several lines of evidence that dynasore enhanced the inhibitory effects of these inhibitors on hepatoma cell proliferation and migration, accompanied with increased cell cycle arrest and apoptosis. Mechanically, the combinatorial treatments decreased c-Met levels and hence markedly disrupted downstream signaling, as revealed by the dramatically declined phosphorylation of AKT and MEK. Taken together, our findings demonstrate that the candidate agent dynasore potentiated the inhibitory effects of c-Met inhibitors against hepatoma cells and will shed light on the development of novel therapeutic strategies to target c-Met in the clinical management of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Mohamed Y Zaky
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China; Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Xiuxiu Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Taishu Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shanshan Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Fang Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Duchuang Wang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yueguang Wu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yang Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Dong Guo
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qianhui Sun
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qiong Li
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Weijie Dong
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Zhenhua Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China; Department of General Surgery, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Shuyan Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Han Liu
- Institute of Cancer Stem Cell & The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
48
|
Zavyalova MV, Denisov EV, Tashireva LA, Savelieva OE, Kaigorodova EV, Krakhmal NV, Perelmuter VM. Intravasation as a Key Step in Cancer Metastasis. BIOCHEMISTRY (MOSCOW) 2019; 84:762-772. [PMID: 31509727 DOI: 10.1134/s0006297919070071] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intravasation is a key step in cancer metastasis during which tumor cells penetrate the vessel wall and enter circulation, thereby becoming circulating tumor cells and potential metastatic seeds. Understanding the molecular mechanisms of intravasation is critically important for the development of therapeutic strategies to prevent metastasis. In this article, we review current data on the mechanisms of cancer cell intravasation into the blood and lymphatic vessels. The entry of mature thymocytes into the circulation and of dendritic cells into the regional lymph nodes is considered as example of intravasation under physiologically normal conditions. Intravasation in a pathophysiological state is illustrated by the reverse transendothelial migration of leukocytes into the bloodstream from the sites of inflammation mediated by the sphingosine 1-phosphate interaction with its receptors. Intravasation involves both invasion-dependent and independent mechanisms. In particular, mesenchymal and amoeboid cell invasion, as well as neoangiogenesis and vascular remodeling, are discussed to play a significant role in the entry of tumor cells to the circulation. Special attention is given to the contribution of macrophages to the intravasation via the CSF1/EGF (colony stimulating factor 1/epidermal growth factor) paracrine signaling pathway and the TMEM (tumor microenvironment of metastasis)-mediated mechanisms. Other mechanisms including intravasation of tumor cell clusters surrounded by the vessel wall elements, cooperative intravasation (entry of non-invasive tumor cells to the circulation following invasive tumor cells), and intravasation associated with the vasculogenic mimicry (formation of vascular channels by tumor cells) are also discussed. Novel intravasation-specific mechanisms that have not yet been described in the literature are suggested. The importance of targeted therapeutic strategies to prevent cancer intravasation is emphasized.
Collapse
Affiliation(s)
- M V Zavyalova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia
| | - E V Denisov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - L A Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.
| | - O E Savelieva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| | - E V Kaigorodova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia
| | - N V Krakhmal
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia.,Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, 634050, Russia
| | - V M Perelmuter
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Russia
| |
Collapse
|
49
|
Devadas D, Moore TA, Walji N, Young EWK. A microfluidic mammary gland coculture model using parallel 3D lumens for studying epithelial-endothelial migration in breast cancer. BIOMICROFLUIDICS 2019; 13:064122. [PMID: 31832120 PMCID: PMC6894982 DOI: 10.1063/1.5123912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 05/02/2023]
Abstract
In breast cancer development, crosstalk between mammary epithelial cells and neighboring vascular endothelial cells is critical to understanding tumor progression and metastasis, but the mechanisms of this dynamic interplay are not fully understood. Current cell culture platforms do not accurately recapitulate the 3D luminal architecture of mammary gland elements. Here, we present the development of an accessible and scalable microfluidic coculture system that incorporates two parallel 3D luminal structures that mimic vascular endothelial and mammary epithelial cell layers, respectively. This parallel 3D lumen configuration allows investigation of endothelial-epithelial crosstalk and its effects of the comigration of endothelial and epithelial cells into microscale migration ports located between the parallel lumens. We describe the development and application of our platform, demonstrate generation of 3D luminal cell layers for endothelial cells and three different breast cancer cell lines, and quantify their migration profiles based on number of migrated cells, area coverage by migrated cells, and distance traveled by individual migrating cells into the migration ports. Our system enables analysis at the single-cell level, allows simultaneous monitoring of endothelial and epithelial cell migration within a 3D extracellular matrix, and has potential for applications in basic research on cellular crosstalk as well as drug development.
Collapse
Affiliation(s)
- Deepika Devadas
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Thomas A. Moore
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | | | - Edmond W. K. Young
- Author to whom correspondence should be addressed:. Tel.: +1 (416) 978-1521
| |
Collapse
|
50
|
Yin M, Shen J, Yu S, Fei J, Zhu X, Zhao J, Zhai L, Sadhukhan A, Zhou J. Tumor-Associated Macrophages (TAMs): A Critical Activator In Ovarian Cancer Metastasis. Onco Targets Ther 2019; 12:8687-8699. [PMID: 31695427 PMCID: PMC6814357 DOI: 10.2147/ott.s216355] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) that appear in every stage of cancer progression are usually tumor-promoting cells and are present abundantly in the tumor-associated microenvironment. In ovarian cancer, the overall and intratumoral M1/M2 ratio is a relatively efficient TAM parameter for predicting the prognosis of patients, especially for serous tissue type cancer. TAMs exhibit immunological checkpoint modulators, such as the B7 family and programmed death-ligand 1 (PD-L1), and play a key role in the development, metastasis and invasion of ovarian cancer, but the underlying mechanism is barely understood. Ovarian cancer is a severe gynecological malignancy with high mortality. Ovarian cancer-associated death can primarily be attributed to cancer metastasis. The majority of patients are diagnosed with wide dissemination in the peritoneum and omentum, limiting the effectiveness of surgery and chemotherapy. In addition, unlike other well-documented cancers, metastasis through vasculature is not a usual dissemination pathway in ovarian cancer. This review sheds light on TAMs and the main process and mechanism of ovarian cancer metastasis.
Collapse
Affiliation(s)
- Meichen Yin
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayu Shen
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuqian Yu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Fei
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoqing Zhu
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiayao Zhao
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Lingyun Zhai
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Annapurna Sadhukhan
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|