1
|
Messina MS, Torrente L, Pezacki AT, Humpel HI, Li EL, Miller SG, Verdejo-Torres O, Padilla-Benavides T, Brady DC, Killilea DW, Killilea AN, Ralle M, Ward NP, Ohata J, DeNicola GM, Chang CJ. A histochemical approach to activity-based copper sensing reveals cuproplasia-dependent vulnerabilities in cancer. Proc Natl Acad Sci U S A 2025; 122:e2412816122. [PMID: 39813247 PMCID: PMC11761388 DOI: 10.1073/pnas.2412816122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Copper is an essential nutrient for sustaining vital cellular processes spanning respiration, metabolism, and proliferation. However, loss of copper homeostasis, particularly misregulation of loosely bound copper ions which are defined as the labile copper pool, occurs in major diseases such as cancer, where tumor growth and metastasis have a heightened requirement for this metal. To help decipher the role of copper in the etiology of cancer, we report a histochemical activity-based sensing approach that enables systematic, high-throughput profiling of labile copper status across many cell lines in parallel. Coppermycin-1 reacts selectively with Cu(I) to release puromycin, which is then incorporated into nascent peptides during protein translation, thus leaving a permanent and dose-dependent marker for labile copper that can be visualized with standard immunofluorescence assays. We showcase the utility of this platform for screening labile Cu(I) pools across the National Cancer Institute's 60 (NCI-60) human tumor cell line panel, identifying cell types with elevated basal levels of labile copper. Moreover, we use Coppermycin-1 to show that lung cancer cells with heightened activation of nuclear factor-erythroid 2-related factor 2 (NRF2) possess lower resting labile Cu(I) levels and, as a result, have reduced viability when treated with a copper chelator. This work establishes that methods for labile copper detection can be used to assess cuproplasia, an emerging form of copper-dependent cell growth and proliferation, providing a starting point for broader investigations into the roles of transition metal signaling in biology and medicine.
Collapse
Affiliation(s)
- Marco S. Messina
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
| | - Hanna I. Humpel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE19716
| | - Erin L. Li
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Sophia G. Miller
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Odette Verdejo-Torres
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT06459
| | | | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Killilea
- Office of Research, University of California, San Francisco, Oakland, CA94609
| | - Alison N. Killilea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR97239
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, NC27695
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL33612
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Chemistry, Princeton University, Princeton, NJ08544
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| |
Collapse
|
2
|
Greenwood HE, Barber AR, Edwards RS, Tyrrell WE, George ME, Dos Santos SN, Baark F, Tanc M, Khalil E, Falzone A, Ward NP, DeBlasi JM, Torrente L, Soni PN, Pearce DR, Firth G, Smith LM, Vilhelmsson Timmermand O, Huebner A, Swanton C, Hynds RE, DeNicola GM, Witney TH. Imaging NRF2 activation in non-small cell lung cancer with positron emission tomography. Nat Commun 2024; 15:10484. [PMID: 39690148 PMCID: PMC11652680 DOI: 10.1038/s41467-024-54852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. Currently, there is no means to non-invasively identify NRF2 activation in living subjects. Here, we show that positron emission tomography imaging with the system xc- radiotracer, [18F]FSPG, provides a sensitive and specific marker of NRF2 activation in orthotopic, patient-derived, and genetically engineered mouse models of NSCLC. We found a NRF2-related gene expression signature in a large cohort of NSCLC patients, suggesting an opportunity to preselect patients prior to [18F]FSPG imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted with an antibody-drug conjugate for sustained tumour growth suppression. Overall, our results establish [18F]FSPG as a predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.
Collapse
Affiliation(s)
- Hannah E Greenwood
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Abigail R Barber
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Richard S Edwards
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Will E Tyrrell
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Madeleine E George
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Sofia N Dos Santos
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Friedrich Baark
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Muhammet Tanc
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Eman Khalil
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Aimee Falzone
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nathan P Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Janine M DeBlasi
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Pritin N Soni
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - David R Pearce
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | - Lydia M Smith
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK
| | | | - Ariana Huebner
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Robert E Hynds
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gina M DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Timothy H Witney
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, UK.
| |
Collapse
|
3
|
Wang T, Liu M, Li X, Zhang S, Gu H, Wei X, Wang X, Xu Z, Shen T. Naturally-derived modulators of the Nrf2 pathway and their roles in the intervention of diseases. Free Radic Biol Med 2024; 225:560-580. [PMID: 39368519 DOI: 10.1016/j.freeradbiomed.2024.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Cumulative evidence has verified that persistent oxidative stress is involved in the development of various chronic diseases, including pulmonary, neurodegenerative, kidney, cardiovascular, and liver diseases, as well as cancers. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in regulating cellular oxidative stress and inflammatory reactions, making it a focal point for disease prevention and treatment strategies. Natural products are essential resources for discovering leading molecules for new drug research and development. In this review, we comprehensively outlined the progression of the knowledge on the Nrf2 pathway, Nrf2 activators in clinical trials, the naturally-derived Nrf2 modulators (particularly from 2014-present), as well as their effects on the pathogenesis of chronic diseases.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Mingjie Liu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Li
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Sen Zhang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Haoran Gu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Xuan Wei
- Shandong Center for Food and Drug Evaluation and Inspection, Jinan, Shandong, PR China
| | - Xiaoning Wang
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China
| | - Zhenpeng Xu
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), Shandong Engineering Research Center for Traditional Chinese Medicine Standard, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
4
|
Qiu M, Ma K, Zhang J, Zhao Z, Wang S, Wang Q, Xu H. Isoliquiritigenin as a modulator of the Nrf2 signaling pathway: potential therapeutic implications. Front Pharmacol 2024; 15:1395735. [PMID: 39444605 PMCID: PMC11496173 DOI: 10.3389/fphar.2024.1395735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor responsible for cytoprotection, plays a crucial role in regulating the expression of numerous antioxidant genes, thereby reducing reactive oxygen species (ROS) levels and safeguarding cells against oxidative stress. Extensive research has demonstrated the involvement of Nrf2 in various diseases, prompting the exploration of Nrf2 activation as a potential therapeutic approach for a variety of diseases. Consequently, there has been a surge of interest in investigating the Nrf2 signaling pathway and developing compounds that can modulate its activity. Isoliquiritigenin (ISL) (PubChem CID:638278) exhibits a diverse range of pharmacological activities, including antioxidant, anticancer, and anti-tumor properties. Notably, its robust antioxidant activity has garnered significant attention. Furthermore, ISL has been found to possess therapeutic effects on various diseases, such as diabetes, cardiovascular diseases, kidney diseases, and cancer, through the activation of the Nrf2 pathway. This review aims to evaluate the potential of ISL in modulating the Nrf2 signaling pathway and summarize the role of ISL in diverse diseases prevention and treatment through modulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Mangmang Qiu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Kang Ma
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Junfeng Zhang
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Zhaohua Zhao
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| | - Shan Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qing Wang
- Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- School of Basic Medical Sciences, Xi’an Medical University, Xi’an, China
| |
Collapse
|
5
|
Sozzi S, Manni I, Ercolani C, Diodoro MG, Bartolazzi A, Spallotta F, Piaggio G, Monteonofrio L, Soddu S, Rinaldo C, Valente D. Inactivation of HIPK2 attenuates KRAS G12D activity and prevents pancreatic tumorigenesis. J Exp Clin Cancer Res 2024; 43:265. [PMID: 39342278 PMCID: PMC11437985 DOI: 10.1186/s13046-024-03189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) features KRAS mutations in approximately 90% of human cases and excessive stromal response, termed desmoplastic reaction. Oncogenic KRAS drives pancreatic carcinogenesis by acting on both epithelial cells and tumor microenvironment (TME). We have previously shown that Homeodomain-Interacting Protein Kinase 2 (HIPK2) cooperates with KRAS in sustaining ERK1/2 phosphorylation in human colorectal cancers. Here, we investigated whether HIPK2 contributes to oncogenic KRAS-driven tumorigenesis in vivo, in the onset of pancreatic cancer. METHODS We employed an extensively characterized model of KRASG12D-dependent preinvasive PDAC, the Pdx1-Cre;LSL-KRasG12D/+ (KC) mice. In these mice, HIPK2 was inhibited by genetic knockout in the pancreatic epithelial cells (KCH-/-) or by pharmacologic inactivation with the small molecule 5-IodoTubercidin (5-ITu). The development of preneoplastic acinar-to-ductal metaplasia (ADM), intraepithelial neoplasia (PanIN), and their associated desmoplastic reaction were analyzed. RESULTS In Hipk2-KO mice (KCH-/-), ERK phosphorylation was lowered, the appearance of ADM was slowed down, and both the number and pathologic grade of PanIN were reduced compared to Hipk2-WT KC mice. The pancreatic lesion phenotype in KCH-/- mice was characterized by abundant collagen fibers and reduced number of αSMA+ and pSTAT3+ desmoplastic cells. These features were reminiscent of the recently described human "deserted" sub-TME, poor in cells, rich in matrix, and associated with tumor differentiation. In contrast, the desmoplastic reaction of KC mice resembled the "reactive" sub-TME, rich in stromal cells and associated with tumor progression. These observations were confirmed by the pharmacologic inhibition of HIPK2 in KC mice. CONCLUSION This study demonstrates that HIPK2 inhibition weakens oncogenic KRAS activity and pancreatic tumorigenesis providing a rationale for testing HIPK2 inhibitors to mitigate the incidence of PDAC development in high-risk individuals.
Collapse
Affiliation(s)
- Silvia Sozzi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Bartolazzi
- Pathology Research Laboratories, Sant'Andrea University Hospital, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, Rome, Italy
| | - Giulia Piaggio
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| | - Davide Valente
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, Rome, Italy.
| |
Collapse
|
6
|
Rudnitsky E, Braiman A, Wolfson M, Muradian KK, Gorbunova V, Turgeman G, Fraifeld VE. Stem cell-derived extracellular vesicles as senotherapeutics. Ageing Res Rev 2024; 99:102391. [PMID: 38914266 DOI: 10.1016/j.arr.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
Cellular senescence (CS) is recognized as one of the hallmarks of aging, and an important player in a variety of age-related pathologies. Accumulation of senescent cells can promote a pro-inflammatory and pro-cancerogenic microenvironment. Among potential senotherapeutics are extracellular vesicles (EVs) (40-1000 nm), including exosomes (40-150 nm), that play an important role in cell-cell communications. Here, we review the most recent studies on the impact of EVs derived from stem cells (MSCs, ESCs, iPSCs) as well as non-stem cells of various types on CS and discuss potential mechanisms responsible for the senotherapeutic effects of EVs. The analysis revealed that (i) EVs derived from stem cells, pluripotent (ESCs, iPSCs) or multipotent (MSCs of various origin), can mitigate the cellular senescence phenotype both in vitro and in vivo; (ii) this effect is presumably senomorphic; (iii) EVs display cross-species activity, without apparent immunogenic responses. In summary, stem cell-derived EVs appear to be promising senotherapeutics, with a feasible application in humans.
