1
|
Gotfryd L, Fesser E, Cambiasso MY, Stinson MG, Birolo S, Nemirovsky SI, Cánepa ET, Calvo JC, Fontana VA. Paternal ethanol exposure alters offspring motor skills and behavior in a sex-dependent manner and modifies early growth response 1 expression in the medial prefrontal cortex. J Affect Disord 2025; 381:388-400. [PMID: 40189063 DOI: 10.1016/j.jad.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/13/2025]
Abstract
BACKGROUND Alcohol consumption is linked to various health issues exerting direct effects on the consumer and indirectly on offspring through both maternal and paternal transmission pathways. Our recent studies highlight the importance of paternal health before conception, showing that male ethanol consumption can alter epigenetic sperm marks and DNA integrity and testicular organization which led to adverse effects on embryonic development and induced alterations in testicular and sperm characteristics in the offspring. METHODS Based on these findings, this study explores the effects of paternal ethanol (15 % v/v) consumption for 12 days on motor development in mice offspring. We also analyzed different behavioral parameters and evaluated the expression of immediate early genes from the medial prefrontal cortex in the progeny during adulthood. RESULTS Paternal alcohol intake negatively affects the offspring, showing a delay in the acquisition of motor developmental skills at an early age and some modifications of behavior in a sex-dependent manner in adulthood. Furthermore, this consumption shows an increase in the expression of the Early Growth Response 1 gene in both males and females in the medial prefrontal cortex. LIMITATIONS In situ expression of the early growth response 1 gene was not measured. Hormonal fluctuations during the estrous cycle of the female offspring were not considered, these changes could interact with the observed outcomes. CONCLUSIONS This gene plays a key role in regulating cognition, emotion, and behavior. These findings highlight the importance of considering paternal health and alcohol consumption when assessing the risks to future generations.
Collapse
Affiliation(s)
- Lucila Gotfryd
- Instituto de Biología Y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Estefanía Fesser
- Laboratorio de Neuroepigenética, CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Maite Yael Cambiasso
- Instituto de Biología Y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Marcelo Gabriel Stinson
- Universidad de Buenos Aires, Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Sol Birolo
- Universidad de Buenos Aires, Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Sergio Iván Nemirovsky
- Universidad de Buenos Aires, Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Eduardo Tomás Cánepa
- Laboratorio de Neuroepigenética, CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales - CONICET (IQUIBICEN), Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Instituto de Biología Y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Vanina Andrea Fontana
- Instituto de Biología Y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina; Universidad de Buenos Aires, Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Sutthiwanjampa C, Kang SH, Kim MK, Hwa Choi J, Kim HK, Woo SH, Bae TH, Kim WJ, Kang SH, Park H. Tumor necrosis factor-α-treated human adipose-derived stem cells enhance inherent radiation tolerance and alleviate in vivo radiation-induced capsular contracture. J Adv Res 2025; 72:433-449. [PMID: 39019109 DOI: 10.1016/j.jare.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Post-mastectomy radiotherapy plays a crucial role in breast cancer treatment but can lead to an inflammatory response causing soft tissue damage, particularly radiation-induced capsular contracture (RICC), impacting breast reconstruction outcomes. Adipose-derived stem cells (ADSCs), known for their regenerative potential via paracrine capacity, exhibit inherent radiotolerance. The influence of tumor necrosis factor-alpha (TNF-α) on ADSCs has been reported to enhance the paracrine effect of ADSCs, promoting wound healing by modulating inflammatory responses. OBJECTIVE This study investigates the potential of TNF-α-treated human ADSCs (T-hASCs) on silicone implants to alleviate RICC, hypothesizing to enhance suppressive effects on RICC by modulating inflammatory responses in a radiation-exposed environment. METHODS In vitro, T-hASCs were cultured on various surfaces to assess viability after exposure to radiation up to 20 Gy. In vivo, T-hASC and non-TNF-α-treated hASC (C-hASCs)-coated membranes were implanted in mice before radiation exposure, and an evaluation of the RICC mitigation took place 4 and 8 weeks after implantation. In addition, the growth factors released from T-hASCs were assessed. RESULTS In vitro, hASCs displayed significant radiotolerance, maintaining consistent viability after exposure to 10 Gy. TNF-α treatment further enhanced radiation tolerance, as evidenced by significantly higher viability than C-hASCs at 20 Gy. In vivo, T-hASC-coated implants effectively suppressed RICC, reducing capsule thickness. T-hASCs exhibited remarkable modulation of the inflammatory response, suppressing M1 macrophage polarization while enhancing M2 polarization. The elevated secretion of vascular endothelial growth factor from T-hASCs is believed to induce macrophage polarization, potentially reducing RICC. CONCLUSION This study establishes T-hASCs as a promising strategy for ameliorating the adverse effects experienced by breast reconstruction patients after mastectomy and radiation therapy. The observed radiotolerance, anti-fibrotic effects, and immune modulation suggest the possibility of enhancing patient outcomes and quality of life. Further research and clinical trials are warranted for broader clinical uses.
