1
|
Lieb N, Tran A, Torres M, Bommareddy A. Modulation of Wnt/Beta-Catenin Pathway by Major Dietary Phytochemicals Against Breast Cancer Development. BIOLOGY 2025; 14:194. [PMID: 40001961 PMCID: PMC11851881 DOI: 10.3390/biology14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Breast cancer is one of the most commonly diagnosed cancers and is the second leading cause of cancer-related deaths among women in the United States. Despite a decrease in mortality associated with breast cancer, there has been a steady increase in its incidence. Development of the mammary gland is normally regulated by such pathways including Wnt, Hedgehog, estrogen and Notch signaling. However, the deregulation of these pathways gives rise to tumor development, and upregulated Wnt activity along with high levels of beta-catenin is correlated with poor prognosis of breast cancer. In addition, beta-catenin-dependent Wnt signaling is enriched in triple-negative breast cancers and is associated with reduced overall survival in breast cancer patients. Various studies have investigated the ability of naturally occurring plant-based agents to reduce incidence and morbidity of breast cancer by regulating critical cell survival pathways to reverse or inhibit the occurrence of clinical disease. The present review focuses on summarizing the role of commonly consumed dietary phytochemicals and their role in regulating Wnt/β-catenin pathway against the development of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Ajay Bommareddy
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
2
|
Zheng Y, Kou J, Gao X, Guo J, Liu Q, Ren H, Gao T, Wang Q, Zhao Y, Wang Y, Li H, Yang L. Berberine Inhibited SASP-Related Inflammation through RXRα/PPARγ/NEDD4 Pathway in Atherosclerosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:251-283. [PMID: 39829230 DOI: 10.1142/s0192415x25500107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The accumulation of aging cells significantly contributes to chronic inflammatory diseases such as atherosclerosis. Human carotid artery single-cell sequencing has shown that large numbers of aging foam cells are present in the plaques of human patients. Berberine (BBR) has been shown to inhibit cell senescence, however, the mechanisms involved in its treatment of atherosclerotic senescence have not yet been determined. Changes in plaque morphology and blood chemistry were observed in ApoE[Formula: see text] mice fed with a high-fat diet before and after BBR treatment. Inflammatory proteins linked to the senescence-associated secretory phenotypes (SASP) were detected in RAW264.7 and peritoneal macrophage-derived foam cells. Smart-seq analysis was used to explore the pathways associated with BBR therapy for atherosclerosis. Finally, the effect of lentivirus-mediated knockdown of RXRα in macrophages in plaques on atherosclerosis treatment with BBR was determined. We found that BBR reduced inflammation linked to SASP in atherosclerosis through the RXRα/PPARγ/NEDD4 signaling pathway. BBR increased GATA4 binding to p62, promoted ubiquitination, and inhibited SASP-associated protein production in RAW264.7 and peritoneal macrophage-derived foam cells. Mechanistically, according to the Smart-seq results, BBR activated RXRα and PPARγ, synergistically increased NEDD4 transcription levels, and promoted ubiquitination-mediated degradation of the GATA4/p62 complex. Additionally, the anti-aging impact of BBR on atherosclerosis was negated when macrophage-specific RXRα was knocked down using lentivirus (pLVCD68-shRNA RXRα) in ApoE[Formula: see text] mice. BBR activated PPARγ through RXRα-PPARγ immune complex in macrophage-derived foam cells, increased NEDD4 transcriptional activity, promoted ubiquitination of GATA4-p62 complex, and inhibited SASP-related inflammation. These findings suggest the potential of BBR as a novel approach to addressing SASP-associated inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Yinghong Zheng
- Department of Pharmacology, Tianjin Medical University 22 Qixiangtai Road, Heping District, Tianjin 300070, P. R. China
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Jiayuan Kou
- Department of Biochemistry and Molecular Biology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Xi Gao
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Jinxiang Guo
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Qian Liu
- Department of Pharmacology, Tianjin Medical University 22 Qixiangtai Road, Heping District, Tianjin 300070, P. R. China
| | - Huiwen Ren
- Department of Pharmacology, Tianjin Medical University 22 Qixiangtai Road, Heping District, Tianjin 300070, P. R. China
| | - Tielei Gao
- Department of Forensic Medicine, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Qianbing Wang
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Yajie Zhao
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Yuqin Wang
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Hong Li
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University 157 Baojian Road, Nangang District, Harbin 150081, P. R. China
- Department of Cardiology The Second Affiliated Hospital of Harbin Medical University Harbin, P. R. China
| |
Collapse
|
3
|
Kangra K, Kakkar S, Mittal V, Kumar V, Aggarwal N, Chopra H, Malik T, Garg V. Incredible use of plant-derived bioactives as anticancer agents. RSC Adv 2025; 15:1721-1746. [PMID: 39835210 PMCID: PMC11744461 DOI: 10.1039/d4ra05089d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025] Open
Abstract
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols. Plant-derived substances exhibit their anticancer potential through antiproliferative activity, cytotoxicity, apoptosis, angiogenesis and cell cycle arrest. Natural compounds can affect the molecular activity of cells through various signaling pathways, like the cell cycle pathway, STAT-3 pathway, PI3K/Akt, and Ras/MAP-kinase pathways. Capsaicin, ouabain, and lycopene show their anticancer potential through the STAT-3 pathway in breast, colorectal, pancreatic, lung, cervical, ovarian and colon cancers. Epigallocatechin gallate and emodin target the JNK protein in skin, breast, and lung cancers, while berberine, evodiamine, lycorine, and astragalin exhibit anticancer activity against breast, liver, prostate, pancreatic and skin cancers and leukemia through the PI3K/Akt and Ras/MAP-kinase pathways. In vitro/in vivo investigations revealed that secondary metabolites suppress cancer cells by causing DNA damage and activating apoptosis-inducing enzymes. After a meticulous literature review, the anti-cancer potential, mode of action, and clinical trials of 144 bioactive compounds and their synthetic analogues are included in the present work, which could pave the way for using plant-derived bioactives as anticancer agents.
Collapse
Affiliation(s)
- Kiran Kangra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Saloni Kakkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| | - Virender Kumar
- College of Pharmacy, Pandit Bhagwat Dayal Sharma University of Health Sciences Rohtak 124001 India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab-144411 India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
| |
Collapse
|
4
|
Haque S, Mathkor DM, Bhat SA, Musayev A, Khituova L, Ramniwas S, Phillips E, Swamy N, Kumar S, Yerer MB, Tuli HS, Yadav V. A Comprehensive Review Highlighting the Prospects of Phytonutrient Berberine as an Anticancer Agent. J Biochem Mol Toxicol 2025; 39:e70073. [PMID: 39717894 DOI: 10.1002/jbt.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Berberine, an isoquinoline alkaloid derived from various medicinal plants, emerges as a potential therapeutic agent against diverse human diseases. It has particularly shown notable anticancer efficacy against breast, colorectal, lung, prostate, and liver cancer. Berberine results in inhibition of cancer cell proliferation, induction of apoptosis, and suppressing angiogenesis, positioning it as a versatile, multitargeted therapeutic tool against cancer. Notably, berberine enhances the effectiveness of conventional chemotherapeutic drugs, mitigating associated drug resistance. Mechanistically, it has been shown to exert its efficacy by targeting molecules like nuclear factor-kappa B (NF-κB), mitogen-activated protein kinases (MAPKs), and phosphoinositide 3-kinase (PI3K)/Akt, thereby inhibiting survival pathways and promoting apoptosis of cancer cells. Moreover, berberine influences the expression of tumor suppressor genes, curtails cancer cell migration and invasion, and modulates the tumour microenvironment. Despite promising preclinical evidence, further research is essential to comprehensively elucidate its mechanisms of action and evaluate its safety and efficacy in clinical settings. In the present review, we have highlighted the pharmacokinetics, biosynthesis, and recent research work done pertaining to berberine's strong anticancer activity. We have also emphasised on the research being done on nanoformulations of berberine, which aim to improve its stability and bioavailability.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sajad Ahmad Bhat
- Department of Biochemistry, International Medical School, University of International Business (UIB), Almaty, Kazakhstan
| | - Abdugani Musayev
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Lidiya Khituova
- Department of Pediatrics with a Course of Children's Infectious Diseases, Kazakh-Russian Medical University, Almaty, Kazakhstan
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Enosh Phillips
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Nitin Swamy
- Department of Biotechnology, St. Aloysius' College, Jabalpur, Madhya Pradesh, India
| | - Suneel Kumar
- Department of Botany, Government Girls College, Khargone, Madhya Pradesh, India
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
5
|
Ming H, Lu T, Zhou H, Song W, Dai H. Synergistic inhibitory effect of atmospheric pressure plasma and berberine on non‑small cell lung cancer cells via inducing apoptosis. Mol Biol Rep 2024; 52:37. [PMID: 39643828 DOI: 10.1007/s11033-024-10132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a type of lung cancer, the incidence and mortality rate have been high, and the use of monotherapy is easy to make patients develop tolerance. Atmospheric pressure plasma (APP) is an emerging technology for killing cancer cells in recent years, and combination of berberine (BBR) mechanism has not been fully elucidated for NSCLC. The article's primary goal is to investigate the effect of combination on NSCLC and its associated characterization. METHODS AND RESULTS Antiproliferative effects were detected by cell viability assay and colony formation, and flow cytometry analysis of apoptosis and cycling showed that the combination synergistically induced apoptosis. Then, extracellular reactive oxygen species (ROS)levels and DCFH-DA-based kits examined intracellular ROS levels, and their effects on mitochondrial membrane potential were measured. Study reveals that co-induced apoptosis is associated with ROS accumulation. Subsequently, Western blotting (WB) detected the expression of epidermal growth factor receptor (EGFR), and the important signaling pathway proteins Ras/ERK and AKT/mTOR. Results showed that it could downregulation of EGFR protein expression and inhibit of activation of ERK/AKT signaling pathways. Simultaneous wound healing assay and epithelial-to-mesenchymal transition (EMT) marker detection were performed for the assessment of migration and EMT ability of NSCLC cells. Combination therapy inhibited migration and EMT of NSCLC cells. CONCLUSION The results of this study show that the combination can synergistically induce apoptosis of NSCLC by regulating ROS production. EGFR downregulation and AKT/ERK signaling pathway inhibition are linked to the synergistic effect.
Collapse
Affiliation(s)
- Huiyun Ming
- College of Basic Medical, Anhui Medical University, Hefei, 230032, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Tingting Lu
- Key Laboratory for the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Anhui University of Chinese Medicine, Hefei, 230012, Anhui Province, P. R. China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, China.