Collapse
Affiliation(s)
- Ekaterina Rudnitsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Khachik K Muradian
- Department of Biology of Aging and Experimental Life Span Extension, State Institute of Gerontology of National Academy of Medical Sciences of Ukraine, Kiev 4114, Ukraine
| | - Vera Gorbunova
- Department of Biology, Rochester Aging Research Center, University of Rochester, Rochester, NY 14627, USA
| | - Gadi Turgeman
- Department of Molecular Biology, Faculty of Natural Sciences and Medical School, Ariel University, Ariel 40700, Israel.
| | - Vadim E Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
7
|
Verdina A, Garufi A, D’Orazi V, D’Orazi G. HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies. Int J Mol Sci 2024; 25:7678. [PMID: 39062921 PMCID: PMC11277226 DOI: 10.3390/ijms25147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a "bona fide" oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor-host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
8
|
Kurmasheva N, Said A, Wong B, Kinderman P, Han X, Rahimic AHF, Kress A, Carter-Timofte ME, Holm E, van der Horst D, Kollmann CF, Liu Z, Wang C, Hoang HD, Kovalenko E, Chrysopoulou M, Twayana KS, Ottosen RN, Svenningsen EB, Begnini F, Kiib AE, Kromm FEH, Weiss HJ, Di Carlo D, Muscolini M, Higgins M, van der Heijden M, Arulanandam R, Bardoul A, Tong T, Ozsvar A, Hou WH, Schack VR, Holm CK, Zheng Y, Ruzek M, Kalucka J, de la Vega L, Elgaher WAM, Korshoej AR, Lin R, Hiscott J, Poulsen TB, O'Neill LA, Roy DG, Rinschen MM, van Montfoort N, Diallo JS, Farin HF, Alain T, Olagnier D. Octyl itaconate enhances VSVΔ51 oncolytic virotherapy by multitarget inhibition of antiviral and inflammatory pathways. Nat Commun 2024; 15:4096. [PMID: 38750019 PMCID: PMC11096414 DOI: 10.1038/s41467-024-48422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKβ independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.
Collapse
Affiliation(s)
- Naziia Kurmasheva
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Aida Said
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Boaz Wong
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Priscilla Kinderman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoying Han
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Anna H F Rahimic
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Alena Kress
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- Faculty of Biological Sciences, Goethe University, 60438, Frankfurt am Main, Germany
| | | | - Emilia Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Chen Wang
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Huy-Dung Hoang
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - Elina Kovalenko
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Rasmus N Ottosen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Fabio Begnini
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Anders E Kiib
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Hauke J Weiss
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Daniele Di Carlo
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Michela Muscolini
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Mirte van der Heijden
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Angelina Bardoul
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Tong Tong
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Attila Ozsvar
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
| | - Wen-Hsien Hou
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yunan Zheng
- Small Molecule Therapeutics & Platform Technologies, AbbVie Inc., 1 North Waukegon Road, North Chicago, IL, 60064, USA
| | - Melanie Ruzek
- AbbVie, Bioresearch Center, 100 Research Drive, Worcester, MA, 01608, USA
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Walid A M Elgaher
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, E8.1, 66123, Saarbrücken, Germany
| | - Anders R Korshoej
- Department of Neurosurgery, Aarhus University Hospital, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark
- DCCC Brain Tumor Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - John Hiscott
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, 00161, Italy
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Dominic G Roy
- Cancer Axis, CHUM Research Centre, Montreal, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, Montreal, Canada
- Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- III. Department of Medicine and Hamburg Center for Kidney Health, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jean-Simon Diallo
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Insitute, Ottawa, ON, K1H 8L6, Canada
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Frankfurt/Mainz partner site and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Tommy Alain
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1, Canada
| | - David Olagnier
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
9
|
Li W, Cao J, Zhang Y, Ling G, Tan N, Wei Y, Zhang Y, Wang X, Qian W, Jiang J, Zhang J, Wang W, Wang Y. Aucubin alleviates doxorubicin-induced cardiotoxicity through crosstalk between NRF2 and HIPK2 mediating autophagy and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155473. [PMID: 38422972 DOI: 10.1016/j.phymed.2024.155473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is widely used for the treatment of a variety of cancers. However, its clinical application is limited by dose-dependent cardiotoxicity. Recent findings demonstrated that autophagy inhibition and apoptosis of cardiomyocytes induced by oxidative stress dominate the pathophysiology of DOX-induced cardiotoxicity (DIC), however, there are no potential molecules targeting on these. PURPOSE This study aimed to explore whether aucubin (AU) acting on inimitable crosstalk between NRF2 and HIPK2 mediated the autophagy, oxidative stress, and apoptosis in DIC, and provide a new and alternative strategy for the treatment of DIC. METHODS AND RESULTS We first demonstrated the protection of AU on cardiac structure and function in DIC mice manifested by increased EF and FS values, decreased serum CK-MB and LDH contents and well-aligned cardiac tissue in HE staining. Furthermore, AU alleviated DOX-induced myocardial oxidative stress, mitochondrial damage, apoptosis, and autophagy flux dysregulation in mice, as measured by decreased ROS, 8-OHdG, and TUNEL-positive cells in myocardial tissue, increased SOD and decreased MDA in serum, aligned mitochondria with reduced vacuoles, and increased autophagosomes. In vitro, AU alleviated DOX-induced oxidative stress, autophagy inhibition, and apoptosis by promoting NRF2 and HIPK2 expression. We also identified crosstalk between NRF2 and HIPK2 in DIC as documented by overexpression of NRF2 or HIPK2 reversed cellular oxidative stress, autophagy blocking, and apoptosis aggravated by HIPK2 or NRF2 siRNA, respectively. Simultaneously, AU promoted the expression and nuclear localization of NRF2 protein, which was reversed by HIPK2 siRNA, and AU raised the expression of HIPK2 protein as well, which was reversed by NRF2 siRNA. Crucially, AU did not affect the antitumor activity of DOX against MCF-7 and HepG2 cells, which made up for the shortcomings of previous anti-DIC drugs. CONCLUSION These collective results innovatively documented that AU regulated the unique crosstalk between NRF2 and HIPK2 to coordinate oxidative stress, autophagy, and apoptosis against DIC without compromising the anti-tumor effect of DOX in vitro.
Collapse
Affiliation(s)
- Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Weina Qian
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Jinchi Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingmei Zhang
- School of Life Sciences, Tsinghua University, Beijing 100029, China
| | - Wei Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
10
|
Ma Y, Qian Y, Chen Y, Ruan X, Peng X, Sun Y, Zhang J, Luo J, Zhou S, Deng C. Resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation. J Periodontal Res 2024; 59:162-173. [PMID: 37905727 DOI: 10.1111/jre.13200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate resveratrol's specific role as an anti-inflammatory and osteogenic differentiation of hPDLSCs in periodontitis and to reveal the mechanisms involved. BACKGROUND Numerous studies have shown that inhibiting the inflammatory response of periodontal tissues and promoting the regeneration of alveolar bone are crucial treatments for periodontitis. Resveratrol has been found to have certain anti-inflammatory property. However, the anti-inflammatory mechanism and osteogenic effect of resveratrol in periodontitis are poorly understood. MATERIALS AND METHODS We constructed an in vitro periodontitis model by LPS stimulation of hPDLSCs and performed WB, RT-qPCR, and immunofluorescence to analyze inflammatory factors and related pathways. In addition, we explored the osteogenic ability of resveratrol in in vitro models. RESULTS In vitro, resveratrol ameliorated the inflammatory response associated with activation of the NF-κB pathway through activation of the NRF2/HO-1 pathway, characterized by inhibition of p65/p50 nuclear translocation and the proinflammatory cytokines interleukin-1β levels. Resveratrol also has a positive effect on osteogenic differentiation. CONCLUSIONS Observations suggest that resveratrol modulates the inflammatory response in hPDLSCs via the NRF2/HO-1 and NF-κB pathways and promotes osteogenic differentiation.
Collapse
Affiliation(s)
- Yifan Ma
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Qian
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yuteng Chen
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoxu Ruan
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Xiaoya Peng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Yi Sun
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jue Zhang
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Jingjing Luo
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Songlin Zhou
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| | - Chao Deng
- School of Stomatology, Wannan Medical College, Wuhu, China
- Anhui Provincial Engineering Research Center for dental materials and application, Wannan Medical College, Wuhu, China
| |
Collapse
|
11
|
Greenwood HE, Edwards RS, Tyrrell WE, Barber AR, Baark F, Tanc M, Khalil E, Falzone A, Ward NP, DeBlasi JM, Torrente L, Pearce DR, Firth G, Smith LM, Timmermand OV, Huebner A, George ME, Swanton C, Hynds RE, DeNicola GM, Witney TH. Imaging the master regulator of the antioxidant response in non-small cell lung cancer with positron emission tomography. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.16.572007. [PMID: 38168428 PMCID: PMC10760199 DOI: 10.1101/2023.12.16.572007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.
Collapse
Affiliation(s)
- Hannah E. Greenwood
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Richard S. Edwards
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Will E. Tyrrell
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Abigail R. Barber
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Friedrich Baark
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Muhammet Tanc
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Eman Khalil
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Aimee Falzone
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nathan P. Ward
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Janine M. DeBlasi
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Laura Torrente
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - David R. Pearce
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Lydia M. Smith
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Oskar Vilhelmsson Timmermand
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Ariana Huebner
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Madeleine E. George
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| | - Charles Swanton
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert E. Hynds
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, WC1E 6DD, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Timothy H. Witney
- School of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, UK
| |
Collapse
|
12
|
Mukherjee AG, Gopalakrishnan AV. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med Oncol 2023; 40:248. [PMID: 37480500 DOI: 10.1007/s12032-023-02124-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
The Nuclear factor erythroid 2-related factor 2 (Nrf2) protein has garnered significant interest due to its crucial function in safeguarding cells and tissues. The Nrf2 protein is crucial in preserving tissue integrity by safeguarding cells against metabolic, xenobiotic and oxidative stress. Due to its various functions, Nrf2 is a potential pharmacological target for reducing the incidence of diseases such as cancer. However, mutations in Keap1-Nrf2 are not consistently favored in all types of cancer. Instead, they seem to interact with specific driver mutations of tumors and their respective tissue origins. The Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 pathway mutations are a powerful cancer adaptation that utilizes inherent cytoprotective pathways, encompassing nutrient metabolism and ROS regulation. The augmentation of Nrf2 activity elicits significant alterations in the characteristics of neoplastic cells, such as resistance to radiotherapy and chemotherapy, safeguarding against apoptosis, heightened invasiveness, hindered senescence, impaired autophagy and increased angiogenesis. The altered activity of Nrf2 can arise from diverse genetic and epigenetic modifications that instantly impact Nrf2 regulation. The present study aims to showcase the correlation between the Keap1-Nrf2 pathway and the progression of cancers, emphasizing genetic mutations, metabolic processes, immune regulation, and potential therapeutic strategies. This article delves into the intricacies of Nrf2 pathway anomalies in cancer, the potential ramifications of uncontrolled Nrf2 activity, and therapeutic interventions to modulate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
13
|
Cordeiro-Massironi K, Soares-Freitas RAM, Sampaio GR, Pinaffi-Langley ACDC, Bridi R, de Camargo AC, Torres EAFS. In Vitro Digestion of Peanut Skin Releases Bioactive Compounds and Increases Cancer Cell Toxicity. Antioxidants (Basel) 2023; 12:1356. [PMID: 37507896 PMCID: PMC10376574 DOI: 10.3390/antiox12071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut skin is a rich source of bioactive compounds which may be able to reduce the risk factors associated with metabolic syndromes. This study aimed to characterize bio-compounds from peanut skin (Arachis hypogaea) and their bioactivity (antioxidant activity, inhibition of lipase, and carbohydrase enzymes) and to evaluate their anti-proliferative properties in colorectal cancer cells (HCT116) upon in vitro digestion. Peanut skin was digested in two sequential phases, and the final content, named phase-1 (P1) and phase-2 (P2) extracts, was evaluated. Several bioactive compounds were positively identified and quantified by liquid chromatography, including quinic acid, released especially after in vitro digestion. The total phenolic content and, regardless of the method, the antioxidant activity of P1 was higher than P2. P1 also showed a lower enzyme inhibitory concentration IC50 than P2, lipase, and α-glucosidase. For cell viability in HCT116 cells, lower concentrations of P1 were found for IC50 compared to P2. In conclusion, bioactive compounds were released mainly during the first phase of the in vitro digestion. The digested samples presented antioxidant activity, enzyme inhibitory activity, and cancer cell cytotoxicity, especially those from the P1 extract. The potential applications of such a by-product in human health are reported.