Collapse
Affiliation(s)
- Chanutchamon Sutthiwanjampa
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Seung Hyun Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Mi Kyung Kim
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Departments of Pathology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Jin Hwa Choi
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Radiation Oncology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Han Koo Kim
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Soo Hyun Woo
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Tae Hui Bae
- Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea
| | - Woo Joo Kim
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong-si, Gyeonggi-do 14353, Republic of Korea
| | - Shin Hyuk Kang
- College of Medicine, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; Department of Plastic and Reconstructive Surgery, Chung-Ang University Hospital, Chung-Ang University College of Medicine, 102 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06973, Republic of Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
3
|
Corridori E, Salviati S, Begni V, Marchesin A, Gambarana C, Riva MA, Scheggi S. Restorative properties of chronic lurasidone treatment on emotional dysfunction in rats exposed to chronic unavoidable stress: A role for medial prefrontal cortex - nucleus accumbens network. Neuropharmacology 2025; 267:110302. [PMID: 39814132 DOI: 10.1016/j.neuropharm.2025.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Anhedonia, a transdiagnostic symptom prevalent in depressive and psychotic disorders, poses a significant challenge for pharmacological intervention due to its association with impaired motivation. Understanding how psychotropic drugs can modulate this pathological domain and elucidating the molecular mechanisms underlying such effects are crucial endeavors in psychiatric research. In this study, we aimed to investigate the pro-motivational properties of lurasidone in a rat (Sprague Dawley males) model of anhedonia and to unravel the interplay between lurasidone and the brain regions critical for reward processing. Exposure to unpredictable chronic stress (UCS) led to a marked reduction in motivation, a deficit that was restored by lurasidone treatment at 3 mg/kg, but not at 10 mg/kg. Interestingly, the stress-induced decrease in reactivity to negative stimuli was reversed by both doses of lurasidone. At the molecular level, stressed animals exhibited reduced expression of neuroplastic markers, that was increased following lurasidone administration. Furthermore, UCS exposure impaired the activation of the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) in response to hedonic stimuli, an effect amended by lurasidone treatment. Additionally, lurasidone restored the impaired phosphorylation of DARPP-32, a key regulator of dopamine signaling, in mPFC and NAc of UCS rats exposed to a hedonic stimulus. These findings underscore the potential of lurasidone in improving various psychopathological domains, like impaired motivation and emotional reactivity, core elements contributing to the disability associated with mental disorders. These effects highlight the therapeutic potential of lurasidone in addressing the intricate behavioral and neurochemical alterations associated with anhedonia and related mood disorders.
Collapse
Affiliation(s)
- Eleonora Corridori
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara Salviati
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
4
|
Douville NJ, Bastarache L, Bertucci-Richter E, Patil S, Jewell ES, Freundlich RE, Kertai MD, Engoren MC. Genetic variants associated with sepsis-associated acute kidney injury. PLoS One 2024; 19:e0311318. [PMID: 39636799 PMCID: PMC11620412 DOI: 10.1371/journal.pone.0311318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/17/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Kidney dysfunction is a common complication in septic patients. Studies have identified numerous risk factors for sepsis-associated acute kidney injury (S-AKI), yet there is wide variability in the incidence even among patients with similar risk factors, suggesting the presence of additional uncharacterized risk factors, including genetic differences. The expansion of biobanks, advances in genotyping, and standardized diagnostic criteria have enabled large-scale, hypothesis-generating studies into the genetic mechanisms underlying S-AKI. We hypothesize that the genetic pathway behind S-AKI has overlapping mechanisms with key differences based upon the specific