- Wanjiang Emerging Industry Technology Development Center, Tongling, 244000, China.
| | - Haiming Dai
- College of Basic Medical, Anhui Medical University, Hefei, 230032, China.
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
6
|
Zhou J, Xu B, Shen Q, Zhang Z, Hu Y, Wang M, Su Y, Lei Z, Zhang W, Liu T, Liu H, Hu T, Zhou Y. Identification and biological evaluation of fused tetrahydroisoquinoline derivatives as Wnt/β-catenin signaling inhibitors to suppress colorectal cancer. Eur J Med Chem 2024; 276:116664. [PMID: 39018921 DOI: 10.1016/j.ejmech.2024.116664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Colorectal cancer (CRC) has been becoming one of the most common causes of cancer mortality worldwide. Accumulating studies suggest that the progressive up-regulation of Wnt/β-catenin signaling is a crucial hallmark of CRC, and suppressing it is a promising strategy to treat CRC. Herein, we reported our latest efforts in the discovery of novel fused tetrahydroisoquinoline derivatives with good anti-CRC activities by screening our in-house berberine-like library and further structure-activity relationship (SAR) studies, in which we identified compound 10 is a potent lead compound with significant antiproliferation potencies. By the biotinylated probe and LC-MS/MS study, Hsp90 was identified as its molecular target, which is a fully different mechanism of action from what we reported before. Further studies showed compound 10 directly engaged the N-terminal site of Hsp90 and promoted the degradation of β-catenin, thereby suppressing the Wnt/β-catenin signaling. More importantly, compound 10 exhibits favorable pharmacokinetic parameters and significant anti-tumor efficacies in the HCT116 xenograft model. Taken together, this study furnished the discovery of candidate drug compound 10 possessing a novel fused tetrahydroisoquinoline scaffold with excellent in vitro and in vivo anti-CRC activities by targeting Hsp90 to disturb Wnt/β-catenin signaling pathway, which lay a foundation for discovering more effective CRC-targeted therapies.
Collapse
Affiliation(s)
- Jianhui Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Beibei Xu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qianwen Shen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhenwei Zhang
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Yuting Hu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mengxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ziyu Lei
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tao Liu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, China.
| | - Yu Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
7
|
Meng G, Li P, Du X, Feng X, Qiu F. Berberine alleviates ulcerative colitis by inhibiting inflammation through targeting IRGM1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155909. [PMID: 39068762 DOI: 10.1016/j.phymed.2024.155909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/28/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Berberine (BBR), the main active component of Coptis chinensis Franch., has a variety of pharmacological effects, notably anti-inflammatory, which make it a potential treatment for ulcerative colitis (UC). Nevertheless, the specific target and the mode of action of BBR against UC are still unclear. PURPOSE Here, we aim to identify BBR's anti-inflammatory target and its mode of action in UC treatment. METHODS The therapeutic effects of BBR and Coptis chinensis Franch. extract were first assessed in UC mice. Then, stable isotope labeling using amino acids in cell culture-activity-based protein profiling (SILAC-ABPP) was applied to identify the anti-inflammatory target proteins of BBR in an inflammation model of RAW264.7 cells stimulated by LPS. Molecular docking, drug affinity responsive target stability (DARTS), molecular dynamics simulation, cellular thermal shift assay (CETSA), and biological layer interference (BLI) measurement were employed to study the interaction between BBR and its targets. Lentiviral transfection was used to knock down the target protein and investigate BBR's anti-inflammatory mechanism. RESULTS BBR and Coptis chinensis Franch. extracts both significantly alleviated UC in mice. SILAC-ABPP identified IRGM1 as BBR's anti-inflammatory target, with its overexpression reduced by BBR treatment in both RAW264.7 cell inflammation models stimulated by LPS and UC mice. BBR significantly reduced inflammatory cytokines in LPS-induced RAW264.7 cells by blocking the PI3K/AKT/mTOR pathway. Knockdown of IRGM1 weakened BBR's effects on cytokine expression and pathway regulation. CONCLUSION For the first time, IRGM1 was identified as the direct anti-inflammatory target of BBR. BBR has the potential to inhibit IRGM1 expression in vitro as well as in vivo. The molecular mechanism of BBR's anti-inflammatory activity was inhibiting the PI3K/AKT/mTOR pathway by targeting IRGM1.
Collapse
Affiliation(s)
- Guibing Meng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyan Li
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuemei Du
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinchi Feng
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, and State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
8
|
Sunhe YX, Zhang YH, Fu RJ, Xu DQ, Tang YP. Neuroprotective effect and preparation methods of berberine. Front Pharmacol 2024; 15:1429050. [PMID: 39309003 PMCID: PMC11412855 DOI: 10.3389/fphar.2024.1429050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Berberine (BBR) is a natural alkaloid, which has played an important role in the field of medicine since its discovery in the late 19th century. However, the low availability of BBR in vivo prevents its full effect. In recent years, a large number of studies confirmed that BBR has a protective effect on the nervous system through various functions, yet the issue of the inability to systematically understand the protection of BBR on the nervous system remains a gap that needs to be addressed. Many existing literature introductions about berberine in neurodegenerative diseases, but the role of berberine in the nervous system goes far beyond these. Different from these literatures, this review is divided into three parts: preparation method, mechanism, and therapeutic effect. Various dosage forms of BBR and their preparation methods are added, in order to provide a reasonable choice of BBR, and help to solve the problem of low bioavailability in treatment. More importantly, we more comprehensively summarize the mechanism of BBR to protect the nervous system, in addition to the treatment of neurodegenerative diseases (anti-oxidative stress, anti-neuroinflammation, regulation of apoptosis), two extra mechanisms of berberine for the protection of the nervous system were also introduced: bidirectional regulation of autophagy and promote angiogenesis. Also, we have clarified the precise mechanism by which BBR has a therapeutic effect not only on neurodegenerative illnesses but also on multiple sclerosis, gliomas, epilepsy, and other neurological conditions. To sum up, we hope that these can evoke more efforts to comprehensively utilize of BBR nervous system, and to promote the application of BBR in nervous system protection.
Collapse
Affiliation(s)
| | | | | | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
9
|
Zhao X, Ma Y, Luo J, Xu K, Tian P, Lu C, Song J. Blocking the WNT/β-catenin pathway in cancer treatment:pharmacological targets and drug therapeutic potential. Heliyon 2024; 10:e35989. [PMID: 39253139 PMCID: PMC11381626 DOI: 10.1016/j.heliyon.2024.e35989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The WNT/β-catenin signaling pathway plays crucial roles in tumorigenesis and relapse, metastasis, drug resistance, and tumor stemness maintenance. In most tumors, the WNT/β-catenin signaling pathway is often aberrantly activated. The therapeutic usefulness of inhibition of WNT/β-catenin signaling has been reported to improve the efficiency of different cancer treatments and this inhibition of signaling has been carried out using different methods including pharmacological agents, short interfering RNA (siRNA), and antibodies. Here, we review the WNT-inhibitory effects of some FDA-approved drugs and natural products in cancer treatment and focus on recent progress of the WNT signaling inhibitors in improving the efficiency of chemotherapy, immunotherapy, gene therapy, and physical therapy. We also classified these FDA-approved drugs and natural products according to their structure and physicochemical properties, and introduced briefly their potential mechanisms of inhibiting the WNT signaling pathway. The review provides a comprehensive understanding of inhibitors of WNT/β-catenin pathway in various cancer therapeutics. This will benefit novel WNT inhibitor development and optimal clinical use of WNT signaling-related drugs in synergistic cancer therapy.
Collapse
Affiliation(s)
- Xi Zhao
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Yunong Ma
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Kexin Xu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Peilin Tian
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Cuixia Lu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| |
Collapse
|
10
|
Sajeev A, Sailo B, Unnikrishnan J, Talukdar A, Alqahtani MS, Abbas M, Alqahtani A, Sethi G, Kunnumakkara AB. Unlocking the potential of Berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett 2024; 597:217019. [PMID: 38849013 DOI: 10.1016/j.canlet.2024.217019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Despite considerable progress in cancer treatment options, resistance to chemotherapeutic drugs remains a significant challenge. This review focuses on Berberine (BBR), an isoquinoline alkaloid found in various medicinal plants, which has garnered attention in the field of oncology for its anticancer potential either alone or in combination with other compounds and its ability to modulate chemoresistance, acting as a natural chemosensitizer. BBR's ability to modulate chemoresistance is attributed to its diverse mechanisms of action, including inducing DNA breaks, inhibition of drug efflux pumps, modulation of apoptosis and necroptosis, downregulating multidrug resistance genes, enhancing immune response, suppressing angiogenesis and targeting multiple pathways within cancer cells, including protein kinase B/mammalian target of rapamycin (Akt/mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), poly(ADP-ribose) polymerase (PARP1), janus kinase/signal transducers and activators of transcription (JAK-STAT), Wnt/β-catenin etc. Moreover, BBR, in combination with other compounds, also offers a promising approach to cancer therapy, enforcing its broad-spectrum anticancer effects. Therefore, this review aims to elucidate the intricate mechanism of action of BBR in combinatorial therapy as a potential chemosensitizer to increase the efficiency of several drugs, including cisplatin, doxorubicin, lapatinib, tamoxifen, irinotecan, niraparib, etc. in various cancers. Additionally, this review briefly covers the origin and biological activities of BBR, exploring the specific actions underlying its anticancer effects. Further, pharmacokinetic properties of BBR are also discussed, providing insight into its therapeutic potential and optimization of its use in cancer treatment.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bethsebie Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ayesha Talukdar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City. P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
11
|
Ren J, Lv L, Tao X, Zhai X, Chen X, Yu H, Zhao X, Kong X, Yu Z, Dong D, Liu J. The role of CBL family ubiquitin ligases in cancer progression and therapeutic strategies. Front Pharmacol 2024; 15:1432545. [PMID: 39130630 PMCID: PMC11310040 DOI: 10.3389/fphar.2024.1432545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The CBL (Casitas B-lineage lymphoma) family, as a class of ubiquitin ligases, can regulate signal transduction and activate receptor tyrosine kinases through various tyrosine kinase-dependent pathways. There are three members of the family: c-CBL, CBL-b, and CBL-c. Numerous studies have demonstrated the important role of CBL in various cellular pathways, particularly those involved in the occurrence and progression of cancer, hematopoietic development, and regulation of T cell receptors. Therefore, the purpose of this review is to comprehensively summarize the function and regulatory role of CBL family proteins in different human tumors, as well as the progress of drug research targeting CBL family, so as to provide a broader clinical measurement strategy for the treatment of tumors.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Linlin Lv
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hao Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xinya Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Xin Kong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- School of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhan Yu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
13
|
Salehi S, Schallmayer E, Bandomir N, Kärcher A, Güth JF, Heitel P. Screening of Chelidonium majus isoquinoline alkaloids reveals berberine and chelidonine as selective ligands for the nuclear receptors RORβ and HNF4α, respectively. Arch Pharm (Weinheim) 2024; 357:e2300756. [PMID: 38501877 DOI: 10.1002/ardp.202300756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
The nuclear receptors hepatocyte nuclear factor 4α (HNF4α) and retinoic acid receptor-related orphan receptor-β (RORβ) are ligand-regulated transcription factors and potential drug targets for metabolic disorders. However, there is a lack of small molecular, selective ligands to explore the therapeutic potential in further detail. Here, we report the discovery of greater celandine (Chelidonium majus) isoquinoline alkaloids as nuclear receptor modulators: Berberine is a selective RORβ inverse agonist and modulated target genes involved in the circadian clock, photoreceptor cell development, and neuronal function. The structurally related chelidonine was identified as a ligand for the constitutively active HNF4α receptor, with nanomolar potency in a cellular reporter gene assay. In human liver cancer cells naturally expressing high levels of HNF4α, chelidonine acted as an inverse agonist and downregulated genes associated with gluconeogenesis and drug metabolism. Both berberine and chelidonine are promising tool compounds to further investigate their target nuclear receptors and for drug discovery.