Collapse
Affiliation(s)
- Karina Cordeiro-Massironi
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | | | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Ana Clara da C Pinaffi-Langley
- Department of Nutrition Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| | | | | |
Collapse
|
14
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. The Sweet Side of HIPK2. Cancers (Basel) 2023; 15:2678. [PMID: 37345014 PMCID: PMC10216817 DOI: 10.3390/cancers15102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
15
|
Cao L, Wen M, Hu Z, Jia W, Lin J, Hu B, Wu G, Tong S, Chen Q, Liu X, Weng X. Homeodomain-interacting protein kinase 2 regulates NLRP3 inflammasome activation through endoplasmic reticulum stress in septic liver injury. J Int Med Res 2023; 51:3000605231173272. [PMID: 37190764 DOI: 10.1177/03000605231173272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
OBJECTIVE Septic liver injury is a major burden for the clinical management of sepsis. Hepatocyte cell death plays a crucial pathophysiological role in sepsis. A recent study proposed that NLRP3 inflammasome-mediated pyroptosis participates in septic liver injury. Therefore, investigating the mechanism controlling this process may help manage sepsis. METHODS We investigated the role of homeodomain-interacting protein kinase 2 (HIPK2) in regulating the NLRP3 inflammasome in vivo using mouse models and in vitro in primary hepatocytes. RESULTS HIPK2 could improve liver injury and survival in a mouse model of sepsis. Overexpression of HIPK2 could suppress NLRP3 and caspase-1-p20 expression, while HIPK2 knockdown led to higher levels of these two molecules. Importantly, HIPK2 could suppress endoplasmic reticulum (ER) stress. Pharmacologically inhibiting ER stress could abolish activation of the NLRP3 inflammasome in hepatocytes with HIPK2 knockdown. CONCLUSION HIPK2 can regulate ER stress and NLRP3 inflammasome activation in the liver during sepsis, and HIPK2-mediated suppression of ER stress participates in regulating NLRP3 inflammasome activation. The present study highlights the role of HIPK2 in regulating the inflammasome in septic liver injury, which may serve as a target for managing sepsis.
Collapse
Affiliation(s)
- Lijun Cao
- Department of Anesthesiology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Min Wen
- Department of Stomatology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Zhiqiang Hu
- Department of Otorhinolaryngology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Weihe Jia
- Department of Nuclear Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Jiayan Lin
- Department of Anesthesiology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Bo Hu
- Department of Anesthesiology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Gang Wu
- Department of Anesthesiology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Shengchuang Tong
- Department of Anesthesiology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Qinglin Chen
- Department of Anesthesiology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Xingming Liu
- Department of Urology, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Xuhao Weng
- Department of Burn and Plastic Surgery, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| |
Collapse
|
16
|
Bardelčíková A, Šoltys J, Mojžiš J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants (Basel) 2023; 12:antiox12040901. [PMID: 37107276 PMCID: PMC10135609 DOI: 10.3390/antiox12040901] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer-related deaths worldwide. The pathogenesis of CRC is a complex multistep process. Among other factors, inflammation and oxidative stress (OS) have been reported to be involved in the initiation and development of CRC. Although OS plays a vital part in the life of all organisms, its long-term effects on the human body may be involved in the development of different chronic diseases, including cancer diseases. Chronic OS can lead to the oxidation of biomolecules (nucleic acids, lipids and proteins) or the activation of inflammatory signaling pathways, resulting in the activation of several transcription factors or the dysregulation of gene and protein expression followed by tumor initiation or cancer cell survival. In addition, it is well known that chronic intestinal diseases such as inflammatory bowel disease (IBD) are associated with an increased risk of cancer, and a link between OS and IBD initiation and progression has been reported. This review focuses on the role of oxidative stress as a causative agent of inflammation in colorectal cancer.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| | - Jindřich Šoltys
- Institute of Parasitology, Slovak Academy of Science, Hlinkova 3, 040 01 Košice, Slovakia
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Tr. SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
17
|
Su AL, Penning TM. Role of Human Aldo-Keto Reductases and Nuclear Factor Erythroid 2-Related Factor 2 in the Metabolic Activation of 1-Nitropyrene via Nitroreduction in Human Lung Cells. Chem Res Toxicol 2023; 36:270-280. [PMID: 36693016 PMCID: PMC9974908 DOI: 10.1021/acs.chemrestox.2c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1-Nitropyrene (1-NP) is a constituent of diesel exhaust and classified as a group 2A probable human carcinogen. The metabolic activation of 1-NP by nitroreduction generates electrophiles that can covalently bind DNA to form mutations to contribute to cancer causation. NADPH-dependent P450 oxidoreductase (POR), xanthine oxidase (XO), aldehyde oxidase (AOX), and NAD(P)H/quinone oxidoreductase 1 (NQO1) may catalyze 1-NP nitroreduction. We recently found that human recombinant aldo-keto reductases (AKRs) 1C1-1C3 catalyze 1-NP nitroreduction. NQO1 and AKR1C1-1C3 are genes induced by nuclear factor erythroid 2-related factor 2 (NRF2). Despite this knowledge, the relative importance of these enzymes and NRF2 to 1-NP nitroreduction is unknown. We used a combination of pharmacological and genetic approaches to assess the relative importance of these enzymes and NRF2 in the aerobic nitroreduction of 1-NP in human bronchial epithelial cells, A549 and HBEC3-KT. 1-NP nitroreduction was assessed by the measurement of 1-aminopyrene (1-AP), the six-electron reduced metabolite of 1-NP, based on its intrinsic fluorescence properties (λex and λem). We found that co-treatment of 1-NP with salicylic acid, an AKR1C1 inhibitor, or ursodeoxycholate, an AKR1C2 inhibitor, for 48 h decreased 1-AP production relative to 1-NP treatment alone (control) in both cell lines. R-Sulforaphane or 1-(2-cyano-3,12,28-trioxooleana-1,9(11)-dien-28-yl)-1H-imidazole (CDDO-Im), two NRF2 activators, each increased 1-AP production relative to control only in HBEC3-KT cells, which have inducible NRF2. Inhibitors of POR, NQO1, and XO failed to modify 1-AP production relative to control in both cell lines. Importantly, A549 wild-type cells with constitutively active NRF2 produced more 1-AP than A549 cells with heterozygous expression of NFE2L2/NRF2, which were able to produce more 1-AP than A549 cells with homozygous knockout of NFE2L2/NRF2. Together, these data show dependence of 1-NP metabolic activation on AKR1Cs and NRF2 in human lung cells. This is the second example whereby NFE2L2/NRF2 is implicated in the carcinogenicity of diesel exhaust constituents.
Collapse
Affiliation(s)
- Anthony L. Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Trevor M. Penning
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Garufi A, Pistritto G, D’Orazi G. HIPK2 as a Novel Regulator of Fibrosis. Cancers (Basel) 2023; 15:1059. [PMID: 36831402 PMCID: PMC9954661 DOI: 10.3390/cancers15041059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Fibrosis is an unmet medical problem due to a lack of evident biomarkers to help develop efficient targeted therapies. Fibrosis can affect almost every organ and eventually induce organ failure. Homeodomain-interacting protein kinase 2 (HIPK2) is a protein kinase that controls several molecular pathways involved in cell death and development and it has been extensively studied, mainly in the cancer biology field. Recently, a role for HIPK2 has been highlighted in tissue fibrosis. Thus, HIPK2 regulates several pro-fibrotic pathways such as Wnt/β-catenin, TGF-β and Notch involved in renal, pulmonary, liver and cardiac fibrosis. These findings suggest a wider role for HIPK2 in tissue physiopathology and highlight HIPK2 as a promising target for therapeutic purposes in fibrosis. Here, we will summarize the recent studies showing the involvement of HIPK2 as a novel regulator of fibrosis.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
19
|
Beeraka NM, Zhang J, Zhao D, Liu J, A U C, Vikram Pr H, Shivaprakash P, Bannimath N, Manogaran P, Sinelnikov MY, Bannimath G, Fan R. Combinatorial Implications of Nrf2 Inhibitors with FN3K Inhibitor: In vitro Breast Cancer Study. Curr Pharm Des 2023; 29:2408-2425. [PMID: 37861038 DOI: 10.2174/0113816128261466231011114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Platinum derivatives are chemotherapeutic agents preferred for the treatment of cancers including breast cancer. Oxaliplatin is an anticancer drug that is in phase II studies to treat metastatic breast cancer. However, its usage is constrained by chemoresistance and dose-related side effects. OBJECTIVE The objective of this study is to examine the combinatorial efficacy of brusatol, an Nrf2 blocker, with oxaliplatin (a proven FN3K blocker in our study) in mitigating breast cancer growth in vitro. METHODS We performed cytotoxicity assays, combination index (CI) analysis, colony formation assays, apoptosis assays, and Western blotting. RESULTS Results of our study described the chemosensitizing efficacy of brusatol in combination with lowdose oxaliplatin against breast cancer through synergistic effects in both BT-474 and T47D cells. A significant mitigation in the migration rate of these cancer cells was observed with the combination regimen, which is equivalent to the IC-50 dose of oxaliplatin (125 μM). Furthermore, ROS-mediated and apoptotic modes of cell death were observed with a combinatorial regimen. Colony formation of breast cancer cell lines was mitigated with a combinatorial regimen of bursatol and oxaliplatin than the individual treatment regimen. FN3K expression downregulated with oxaliplatin in T47D cells. The mitigation of FN3K protein expression with a combination regimen was not observed but the Nrf2 downstream antioxidant signaling proteins were significantly downregulated with a combination regimen similar to individual drug regimens. CONCLUSION Our study concluded the combination efficacy of phytochemicals like brusatol in combination with low-dose oxaliplatin (FN3K blocker), which could enhance the chemosensitizing effect in breast cancer and minimize the overall dose requirement of oxaliplatin.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Junqi Liu
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| | - Chinnappa A U
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
- Xenone Healthcare Pvt. Ltd, #318, Third Floor, US Complex, Jasola, New Delhi 110076, India
| | - Priyanka Shivaprakash
- Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Namitha Bannimath
- Department of Pharmacology and Toxicology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Prasath Manogaran
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Mikhail Y Sinelnikov
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya St., Moscow 119991, Russia
- Sinelab Biomedical Research Center, Minnesota 55905, USA
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Ruitai Fan
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshedong Str., Zhengzhou 450052, China
| |
Collapse
|
20
|
Conte A, Valente V, Paladino S, Pierantoni GM. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell Signal 2023; 101:110491. [PMID: 36241057 DOI: 10.1016/j.cellsig.2022.110491] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates and regulates a plethora of transcriptional regulators and chromatin modifiers. The heterogeneity of its interactome allows HIPK2 to modulate several cellular processes and signaling pathways, ultimately regulating cell fate and proliferation. Because of its p53-dependent pro-apoptotic activity and its downregulation in many tumor types, HIPK2 is traditionally considered a bone fide tumor suppressor gene. However, recent findings revealed that the role of HIPK2 in the pathogenesis of cancer is much more complex, ranging from tumor suppressive to oncogenic, strongly depending on the cellular context. Here, we review the very recent data emerged in the last years about the involvement of HIPK2 in cancer biology and therapy, highlighting the various alterations of this kinase (downregulation, upregulation, mutations and/or delocalization) in dependence on the cancer types. In addition, we discuss the recent advancement in the understanding the tumor suppressive and oncogenic functions of HIPK2, its role in establishing the response to cancer therapies, and its regulation by cancer-associated microRNAs. All these data strengthen the idea that HIPK2 is a key player in many types of cancer; therefore, it could represent an important prognostic marker, a factor to predict therapy response, and even a therapeutic target itself.