subtype of acute kidney injury (AKI). METHODS To test this hypothesis, we performed a genome-wide association study (GWAS) of S-AKI in three logistic regression models. Model 1, controlled for 1) age, 2) sex, 3) genotyping chip, and 4) the first five principal components. In Model 2, pre-sepsis baseline serum creatinine was added to the variables in Model 1. Finally, in Model 3, we controlled for the full range of patient, clinical, and ICU-related risk factors. Each of the 3-models were repeated in a pre-specified sensitivity analysis of higher severity S-AKI, defined as KDIGO Stage 2 or 3. We then compare associated variants and genes from our GWAS with previously published AKI sub-types and model other factors associated with S-AKI in our dataset. FINDINGS 3,348 qualifying Sepsis-3 patients have been genotyped in our dataset. Of these patients, 383 (11.4%) developed Stage 1, 2, or 3 AKI (primary outcome) and 181 (5.4%) developed Stage 2 or 3 AKI (sensitivity analysis). The median age was 61 years (interquartile range (IQR): 51,69), 42% were female, and the increase in SOFA score (between 48-hours before to 24-hours after the onset of suspected infection) was 2 (2-3). No variants exceeded our threshold for genome-wide significance (P<5x10-8), however, a total of 13 variants exceeded the suggestive (P<1x10-6) threshold. Notably, rs184516290 (chr1:199814965:G:A), near the NR5A2 gene, chr1:199805801:T:TA, also near the NR5A2 gene, and rs117313146 (chr15:31999784:G:C), near the CHRNA7 gene, were associated with S-AKI at the suggestive level in all three models presented. Variants in the suppressor of fused homolog (SUFU) gene, previously shown to be correlated with renal function in bacteremic patients, consistently exceeded the P<0.05 threshold in our models. CONCLUSIONS While failing to identify any novel association for S-AKI at the level of genome-wide significance, our study did suggest multiple variants in previously characterized pathways for S-AKI including CHRNA7, NR5A2, and SUFU. We failed to replicate associations from multiple prior studies which may result from differences in how the phenotype was defined or, alternatively, limited genetic contribution and low heritability.
Collapse
Affiliation(s)
- Nicholas J. Douville
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, Michigan, United States of America
- Institute of Healthcare Policy & Innovation, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | | | - Snehal Patil
- Precision Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Elizabeth S. Jewell
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, Michigan, United States of America
| | - Robert E. Freundlich
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Miklos D. Kertai
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Milo C. Engoren
- Department of Anesthesiology, Michigan Medicine, Ann Arbor, Michigan, United States of America
| |
Collapse
|
5
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
6
|
Vingan I, Phatarpekar S, Tung VSK, Hernández AI, Evgrafov OV, Alarcon JM. Spatially resolved transcriptomic signatures of hippocampal subregions and Arc-expressing ensembles in active place avoidance memory. Front Mol Neurosci 2024; 17:1386239. [PMID: 39544521 PMCID: PMC11560897 DOI: 10.3389/fnmol.2024.1386239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus. We found that recall induced differentially expressed genes (DEGs) in the CA1 and CA3 hippocampal subregions were enriched with genes involved in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus (DG) were enriched with genes involved in energy balance and ribosomal function. Through spatial transcriptomics, we examined gene expression changes following memory recall across an array of spots encompassing putative memory-associated neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. Within samples from both trained and untrained mice, the subpopulations of spatial transcriptomic spots marked by these IEGs were transcriptomically and spatially distinct from one another. DEGs detected between Arc + and Arc- spots exclusively in the trained mouse were enriched in several memory-related gene ontology terms, including "regulation of synaptic plasticity" and "memory." Our results suggest that APA memory recall is supported by regionalized transcriptomic profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially distinct IEG expressing spatial transcriptomic spots, and biological processes related to synaptic plasticity as a defining the difference between Arc + and Arc- spatial transcriptomic spots.