Collapse
Affiliation(s)
- Sohrab Salehi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Espen Schallmayer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nils Bandomir
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Annette Kärcher
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Frederik Güth
- Department of Prosthodontics, Center for Dentistry and Oral Medicine (Carolinum), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
15
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
16
|
Yan J, Fang C, Yang G, Li J, Liu Y, Zhang L, Yang P, Fang J, Gu Y, Zhang Y, Jiang W. Identification of FtfL as a novel target of berberine in intestinal bacteria. BMC Biol 2023; 21:280. [PMID: 38049785 PMCID: PMC10696740 DOI: 10.1186/s12915-023-01778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Berberine (BBR) is a commonly used anti-intestinal inflammation drug, and its anti-cancer activity has been found recently. BBR can intervene and control malignant colorectal cancer (CRC) through intestinal microbes, but the direct molecular target and related mechanism are unclear. This study aimed to identify the target of BBR and dissect related mechanisms against the occurrence and development of CRC from the perspective of intestinal microorganisms. RESULTS Here, we found that BBR inhibits the growth of several CRC-driving bacteria, especially Peptostreptococcus anaerobius. By using a biotin-conjugated BBR derivative, we identified the protein FtfL (formate tetrahydrofolate ligase), a key enzyme in C1 metabolism, is the molecular target of BBR in P. anaerobius. BBR exhibits strong binding affinity and potent inhibition on FtfL. Based on this, we determined the crystal structure of PaFtfL (P. anaerobius FtfL)-BBR complex and found that BBR can not only interfere with the conformational flexibility of PaFtfL tetramer by wedging the tetramer interface but also compete with its substrate ATP for binding within the active center. In addition, the enzymatic activities of FtfL homologous proteins in human tumor cells can also be inhibited by BBR. CONCLUSIONS In summary, our study has identified FtfL as a direct target of BBR and uncovered molecular mechanisms involved in the anti-CRC of BBR. BBR interferes with intestinal pathogenic bacteria by targeting FtfLs, suggesting a new means for controlling the occurrence and development of CRC.
Collapse
Affiliation(s)
- Jinci Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengli Fang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gaohua Yang
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Bruna Straket 16, 41345, Gothenburg, Sweden
| | - Jianxu Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanqiang Liu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- Division of Gastroenterology and Hepatology Key Laboratory of Gastroenterology & Hepatology, State Key Laboratory for Oncogenes and Related GenesSchool of Medicine, Ministry of Health, Renji Hospital, Shanghai Jiao-Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Pengjie Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology Key Laboratory of Gastroenterology & Hepatology, State Key Laboratory for Oncogenes and Related GenesSchool of Medicine, Ministry of Health, Renji Hospital, Shanghai Jiao-Tong University; Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yu Zhang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
17
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
18
|
Manoharan I, Shanmugam A, Ramalingam M, Patel N, Thangaraju M, Ande S, Pacholczyk R, Prasad PD, Manicassamy S. The Transcription Factor RXRα in CD11c+ APCs Regulates Intestinal Immune Homeostasis and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:853-861. [PMID: 37477694 PMCID: PMC10538854 DOI: 10.4049/jimmunol.2200909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
APCs such as dendritic cells and macrophages play a pivotal role in mediating immune tolerance and restoring intestinal immune homeostasis by limiting inflammatory responses against commensal bacteria. However, cell-intrinsic molecular regulators critical for programming intestinal APCs to a regulatory state rather than an inflammatory state are unknown. In this study, we report that the transcription factor retinoid X receptor α (RXRα) signaling in CD11c+ APCs is essential for suppressing intestinal inflammation by imparting an anti-inflammatory phenotype. Using a mouse model of ulcerative colitis, we demonstrated that targeted deletion of RXRα in CD11c+ APCs in mice resulted in the loss of T cell homeostasis with enhanced intestinal inflammation and increased histopathological severity of colonic tissue. This was due to the increased production of proinflammatory cytokines that drive Th1/Th17 responses and decreased expression of immune-regulatory factors that promote regulatory T cell differentiation in the colon. Consistent with these findings, pharmacological activation of the RXRα pathway alleviated colitis severity in mice by suppressing the expression of inflammatory cytokines and limiting Th1/Th17 cell differentiation. These findings identify an essential role for RXRα in APCs in regulating intestinal immune homeostasis and inflammation. Thus, manipulating the RXRα pathway could provide novel opportunities for enhancing regulatory responses and dampening colonic inflammation.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | | | | | - Nikhil Patel
- Department of Pathology, Augusta University, Augusta, GA USA
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Satyanarayana Ande
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | | | - Puttur D. Prasad
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
- Department of Medicine, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
19
|
Chen N, Chen P, Zhou Y, Chen S, Gong S, Fu M, Geng L. HuNoV Non-Structural Protein P22 Induces Maturation of IL-1β and IL-18 and N-GSDMD-Dependent Pyroptosis through Activating NLRP3 Inflammasome. Vaccines (Basel) 2023; 11:vaccines11050993. [PMID: 37243097 DOI: 10.3390/vaccines11050993] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Norovirus infection is the leading cause of foodborne gastroenteritis worldwide, causing more than 200,000 deaths each year. As a result of a lack of reproducible and robust in vitro culture systems and suitable animal models for human norovirus (HuNoV) infection, the pathogenesis of HuNoV is still poorly understood. In recent years, human intestinal enteroids (HIEs) have been successfully constructed and demonstrated to be able to support the replication of HuNoV. The NLRP3 inflammasome plays a key role in host innate immune responses by activating caspase1 to facilitate IL-1β and IL-18 secretion and N-GSDMD-driven apoptosis, while NLRP3 inflammasome overactivation plays an important role in the development of various inflammatory diseases. Here, we found that HuNoV activated enteric stem cell-derived human intestinal enteroids (HIEs) NLRP3 inflammasome, which was confirmed by transfection of Caco2 cells with full-length cDNA clones of HuNoV. Further, we found that HuNoV non-structural protein P22 activated the NLRP3 inflammasome and then matured IL-1β and IL-18 and processed the cleavage of gasdermin-D (GSDMD) to N-GSDMD, leading to pyroptosis. Besides, berberine (BBR) could ameliorate the pyroptosis caused by HuNoV and P22 by inhibiting NLRP3 inflammasome activation. Together, these results reveal new insights into the mechanisms of inflammation and cell death caused by HuNoV and provide potential treatments.
Collapse
Affiliation(s)
- Nini Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yanhe Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sidong Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Fu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
20
|
Cuan X, Yang X, Zhu W, Zhao Y, Luo R, Huang Y, Wang X, Sheng J. Antitumor effects of erlotinib in combination with berberine in A431 cells. BMC Pharmacol Toxicol 2023; 24:29. [PMID: 37170144 PMCID: PMC10173514 DOI: 10.1186/s40360-023-00661-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/07/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND First-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as erlotinib, have been shown to target tumors with L858R (exon 21) and exon 19 deletions, resulting in significant clinical benefits. However, acquired resistance often occurs due to EGFR mutations. Therefore, novel therapeutic strategies for treatment of patients with EGFR-positive tumors are needed. Berberine (BBR) is an active alkaloid extracted from pharmaceutical plants such as Coptis chinensis. Berberine has been shown to significantly inhibit EGFR activity and mediate anticancer effects in multiple preclinical studies. We investigated whether combining BBR with erlotinib could augment erlotinib-induced cell growth inhibition of EGFR-positive cells in a mouse xenograft model. METHODS We examined the antitumor activities and potential mechanisms of erlotinib in combination with berberine in vitro and in vivo using the MTT assay, immunoblotting, flow cytometry, and tumor xenograft models. RESULTS In vitro studies with A431 cells showed that synergistic cell growth inhibition by the combination of BBR and erlotinib was associated with significantly greater inhibition of pEGFR and pAKT, and inhibition of cyclin D and Bcl-2 expression compared to that observed in response to BBR or erlotinib alone. The efficacy of the combination treatment was also investigated in nude mice. Consistent with the in vitro results, BBR plus erlotinib significantly reduced tumor growth. CONCLUSION Our data supported use of BBR in combination with erlotinib as a novel strategy for treatment of patients with EGFR positive tumors.
Collapse
Affiliation(s)
- Xiangdan Cuan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xingying Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Weiwei Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yue Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Rui Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanping Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming, 650201, China.
- College of Science, Yunnan Agricultural University, Kunming, 650201, China.
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China.
- Yunnan Research Institute of Plateau Characteristic Agricultural and Industry, Kunming, 650201, China.
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming, 650201, China.
- College of Science, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650201, China.
| |
Collapse
|
21
|
Wei W, Zeng Q, Wang Y, Guo X, Fan T, Li Y, Deng H, Zhao L, Zhang X, Liu Y, Shi Y, Zhu J, Ma X, Wang Y, Jiang J, Song D. Discovery and identification of EIF2AK2 as a direct key target of berberine for anti-inflammatory effects. Acta Pharm Sin B 2023; 13:2138-2151. [PMID: 37250154 PMCID: PMC10213791 DOI: 10.1016/j.apsb.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Using chemoproteomic techniques, we first identified EIF2AK2, eEF1A1, PRDX3 and VPS4B as direct targets of berberine (BBR) for its synergistically anti-inflammatory effects. Of them, BBR has the strongest affinity with EIF2AK2 via two ionic bonds, and regulates several key inflammatory pathways through EIF2AK2, indicating the dominant role of EIF2AK2. Also, BBR could subtly inhibit the dimerization of EIF2AK2, rather than its enzyme activity, to selectively modulate its downstream pathways including JNK, NF-κB, AKT and NLRP3, with an advantage of good safety profile. In EIF2AK2 gene knockdown mice, the inhibitory IL-1β, IL-6, IL-18 and TNF-α secretion of BBR was obviously attenuated, confirming an EIF2AK2-dependent anti-inflammatory efficacy. The results highlight the BBR's network mechanism on anti-inflammatory effects in which EIF2AK2 is a key target, and inhibition of EIF2AK2 dimerization has a potential to be a therapeutic strategy against inflammation-related disorders.