Collapse
Affiliation(s)
- Andrea Conte
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Valeria Valente
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
21
|
NRF2 in Cancer: Cross-Talk with Oncogenic Pathways and Involvement in Gammaherpesvirus-Driven Carcinogenesis. Int J Mol Sci 2022; 24:ijms24010595. [PMID: 36614036 PMCID: PMC9820659 DOI: 10.3390/ijms24010595] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Expanding knowledge of the molecular mechanisms at the basis of tumor development, especially the cross-talk between oncogenic pathways, will possibly lead to better tailoring of anticancer therapies. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a central role in cancer progression, not only because of its antioxidant activity but also because it establishes cross-talk with several oncogenic pathways, including Heat Shock Factor1 (HSF1), mammalian target of rapamycin (mTOR), and mutant (mut) p53. Moreover, the involvement of NRF2 in gammaherpesvirus-driven carcinogenesis is particularly interesting. These viruses indeed hijack the NRF2 pathway to sustain the survival of tumor cells in which they establish a latent infection and to avoid a too-high increase of reactive oxygen species (ROS) when these cancer cells undergo treatments that induce viral replication. Interestingly, NRF2 activation may prevent gammaherpesvirus-driven oncogenic transformation, highlighting how manipulating the NRF2 pathway in the different phases of gammaherpesvirus-mediated carcinogenesis may lead to different outcomes. This review will highlight the mechanistic interplay between NRF2 and some oncogenic pathways and its involvement in gammaherpesviruses biology to recapitulate published evidence useful for potential application in cancer therapy.
Collapse
|
22
|
Gao Y, Xiao X, Luo J, Wang J, Peng Q, Zhao J, Jiang N, Zhao Y. E3 Ubiquitin Ligase FBXO3 Drives Neuroinflammation to Aggravate Cerebral Ischemia/Reperfusion Injury. Int J Mol Sci 2022; 23:13648. [PMID: 36362432 PMCID: PMC9658360 DOI: 10.3390/ijms232113648] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 08/04/2023] Open
Abstract
Ischemic stroke, one of the most universal causes of human mortality and morbidity, is pathologically characterized by inflammatory cascade, especially during the progression of ischemia/reperfusion (I/R) injury. F-Box Protein 3 (FBXO3), a substrate-recognition subunit of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes, has recently been proven to be severed as an underlying pro-inflammatory factor in pathological processes of diverse diseases. Given these considerations, the current study aims at investigating whether FBXO3 exerts impacts on inflammation in cerebral I/R injury. In this study, first, it was verified that FBXO3 protein expression increased after a middle cerebral artery occlusion/reperfusion (MCAO/R) model in Sprague-Dawley (SD) rats and was specifically expressed in neurons other than microglia or astrocytes. Meanwhile, in mouse hippocampal neuronal cell line HT22 cells, the elevation of FBXO3 protein was observed after oxygen and glucose deprivation/reoxygenation (OGD/R) treatment. It was also found that interference of FBXO3 with siRNA significantly alleviated neuronal damage via inhibiting the inflammatory response in I/R injury both in vivo and in vitro. The FBXO3 inhibitor BC-1215 was used to confirm the pro-inflammatory effect of FBXO3 in the OGD/R model as well. Furthermore, by administration of FBXO3 siRNA and BC-1215, FBXO3 was verified to reduce the protein level of Homeodomain-Interacting Protein Kinase 2 (HIPK2), likely through the ubiquitin-proteasome system (UPS), to aggravate cerebral I/R injury. Collectively, our results underline the detrimental effect FBXO3 has on cerebral I/R injury by accelerating inflammatory response, possibly through ubiquitylating and degrading HIPK2. Despite the specific interaction between FBXO3 and HIPK2 requiring further study, we believe that our data suggest the therapeutic relevance of FBXO3 to ischemic stroke and provide a new perspective on the mechanism of I/R injury.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Jing Luo
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Jing Zhao
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400016, China
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Moreno R, Casares L, Higgins M, Ali KX, Honda T, Wiel C, Sayin VI, Dinkova-Kostova AT, de la Vega L. Biotinylation of an acetylenic tricyclic bis(cyanoenone) lowers its potency as an NRF2 activator while creating a novel activity against BACH1. Free Radic Biol Med 2022; 191:203-211. [PMID: 36084789 DOI: 10.1016/j.freeradbiomed.2022.08.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
The transcription factor BACH1 regulates the expression of a variety of genes including genes involved in oxidative stress responses, inflammation, cell motility, cancer cell invasion and cancer metabolism. Based on this, BACH1 has become a promising therapeutic target in cancer (as anti-metastatic target) and also in chronic conditions linked to oxidative stress and inflammation, where BACH1 inhibitors share a therapeutic space with activators of transcription factor NRF2. However, while there is a growing number of NRF2 activators, there are only a few described BACH1 inhibitors/degraders. The synthetic acetylenic tricyclic bis(cyanoenone),(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3.4b,7,8,8a,9,10, 10a-octahydrophenanthrene-2,6-dicarbonitrile, TBE31 is a potent activator of NRF2 without any BACH1 activity. Herein we found that biotinylation of TBE31 greatly reduces its potency as NRF2 activator (50-75-fold less active) while acquiring a novel activity as a BACH1 degrader (100-200-fold more active). We demonstrate that TBE56, the biotinylated TBE31, interacts and promotes the degradation of BACH1 via a mechanism involving the E3 ligase FBXO22. TBE56 is a potent and sustained BACH1 degrader (50-fold more potent than hemin) and accordingly a powerful HMOX1 inducer. TBE56 degrades BACH1 in lung and breast cancer cells, impairing breast cancer cell migration and invasion in a BACH1-dependent manner, while TBE31 has no significant effect. Altogether, our study identifies that the biotinylation of TBE31 provides novel activities with potential therapeutic value, providing a rationale for further characterisation of this and related compounds.
Collapse
Affiliation(s)
- Rita Moreno
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Kevin X Ali
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK; Department of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK.
| |
Collapse
|
24
|
Pouremamali F, Pouremamali A, Dadashpour M, Soozangar N, Jeddi F. An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun Signal 2022; 20:100. [PMID: 35773670 PMCID: PMC9245222 DOI: 10.1186/s12964-022-00906-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) protein is a basic-region leucine zipper transcription factor that defends against endogenous or exogenous stressors. By inducing several cytoprotective and detoxifying gene expressions, Nrf2 can increase the sensitivity of the cells to oxidants and electrophiles. Transient Nrf2 activation, by its specific activators, has protective roles against carcinogenesis and cancer development. However, permanent activation of Nrf2 promotes various cancer properties, comprising malignant progression, chemo/radio resistance, and poor patient prognosis. Taken together, these findings suggest that reaching an optimal balance between paradoxical functions of Nrf2 in malignancy may render a selective improvement to identify therapeutic strategies in cancer treatment. In this review, we describe lately discovered Nrf2 inducers and inhibitors, and their chemopreventive and/or anticancer activities. The Nrf2 pathway signifies one of the most significant cell defense procedures against exogenous or endogenous stressors. Certainly, by increasing the expression of several cytoprotective genes, the transcription factor Nrf2 can shelter cells and tissues from multiple sources of damage including electrophilic, xenobiotic, metabolic, and oxidative stress. Notably, the aberrant activation or accumulation of Nrf2, a common event in many tumors, confers a selective advantage to cancer cells and is connected to malignant progression, therapy resistance, and poor prognosis. Therefore, lately, Nrf2 has arisen as a hopeful target in treatment of cancer, and many struggles have been made to detect therapeutic strategies intended at disrupting its pro-oncogenic role. By summarizing the outcomes from past and recent studies, this review provided an overview concerning the Nrf2 pathway and the molecular mechanisms causing Nrf2 hyperactivation in cancer cells. Finally, this paper also described some of the most promising therapeutic approaches that have been successfully employed to counteract Nrf2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies. Video abstract
Collapse
Affiliation(s)
- Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Soozangar
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran. .,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
25
|
Di Segni M, Virdia I, Verdina A, Amoreo CA, Baldari S, Toietta G, Diodoro MG, Mottolese M, Sperduti I, Moretti F, Buglioni S, Soddu S, Di Rocco G. HIPK2 Cooperates with KRAS Signaling and Associates with Colorectal Cancer Progression. Mol Cancer Res 2022; 20:686-698. [PMID: 35082165 DOI: 10.1158/1541-7786.mcr-21-0628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
UNLABELLED Homeodomain-interacting protein kinase 2 (HIPK2) is an evolutionary conserved kinase that has gained attention as a fine tuner of multiple signaling pathways, among which those commonly altered in colorectal cancer. The aim of this study was to evaluate the relationship of HIPK2 expression with progression markers and mutational pattern and gain insights into the contribution of HIPK2 activity in colorectal cancer. We evaluated a retrospective cohort of colorectal cancer samples by IHC for HIPK2 expression and by next-generation sequencing (NGS) for the detection of mutations of cancer associated genes. We show that the percentage of HIPK2-positive cells increases with tumor progression, significantly correlates with tumor-node-metastasis (TNM) staging and associates with a worse outcome. In addition, we observed that high HIPK2 expression significantly associates with KRAS mutations but not with other cancer-related genes. Functional characterization of the link between HIPK2 and KRAS show that activation of the RAS pathway either due to KRAS mutation or via upstream receptor stimulation, increases HIPK2 expression at the protein level. Of note, HIPK2 physically participates in the active RAS complex while HIPK2 depletion impairs ERK phosphorylation and the growth of tumors derived from KRAS mutated colorectal cancer cells. Overall, this study identifies HIPK2 as a prognostic biomarker candidate in patients with colorectal cancer and underscores a previously unknown functional link between HIPK2 and the KRAS signaling pathway. IMPLICATIONS Our data indicate HIPK2 as a new player in the complex picture of the KRAS signaling network, providing rationales for future clinical studies and new treatment strategies for KRAS mutated colorectal cancer.