Collapse
Affiliation(s)
- Isaac Vingan
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Shwetha Phatarpekar
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Victoria Sook Keng Tung
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Alejandro Iván Hernández
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Oleg V. Evgrafov
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States
| | - Juan Marcos Alarcon
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
7
|
Geng Z, Tai YT, Wang Q, Gao Z. AUTS2 disruption causes neuronal differentiation defects in human cerebral organoids through hyperactivation of the WNT/β-catenin pathway. Sci Rep 2024; 14:19522. [PMID: 39174599 PMCID: PMC11341827 DOI: 10.1038/s41598-024-69912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Individuals with the Autism Susceptibility Candidate 2 (AUTS2) gene disruptions exhibit symptoms such as intellectual disability, microcephaly, growth retardation, and distinct skeletal and facial differences. The role of AUTS2 in neurodevelopment has been investigated using animal and embryonic stem cell models. However, the precise molecular mechanisms of how AUTS2 influences neurodevelopment, particularly in humans, are not thoroughly understood. Our study employed a 3D human cerebral organoid culture system, in combination with genetic, genomic, cellular, and molecular approaches, to investigate how AUTS2 impacts neurodevelopment through cellular signaling pathways. We used CRISPR/Cas9 technology to create AUTS2-deficient human embryonic stem cells and then generated cerebral organoids with these cells. Our transcriptomic analyses revealed that the absence of AUTS2 in cerebral organoids reduces the populations of cells committed to the neuronal lineage, resulting in an overabundance of cells with a transcription profile resembling that of choroid plexus (ChP) cells. Intriguingly, we found that AUTS2 negatively regulates the WNT/β-catenin signaling pathway, evidenced by its overactivation in AUTS2-deficient cerebral organoids and in luciferase reporter cells lacking AUTS2. Importantly, treating the AUTS2-deficient cerebral organoids with a WNT inhibitor reversed the overexpression of ChP genes and increased the downregulated neuronal gene expression. This study offers new insights into the role of AUTS2 in neurodevelopment and suggests potential targeted therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA.
| |
Collapse
|
8
|
Takada R, Toritsuka M, Yamauchi T, Ishida R, Kayashima Y, Nishi Y, Ishikawa M, Yamamuro K, Ikehara M, Komori T, Noriyama Y, Kamikawa K, Saito Y, Okano H, Makinodan M. Granulocyte macrophage colony-stimulating factor-induced macrophages of individuals with autism spectrum disorder adversely affect neuronal dendrites through the secretion of pro-inflammatory cytokines. Mol Autism 2024; 15:10. [PMID: 38383466 PMCID: PMC10882766 DOI: 10.1186/s13229-024-00589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND A growing body of evidence suggests that immune dysfunction and inflammation in the peripheral tissues as well as the central nervous system are associated with the neurodevelopmental deficits observed in autism spectrum disorder (ASD). Elevated expression of pro-inflammatory cytokines in the plasma, serum, and peripheral blood mononuclear cells of ASD has been reported. These cytokine expression levels are associated with the severity of behavioral impairments and symptoms in ASD. In a prior study, our group reported that tumor necrosis factor-α (TNF-α) expression in granulocyte-macrophage colony-stimulating factor-induced macrophages (GM-CSF MΦ) and the TNF-α expression ratio in GM-CSF MΦ/M-CSF MΦ (macrophage colony-stimulating factor-induced macrophages) was markedly higher in individuals with ASD than in typically developed (TD) individuals. However, the mechanisms of how the macrophages and the highly expressed cytokines affect neurons remain to be addressed. METHODS To elucidate the effect of macrophages on human neurons, we used a co-culture system of control human-induced pluripotent stem cell-derived neurons and differentiated macrophages obtained from the peripheral blood mononuclear cells of five TD individuals and five individuals with ASD. All participants were male and ethnically Japanese. RESULTS Our results of co-culture experiments showed that GM-CSF MΦ affect the dendritic outgrowth of neurons through the secretion of pro-inflammatory cytokines, interleukin-1α and TNF-α. Macrophages derived from individuals with ASD exerted more severe effects than those derived from TD individuals. LIMITATIONS The main limitations of our study were the small sample size with a gender bias toward males, the use of artificially polarized macrophages, and the inability to directly observe the interaction between neurons and macrophages from the same individuals. CONCLUSIONS Our co-culture system revealed the non-cell autonomous adverse effects of GM-CSF MΦ in individuals with ASD on neurons, mediated by interleukin-1α and TNF-α. These results may support the immune dysfunction hypothesis of ASD, providing new insights into its pathology.
Collapse
Affiliation(s)
- Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan.