Collapse
Affiliation(s)
| | | | | | - Xixi Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yinghong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liping Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xintong Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yulong Shi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingyang Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xican Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
22
|
Tarawneh N, Hamadneh L, Abu-Irmaileh B, Shraideh Z, Bustanji Y, Abdalla S. Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions. Molecules 2023; 28:molecules28093823. [PMID: 37175233 PMCID: PMC10180100 DOI: 10.3390/molecules28093823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Berberine is a natural isoquinoline alkaloid with anti-cancer properties. Nevertheless, the underlying mechanism of its action in human colorectal cancer (CRC) has not been thoroughly elucidated. We investigated the anti-cancer effect of berberine on HT-29, SW-480 and HCT-116 human CRC cell lines. Methods: Cell proliferation, migration and invasion were studied by MTT assay, wound healing, transwell chambers and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunostaining were used to evaluate the expression of aquaporins (AQPs) 1, 3 and 5 in colon cancer cell lines before and after treatment with berberine (10, 30 and 100 µM). RT-qPCR and Western blotting were used to further explore the PI3K/AKT signaling pathway and the molecular mechanisms underlying berberine-induced inhibition of cell proliferation. Results: We demonstrated that treatment of these CRC cell lines with berberine inhibited cell proliferation, migration and invasion through induction of apoptosis and necrosis. HT-29, SW-480 and HCT-116 stained positively for AQP 1, 3 and 5, and berberine treatment down-regulated the expression of all three types of AQPs. Berberine also modulated PI3K/AKT pathway activity through up-regulating PTEN and down-regulating PI3K, AKT and p-AKT expression as well as suppressing its downstream targets, mTOR and p-mTOR at the protein level. Discussion/Conclusions: These findings indicate that berberine inhibited growth, migration and invasion of these colon cancer cell lines via down-regulation of AQP 1, 3 and 5 expressions, up-regulating PTEN which inhibited the PI3K/AKT pathway at the gene and protein levels, and that AQP 1, 3 and 5 expression level can be used as prognostic biomarkers for colon cancer metastasis.
Collapse
Affiliation(s)
- Noor Tarawneh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Lama Hamadneh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University, Amman 11733, Jordan
- Department of Basic Medical Sciences, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | - Ziad Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Yasser Bustanji
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shtaywy Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
23
|
Devarajan N, Nathan J, Mathangi R, Mahendra J, Ganesan SK. Pharmacotherapeutic values of berberine: A Chinese herbal medicine for the human cancer management. J Biochem Mol Toxicol 2023; 37:e23278. [PMID: 36588295 DOI: 10.1002/jbt.23278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/27/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
Berberine (BBR), a traditional Chinese phytomedicine extracted from various parts of Berberis plants, is an isoquinoline alkaloid used for centuries to treat diabetes, hypercholesterolemia, hypertension, and so forth. It has recently received immense attention worldwide to treat cancer due to its potent pro-apoptotic, antiproliferative, and anti-inflammatory properties. BBR efficiently induces tumor apoptosis, replicative quiescence and abrogates cell proliferation, epithelial-mesenchymal transition, tumor neovascularization, and metastasis by modulating diverse molecular and cell signaling pathways. Furthermore, BBR could also reverse drug resistance, make tumor cells sensitive to current cancer treatment and significantly minimize the harmful side effects of cytotoxic therapies. This review comprehensively analyzed the pharmacological effects of BBR against the development, growth, progression, metastasis, and therapy resistance in wide varieties of cancer. Also, it critically discusses the significant limitations behind the development of BBR into pharmaceuticals to treat cancer and the future research directions to overcome these limitations.
Collapse
Affiliation(s)
- Nalini Devarajan
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research - MAHER (Deemed to be University), Chennai, Tamilnadu, India
| | - Jhansi Nathan
- Zebrafish Developmental Biology Laboratory, AUKBC Research Centre for Emerging Technologies, Anna University, Chennai, Tamil Nadu, India
| | - Ramalingam Mathangi
- Department of Biochemistry, Sree Balaji Dental College and Hospital, BIHER, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontology, Meenakshi Ammal Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Senthil Kumar Ganesan
- Laboratory of Functional Genomics, Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| |
Collapse
|
24
|
Wang X, Tang G, Guo H, Ma J, Liu D, Wang Y, Jin R, Li Z, Tang Y. Research Progress on the Anti-Tumor Mechanism and Reversal of Multidrug Resistance of Zuojin Pill and its Main Components, Evodiamine and Berberine. Nat Prod Commun 2023; 18. [DOI: 10.1177/1934578x231161414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background Cancer is one of the most serious diseases worldwide that threatens human health and leads to death. Chemotherapy is the main clinical method to treat tumors, but, despite the development of new chemotherapeutic drugs, the multidrug resistance (MDR) of cancer cells to conventional chemotherapeutic drugs remains a major cause of failure in cancer prevention and treatment. Therefore, overcoming this resistance has become a major challenge in cancer prevention and treatment. Method With the in-depth study of traditional Chinese medicines (TCMs) for the treatment of tumors, many such medicines have been found that can reverse MDR and enhance the sensitivity of chemotherapy. ZJW is a famous traditional medicine formula from China, recorded first in an ancient medicine book named Danxi Xinfa. It is composed of Huanglian and Wuzhuyu in a ratio of 6:1 by mass. Conclusion ZJW can inhibit proliferation, induce apoptosis, inhibit invasion and metastasis, and reverse MDR of tumor cells through multiple pathways and multiple targets. In this paper, we briefly review recent research on ZJW and its main components, evodiamine and berberine, in the anti-tumor mechanism and reversal of multidrug resistance.
Collapse
Affiliation(s)
- Xinyi Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Gonghuan Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Hui Guo
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Jingjing Ma
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Dongmei Liu
- No.988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Yuwei Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Ruyi Jin
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Zhi Li
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| | - Yuping Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Res, Shaanxi University of Chinese Medicine, XianYang, China
| |
Collapse
|
25
|
Ferdous MRU, Abdalla M, Yang M, Xiaoling L, Song Y. Berberine chloride (dual topoisomerase I and II inhibitor) modulate mitochondrial uncoupling protein (UCP1) in molecular docking and dynamic with in-vitro cytotoxic and mitochondrial ATP production. J Biomol Struct Dyn 2023; 41:1704-1714. [PMID: 35612892 DOI: 10.1080/07391102.2021.2024255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Obesity initiates numerous diseases like cardiovascular, metabolic, and type 2 diabetes, and obesity is a vital cause of death worldwide. Plants are necessary to the source of life. Several drug compounds isolated from plants are called phytochemicals which are safe, effective drug moieties to treat several diseases. Berberine chloride is a dual topoisomerase I and II inhibitor, that exhibited potent antitumor activities against several malignancies. However, the effect of Berberine on mitochondria remains unknown. The focus of this study was to determine the role of Berberine on mitochondrial uncoupling protein (UCP1), ATP production, and cytotoxic effect of HEK293T cell at a time and dose-dependent manner analysis by CCK8 assay. The upregulation of mitochondrial UCP1 gene expression reduces adipocyte content by initiating thermogenesis. In this study, berberine chloride significantly up-regulates UCP1 gene expression in brown adipocytes. AT 10 µM concentration of Berberine 48 h treatment demonstrated significant cell death. The decreased level of ATP production leads to mitochondrial uncoupling. Initiate thermogenesis reducing fat droplets in adipocytes. The first time, we used molecular docking and dynamic of Berberine with UCP1 gene in this study and revealed therapeutic potential of Berberine via modulation of mitochondrial UCP1 gene. Further investigation will reveal new insight into mechanisms to treat metabolic-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Reyad-Ul Ferdous
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Internal Medicine, Cheeloo College of Medicine Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrinology & Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, PR China
| | - Mengjiao Yang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong First Medical University, Shandong, China
| | - Li Xiaoling
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong First Medical University, Shandong, China
| | - Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, China.,Shandong Institute of Endocrinology & Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Shandong First Medical University, Shandong, China
| |
Collapse
|
26
|
Li SY, Shi CJ, Fu WM, Zhang JF. Berberine inhibits tumour growth in vivo and in vitro through suppressing the lincROR-Wnt/β-catenin regulatory axis in colorectal cancer. J Pharm Pharmacol 2023; 75:129-138. [PMID: 36130331 DOI: 10.1093/jpp/rgac067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/25/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Berberine, a non-prescription medicine clinically applied for diarrhoea and gastroenteritis. Recent studies have demonstrated that it possesses anti-tumour properties in colorectal cancer, but the exact molecular mechanism remains obscure. OBJECTIVES To elucidate the underly molecular mechanisms of berberine in colorectal cancer from a perspective of epigenetics, and tried to explore the role of lincROR-Wnt/β-catenin molecular axis in the berberine induced the anti-tumour activity in colorectal cancer. METHODS The effects of berberine on cell growth, cell cycle and apoptosis were examined in CRC cells. The in vivo effect of berberine on tumour growth was investigated using a xenograft mice model. Moreover, lincROR and Wnt/β-catenin signalling were detected by luciferase activity, qRT-PCR and western blotting assays. KEY FINDINGS Berberine suppressed cell growth in vitro via inducing cell cycle arrest and apoptosis in CRC cell, and inhibited tumourigenesis in vivo. LincROR was significantly down-regulated by berberine, inducing the inactivation of the canonical Wnt/β-catenin signalling, meanwhile, the overexpression of lincROR partially reversed the suppressive effects on tumour growth and Wnt/β-catenin signalling induced by berberine. CONCLUSIONS Berberine inhibits tumour growth partially via regulating the lincROR-Wnt/β-catenin regulatory axis, which provides a strategy for the design of anti-tumour drugs for CRC patients after our advanced validation.