Collapse
Affiliation(s)
- Micol Di Segni
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Ilaria Virdia
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Azzurra Amoreo
- Pathology Division, Biostatistics and Bioinformatic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Baldari
- Unit of Tumor Immunology and Immunotherapy, Biostatistics and Bioinformatic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gabriele Toietta
- Unit of Tumor Immunology and Immunotherapy, Biostatistics and Bioinformatic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Pathology Division, Biostatistics and Bioinformatic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marcella Mottolese
- Pathology Division, Biostatistics and Bioinformatic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Sperduti
- Clinical Trial Center, Biostatistics and Bioinformatic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiola Moretti
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (CNR), Monterotondo, Italy
| | - Simonetta Buglioni
- Pathology Division, Biostatistics and Bioinformatic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
26
|
Casares L, Moreno R, Ali KX, Higgins M, Dayalan Naidu S, Neill G, Cassin L, Kiib AE, Svenningsen EB, Minassi A, Honda T, Poulsen TB, Wiel C, Sayin VI, Dinkova-Kostova AT, Olagnier D, de la Vega L. The synthetic triterpenoids CDDO-TFEA and CDDO-Me, but not CDDO, promote nuclear exclusion of BACH1 impairing its activity. Redox Biol 2022; 51:102291. [PMID: 35313207 PMCID: PMC8938334 DOI: 10.1016/j.redox.2022.102291] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/31/2022] Open
Abstract
The transcription factor BACH1 is a potential therapeutic target for a variety of chronic conditions linked to oxidative stress and inflammation, as well as cancer metastasis. However, only a few BACH1 degraders/inhibitors have been described. BACH1 is a transcriptional repressor of heme oxygenase 1 (HMOX1), which is positively regulated by transcription factor NRF2 and is highly inducible by derivatives of the synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO). Most of the therapeutic activities of these compounds are due to their anti-inflammatory and antioxidant properties, which are widely attributed to their ability to activate NRF2. However, with such a broad range of action, these compounds have other molecular targets that have not been fully identified and could also be of importance for their therapeutic profile. Herein we identified BACH1 as a target of two CDDO-derivatives (CDDO-Me and CDDO-TFEA), but not of CDDO. While both CDDO and CDDO-derivatives activate NRF2 similarly, only CDDO-Me and CDDO-TFEA inhibit BACH1, which explains the much higher potency of these CDDO-derivatives as HMOX1 inducers compared with unmodified CDDO. Notably, we demonstrate that CDDO-Me and CDDO-TFEA inhibit BACH1 via a novel mechanism that reduces BACH1 nuclear levels while accumulating its cytoplasmic form. In an in vitro model, both CDDO-derivatives impaired lung cancer cell invasion in a BACH1-dependent and NRF2-independent manner, while CDDO was inactive. Altogether, our study identifies CDDO-Me and CDDO-TFEA as dual KEAP1/BACH1 inhibitors, providing a rationale for further therapeutic uses of these drugs.
Collapse
Affiliation(s)
- Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Rita Moreno
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Kevin X Ali
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Graham Neill
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - Lena Cassin
- Department of Biomedicine, Health, Aarhus University, 8000, Denmark
| | | | | | - Alberto Minassi
- Department of Drug Science, University of Piemonte Orientale, Novara, Italy
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | | | - Clotilde Wiel
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Volkan I Sayin
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK
| | - David Olagnier
- Department of Biomedicine, Health, Aarhus University, 8000, Denmark
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, UK.
| |
Collapse
|
27
|
Li R, Han J, Chen B, Shang J. Homeodomain Interacting Protein Kinase 2-Modified Rat Spinal Astrocytes Affect Neurofunctional Recovery After Spinal Cord Injury. Curr Neurovasc Res 2022; 19:171-180. [PMID: 35652392 DOI: 10.2174/1567202619666220601111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is regarded as an acute neurological disorder, and astrocytes play a role in the progression of SCI. OBJECTIVE Herein, we investigated the roles of homeodomain-interacting protein kinase 2 (HIPK2)- modified rat spinal astrocytes in neurofunctional recovery after SCI. METHODS Rat spinal astrocytes were cultured, isolated, and then identified through microscopic observation and immunofluorescence staining. Astrocytes were infected with the adenovirus vector overexpressing HIPK2 for modification, and proliferation and apoptosis of astrocytes were examined using Cell Counting Kit-8 method and flow cytometry. SCI rat models were established and treated with astrocytes or HIPK2-modified astrocytes. Subsequently, rat motor ability was analyzed via the Basso-Beattie-Bresnahan (BBB) scoring and inclined-plane test, and the damage to spinal cord tissues and neuronal survival were observed via Hematoxylin-eosin staining and Nissl staining. The levels of HIPK2, brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and nuclear factor erythroid 2- related transcription factor 2 (Nrf2)/antioxidant response element (ARE) pathway-related proteins were detected. RESULTS Rat spinal astrocytes were harvested successfully. HIPK2 overexpression accelerated the proliferation and repressed the apoptosis of rat spinal astrocytes. Rat spinal astrocytes treatment increased BBB points and the maximum angle at which SCI rats remained stable, ameliorated damage to spinal cord tissues, increased the number of neurons, and attenuated neural damage and inflammation, while the treatment of HIPK2-modified rat spinal astrocytes imparted more pronounced effects to the neurofunctional recovery of SCI rats. Meanwhile, HIPK2-modified rat spinal astrocytes further activated the Nrf2/ARE pathway. CONCLUSION HIPK2-modified rat spinal astrocytes facilitated neurofunctional recovery and activated the Nrf2/ARE pathway after SCI.
Collapse
Affiliation(s)
- Renbo Li
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| | - Jian Han
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| | - Bo Chen
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| | - Jingbo Shang
- Spinal and Trauma's Ward, The 3rd People Hospital of Dalian, Dalian 116000, China
| |
Collapse
|
28
|
Banas K, Modarai S, Rivera-Torres N, Yoo BC, Bialk PA, Barrett C, Batish M, Kmiec EB. Exon skipping induced by CRISPR-directed gene editing regulates the response to chemotherapy in non-small cell lung carcinoma cells. Gene Ther 2022; 29:357-367. [PMID: 35314779 PMCID: PMC9203268 DOI: 10.1038/s41434-022-00324-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
We have been developing CRISPR-directed gene editing as an augmentative therapy for the treatment of non-small cell lung carcinoma (NSCLC) by genetic disruption of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2). NRF2 promotes tumor cell survival in response to therapeutic intervention and thus its disablement should restore or enhance effective drug action. Here, we report how NRF2 disruption leads to collateral damage in the form of CRISPR-mediated exon skipping. Heterogeneous populations of transcripts and truncated proteins produce a variable response to chemotherapy, dependent on which functional domain is missing. We identify and characterize predicted and unpredicted transcript populations and discover that several types of transcripts arise through exon skipping; wherein one or two NRF2 exons are missing. In one specific case, the presence or absence of a single nucleotide determines whether an exon is skipped or not by reorganizing Exonic Splicing Enhancers (ESEs). We isolate and characterize the diversity of clones induced by CRISPR activity in a NSCLC tumor cell population, a critical and often overlooked genetic byproduct of this exciting technology. Finally, gRNAs must be designed with care to avoid altering gene expression patterns that can account for variable responses to solid tumor therapy.
Collapse
Affiliation(s)
- Kelly Banas
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | | | | | | | - Pawel A Bialk
- Gene Editing Institute, ChristianaCare, Newark, DE, USA
| | - Connor Barrett
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, Newark, DE, USA
| | - Eric B Kmiec
- Gene Editing Institute, ChristianaCare, Newark, DE, USA.
| |
Collapse
|
29
|
Garufi A, Pistritto G, D’Orazi V, Cirone M, D’Orazi G. The Impact of NRF2 Inhibition on Drug-Induced Colon Cancer Cell Death and p53 Activity: A Pilot Study. Biomolecules 2022; 12:461. [PMID: 35327653 PMCID: PMC8946796 DOI: 10.3390/biom12030461] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) protein is the master regulator of oxidative stress, which is at the basis of various chronic diseases including cancer. Hyperactivation of NRF2 in already established cancers can promote cell proliferation and resistance to therapies, such as in colorectal cancer (CRC), one of the most lethal and prevalent malignancies in industrialized countries with limited patient overall survival due to its escape mechanisms in both chemo- and targeted therapies. In this study, we generated stable NRF2 knockout colon cancer cells (NRF2-Cas9) to investigate the cell response to chemotherapeutic drugs with regard to p53 oncosuppressor, whose inhibition we previously showed to correlate with NRF2 pathway activation. Here, we found that NRF2 activation by sulforaphane (SFN) reduced cisplatin (CDDP)-induced cell death only in NRF2-proficient cells (NRF2-ctr) compared to NRF2-Cas9 cells. Mechanistically, we found that NRF2 activation protected NRF2-ctr cells from the drug-induced DNA damage and the apoptotic function of the unfolded protein response (UPR), in correlation with reduction of p53 activity, effects that were not observed in NRF2-Cas9 cells. Finally, we found that ZnCl2 supplementation rescued the cisplatin cytotoxic effects, as it impaired NRF2 activation, restoring p53 activity. These findings highlight NRF2's key role in neutralizing the cytotoxic effects of chemotherapeutic drugs in correlation with reduced DNA damage and p53 activity. They also suggest that NRF2 inhibition could be a useful strategy for efficient anticancer chemotherapy and support the use of ZnCl2 to inhibit NRF2 pathway in combination therapies.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University, 00185 Rome, Italy;
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- UniCamillus International Medical University in Rome, 00131 Rome, Italy
| |
Collapse
|
30
|
Pouremamali F, Jeddi F, Samadi N. Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line. Process Biochem 2022. [DOI: 10.1016/j.procbio.2020.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Zhang Y, Knatko EV, Higgins M, Dayalan Naidu S, Smith G, Honda T, de la Vega L, Dinkova-Kostova AT. Pirin, an Nrf2-Regulated Protein, Is Overexpressed in Human Colorectal Tumors. Antioxidants (Basel) 2022; 11:262. [PMID: 35204145 PMCID: PMC8868368 DOI: 10.3390/antiox11020262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The evolutionary conserved non-heme Fe-containing protein pirin has been implicated as an important factor in cell proliferation, migration, invasion, and tumour progression of melanoma, breast, lung, cervical, prostate, and oral cancers. Here we found that pirin is overexpressed in human colorectal cancer in comparison with matched normal tissue. The overexpression of pirin correlates with activation of transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and increased expression of the classical Nrf2 target NAD(P)H:quinone oxidoreductase 1 (NQO1), but interestingly and unexpectedly, not with expression of the aldo-keto reductase (AKR) family members AKR1B10 and AKR1C1, which are considered to be the most overexpressed genes in response to Nrf2 activation in humans. Using pharmacologic and genetic approaches to either downregulate or upregulate Nrf2, we show that pirin is regulated by Nrf2 in human and mouse cells and in the mouse colon in vivo. The small molecule pirin inhibitor TPhA decreased the viability of human colorectal cancer (DLD1) cells, but this decrease was independent of the levels of pirin. Our study demonstrates the Nrf2-dependent regulation of pirin and encourages the pursuit for specific pirin inhibitors.
Collapse
Affiliation(s)
- Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Elena V. Knatko
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Gillian Smith
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Tadashi Honda
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, NY 11794, USA;
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (Y.Z.); (E.V.K.); (M.H.); (S.D.N.); (G.S.); (L.d.l.V.)
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Bovilla VR, Kuruburu MG, Bettada VG, Krishnamurthy J, Sukocheva OA, Thimmulappa RK, Shivananju NS, Balakrishna JP, Madhunapantula SV. Targeted Inhibition of Anti-Inflammatory Regulator Nrf2 Results in Breast Cancer Retardation In Vitro and In Vivo. Biomedicines 2021; 9:1119. [PMID: 34572304 PMCID: PMC8471069 DOI: 10.3390/biomedicines9091119] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Nuclear factor erythroid-2 related factor-2 (Nrf2) is an oxidative stress-response transcriptional activator that promotes carcinogenesis through metabolic reprogramming, tumor promoting inflammation, and therapeutic resistance. However, the extension of Nrf2 expression and its involvement in regulation of breast cancer (BC) responses to chemotherapy remain largely unclear. This study determined the expression of Nrf2 in BC tissues (n = 46) and cell lines (MDA-MB-453, MCF-7, MDA-MB-231, MDA-MB-468) with diverse phenotypes. Immunohistochemical (IHC)analysis indicated lower Nrf2 expression in normal breast tissues, compared to BC samples, although the difference was not found to be significant. However, pharmacological inhibition and siRNA-induced downregulation of Nrf2 were marked by decreased activity of NADPH quinone oxidoreductase 1 (NQO1), a direct target of Nrf2. Silenced or inhibited Nrf2 signaling resulted in reduced BC proliferation and migration, cell cycle arrest, activation of apoptosis, and sensitization of BC cells to cisplatin in vitro. Ehrlich Ascites Carcinoma (EAC) cells demonstrated elevated levels of Nrf2 and were further tested in experimental mouse models in vivo. Intraperitoneal administration of pharmacological Nrf2 inhibitor brusatol slowed tumor cell growth. Brusatol increased lymphocyte trafficking towards engrafted tumor tissue in vivo, suggesting activation of anti-cancer effects in tumor microenvironment. Further large-scale BC testing is needed to confirm Nrf2 marker and therapeutic capacities for chemo sensitization in drug resistant and advanced tumors.