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yoshinori Kayashima
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Nishi
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Minobu Ikehara
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yuki Noriyama
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Kohei Kamikawa
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara City, Nara, 634-8522, Japan
- Osaka Psychiatric Research Center, 3-16-21 Miyanosaka, Hirakata City, Osaka, 573-0022, Japan
| |
Collapse
|
9
|
Zhong J, Han C, Chen P, Liu R. SGAE: single-cell gene association entropy for revealing critical states of cell transitions during embryonic development. Brief Bioinform 2023; 24:bbad366. [PMID: 37833841 DOI: 10.1093/bib/bbad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023] Open
Abstract
The critical point or pivotal threshold of cell transition occurs in early embryonic development when cell differentiation culminates in its transition to specific cell fates, at which the cell population undergoes an abrupt and qualitative shift. Revealing such critical points of cell transitions can track cellular heterogeneity and shed light on the molecular mechanisms of cell differentiation. However, precise detection of critical state transitions proves challenging when relying on single-cell RNA sequencing data due to their inherent sparsity, noise, and heterogeneity. In this study, diverging from conventional methods like differential gene analysis or static techniques that emphasize classification of cell types, an innovative computational approach, single-cell gene association entropy (SGAE), is designed for the analysis of single-cell RNA-seq data and utilizes gene association information to reveal critical states of cell transitions. More specifically, through the translation of gene expression data into local SGAE scores, the proposed SGAE can serve as an index to quantitatively assess the resilience and critical properties of genetic regulatory networks, consequently detecting the signal of cell transitions. Analyses of five single-cell datasets for embryonic development demonstrate that the SGAE method achieves better performance in facilitating the characterization of a critical phase transition compared with other existing methods. Moreover, the SGAE value can effectively discriminate cellular heterogeneity over time and performs well in the temporal clustering of cells. Besides, biological functional analysis also indicates the effectiveness of the proposed approach.
Collapse
Affiliation(s)
- Jiayuan Zhong
- School of Mathematics and Big Data, Foshan University, Foshan 528000, China
| | - Chongyin Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Meng Q, Tian X, Li J, Pruekprasert N, Dhawan R, Holz GG, Cooney RN. GTS-21, a selective alpha7 nicotinic acetylcholine receptor agonist, ameliorates diabetic nephropathy in Lepr db/db mice. Sci Rep 2022; 12:22360. [PMID: 36572735 PMCID: PMC9792461 DOI: 10.1038/s41598-022-27015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complicating factor in human type 2 diabetes mellitus (T2DM), and it commonly results in end-stage renal disease (ESRD) that requires kidney dialysis. Here, we report that the α7 nicotinic acetylcholine receptor (α7nAChR) agonist GTS-21 exerts a novel anti-inflammatory action to ameliorate DN, as studied using an inbred strain of Leprdb/db mice in which hyperglycemia and obesity co-exist owing to defective leptin receptor (Lepr) signaling. For this analysis, GTS-21 was administered to 10-12 week-old male and female mice as a 4 mg/kg intraperitoneal injection, twice-a-day, for 8 weeks. Kidney function and injury owing to DN were monitored by determination of plasma levels of BUN, creatinine, KIM-1 and NGAL. Histologic analysis of glomerular hypertrophy and mesangial matrix expansion were also used to assess DN in these mice. Concurrently, renal inflammation was assessed by measuring IL-6 and HMGB1, while also quantifying renal cell apoptosis, and apoptotic signaling pathways. We found that Leprdb/db mice exhibited increased markers of BUN, creatinine, NGAL, KIM-1, IL-6, cytochrome C, and HMGB-1. These abnormalities were also accompanied by histologic kidney injury (mesangial matrix expansion and apoptosis). Remarkably, all such pathologies were significantly reduced by GTS-21. Collectively, our results provide new evidence that the α7nAChR agonist GTS-21 has the ability to attenuate diabetes-induced kidney injury. Additional studies are warranted to further investigate the involvement of the vagal cholinergic anti-inflammatory reflex pathway (CAP) in ameliorating diabetic nephropathy.
Collapse
Affiliation(s)
- Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Xinghan Tian
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
- Yantai Yuhuangding Hospital, No 20 Yuhuangding East Road, Yantai, 264000, Shandong Province, China
| | - Junwei Li
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Napat Pruekprasert
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - Ravi Dhawan
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA
| | - George G Holz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Robert N Cooney
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St., Suite 8141, Syracuse, NY, 13210, USA.