Collapse
Affiliation(s)
- Shi-Ying Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China
| | - Chuan-Jian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 511458, PR China
| | - Jin-Fang Zhang
- Cancer center, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518000, PR China
| |
Collapse
|
27
|
Fan L, Zeng X, Xu G. Metformin Regulates Gut Microbiota Abundance to Suppress M2 Skewing of Macrophages and Colorectal Tumorigenesis in Mice. J Microbiol 2023; 61:109-120. [PMID: 36701104 DOI: 10.1007/s12275-022-00010-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 01/27/2023]
Abstract
The correlation of imbalanced gut microbiota with the onset and progression of colorectal cancer (CRC) has become clear. This work investigates the effect of metformin on gut microbiota and genesis of CRC in mice. Human fecal samples were collected from healthy control (HC) donors and CRC patients. Compared to HC donors, CRC patients had reduced abundance of gut microbiota; however, they had increased abundance of detrimental Bacteroidetes. Mice were injected with azomethane (AOM) to induce colorectal tumorigenesis models. Treatment of CRC patients-sourced fecal microbiota promoted tumorigenesis, and it increased the expression of Ki67, β-catenin, COX-2, and Cyclin D1 in mouse colon tissues. Further treatment of metformin blocked the colorectal tumorigenesis in mice. Fecal microbiota from the metformin-treated mice was collected, which showed decreased Bacteroidetes abundance and suppressed AOM-induced colorectal tumorigenesis in mice as well. Moreover, the metformin- modified microbiota promoted the M1 macrophage-related markers IL-6 and iNOS but suppressed the M2 macrophage-related markers IL-4R and Arg1 in mouse colon tissues. In conclusion, this study suggests that metformin-mediated gut microbiota alteration suppresses macrophage M2 polarization to block colorectal tumorigenesis.
Collapse
Affiliation(s)
- Linfeng Fan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiangfu Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Guofeng Xu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
28
|
Yuan R, Tan Y, Sun PH, Qin B, Liang Z. Emerging trends and research foci of berberine on tumor from 2002 to 2021: A bibliometric article of the literature from WoSCC. Front Pharmacol 2023; 14:1122890. [PMID: 36937842 PMCID: PMC10021304 DOI: 10.3389/fphar.2023.1122890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Cancer, also known as a malignant tumor, is caused by the activation of oncogenes, which leads to the uncontrolled proliferation of cells that results in swelling. According to the World Health Organization (WHO), cancer is one of the main causes of death worldwide. The main variables limiting the efficacy of anti-tumor treatments are side effects and drug resistance. The search for natural, safe, low toxicity, and efficient chemical compounds in tumor research is essential. Berberine is a pentacyclic isoquinoline quaternary ammonium alkaloid isolated from Berberis and Coptis that has long been used in clinical settings. Studies in recent years have reported the use of berberine in cancer treatment. In this study, we performed a bibliometric analysis of berberine- and tumor-related research. Materials and methods: Relevant articles from January 1, 2002, to December 31, 2021, were identified from the Web of Science Core Collection (WOSCC) of Clarivate Analytics. Microsoft Excel, CiteSpace, VOSviewer, and an online platform were used for the literary metrology analysis. Results: A total of 1368 publications had unique characteristics. Publications from China were the most common (783 articles), and Y. B. Feng (from China) was the most productive author, with the highest total citations. China Medical University (Taiwan) and Sun Yat-sen University (China) were the two organizations with the largest numbers of publications (36 each). Frontiers in Pharmacology was the most commonly occurring journal (29 articles). The present body of research is focused on the mechanism, molecular docking, and oxidative stress of berberine in tumors. Conclusion: Research on berberine and tumors was thoroughly reviewed using knowledge map and bibliometric methods. The results of this study reveal the dynamic evolution of berberine and tumor research and provide a basis for strategic planning in cancer research.
Collapse
Affiliation(s)
- Runzhu Yuan
- School of Medicine, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, China
| | - Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Ping-Hui Sun
- Department of Thoracic Surgery, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Bo Qin, ; Zhen Liang,
| |
Collapse
|
29
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
30
|
Zhong XD, Chen LJ, Xu XY, Liu YJ, Tao F, Zhu MH, Li CY, Zhao D, Yang GJ, Chen J. Berberine as a potential agent for breast cancer therapy. Front Oncol 2022; 12:993775. [PMID: 36119505 PMCID: PMC9480097 DOI: 10.3389/fonc.2022.993775] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 01/02/2023] Open
Abstract
Breast cancer (BC) is a common malignancy that mainly occurred in women and it has become the most diagnosed cancer annually since 2020. Berberine (BBR), an alkaloid extracted from the Berberidacea family, has been found with broad pharmacological bioactivities including anti-inflammatory, anti-diabetic, anti-hypertensive, anti-obesity, antidepressant, and anticancer effects. Mounting evidence shows that BBR is a safe and effective agent with good anticancer activity against BC. However, its detailed underlying mechanism in BC treatment remains unclear. Here, we will provide the evidence for BBR in BC therapy and summarize its potential mechanisms. This review briefly introduces the source, metabolism, and biological function of BBR and emphasizes the therapeutic effects of BBR against BC via directly interacting with effector proteins, transcriptional regulatory elements, miRNA, and several BBR-mediated signaling pathways. Moreover, the novel BBR-based therapeutic strategies against BC improve biocompatibility and water solubility, and the efficacies of BBR are also briefly discussed. Finally, the status of BBR in BC treatment and future research directions is also prospected.
Collapse
Affiliation(s)
- Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li-Juan Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xin-Yang Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Dan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
31
|
Wang K, Gu C, Yu G, Lin J, Wang Z, Lu Q, Xu Y, Zhao D, Jiang X, Mai W, Liu S, Yang H. Berberine enhances the anti-hepatocellular carcinoma effect of NK92-MI cells through inhibiting IFN-gamma-mediated PD-L1 expression. LIVER RESEARCH 2022; 6:167-174. [PMID: 39958198 PMCID: PMC11791859 DOI: 10.1016/j.livres.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/09/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Abstract
Background and aims Berberine is one of the most promising clinically tested natural alkaloids, and immunotherapy using natural killer (NK) cells is a potentially effective treatment for hepatocellular carcinoma (HCC). This study aims to elucidate the effect of berberine on the anti-HCC effect of NK92-MI cells. Materials and methods Human HCC SMMC-7721 and Hep3B cells were co-incubated with NK92-MI cells, berberine (60 or 80 μmol/L), or their combination for 36 h. To evaluate the killing effect of NK92-MI cells on HCC cells, the release of lactate dehydrogenase (LDH) in HCC cells was measured. The anti-tumor effects of berberine, NK92-MI cells, and their combinations were evaluated by MTS, EdU, Tunel, and Western blot assays. A male BALB/c nude mouse subcutaneous tumor model was used to investigate the anti-HCC effect of berberine and NK92-MI cells in vivo. Results The LDH assay showed that berberine enhanced the cytotoxicity of NK92-MI cells on HCC cells. The combination of berberine and NK92-MI cells demonstrated more obvious anti-HCC effect than did the berberine or NK92-MI single treatment in inhibiting cell proliferation and inducing apoptosis both in vitro and in vivo. Mechanistically, the expression of programmed cell death-ligand 1 (PD-L1) in HCC cells was upregulated after co-culture with NK-92MI cells. PD-L1 expression was knocked down, thereby inhibiting the proliferation and promoting apoptosis of HCC cells, and inhibited by berberine that blocked the secretion of interferon gamma (IFN-γ), thereby enhancing the anti-tumor effect of NK92-MI cells. Conclusions Current data show that the immunomodulatory role of berberine is to enhance the cytotoxic effect of NK92-MI cells and inhibit tumor immune escape by reducing the expression of PD-L1. Our study provides a rationale for the clinical application of berberine in combination with NK cells for the treatment of HCC.
Collapse
Affiliation(s)
- Kunyuan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chengxin Gu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ganxiang Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaen Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhilei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qianting Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yangzhi Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dan Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaofeng Jiang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weijian Mai
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Ni L, Sun P, Ai M, Kong L, Xu R, Li J. Berberine inhibited the formation of metastasis by intervening the secondary homing of colorectal cancer cells in the blood circulation to the lung and liver through HEY2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154303. [PMID: 35802997 DOI: 10.1016/j.phymed.2022.154303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Metastasis is the leading cause of death in patients with colorectal cancer (CRC). The 5-year survival rate of CRC patients in whom the cancer has spread to distant sites is 13.5%. The most common sites of CRC metastasis are liver and lung. The principal therapies for CRC metastatic disease are surgery, but its benefits are limited. PURPOSE This study aimed to reveal the regulatory mechanism of berberine on secondary homing of CRC cells to form metastatic focus. This was more valuable than the previous direct study of the migration and metastasis characteristics of CRC cells. METHODS In this study, we used the functional enrichment analysis of differentially expressed genes after berberine treatment and investigated co-expression modules related with CRC metastasis by WGCNA. PPI and survival analyses of significant modules were also conducted. The biological functions of berberine in CRC lung and liver metastasis were investigated by a series of in vitro and in vivo experiments: MTT, colony formation and mouse tail vein injection. And we scanned through the entire extracellular domain of HEY2 protein for autodocking analysis with berberine. RESULTS We found the differentially expressed genes (DEGs) after berberine treatment were related with cancer progression and metastasis related pathways. Through WGCNA analysis, four cancer progression and metastasis related modules were detected. After PPI and survival analysis, we identified and validated HEY2 as a hub gene, high expression and poor survival at the metastatic stage. Functionally, berberine inhibited the survival, invasion and migration of CRC cells in vitro and in vivo. Mechanistically, berberine treatment down-regulated the expression of HEY2, metastasis related protein E-cadherin, β-catenin and Cyclin D1 during Mesenchymal epithelial transformation (MET). Berberine and HEY2 showed a significant interaction, and berberine binded to HEY2 protein at the residue HIS-99 interface with a hydrogen-bond distance of 1.9A. CONCLUSIONS We revealed that berberine could significantly inhibit the expression of hub gene HEY2 and metastasis related proteins E-cadherin and β-catenin and Cyclin D1 during MET in CRC lung and liver metastases. In total, HEY2 was a promising candidate biomarker for prognosis and molecular characteristics in CRC metastasis.