Collapse
Affiliation(s)
- Venugopal R. Bovilla
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Public Health Research Institute of India (PHRII), Mysuru 570020, Karnataka, India
| | - Mahadevaswamy G. Kuruburu
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Vidya G. Bettada
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Jayashree Krishnamurthy
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India;
| | - Olga A. Sukocheva
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
| | - Rajesh K. Thimmulappa
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, JSS Technical Institutions Campus, JSS Science and Technology University, Mysore 570006, Karnataka, India;
| | | | - SubbaRao V. Madhunapantula
- Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India; (V.R.B.); (M.G.K.); (V.G.B.); (R.K.T.)
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Leader, Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| |
Collapse
|
33
|
Manivannan J, Sundaresan L. Systems level insights into the impact of airborne exposure on SARS-CoV-2 pathogenesis and COVID-19 outcome - A multi-omics big data study. GENE REPORTS 2021; 25:101312. [PMID: 34401607 PMCID: PMC8358088 DOI: 10.1016/j.genrep.2021.101312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a viral pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that led to more than 800,00 deaths and continues to be a major threat worldwide. The scientific community has been studying the risk factors associated with SARS-CoV-2 infection and pathogenesis. Recent studies highlight the possible contribution of atmospheric air pollution, specifically particulate matter (PM) exposure as a co-factor in COVID-19 severity. Hence, meaningful translation of suitable omics datasets of SARS-CoV-2 infection and PM exposure is warranted to understand the possible involvement of airborne exposome on COVID-19 outcome. Publicly available transcriptomic data (microarray and RNA-Seq) related to COVID-19 lung biopsy, SARS-CoV-2 infection in epithelial cells and PM exposure (lung tissue, epithelial and endothelial cells) were obtained in addition with proteome and interactome datasets. System-wide pathway/network analysis was done through appropriate software tools and data resources. The primary findings are; 1. There is no robust difference in the expression of SARS-CoV-2 entry factors upon particulate exposure, 2. The upstream pathways associated with upregulated genes during SARS-CoV-2 infection considerably overlap with that of PM exposure, 3. Similar pathways were differentially expressed during SARS-CoV-2 infection and PM exposure, 4. SARS-CoV-2 interacting host factors were predicted to be associated with the molecular impact of PM exposure and 5. Differentially expressed pathways during PM exposure may increase COVID-19 severity. Based on the observed molecular mechanisms (direct and indirect effects) the current study suggests that airborne PM exposure has to be considered as an additional co-factor in the outcome of COVID-19.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- COVID-19
- COVID19, coronavirus disease 2019
- CTSB, cathepsin B
- CTSL, cathepsin L
- DEG, differentially expressed genes
- GEO, Gene Expression Omnibus
- GSEA, gene set enrichment analysis
- IL-17, interleukin-17
- Microarray
- Omics
- PM, particulate matter
- PPAR, peroxisome proliferator-activated receptors
- PPI, protein-protein interaction
- PTM, post-translational modification
- Particulate matter
- Pathway analysis
- Proteome
- RNA-seq
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- TLR, Toll-like receptor
- TMPRSS2, transmembrane protease, serine 2
- TNF, tumor necrosis factor
- VEGF, vascular endothelial growth factor
- X2K, eXpression2Kinases
Collapse
Affiliation(s)
- Jeganathan Manivannan
- Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Lakshmikirupa Sundaresan
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
34
|
Abstract
The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties. However, in the last few decades, growing evidence indicates that NRF2 acts as a tumor driver, inducing metastasis and resistance to chemotherapy. Constitutive activation of NRF2 has been found to be frequent in several tumors, including some lung cancer sub-types and it has been associated to the maintenance of a malignant cell phenotype. This apparently contradictory effect of the NRF2/KEAP1 signaling pathway in cancer (cell protection against cancer versus pro-tumoral properties) has generated a great controversy about its functions in this disease. In this review, we will describe the molecular mechanism regulating this signaling pathway in physiological conditions and summarize the most important findings related to the role of NRF2/KEAP1 in lung cancer. The focus will be placed on NRF2 activation mechanisms, the implication of those in lung cancer progression and current therapeutic strategies directed at blocking NRF2 action.
Collapse
|
35
|
Wang M, Ren Y, Hu S, Liu K, Qiu L, Zhang Y. TCF11 Has a Potent Tumor-Repressing Effect Than Its Prototypic Nrf1α by Definition of Both Similar Yet Different Regulatory Profiles, With a Striking Disparity From Nrf2. Front Oncol 2021; 11:707032. [PMID: 34268128 PMCID: PMC8276104 DOI: 10.3389/fonc.2021.707032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
Nrf1 and Nrf2, as two principal CNC-bZIP transcription factors, regulate similar but different targets involved in a variety of biological functions for maintaining cell homeostasis and organ integrity. Of note, the unique topobiological behavior of Nrf1 makes its functions more complicated than Nrf2, because it is allowed for alternatively transcribing and selectively splicing to yield multiple isoforms (e.g., TCF11, Nrf1α). In order to gain a better understanding of their similarities and differences in distinct regulatory profiles, all four distinct cell models for stably expressing TCF11, TCF11ΔN , Nrf1α or Nrf2 have been herein established by an Flp-In™ T-REx™-293 system and then identified by transcriptomic sequencing. Further analysis revealed that Nrf1α and TCF11 have similar yet different regulatory profiles, although both contribute basically to positive regulation of their co-targets, which are disparate from those regulated by Nrf2. Such disparity in those gene regulations by Nrf1 and Nrf2 was further corroborated by scrutinizing comprehensive functional annotation of their specific and/or common target genes. Conversely, the mutant TCF11ΔN, resulting from a deletion of the N-terminal amino acids 2-156 from TCF11, resembles Nrf2 with the largely consistent structure and function. Interestingly, our further experimental evidence demonstrates that TCF11 acts as a potent tumor-repressor relative to Nrf1α, albeit both isoforms possess a congruous capability to prevent malignant growth of tumor and upregulate those genes critical for improving the survival of patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yonggang Ren
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China.,Department of Biochemistry, North Sichuan Medical College, Nanchong, China
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| | - Keli Liu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
36
|
Zhang Y, Gilmour A, Ahn YH, de la Vega L, Dinkova-Kostova AT. The isothiocyanate sulforaphane inhibits mTOR in an NRF2-independent manner. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153062. [PMID: 31409554 PMCID: PMC8106549 DOI: 10.1016/j.phymed.2019.153062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND The isothiocyanate sulforaphane (SFN) has multiple protein targets in mammalian cells, affecting processes of fundamental importance for the maintenance of cellular homeostasis, among which are those regulated by the stress response transcription factor nuclear factor erythroid 2 p45-related factor 2 (NRF2) and the serine/threonine protein kinase mechanistic target of rapamycin (mTOR). Whereas the way by which SFN activates NRF2 is well established, the molecular mechanism(s) of how SFN inhibits mTOR is not understood. HYPOTHESIS/PURPOSE The aim of this study was to investigate the mechanism(s) by which SFN inhibits mTOR STUDY DESIGN AND METHODS: We used the human osteosarcoma cell line U2OS and its CRISPR/Cas9-generated NRF2-knockout counterpart to test the requirement for NRF2 and the involvement of mTOR regulators in the SFN-mediated inhibition of mTOR. RESULTS SFN inhibits mTOR in a concentration- and time-dependent manner, and this inhibition occurs in the presence or in the absence of NRF2. The phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B (PKB) is a positive regulator of mTOR, and treatment with SFN caused an increase in the phosphorylation of AKT at T308 and S473, two phosphorylation sites associated with AKT activation. Interestingly however, the levels of pS552 β-catenin, an AKT phosphorylation site, were decreased, suggesting that the catalytic activity of AKT was inhibited. In addition, SFN inhibited the activity of the cytoplasmic histone deacetylase 6 (HDAC6), the inhibition of which has been reported to promote the acetylation and decreases the kinase activity of AKT. CONCLUSION SFN inhibits HDAC6 and decreases the catalytic activity of AKT, and this partially explains the mechanism by which SFN inhibits mTOR.
Collapse
Affiliation(s)
- Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, United Kingdom
| | - Amy Gilmour
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, United Kingdom
| | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, United Kingdom
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, United Kingdom; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
37
|
Liebl MC, Moehlenbrink J, Becker H, Raddatz G, Abdeen SK, Aqeilan RI, Lyko F, Hofmann TG. DAZAP2 acts as specifier of the p53 response to DNA damage. Nucleic Acids Res 2021; 49:2759-2776. [PMID: 33591310 PMCID: PMC7969023 DOI: 10.1093/nar/gkab084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.
Collapse
Affiliation(s)
- Magdalena C Liebl
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Jutta Moehlenbrink
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Huong Becker
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Günter Raddatz
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Suhaib K Abdeen
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Cancer Biology and Genetics, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Frank Lyko
- Division of Epigenetics, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
38
|
Kong Q, Deng H, Li C, Wang X, Shimoda Y, Tao S, Kato K, Zhang J, Yamanaka K, An Y. Sustained high expression of NRF2 and its target genes induces dysregulation of cellular proliferation and apoptosis is associated with arsenite-induced malignant transformation of human bronchial epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143840. [PMID: 33261869 DOI: 10.1016/j.scitotenv.2020.143840] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/14/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
In arsenic toxicity, activation of the erythroid 2-related factor 2 (NRF2) pathway is regarded as a driver of cancer development and progression; however, the mechanisms by which NRF2 gene expression regulates cell cycle progression and mediates pathways of cellular proliferation and apoptosis in arsenic-induced lung carcinogenesis are poorly understood. In this study, we explored the regulatory functions of NRF2 expression and its target genes in immortalized human bronchial epithelial (HBE) cells continuously exposed to 1.0 μM sodium arsenite over approximately 43 passages (22 weeks). The experimental treatment induced malignant transformation in HBE cells, characterized by increased cellular proliferation and soft agar clone formation, as well as cell migration, and accelerated cell cycle progression from G0/G1 to S phase with increased levels of cyclin E-CDK2 complex,decreased cellular apoptosis rate. Moreover, we observed a sustained increase in NRF2 protein levels and those of its target gene products (NQO1, BCL-2) with concurrently decreased expression of apoptosis-related proteins (BAX, Cleaved-caspase-3/Caspase-3 and CHOP) and increased expression of the anti-apoptotic protein MCL-1. Silencing NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HBE) cells was shown to reverse the malignant phenotype. Further, siRNA silencing of NQO1 significantly decreased levels of the cyclin E-CDK2 complex, inhibiting G0/G1 to S phase cell cycle progression and transformation to the T-HBE phenotypes. This study demonstrated a novel role for the NRF2/NQO1 signaling pathway in mediating arsenite-induced cell transformation by increasing the expression of cyclin E-CDK2, and accelerating the cell cycle and cell proliferation. Arsenite promotes activation of the NRF2/BCL-2 signaling pathway inhibited CHOP increasing cellular resistance to apoptosis and further promoting malignant transformation.