| |
Collapse
|
11
|
Chen M, Su W, Chen F, Lai T, Liu Y, Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front Genet 2022; 13:1056405. [PMID: 36406124 PMCID: PMC9671214 DOI: 10.3389/fgene.2022.1056405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangling Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianlun Lai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
12
|
Liu P, Li Y, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153:113513. [DOI: 10.1016/j.biopha.2022.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
13
|
Gao Z, Zhang Z, Gu D, Li Y, Zhang K, Dong X, Liu L, Zhang J, Chen J, Wu D, Zeng M. Hemin mitigates contrast‐induced nephropathy by inhibiting ferroptosis via HO‐1/Nrf2/GPX4 pathway. Clin Exp Pharmacol Physiol 2022; 49:858-870. [PMID: 35598290 DOI: 10.1111/1440-1681.13673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Zhao Gao
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, China
| | - Daqian Gu
- Department of Cardiology, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian, China
| | - Yunqian Li
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Kun Zhang
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaoli Dong
- Department of Cardiology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lingli Liu
- Department of Clinical Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiye Zhang
- Medical Laboratory, Liang Ping People's Hospital of Chongqing, Chongqing, China
| | - Jimin Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Duozhi Wu
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Min Zeng
- Medical and Healthcare Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
14
|
Mulla SW, Venkatraman P. Novel Nexus with NFκB, β-catenin, and RB1 empowers PSMD10/Gankyrin to counteract TNF-α induced apoptosis establishing its oncogenic role. Int J Biochem Cell Biol 2022; 146:106209. [PMID: 35378311 DOI: 10.1016/j.biocel.2022.106209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
NFκB is a critical rapid-acting transcription factor that protects cancer cells from programmed cell death induced by stress or therapy. While NFκB works in nexus with non-classical oncoproteins such as STAT3 and AKT under a variety of conditions, it is a major antiapoptotic factor activated by TNF-α of the tumor microenvironment. Therefore, it is surprising that PSMD10, an oncoprotein overexpressed in several cancers and a marker of poor prognosis, is reported to inhibit the NFκB pathway. In this study, we explore the role of PSMD10 in cancer cells exposed to TNF-α. We screen several breast and colon cancer cell lines and select SW480, a colon cancer cell line highly resistant to TNF-α, and demonstrate that PSMD10 knockdown sensitizes these cells to TNF-α induced cell death. One of the mechanisms involves transcriptional regulation of β-catenin and RB1, two key colon cancer cell specific anti-apoptotic factors. Surprisingly, we find that PSMD10 is required for optimal phosphorylation and transcriptional activation of NFκB (RELA). Thus, upon PSMD10 knockdown, there is significant downregulation of anti-apoptotic NFκB target genes TNFAIP3 (A20), BIRC2 (cIAP1), BIRC3 (cIAP2), and XIAP. Our study, for the first time, shows that PSMD10 is required for the activation of the pro-survival arm via NFκB transcriptional activation to prevent cancer cells from succumbing to TNF-induced cell death. In addition by transcriptional regulation of two major antiapoptotic players RB1 and β-catenin, PSMD10 proves to be a coveted oncoprotein with a key role in tumorigenesis.
Collapse
Affiliation(s)
- Saim Wasi Mulla
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India.
| |
Collapse
|
15
|
Yang CC, Hsiao LD, Shih YF, Chang CI, Yang CM. Induction of Heme Oxygenase-1 by 15d-Prostaglandin J2 Mediated via a ROS-Dependent Sp1 and AP-1 Cascade Suppresses Lipopolysaccharide-Triggered Interleukin-6 Expression in Mouse Brain Microvascular Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040719. [PMID: 35453404 PMCID: PMC9024691 DOI: 10.3390/antiox11040719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent rationale for the development of protective drugs. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can modulate the expression of antioxidant defense proteins and be beneficial for neuroinflammation. Brain endothelial cells play an important role in the pathophysiology of brain disorders. Whether 15d-PGJ2 can induce HO-1 expression and protect against the inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells remains unclear. Here, we reveal that 15d-PGJ2 stimulated HO-1 protein and mRNA expression in a time- and concentration-dependent manner in bEnd.3 cells, which was attenuated by diphenyleneiodonium chloride (DPI) and MitoTempo. Thus, activation of NADPH oxidase (NOX)- and mitochondria-derived reactive oxygen species (ROS) mediated 15d-PGJ2-induced HO-1 expression. ROS generation could cause phosphorylation of protein kinase C (PKC)δ, leading to HO-1 expression, which was suppressed by Rottlerin (selective inhibitor PKCδ), DPI, and MitoTempo. We further demonstrated that phosphorylation of c-Jun N-terminal kinase (JNK)1/2 participated in 15d-PGJ2-upregulated HO-1 expression, which was blocked by SP600125 or Rottlerin. Moreover, 15d-PGJ2-induced HO-1 expression was mediated through the activation of c-Jun (a subunit of activator protein 1 (AP-1)) and specificity protein 1 (Sp1), leading to their interaction with the HO-1 promoter, revealed by chromatin immunoprecipitation assay, which was attenuated by SP600125, Mithramycin A, or Tanshinone II A. We further verified the anti-inflammatory effect of HO-1 expression. Our results showed that 15d-PGJ2-induced HO-1 could mitigate the lipopolysaccharide-triggered interleukin-6 expression and secretion, as measured by an ELISA assay kit. These results suggest that 15d-PGJ2-induced HO-1 expression is mediated through the activation of NOX- and mitochondria-derived ROS-dependent PKCδ/JNK1/2/Sp1 and the AP-1 signaling pathway and protects against inflammatory responses in bEnd.3 cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ching-I Chang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| |