Collapse
Affiliation(s)
- Lulu Ni
- Department of Basic Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Ping Sun
- Department of Pathology, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi 214000,PR China
| | - Min Ai
- Laboratory Animal Center of Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Lingzhong Kong
- Department of Rehabilitation Acupuncture Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, PR China
| | - Rongrong Xu
- Department of Pathology, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, Wuxi 214000,PR China
| | - Jiangan Li
- Department of Emergency, The Affiliated Wuxi NO. 2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi 214000, PR China.
| |
Collapse
|
33
|
Sun Q, Yang H, Liu M, Ren S, Zhao H, Ming T, Tang S, Tao Q, Chen L, Zeng S, Duan DD, Xu H. Berberine suppresses colorectal cancer by regulation of Hedgehog signaling pathway activity and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154227. [PMID: 35679795 DOI: 10.1016/j.phymed.2022.154227] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A growing body of evidence reveals that dysregulation of Hedgehog signaling pathway and dysbiosis of gut microbiota are associated with the pathogenesis of colorectal cancer (CRC). Berberine, a botanical benzylisoquinoline alkaloid, possesses powerful activities against various malignancies including CRC, with the underlying mechanisms to be illuminated. PURPOSE The present study investigated the potencies of berberine on CRC and deciphered the action mechanisms in the context of Hedgehog signaling cascade and gut microbiota. METHODS The effects of berberine on the malignant phenotype, apoptosis, cell cycle and Hedgehog signaling of CRC cells were examined in vitro. In azoxymethane/dextran sulfate sodium-caused mouse CRC, the efficacies of berberine on the carcinogenesis, pathological profile, apoptosis, cell cycle and Hedgehog signaling were determined in vivo. Also, the influences of berberine on gut microbiota in CRC mice were assessed by high-throughput DNA sequencing analysis of 16S ribosomal RNA of fecal microbiome in CRC mice. RESULTS In the present study, berberine was found to dampen the proliferation, migration, invasion and colony formation of CRC cells, without toxicity to normal colonic cells. Additionally, berberine induced apoptosis and arrested cell cycle at G0/G1 phase in CRC cells, accompanied by reduced Hedgehog signaling pathway activity in vitro. In mouse CRC, berberine suppressed tumor growth, ameliorated pathological manifestations, and potentially induced the apoptosis and cell cycle arrest of CRC, with lowered Hedgehog signaling cascade in vivo. Additionally, berberine decreased β-diversity of gut microbiota in CRC mice, without influence on α-diversity. Berberine also enriched probiotic microbes and depleted pathogenic microbes, and modulated the functionality of gut microbiota in CRC mice. CONCLUSIONS Overall, berberine may suppress colorectal cancer, orchestrated by down-regulation of Hedgehog signaling pathway activity and modulation of gut microbiota.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
34
|
Dian L, Xu Z, Sun Y, Li J, Lu H, Zheng M, Wang J, Drobot L, Horak I. Berberine alkaloids inhibit the proliferation and metastasis of breast carcinoma cells involving Wnt/β-catenin signaling and EMT. PHYTOCHEMISTRY 2022; 200:113217. [PMID: 35504329 DOI: 10.1016/j.phytochem.2022.113217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Berberine alkaloids belong to the class of isoquinoline alkaloids that have been shown to possess anticancer potential, berberine exhibits inhibitory effects on breast cancer development. However, the exact mechanisms of action for anti-breast carcinoma of the alkaloids, including epiberberine, berberrubine and dihydroberberine are still unclear. MTT assay, colony formation, wound healing and transwell invasion assays detected these alkaloids suppressed proliferation, migration and invasion of breast cancer cells. Hoechst and Annexin V-FITC/PI staining were used to analyze the apoptosis of breast cancer cells. Western blotting investigated the changes noted in the expression levels of the key proteins involved in the Wnt/β-catenin signaling pathway and epithelial to mesenchymal transition (EMT). The results showed that inhibited the proliferation of breast cancer cells. Berberine alkaloids inhibited the cell cycle at G2/M phase in MCF-7 cells, but in MDA-MB-231 cells berberine alkaloids arrested the cell cycle in G0/G1 and G2/M phases. By decreasing β-catenin expression, increasing GSK-3β expression and decreasing N-cadherin expression, increasing E-cadherin expression, which proved that epiberberine, berberrubine and dihydroberberine inhibited of metastasis of breast cancer cells through Wnt signaling pathway and reversed EMT except berberine. Furthermore, berberine alkaloids exert their anti-breast cancer effects through the synergistic action of intrinsic and extrinsic pathways of apoptosis. These findings highlight the different effects of different berberine alkaloids on breast cancer cells and confirm that berberine alkaloids may be potentially used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lulu Dian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhaozhen Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| | - Jinhua Li
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Hongfei Lu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Zheng
- Zhejiang Huisong Pharmaceuticals Co. Ltd., Hangzhou, 310003, China
| | - Juan Wang
- Zhejiang Huisong Pharmaceuticals Co. Ltd., Hangzhou, 310003, China
| | - Liudmyla Drobot
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha Street 9, 01030, Kyiv, Ukraine
| | - Iryna Horak
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Leontovicha Street 9, 01030, Kyiv, Ukraine
| |
Collapse
|
35
|
Xiong RG, Huang SY, Wu SX, Zhou DD, Yang ZJ, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. Anticancer Effects and Mechanisms of Berberine from Medicinal Herbs: An Update Review. Molecules 2022; 27:4523. [PMID: 35889396 PMCID: PMC9316001 DOI: 10.3390/molecules27144523] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer has been a serious public health problem. Berberine is a famous natural compound from medicinal herbs and shows many bioactivities, such as antioxidant, anti-inflammatory, antidiabetic, anti-obesity, and antimicrobial activities. In addition, berberine shows anticancer effects on a variety of cancers, such as breast, lung, gastric, liver, colorectal, ovarian, cervical, and prostate cancers. The underlying mechanisms of action include inhibiting cancer cell proliferation, suppressing metastasis, inducing apoptosis, activating autophagy, regulating gut microbiota, and improving the effects of anticancer drugs. This paper summarizes effectiveness and mechanisms of berberine on different cancers and highlights the mechanisms of action. In addition, the nanotechnologies to improve bioavailability of berberine are included. Moreover, the side effects of berberine are also discussed. This paper is helpful for the prevention and treatment of cancers using berberine.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Yun-Jian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu 610213, China;
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (S.-Y.H.); (S.-X.W.); (D.-D.Z.); (Z.-J.Y.); (A.S.)
| |
Collapse
|
36
|
Investigation of Molecular Mechanism of Banxia Xiexin Decoction in Colon Cancer via Network Pharmacology and In Vivo Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4961407. [PMID: 35815259 PMCID: PMC9270134 DOI: 10.1155/2022/4961407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Objective Banxia Xiexin decoction (BXD) is widely used in the treatment of gastrointestinal and other digestive diseases. This study is based on network pharmacology to explore the molecular mechanism of BXD in the treatment of colon cancer. Methods The bioactive components and potential targets of BXD were obtained from public database. The protein-protein interaction (PPI) network of the potential targets of BXD for colon cancer was constructed based on the STRING database, cytoscape software, gene ontology (GO), and kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of the PPI network. Finally, we established a xenograft nude mouse model to verify the effect of BXD in colon cancer treatment. Results We have acquired a total of 55 bioactive components and 136 cross-targets of BXD. The results of enrichment analysis suggested that the oxidate stress and diet were the key factors of colon cancer occurrence, and AGE-RAGE signaling pathway plays an essential role in the treatment of colon cancer with BXD. Animal experiments revealed that BXD could suppress tumor growth and induce tumor cell apoptosis in the xenograft nude mouse model with HCT116 cells. Conclusion This study uncovered that BXD inhibits the malignant progression of colon cancer that may be related to multiple compounds (berberine, quercetin, baicalein, etc.), multiple targets (Bcl2, Bax, IL6, TNFα, CASP3, etc.), and multiple pathways (human cytomegalovirus infection, AGE-RAGE signaling pathway in diabetic complications, etc.).
Collapse
|
37
|
Tian W, Hao H, Chu M, Gong J, Li W, Fang Y, Zhang J, Zhang C, Huang Y, Pei F, Duan L. Berberine Suppresses Lung Metastasis of Cancer via Inhibiting Endothelial Transforming Growth Factor Beta Receptor 1. Front Pharmacol 2022; 13:917827. [PMID: 35784732 PMCID: PMC9243563 DOI: 10.3389/fphar.2022.917827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effects of berberine (BBR) on pancreatic cancer (PC) lung metastasis and explored the underlying mechanisms, using a BALB/C-nu/nu nude mouse model injected with PC cells (AsPC-1). Intragastric administration of BBR dose-dependently improves survival of mice intravenously injected with AsPC-1 cells, and reduces lung metastasis. Especially, BBR significantly reduces lung infiltration of circulating tumor cells (CTCs) 24 h after AsPC-1 cells injection. In vitro, tumor cells (TCs) trigger endothelial barrier disruption and promote trans-endothelial migration of CFSE-labeled TCs. BBR treatment effectively ameliorates TC-induced endothelial disruption, an effect that is diminished by inhibiting transforming growth factor-β receptor 1 (TGFBR1). Blocking TGFBR1 blunts the anti-metastatic effect of BBR in vivo. Mechanistically, BBR binds to the intercellular portion of TGFBR1, suppresses its enzyme activities, and protects endothelial barrier disruption by TCs which express higher levels of TGF-β1. Hence, BBR might be a promising drug for reducing PC lung metastasis in clinical practice.
Collapse
Affiliation(s)
- Wenjia Tian
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Huifeng Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Jingjing Gong
- Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Cunzheng Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yonghui Huang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Fei Pei
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- *Correspondence: Liping Duan,
| |
Collapse
|
38
|
Okuno K, Garg R, Yuan YC, Tokunaga M, Kinugasa Y, Goel A. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front Oncol 2022; 12:855860. [PMID: 35600365 PMCID: PMC9114748 DOI: 10.3389/fonc.2022.855860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Naturally occurring dietary botanicals offer time-tested safety and anti-cancer efficacy, and a combination of certain compounds has shown to overcome the elusive chemotherapeutic resistance, which is of great significance for improving the mortality of patients with colorectal cancer (CRC). Accordingly, herein, we hypothesized that berberine (BBR) and oligomeric proanthocyanidins (OPCs) might regulate synergistically multiple oncogenic pathways to exert a superior anti-cancer activity in CRC. METHODS We performed a series of cell culture studies, followed by their interrogation in patient-derived organoids to evaluate the synergistic effect of BBR and OPCs against CRC. In addition, by performing whole genome transcriptomic profiling we identified the key targeted genes and pathways regulated by the combined treatment. RESULTS We first demonstrated that OPCs facilitated enhanced cellular uptake of BBR in CRC cells by measuring the fluorescent signal of BBR in cells treated individually or their combination. The synergism between BBR and OPCs were investigated in terms of their anti-tumorigenic effect on cell viability, clonogenicity, migration, and invasion. Furthermore, the combination treatment potentiated the cellular apoptosis in an Annexin V binding assay. Transcriptomic profiling identified oncogene MYB in PI3K-AKT signaling pathway might be critically involved in the anti-tumorigenic properties of the combined treatment. Finally, we successfully validated these findings in patient-derived CRC tumor organoids. CONCLUSIONS Collectively, we for the first time demonstrate that a combined treatment of BBR and OPCs synergistically promote the anti-tumorigenic properties in CRC possibly through the regulation of cellular apoptosis and oncogene MYB in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rachana Garg
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
| | - Yate-Ching Yuan
- Translational Bioinformatics, Center for Informatics, City of Hope, Duarte, CA, United States
| | - Masanori Tokunaga
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, United States
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
39
|
Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3311228. [PMID: 35469164 PMCID: PMC9034927 DOI: 10.1155/2022/3311228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Vascular endothelial dysfunction is characterized by an imbalance of vasodilation and vasoconstriction, deficiency of nitric oxide (NO) bioavailability and elevated reactive oxygen species (ROS), and proinflammatory factors. This dysfunction is a key to the early pathological development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. Therefore, modulation of the vascular endothelium is considered an important therapeutic strategy to maintain the health of the cardiovascular system. Epidemiological studies have shown that regular consumption of medicinal plants, fruits, and vegetables promotes vascular health, lowering the risk of cardiovascular diseases. This is mainly attributed to the phytochemical compounds contained in these resources. Various databases, including Google Scholar, MEDLINE, PubMed, and the Directory of Open Access Journals, were searched to identify studies demonstrating the vascular protective effects of phytochemical compounds. The literature had revealed abundant data on phytochemical compounds protecting and improving the vascular system. Of the numerous compounds reported, curcumin, resveratrol, cyanidin-3-glucoside, berberine, epigallocatechin-3-gallate, and quercetin are discussed in this review to provide recent information on their vascular protective mechanisms in vivo and in vitro. Phytochemical compounds are promising therapeutic agents for vascular dysfunction due to their antioxidative mechanisms. However, future human studies will be necessary to confirm the clinical effects of these vascular protective mechanisms.