Collapse
Affiliation(s)
- Qi Kong
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Hanyi Deng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Chunchun Li
- Changzhou Wujin District Center for Disease Control and Prevention, Changzhou 213164, Jiangsu, China
| | - Xiaojuan Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Yasuyo Shimoda
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Shasha Tao
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Koichi Kato
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan
| | - Jie Zhang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| | - Kenzo Yamanaka
- Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba 274-8555, Japan.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
39
|
Němec V, Maier L, Berger BT, Chaikuad A, Drápela S, Souček K, Knapp S, Paruch K. Highly selective inhibitors of protein kinases CLK and HIPK with the furo[3,2-b]pyridine core. Eur J Med Chem 2021; 215:113299. [PMID: 33636538 DOI: 10.1016/j.ejmech.2021.113299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022]
Abstract
The furo [3,2-b]pyridine motif represents a relatively underexplored central pharmacophore in the area of kinase inhibitors. Herein, we report flexible synthesis of 3,5-disubstituted furo [3,2-b]pyridines that relies on chemoselective couplings of newly prepared 5-chloro-3-iodofuro [3,2-b]pyridine. This methodology allowed efficient second-generation synthesis of the state-of-the-art chemical biology probe for CLK1/2/4 MU1210, and identification of the highly selective inhibitors of HIPKs MU135 and MU1787 which are presented and characterized in this study, including the X-ray crystal structure of MU135 in HIPK2. chemical biology probe.
Collapse
Affiliation(s)
- Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Lukáš Maier
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Benedict-Tilman Berger
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Stanislav Drápela
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Karel Souček
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic
| | - Stefan Knapp
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences (BMLS), Goethe University Frankfurt am Main, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany; Institut für Pharmazeutische Chemie, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
40
|
Dai Y, Kyoyama H, Yang YL, Wang Y, Liu S, Wang Y, Mao JH, Xu Z, Uematsu K, Jablons DM, You L. A novel isoform of Homeodomain-interacting protein kinase-2 promotes YAP/TEAD transcriptional activity in NSCLC cells. Oncotarget 2021; 12:173-184. [PMID: 33613845 PMCID: PMC7869571 DOI: 10.18632/oncotarget.27871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Homeodomain-interacting protein kinase-2 (HIPK2) can either promote or inhibit transcription depending on cellular context. In this study, we show that a new HIPK2 isoform increases TEAD reporter activity in NSCLC cells. We detected HIPK2 copy number gain in 5/6 (83.3%) NSCLC cell lines. In NSCLC patients with high HIPK2 mRNA expression in the Human Protein Atlas, the five-year survival rate is significantly lower than in patients with low expression (38% vs 47%; p = 0.047). We also found that 70/78 (89.7%) of NSCLC tissues have moderate to strong expression of the N-terminal HIPK2 protein. We detected and cloned a novel HIPK2 isoform 3 and found that its forced overexpression promotes TEAD reporter activity in NSCLC cells. Expressing HIPK2 isoform 3_K228A kinase-dead plasmid failed to increase TEAD reporter activity in NSCLC cells. Next, we showed that two siRNAs targeting HIPK2 decreased HIPK2 isoform 3 and YAP protein levels in NSCLC cells. Degradation of the YAP protein was accelerated after HIPK2 knockdown in NSCLC cells. Inhibition of HIPK2 isoform 3 decreased the mRNA expression of YAP downstream gene CTGF. The specific HIPK2 kinase inhibitor TBID decreased TEAD reporter activity, reduced cancer side populations, and inhibited tumorsphere formation of NSCLC cells. In summary, this study indicates that HIPK2 isoform 3, the main HIPK2 isoform expressed in NSCLC, promotes YAP/TEAD transcriptional activity in NSCLC cells. Our results suggest that HIPK2 isoform 3 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China
- These authors contributed equally to this work
| | - Hiroyuki Kyoyama
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
- These authors contributed equally to this work
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- These authors contributed equally to this work
| | - Yucheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yinghao Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Kazutsugu Uematsu
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - David M. Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
41
|
Kang YP, Mockabee-Macias A, Jiang C, Falzone A, Prieto-Farigua N, Stone E, Harris IS, DeNicola GM. Non-canonical Glutamate-Cysteine Ligase Activity Protects against Ferroptosis. Cell Metab 2021; 33:174-189.e7. [PMID: 33357455 PMCID: PMC7839835 DOI: 10.1016/j.cmet.2020.12.007] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/09/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
Cysteine is required for maintaining cellular redox homeostasis in both normal and transformed cells. Deprivation of cysteine induces the iron-dependent form of cell death known as ferroptosis; however, the metabolic consequences of cysteine starvation beyond impairment of glutathione synthesis are poorly characterized. Here, we find that cystine starvation of non-small-cell lung cancer cell lines induces an unexpected accumulation of γ-glutamyl-peptides, which are produced due to a non-canonical activity of glutamate-cysteine ligase catalytic subunit (GCLC). This activity is enriched in cell lines with high levels of NRF2, a key transcriptional regulator of GCLC, but is also inducible in healthy murine tissues following cysteine limitation. γ-glutamyl-peptide synthesis limits the accumulation of glutamate, thereby protecting against ferroptosis. These results indicate that GCLC has a glutathione-independent, non-canonical role in the protection against ferroptosis by maintaining glutamate homeostasis under cystine starvation.
Collapse
Affiliation(s)
- Yun Pyo Kang
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Chang Jiang
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Aimee Falzone
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Everett Stone
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac S Harris
- University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
42
|
Knatko EV, Tatham MH, Zhang Y, Castro C, Higgins M, Dayalan Naidu S, Leonardi C, de la Vega L, Honda T, Griffin JL, Hay RT, Dinkova-Kostova AT. Downregulation of Keap1 Confers Features of a Fasted Metabolic State. iScience 2020; 23:101638. [PMID: 33103077 PMCID: PMC7575887 DOI: 10.1016/j.isci.2020.101638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its main negative regulator, Kelch-like ECH-associated protein 1 (Keap1), are at the interface between redox and intermediary metabolism, allowing adaptation and survival under conditions of oxidative, inflammatory, and metabolic stress. Nrf2 is the principal determinant of redox homeostasis, and contributes to mitochondrial function and integrity and cellular bioenergetics. Using proteomics and lipidomics, we show that genetic downregulation of Keap1 in mice, and the consequent Nrf2 activation to pharmacologically relevant levels, leads to upregulation of carboxylesterase 1 (Ces1) and acyl-CoA oxidase 2 (Acox2), decreases triglyceride levels, and alters the lipidome. This is accompanied by downregulation of hepatic ATP-citrate lyase (Acly) and decreased levels of acetyl-CoA, a trigger for autophagy. These findings suggest that downregulation of Keap1 confers features of a fasted metabolic state, which is an important consideration in the drug development of Keap1-targeting pharmacologic Nrf2 activators.
Collapse
Affiliation(s)
- Elena V. Knatko
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Cecilia Castro
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Maureen Higgins
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Chiara Leonardi
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Julian L. Griffin
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1QW, UK
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, Scotland DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Xu L, Fang H, Xu D, Wang G. HIPK2 sustains inflammatory cytokine production by promoting endoplasmic reticulum stress in macrophages. Exp Ther Med 2020; 20:171. [PMID: 33101464 PMCID: PMC7579773 DOI: 10.3892/etm.2020.9301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Uncontrolled inflammatory cytokine production by macrophages contributes to numerous conditions, including infection, endotoxemia and sepsis. A previous study proposed that endoplasmic reticulum (ER) stress acts as an essential process in inflammatory cytokine production by macrophages. The present study used a mouse sepsis model and in vitro macrophages to demonstrate that homeodomain-interacting protein kinase 2 (HIPK2) sustained cytokine production in an ER stress-dependent manner. HIPK2 expression was upregulated in the early phase of lipopolysaccharide stimulation. HIPK2 knockdown attenuated IL-6 and TNF-α production, and p65 phosphorylation in macrophages. Furthermore, the attenuated cytokine production was abolished by the ER stress agonist tunicamycin. The activation of ER stress increased the levels of IL-6 and TNF-α, and the phosphorylation of p65, in macrophages following knockdown of HIPK2. Furthermore, HIPK2 inhibition attenuated the production of IL-6 and TNF-α in vitro and in vivo. Therefore, HIPK2 sustained inflammatory cytokine production by promoting ER stress in macrophages. Targeting HIPK2 may be a potential strategy for the management of uncontrolled inflammation in clinical settings.
Collapse
Affiliation(s)
- Long Xu
- Center of Burns and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - He Fang
- Center of Burns and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Dayuan Xu
- Center of Burns and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Guangyi Wang
- Center of Burns and Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
44
|
Haas J, Bloesel D, Bacher S, Kracht M, Schmitz ML. Chromatin Targeting of HIPK2 Leads to Acetylation-Dependent Chromatin Decondensation. Front Cell Dev Biol 2020; 8:852. [PMID: 32984337 PMCID: PMC7490299 DOI: 10.3389/fcell.2020.00852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
The protein kinase homeodomain-interacting protein kinase 2 (HIPK2) plays an important role in development and in the response to external cues. The kinase associates with an exceptionally large number of different transcription factors and chromatin regulatory proteins to direct distinct gene expression programs. In order to investigate the function of HIPK2 for chromatin compaction, HIPK2 was fused to the DNA-binding domains of Gal4 or LacI, thus allowing its specific targeting to binding sites for these transcription factors that were integrated in specific chromosome loci. Tethering of HIPK2 resulted in strong decompaction of euchromatic and heterochromatic areas. HIPK2-mediated heterochromatin decondensation started already 4 h after its chromatin association and required the functionality of its SUMO-interacting motif. This process was paralleled by disappearance of the repressive H3K27me3 chromatin mark, recruitment of the acetyltransferases CBP and p300 and increased histone acetylation at H3K18 and H4K5. HIPK2-mediated chromatin decompaction was strongly inhibited in the presence of a CBP/p300 inhibitor and completely blocked by the BET inhibitor JQ1, consistent with a causative role of acetylations for this process. Chromatin tethering of HIPK2 had only a minor effect on basal transcription, while it strongly boosted estrogen-triggered gene expression by acting as a transcriptional cofactor.
Collapse
Affiliation(s)
- Jana Haas
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Daniel Bloesel
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Susanne Bacher
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| | - Michael Kracht
- Member of the German Center for Lung Research, Giessen, Germany.,Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany.,Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
45
|
Torrente L, Maan G, Oumkaltoum Rezig A, Quinn J, Jackson A, Grilli A, Casares L, Zhang Y, Kulesskiy E, Saarela J, Bicciato S, Edwards J, Dinkova-Kostova AT, de la Vega L. High NRF2 Levels Correlate with Poor Prognosis in Colorectal Cancer Patients and with Sensitivity to the Kinase Inhibitor AT9283 In Vitro. Biomolecules 2020; 10:E1365. [PMID: 32992842 PMCID: PMC7600603 DOI: 10.3390/biom10101365] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022] Open
Abstract
Aberrant hyperactivation of nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) is a common event in many tumour types and associates with resistance to therapy and poor patient prognosis; however, its relevance in colorectal tumours is not well-established. Measuring the expression of surrogate genes for NRF2 activity in silico, in combination with validation in patients' samples, we show that the NRF2 pathway is upregulated in colorectal tumours and that high levels of nuclear NRF2 correlate with a poor patient prognosis. These results highlight the need to overcome the protection provided by NRF2 and present an opportunity to selectively kill cancer cells with hyperactive NRF2. Exploiting the CRISPR/Cas9 technology, we generated colorectal cancer cell lines with hyperactive NRF2 and used them to perform a drug screen. We identified AT9283, an Aurora kinase inhibitor, for its selectivity towards killing cancer cells with hyperactive NRF2 as a consequence to either genetic or pharmacological activation. Our results show that hyperactivation of NRF2 in colorectal cancer cells might present a vulnerability that could potentially be therapeutically exploited by using the Aurora kinase inhibitor AT9283.