Collapse
|
16
|
Zhou S, Guo J, Liao X, Zhou Q, Qiu X, Jiang S, Xu N, Wang X, Zhao L, Hu W, Xie L, Xie P, Cui Y, Yang Y, Patzak A, Persson PB, Mao J, Lai EY. rhADAMTS13 reduces oxidative stress by cleaving VWF in ischaemia/reperfusion-induced acute kidney injury. Acta Physiol (Oxf) 2022; 234:e13778. [PMID: 34989474 DOI: 10.1111/apha.13778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/17/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
AIMS Acute kidney injury (AKI), a major health burden, lacks effective therapy. Anti-inflammatory actions of a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13 (ADAMTS13) may provide a new treatment option for AKI. Along with inflammation, oxidative stress is critical for AKI development, yet the impact of ADAMTS13 on oxidative stress in AKI remains to be fully elucidated. METHODS We assess recombinant human ADAMTS13 (rhADAMTS13) actions on oxidative stress in a murine ischaemia/reperfusion (IR) model. Antioxidant stress-enzyme activities, renal morphology, kidney function markers and vascular function of isolated afferent arterioles are quantified. RESULTS rhADAMTS13 provided after IR, reduces blood urea nitrogen (BUN) by 33% and serum creatinine (Scr) by 73% in 24 hours post-IR. rhADAMTS13 reduces BUN (40.03 ± 20.34 mmol/L vs 72.35 ± 18.74 mmol/L, P < .01), Scr (75.67 ± 51.19 μmol/L vs 176.17 ± 55.38 μmol/L, P < .01) and proteinuria by 41% in 48 hours post-IR as well. Moreover, rhADAMTS13 administration decreases malondialdehyde (MDA) and increases the activity of antioxidant stress enzymes, and attenuates reactive oxygen species production. rhADAMTS13 also upregulates nuclear factor-erythroid-2-related factor 2/haem oxygenase-1, enhances antioxidant enzymes activity and alleviates endothelial dysfunction. Finally, treatment with rhADAMTS13 mitigates severe functional and morphological injury present in IR mice. Extracellular signal-regulated kinase (ERK) phosphorylation is limited by rhADAMTS13 and PPARγ expression is partly restored in ischaemic kidneys. Co-administration of von Willebrand factor (VWF) impairs rhADAMTS13's antioxidant capacity and its protective role in IR. CONCLUSION rhADAMTS13 alleviates renal IR injury through antioxidant effects by cleaving VWF.
Collapse
Affiliation(s)
- Suhan Zhou
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Jie Guo
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xinxin Liao
- Department of Anesthesiology Nanfang Hospital Southern Medical University Guangzhou China
| | - Qin Zhou
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Xingyu Qiu
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Nephrology Center of Kidney and Urology the Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Nan Xu
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Pathophysiology School of Basic Medical Sciences Henan University Kaifeng China
| | - Xiaohua Wang
- Department of Nephrology Center of Kidney and Urology the Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Liang Zhao
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Weipeng Hu
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Lanyu Xie
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Peng Xie
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yu Cui
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Yi Yang
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
| | - Andreas Patzak
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Pontus B. Persson
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Jianhua Mao
- Department of Nephrology the Children's Hospital of Zhejiang University School of Medicine Hangzhou China
| | - En Yin Lai
- Kidney Disease Center of the First Affiliated Hospital and Department of Physiology School of Basic Medical Sciences Zhejiang University School of Medicine Hangzhou China
- Department of Nephrology Center of Kidney and Urology the Seventh Affiliated Hospital Sun Yat‐sen University Shenzhen China
- Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| |
Collapse
|
17
|