Collapse
|
40
|
Nie Q, Peng WW, Wang Y, Zhong L, Zhang X, Zeng L. β-catenin correlates with the progression of colon cancers and berberine inhibits the proliferation of colon cancer cells by regulating the β-catenin signaling pathway. Gene 2022; 818:146207. [PMID: 35063579 DOI: 10.1016/j.gene.2022.146207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Berberine was one of the active components in Chinese herb and exerted tumor suppressive role in cancer progression, but the exact antitumor mechanism is still not clearly clarified. In the present study, bioinformatics analysis was performed on COAD patients from TCGA, HPA database, UALCAN and GEPIA 2 platform. We also explored the role of berberine on progression of human colon cancers in vitro and in vivo and clarified weather the antitumor effects of berberine was mediated by Wnt/beta-catenin pathway. METHODS Cell viability was determined by MTT assay. The protein levels were tested by western blotting and the distribution of β-catenin was observed by confocal microscope. RESULTS The results showed the levels of CTNNB1 mRNA was increased in colon cancer patients than normal controls. The diagnostic value of CTNNB1 was AUC = 0.882 (CI:0.854-0.911) with sensitivity of 1.000 and specificity of 0.777. The promoter methylation level of CTNNB1 in COAD patients was significantly decreased. Moreover, univariate analysis and multivariate analysis results showed the expression of CTNNB1 in COAD patients was associated with T stage (p = 0.010), pathological stage (p = 0.025) and perineural invasion (p = 0.025). Furthermore, the in vitro assay results showed β-catenin signaling was highly activated in human colon cancer cells and berberine inhibited the cell viability of colon cancer cells in vitro and in vivo in a dose-and time-dependent manner. Moreover, berberine induced the translocation of β-catenin to cytoplasm from nucleus. CONCLUSION The levels of CTNNB1 mRNA was increased in colon cancer patients than normal controls. Berberine inhibited the proliferation of colon cancer cells by regulating the beta-catenin signaling pathway.
Collapse
Affiliation(s)
- Qihong Nie
- Department of Oncology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Wei Wei Peng
- Department of Oncology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Yuli Wang
- Department of Oncology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Liting Zhong
- Department of Oncology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Xuebing Zhang
- Department of Oncology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Ling Zeng
- Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
41
|
Xu H, Liu T, Li J, Chen F, Xu J, Hu L, Jiang L, Xiang Z, Wang X, Sheng J. Roburic Acid Targets TNF to Inhibit the NF-κB Signaling Pathway and Suppress Human Colorectal Cancer Cell Growth. Front Immunol 2022; 13:853165. [PMID: 35222445 PMCID: PMC8864141 DOI: 10.3389/fimmu.2022.853165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor (TNF)-stimulated nuclear factor-kappa B (NF-κB) signaling plays very crucial roles in cancer development and progression, and represents a potential target for drug discovery. Roburic acid is a newly discovered tetracyclic triterpene acid isolated from oak galls and exhibits anti-inflammatory activity. However, whether roburic acid exerts antitumor effects through inhibition of TNF-induced NF-κB signaling remains unknown. Here, we demonstrated that roburic acid bound directly to TNF with high affinity (KD = 7.066 μM), blocked the interaction between TNF and its receptor (TNF-R1), and significantly inhibited TNF-induced NF-κB activation. Roburic acid exhibited antitumor activity in numerous cancer cells and could effectively induce G0/G1 cell cycle arrest and apoptosis in colorectal cancer cells. Importantly, roburic acid inhibited the TNF-induced phosphorylation of IKKα/β, IκBα, and p65, degradation of IκBα, nuclear translocation of p65, and NF-κB-target gene expression, including that of XIAP, Mcl-1, and Survivin, in colorectal cancer cells. Moreover, roburic acid suppressed tumor growth by blocking NF-κB signaling in a xenograft nude mouse model of colorectal cancer. Taken together, our findings showed that roburic acid directly binds to TNF with high affinity, thereby disrupting its interaction with TNF-R1 and leading to the inhibition of the NF-κB signaling pathway, both in vitro and in vivo. The results indicated that roburic acid is a novel TNF-targeting therapeutics agent in colorectal cancer as well as other cancer types.
Collapse
Affiliation(s)
- Huanhuan Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Titi Liu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Jin Li
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Fei Chen
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Jing Xu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Lihong Hu
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Li Jiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zemin Xiang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,College of Science, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
42
|
Sharma S, Shen T, Chitranshi N, Gupta V, Basavarajappa D, Mirzaei M, You Y, Krezel W, Graham SL, Gupta V. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol Neurobiol 2022; 59:2027-2050. [PMID: 35015251 PMCID: PMC9015987 DOI: 10.1007/s12035-021-02709-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Retinoid X receptors (RXRs) present a subgroup of the nuclear receptor superfamily with particularly high evolutionary conservation of ligand binding domain. The receptor exists in α, β, and γ isotypes that form homo-/heterodimeric complexes with other permissive and non-permissive receptors. While research has identified the biochemical roles of several nuclear receptor family members, the roles of RXRs in various neurological disorders remain relatively under-investigated. RXR acts as ligand-regulated transcription factor, modulating the expression of genes that plays a critical role in mediating several developmental, metabolic, and biochemical processes. Cumulative evidence indicates that abnormal RXR signalling affects neuronal stress and neuroinflammatory networks in several neuropathological conditions. Protective effects of targeting RXRs through pharmacological ligands have been established in various cell and animal models of neuronal injury including Alzheimer disease, Parkinson disease, glaucoma, multiple sclerosis, and stroke. This review summarises the existing knowledge about the roles of RXR, its interacting partners, and ligands in CNS disorders. Future research will determine the importance of structural and functional heterogeneity amongst various RXR isotypes as well as elucidate functional links between RXR homo- or heterodimers and specific physiological conditions to increase drug targeting efficiency in pathological conditions.
Collapse
Affiliation(s)
- Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Ting Shen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Wojciech Krezel
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, INSERM U1258, CNRS UMR 7104, Unistra, 67404, Illkirch-Graffenstaden, France
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
43
|
Berberine Protects against TNF- α-Induced Injury of Human Umbilical Vein Endothelial Cells via the AMPK/NF- κB/YY1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6518355. [PMID: 35003308 PMCID: PMC8741384 DOI: 10.1155/2021/6518355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury, characterized by an inflammatory response and increased permeability, is an initial stage of atherosclerosis (AS). Adenosine 5′-monophosphate (AMP), activated protein kinase (AMPK), and Nuclear Factor kappa B (NF-κB)/Yin Yang 1(YY1) signaling pathways play important roles in the process of endothelial injury. Berberine (BBR), a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including anti-inflammatory, antimicrobial, antidiabetic, anticancer, and antioxidant activities. Previous studies showed a protective effect of berberine against endothelial injury. However, the underlying mechanism remains unclear. We explored the potential effect of BBR on TNF- (tumor necrosis factor-) α-induced injury of human umbilical endothelial cells (HUVECs) and studied its possible molecular mechanism. In the present study, HUVECs were divided into three groups. HUVEC viability was measured with Cell Counting Kit-8 assay. Extracellular lactic dehydrogenase (LDH) concentration was measured with LDH leakage assay. Endothelial microparticle (EMP) numbers were evaluated by flow cytometry analysis assay. The expression of proinflammatory cytokines was evaluated by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA expression of NF-κB and YY1 was detected by Real-Time PCR (RT-PCR). The protein expression of NF-κB, YY1, and AMPK was detected by immunofluorescence microscopy assay or western blot analysis. The results showed that LDH concentration, EMPs numbers, and the expression of proinflammatory cytokines (IL-6, IL-8, and IL-1β) increased in TNF-α-induced injured HUVECs, but ameliorated by BBR pretreatment. BBR pretreatment upregulated the expression of phosphorylated AMPK and downregulated the expressions of NF-κB and YY1 in injured HUVECs induced by TNF-α, which were offset by the AMPK inhibitor Compound C (CC). The results indicated that BBR protected against TNF-α-induced endothelial injury via the AMPK/NF-κB/YY1 signaling pathway.