Collapse
Affiliation(s)
- Laura Torrente
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Gunjit Maan
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Asma Oumkaltoum Rezig
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Angus Jackson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia; via G, Campi 287, 41125 Modena, Italy; (A.G.); (S.B.)
| | - Laura Casares
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Ying Zhang
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, FI-00290 Helsinki, Finland; (E.K.); (J.S.)
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Tukholmankatu 8, FI-00290 Helsinki, Finland; (E.K.); (J.S.)
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia; via G, Campi 287, 41125 Modena, Italy; (A.G.); (S.B.)
| | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (A.O.R.); (J.Q.); (J.E.)
| | - Albena T. Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
- Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Laureano de la Vega
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; (L.T.); (G.M.); (A.J.); (L.C.); (Y.Z.); (A.T.D.-K.)
| |
Collapse
|
46
|
Tamir TY, Bowman BM, Agajanian MJ, Goldfarb D, Schrank TP, Stohrer T, Hale AE, Siesser PF, Weir SJ, Murphy RM, LaPak KM, Weissman BE, Moorman NJ, Major MB. Gain-of-function genetic screen of the kinome reveals BRSK2 as an inhibitor of the NRF2 transcription factor. J Cell Sci 2020; 133:jcs241356. [PMID: 32546533 PMCID: PMC7375482 DOI: 10.1242/jcs.241356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, but conversely NRF2 activity diminishes with age and in neurodegenerative and metabolic disorders. Although NRF2-activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here, we describe use of a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the under-studied protein kinase brain-specific kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives 5'-AMP-activated protein kinase α2 (AMPK) signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppresses ribosome-RNA complexes, global protein synthesis and NRF2 protein levels. Collectively, our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis might prove useful for therapeutically targeting NRF2 in human disease.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tigist Y Tamir
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brittany M Bowman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Megan J Agajanian
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Institute for Informatics, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Travis P Schrank
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Trent Stohrer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew E Hale
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Priscila F Siesser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Seth J Weir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan M Murphy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bernard E Weissman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel J Moorman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - M Ben Major
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Otolaryngology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
47
|
Garufi A, Baldari S, Pettinari R, Gilardini Montani MS, D’Orazi V, Pistritto G, Crispini A, Giorno E, Toietta G, Marchetti F, Cirone M, D’Orazi G. A ruthenium(II)-curcumin compound modulates NRF2 expression balancing the cancer cell death/survival outcome according to p53 status. J Exp Clin Cancer Res 2020; 39:122. [PMID: 32605658 PMCID: PMC7325274 DOI: 10.1186/s13046-020-01628-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Tumor progression and tumor response to anticancer therapies may be affected by activation of oncogenic pathways such as the antioxidant one induced by NRF2 (nuclear factor erythroid 2-related factor 2) transcription factor and the pathways modified by deregulation of oncosuppressor p53. Often, oncogenic pathways may crosstalk between them increasing tumor progression and resistance to anticancer therapies. Therefore, understanding that interplay is critical to improve cancer cell response to therapies. In this study we aimed at evaluating NRF2 and p53 in several cancer cell lines carrying different endogenous p53 status, using a novel curcumin compound since curcumin has been shown to target both NRF2 and p53 and have anti-tumor activity. METHODS We performed biochemical and molecular studies by using pharmacologic of genetic inhibition of NRF2 to evaluate the effect of curcumin compound in cancer cell lines of different tumor types bearing wild-type (wt) p53, mutant (mut) p53 or p53 null status. RESULTS We found that the curcumin compound induced a certain degree of cell death in all tested cancer cell lines, independently of the p53 status. At molecular level, the curcumin compound induced NRF2 activation, mutp53 degradation and/or wtp53 activation. Pharmacologic or genetic NRF2 inhibition further increased the curcumin-induced cell death in both mutp53- and wtp53-carrying cancer cell lines while it did not increase cell death in p53 null cells, suggesting a cytoprotective role for NRF2 and a critical role for functional p53 to achieve an efficient cancer cell response to therapy. CONCLUSIONS These findings underline the prosurvival role of curcumin-induced NRF2 expression in cancer cells even when cells underwent mutp53 downregulation and/or wtp53 activation. Thus, NRF2 inhibition increased cell demise particularly in cancer cells carrying p53 either wild-type or mutant suggesting that p53 is crucial for efficient cancer cell death. These results may represent a paradigm for better understanding the cancer cell response to therapies in order to design more efficient combined anticancer therapies targeting both NRF2 and p53.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- University “G. D’Annunzio”, School of Medicine, Chieti, Italy
| | - Silvia Baldari
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Department of Medical, Surgical Sciences, and Biotechnologies, Sapienza University, Latina, Italy
| | - Riccardo Pettinari
- School of Pharmacy, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University, Rome, Italy
| | - Giuseppa Pistritto
- Italian medicines agency-Aifa, centralized procedure office, Rome, Italy
| | - Alessandra Crispini
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Eugenia Giorno
- Department of Chemistry and Chemical Technologies, laboratory MAT-IN LAB, Calabria University, Rende, Italy
| | - Gabriele Toietta
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabio Marchetti
- School of Science and Technology, Chemistry Section, University of Camerino, Camerino Macerata, Italy
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University, laboratory affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Rome, Italy
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
48
|
D'Orazi G, Garufi A, Cirone M. Nuclear factor erythroid 2 (NF-E2) p45-related factor 2 interferes with homeodomain-interacting protein kinase 2/p53 activity to impair solid tumors chemosensitivity. IUBMB Life 2020; 72:1634-1639. [PMID: 32593231 DOI: 10.1002/iub.2334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Resistance to chemotherapy represents a major hurdle to successful cancer treatment. A key role for efficient response to anticancer therapies is played by TP53 oncosuppressor gene that indeed is mutated in 50% of human cancers or inactivated at protein level in the remaining 50%. Homeodomain-interacting protein kinase 2 (HIPK2) is the wild-type p53 (wtp53) apoptotic activator, and its inhibition by hypoxia or hyperglycemia may contribute to tumor chemoresistance mainly by impairing p53 apoptotic activity. Another important molecule able to induce chemoresistance is nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) transcription factor, whose activation by oxidative and/or electrophilic stress regulates a transcriptional antioxidant program allowing cancer cells to adapt and survive to stresses. NRF2 may shift from cytoprotective to tumor-promoting function, according to tumor phases. NRF2 may crosstalk with both wtp53 and mutant p53 (mutp53), inhibiting the wtp53 apoptotic function and strengthening the mutp53 oncogenic function. NRF2 has also been shown to induce HIPK2 mRNA expression cooperating in inducing cytoprotection. Although HIPK2, p53, and NRF2 have been individually extensively studied, their interplay has not been clearly addressed yet. On the basis of the background and our results, we aim at hypothesizing the unexpected pro-survival activity played by the NRF2/HIPK2/p53 interplay that can be hijacked by cancer cells to bypass drugs cytotoxicity.
Collapse
Affiliation(s)
- Gabriella D'Orazi
- Department of Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Alessia Garufi
- Department of Research, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,Department of Medical Sciences, University 'G. d'Annunzio', Chieti, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,Laboratory affiliated to Pasteur Institute, Italy-Foundation Cenci Bolognetti, Rome, Italy
| |
Collapse
|
49
|
Qu H, Gao X, Cheng C, Zhao H, Wang Z, Yi J. Hepatoprotection mechanism against alcohol-induced liver injury in vivo and structural characterization of Pinus koraiensis pine nut polysaccharide. Int J Biol Macromol 2020; 154:1007-1021. [PMID: 32209373 DOI: 10.1016/j.ijbiomac.2020.03.168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that Pinus koraiensis pine nut polysaccharide PNP80b-2 exerts widely protective effects against liver injury induced by chemical pollutants, alcohol and drugs. By comparison, PNP80b-2 exhibits the strongest hepatoprotection against alcohol-induced liver injury (AILI). Thus, the purpose of this study is to investigate the hepatoprotection mechanisms of PNP80b-2 against AILI in vivo. The results indicated that PNP80b-2 alleviated oxidative stress induced by alcohol through enhancing antioxidant capacity of hepatocytes via NRF2/HO-1 pathway. PNP80b-2 also effectively suppressed the secretion of pro-inflammatory cytokines including TNF-α, IL-1β and IL-6, exhibiting anti-inflammatory effects via NF-κB signaling pathway in AILI. In addition, PNP80b-2 protected mice from severe DNA damage induced by alcohol through regulating the expression of Hipk2, P53, Hp1γ and Wip1. Taken together all the results, PNP80b-2 exerts hepatoprotective activity against AILI in vivo through enhancing antioxidant capacity, suppressing inflammation response and promoting DNA damage repair in livers. Furthermore, the structural features of PNP80b-2 were also characterized. PNP80b-2, with molecular weight of 23.0 kDa, was found to be composed of 1,2-linked Galf, 1,2-linked Rhap, 1,4-linked Xylp, 1,6-linked Glcp, 1,4-linked GlcpA, 1,2,6-linked Galp, 1,4,6-linked Glcp, 1,2,3,4-linked Arap, 1-linked Galp and Leu- and Ile-linked O-glycopeptide bonds, based on the GC-MS and NMR results.
Collapse
Affiliation(s)
- Hang Qu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Cuilin Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
50
|
Gatti V, Ferrara M, Virdia I, Matteoni S, Monteonofrio L, di Martino S, Diodoro MG, Di Rocco G, Rinaldo C, Soddu S. An Alternative Splice Variant of HIPK2 with Intron Retention Contributes to Cytokinesis. Cells 2020; 9:484. [PMID: 32093146 PMCID: PMC7072727 DOI: 10.3390/cells9020484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022] Open
Abstract
HIPK2 is a DYRK-like kinase involved in cellular stress response pathways, development, and cell division. Two alternative splice variants of HIPK2, HIPK2-FL and HIPK2-Δe8, have been previously identified as having different protein stability but similar functional activity in the stress response. Here, we describe one additional HIPK2 splice variant with a distinct subcellular distribution and functional activity in cytokinesis. This novel splice variant lacks the last two exons and retains intron13 with a stop codon after 89 bp of the intron, generating a short isoform, HIPK2-S, that is detectable by 2D Western blots. RT-PCR analyses of tissue arrays and tumor samples show that HIPK2-FL and HIPK2-S are expressed in normal human tissues in a tissue-dependent manner and differentially expressed in human colorectal and pancreatic cancers. Gain- and loss-of-function experiments showed that in contrast to HIPK2-FL, HIPK2-S has a diffuse, non-speckled distribution and is not involved in the DNA damage response. Rather, we found that HIPK2-S, but not HIPK2-FL, localizes at the intercellular bridge, where it phosphorylates histone H2B and spastin, both required for faithful cell division. Altogether, these data show that distinct human HIPK2 splice variants are involved in distinct HIPK2-regulated functions like stress response and cytokinesis.
Collapse
Affiliation(s)
- Veronica Gatti
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Manuela Ferrara
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy;
| | - Ilaria Virdia
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
- Department of Sciences, University Roma Tre, 00154 Rome, Italy
| | - Silvia Matteoni
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Simona di Martino
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.d.M.); (M.G.D.)
| | - Maria Grazia Diodoro
- Pathology Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.d.M.); (M.G.D.)
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| | - Cinzia Rinaldo
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Sapienza University, 00185 Rome, Italy;
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets; IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.G.); (I.V.); (S.M.); (L.M.); (G.D.R.)
| |
Collapse
|