Collapse
|
44
|
Fang S, Guo S, Du S, Cao Z, Yang Y, Su X, Wei W. Efficacy and safety of berberine in preventing recurrence of colorectal adenomas: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114617. [PMID: 34509605 DOI: 10.1016/j.jep.2021.114617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine(BBR) is a kind of isoquinoline alkaloids extracted from the rhizomes of Coptis chinensis Franch., which was the main active ingredient. Accumulating evidence has shown that it has potential pharmacological effects in preventing the recurrence of colorectal adenomas. AIM OF THE STUDY The roles of BBR in the overall recurrence of colorectal adenoma have still not been assessed because of the limitations of the available data and the restriction of a single study. Therefore, we evaluated the effectiveness and safety of BBR in preventing the recurrence of colorectal adenomas through a systematic review and meta-analysis of available data. MATERIALS AND METHODS We searched four English databases (PubMed (MEDLINE), the Cochrane Central Register of Controlled Trials (CENTRAL), Embase and Web of Science) and four Chinese language databases (Chinese Biomedicine (CBM), China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP) and the WanFang Database) from their inception through October 2020. Meta-analysis was performed with RevMan5.3 software after data extraction and the quality of studies assessment. RESULTS Three randomized controlled clinical trials were included with 1076 patients. Our results illustrated that 1-year and 2-year supplementation with BBR was associated with lower recurrence rate of colorectal adenoma (RR 0.69, 95% CI 0.57 to 0.84, p=0.0001; RR 0.75, 95% CI 0.64 to 0.88, p=0.0004). The relative risk of oral BBR for 1 year and 2 years is not comparable, for 2-year efficacy outcomes were assessed in all participants who had at least one colonoscopy with pathological evaluation after baseline (lots of participants completed the first colonoscopy but discontinued during the second follow-up interval.). Moreover, the results also suggest that BBR had more adverse events than placebo (RR 2.91, 95% CI 1.24 to 6.85, p=0.01). Through the full-text reading, no serious adverse events were observed, and constipation was the most common event which disappears once the drug is discontinued. CONCLUSION Generally, the present study indicated that BBR has a comparable therapeutic effect on the prevention of colorectal adenomas recurrence. Adverse reactions are worthy of attention which requires additional studies to obtain a precise conclusion. PROSPERO REGISTRATION NO CRD42020209135.
Collapse
Affiliation(s)
- ShuangShuang Fang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, Beijing, China.
| | - Song Guo
- Department of Gastroenterology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong, 250013, Shandong, China.
| | - SiJing Du
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, Beijing, China.
| | - Zeng Cao
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, Beijing, China; Beijing University of Chinese Medicine, Beijing, 100029, Beijing, China.
| | - Yang Yang
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, Beijing, China.
| | - XiaoLan Su
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, Beijing, China.
| | - Wei Wei
- Department of Gastroenterology, Beijing Key Laboratory of Functional Gastrointestinal Disorders Diagnosis and Treatment of Traditional Chinese Medicine, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, Beijing, China.
| |
Collapse
|
45
|
Liu Y, Fang X, Li Y, Bing L, Li Y, Fang J, Xian X, Zhang W, Li J, Zhao Z, Zhu Y. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1353-1363. [PMID: 35641094 DOI: 10.1093/jpp/rgac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Yunxin Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Xianjun Fang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Yao Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Liu Bing
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Yang Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Jing Fang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Xirui Xian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Wen Zhang
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Jun Li
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Zheng Zhao
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, P. R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
46
|
Tilaoui M, Ait Mouse H, Zyad A. Update and New Insights on Future Cancer Drug Candidates From Plant-Based Alkaloids. Front Pharmacol 2021; 12:719694. [PMID: 34975465 PMCID: PMC8716855 DOI: 10.3389/fphar.2021.719694] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex multifactorial disease that results from alterations in many physiological and biochemical functions. Over the last few decades, it has become clear that cancer cells can acquire multidrug resistance to conventional anticancer drugs, resulting in tumor relapse. Thus, there is a continuous need to discover new and effective anticancer drugs. Natural products from plants have served as a primary source of cancer drugs and continue to provide new plant-derived anticancer drugs. The present review describes plant-based alkaloids, which have been reported as active or potentially active in cancer treatment within the past 4 years (2017-2020), both in preclinical research and/or in clinical trials. In addition, recent insights into the possible molecular mechanism of action of alkaloid prodrugs naturally present in plants are also highlighted.
Collapse
Affiliation(s)
- Mounir Tilaoui
- Experimental Oncology and Natural Substances Team, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | | | | |
Collapse
|
47
|
Li G, Zhang C, Liang W, Zhang Y, Shen Y, Tian X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17-AAG and SAHA in SW480 colon cancer cells. PHARMACEUTICAL BIOLOGY 2021; 59:21-30. [PMID: 33417512 PMCID: PMC7808376 DOI: 10.1080/13880209.2020.1865407] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CONTEXT Berberine (BBR) is used to treat diarrhoea and gastroenteritis in the clinic. It was found to have anticolon cancer effects. OBJECTIVE To study the anticolon cancer mechanism of BBR by connectivity map (CMAP) analysis. MATERIALS AND METHODS CMAP based mechanistic prediction was conducted by comparing gene expression profiles of 10 μM BBR treated MCF-7 cells with that of clinical drugs such as helveticoside, ianatoside C, pyrvinium, gossypol and trifluoperazine. The treatment time was 12 h and two biological replications were performed. The DMSO-treated cells were selected as a control. The interaction between 100 μM BBR and target protein was measured by cellular thermal shift assay. The protein expression of 1-9 μM BBR treated SW480 cells were measured by WB assay. Apoptosis, cell cycle arrest, mitochondrial membrane potential (MMP) of 1-9 μM BBR treated SW480 cells were measured by flow cytometry and Hoechst 33342 staining methods. RESULTS CMAP analysis found 14 Hsp90, HDAC, PI3K or mTOR protein inhibitors have similar functions with BBR. The experiments showed that BBR inhibited SW480 cells proliferation with IC50 of 3.436 μM, induced apoptosis, autophage, MMP depolarization and arrested G1 phase of cell cycle at 1.0 μM. BBR dose-dependently up-regulated PTEN, while inhibited Notch1, PI3K, Akt and mTOR proteins at 1.0-9.0 μM (p < 0.05). BBR also acted synergistically with Hsp90 and HDAC inhibitor (0.01 μM) in SW480 cells at 0.5 and 1.0 μM. DISCUSSION AND CONCLUSIONS The integrative gene expression-based chemical genomic method using CMAP analysis may be applicable for mechanistic studies of other multi-targets drugs.
Collapse
Affiliation(s)
- Ge Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Chuang Zhang
- School of Pharmacy, Zhengzhou University, Zhengzhou, PR China
| | - Wei Liang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yanbing Zhang
- School of Pharmacy, Zhengzhou University, Zhengzhou, PR China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai, PR China
| | - Xinhui Tian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
48
|
Yang L, Cao J, Wei J, Deng J, Hou X, Hao E, Du Z, Zou L, Li P. Antiproliferative activity of berberine in HepG2 cells via inducing apoptosis and arresting cell cycle. Food Funct 2021; 12:12115-12126. [PMID: 34787617 DOI: 10.1039/d1fo02783b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The therapeutic targets of berberine for hepatocellular carcinoma (HCC) and its detailed mechanisms remain unexplored. Here, an integration of network pharmacology, proteomic, bioinformatic and in vitro biochemical approach was proposed to reveal therapeutic targets and pathways underlying the antiproliferative activity of berberine against HepG2 cells. Results indicated that berberine caused the cytotoxicity and inhibited the growth of HepG2 cells with IC50 values ranging from 92 μM to 118 μM. Network pharmacology analysis revealed that targeting apoptosis and cell cycle pathways by berberine contributed to its antitumor efficacy against HCC. Proteomic analysis demonstrated that mitochondria-related apoptosis pathways were involved in the cytotoxic action of berberine, as evidenced by the expression of mitochondrial dysfunction-mediated proteins. Moreover, a total of 160 significantly altered proteins were screened, among which AKAP12 presented significantly increased levels under berberine treatment. Bioinformatic analysis of various public datasets showed that expression of AKAP12 in HCC liver tissues was downregulated, emphasizing its role as a tumor suppressor. Immunoblotting validated the increased levels of AKAP12, while co-immunoprecipitation identified its interaction with Cyclin D1. These data, together with flow cytometry analysis, suggested that AKAP12 mediated cell cycle arrest, thereby suppressing cell proliferation. Altogether, the antiproliferative action of berberine in HepG2 cells involves both apoptosis and cell cycle arrest. Regulating AKAP12 signalling by berberine might provide a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jiliang Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Jiagang Deng
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhengcai Du
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural Residues, Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
49
|
Zhao Z, Zeng J, Guo Q, Pu K, Yang Y, Chen N, Zhang G, Zhao M, Zheng Q, Tang J, Hu Q. Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m 6A Methylation. Front Oncol 2021; 11:775418. [PMID: 34869024 PMCID: PMC8634032 DOI: 10.3389/fonc.2021.775418] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are able to survive after cancer therapies, resulting in tumor progression and recurrence, as is seen in colorectal cancer. Therapies targeting CSCs are regarded as novel and promising strategies for efficiently eradicating tumors. Berberine, an isoquinoline alkaloid extracted from the Chinese herbal medicine Coptis chinensis, was found to have antitumor activities against colorectal cancer, without knowing whether it exerts inhibitory effects on colorectal CSCs and the potential mechanisms. METHODS In this study, we examined the inhibitory roles of Berberine on CSCs derived from HCT116 and HT29 by culturing in serum-free medium. We also examined the effects of Berberine on m6A methylation via regulating fat mass and obesity-associated protein (FTO), by downregulating β-catenin. RESULTS We examined the effects of Berberine on the tumorigenicity, growth, and stemness of colorectal cancer stem-like cells. The regulatory effect of Berberine on N6-methyladenosine (m6A), an abundant mRNA modification, was also examined. Berberine treatment decreased cell proliferation by decreasing cyclin D1 and increasing p27 and p21 and subsequently induced cell cycle arrest at the G1/G0 phase. Berberine treatment also decreased colony formation and induced apoptosis. Berberine treatment transcriptionally increased FTO and thus decreased m6A methylation, which was reversed by both FTO knockdown and the addition of the FTO inhibitor FB23-2. Berberine induced FTO-related decreases in stemness in HCT116 and HT29 CSCs. Berberine treatment also increased chemosensitivity in CSCs and promoted chemotherapy agent-induced apoptosis. Moreover, we also found that Berberine treatment increased FTO by decreasing β-catenin, which is a negative regulator of FTO. CONCLUSIONS Our observation that Berberine effectively decreased m6A methylation by decreasing β-catenin and subsequently increased FTO suggests a role of Berberine in modulating stemness and malignant behaviors in colorectal CSCs.
Collapse
Affiliation(s)
- Ziyi Zhao
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Geriatric Department, Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiang Guo
- Department of Geriatrics, Chengdu First People’s Hospital, Chengdu, China
| | - Kunming Pu
- Department of Ultrasound, the Second People’s Hospital of Chengdu, Chengdu, China
| | - Yi Yang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
50
|
Guo XH, Jiang SS, Zhang LL, Hu J, Edelbek D, Feng YQ, Yang ZX, Hu PC, Zhong H, Yang GH, Yang F. Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway. Oncol Rep 2021; 46:253. [PMID: 34643248 PMCID: PMC8548812 DOI: 10.3892/or.2021.8204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit-8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription-quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co-immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα-interacting protein-interacting protein at the C-terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shui-Shan Jiang
- Medical Security Office, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Li Zhang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dilda Edelbek
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qi Feng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Xian Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Zhong
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|