Müller I, Kym U, Galati V, Tharakan S, Subotic U, Krebs T, Stathopoulos E, Schmittenbecher P, Cholewa D, Romero P, Reingruber B, Holland-Cunz S, Keck S. Cholinergic Signaling Attenuates Pro-Inflammatory Interleukin-8 Response in Colonic Epithelial Cells. Front Immunol 2022; 12:781147. [PMID: 35069554 PMCID: PMC8770536 DOI: 10.3389/fimmu.2021.781147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Infants affected by Hirschsprung disease (HSCR), a neurodevelopmental congenital disorder, lack ganglia of the intrinsic enteric nervous system (aganglionosis) in a variable length of the colon, and are prone to developing severe Hirschsprung-associated enterocolitis (HAEC). HSCR patients typically show abnormal dense innervation of extrinsic cholinergic nerve fibers throughout the aganglionic rectosigmoid. Cholinergic signaling has been reported to reduce inflammatory response. Consequently, a sparse extrinsic cholinergic innervation in the mucosa of the rectosigmoid correlates with increased inflammatory immune cell frequencies and higher incidence of HAEC in HSCR patients. However, whether cholinergic signals influence the pro-inflammatory immune response of intestinal epithelial cells (IEC) is unknown. Here, we analyzed colonic IEC isolated from 43 HSCR patients with either a low or high mucosal cholinergic innervation density (fiber-low versus fiber-high) as well as from control tissue. Compared to fiber-high samples, IEC purified from fiber-low rectosigmoid expressed significantly higher levels of IL-8 but not TNF-α, IL-10, TGF-β1, Muc-2 or tight junction proteins. IEC from fiber-low rectosigmoid showed higher IL-8 protein concentrations in cell lysates as well as prominent IL-8 immunoreactivity compared to IEC from fiber-high tissue. Using the human colonic IEC cell line SW480 we demonstrated that cholinergic signals suppress lipopolysaccharide-induced IL-8 secretion via the alpha 7 nicotinic acetylcholine receptor (a7nAChR). In conclusion, we showed for the first time that the presence of a dense mucosal cholinergic innervation is associated with decreased secretion of IEC-derived pro-inflammatory IL-8 in the rectosigmoid of HSCR patients likely dependent on a7nAChR activation. Owing to the association between IL-8 and enterocolitis-prone, fiber-low HSCR patients, targeted therapies against IL-8 might be a promising immunotherapy candidate for HAEC treatment.
Collapse
Affiliation(s)
- Isabelle Müller
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Urs Kym
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Virginie Galati
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Sasha Tharakan
- Department of Pediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - Ulrike Subotic
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland.,Department of Pediatric Surgery, University Children's Hospital Zürich, Zürich, Switzerland
| | - Thomas Krebs
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Eleuthere Stathopoulos
- Department of Pediatric Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | | | - Dietmar Cholewa
- Department of Pediatric Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Romero
- Department of Pediatric Surgery, University Hospital of Heidelberg, Heidelberg, Germany
| | - Bertram Reingruber
- Department of Pediatric Surgery, Florence Nightingale Hospital, Düsseldorf, Germany
| | | | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| | - Simone Keck
- Department of Pediatric Surgery, University Children's Hospital Basel (UKBB) and University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Suwannarin N, Prapamontol T, Isobe T, Nishihama Y, Mangklabruks A, Pantasri T, Chantara S, Naksen W, Nakayama SF. Association between Haematological Parameters and Exposure to a Mixture of Organophosphate and Neonicotinoid Insecticides among Male Farmworkers in Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10849. [PMID: 34682593 PMCID: PMC8535230 DOI: 10.3390/ijerph182010849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Exposure to insecticides may result in various health problems. This study investigated the association between haematological parameters and exposure to a mixture of organophosphate (OP) and neonicotinoid (NEO) insecticides among male farmworkers in Fang district, Chiang Mai province, northern Thailand. Concentrations of urinary dialkylphosphates, non-specific metabolites of OPs, and NEOs and their metabolites and haematological parameters were measured in 143 male farmworkers. The Bayesian kernel machine regression model was employed to evaluate the associations. Exposure to a mixture of insecticides was significantly associated with the mean corpuscular haemoglobin concentration (MCHC) when the concentrations of all the compounds and their metabolites were at the 60th percentile or higher compared with the 50th percentile. Furthermore, exposure to clothianidin (CLO) showed a decreasing association with MCHC when all the other insecticides were at their mean concentrations. CLO was the most likely compound to reduce MCHC, and this was confirmed by sensitivity analysis. These findings suggest that exposure to NEO insecticides, especially CLO, affects the haematological status relating to haemoglobin parameters.
Collapse
Affiliation(s)
- Neeranuch Suwannarin
- Ph.D. Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental and Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| | - Tippawan Prapamontol
- Environmental and Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| | - Yukiko Nishihama
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| | - Ampica Mangklabruks
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tawiwan Pantasri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Shoji F. Nakayama
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| |
Collapse
|
19
|
Zhao X, Wilson K, Uteshev V, He JJ. Activation of α7 nicotinic acetylcholine receptor ameliorates HIV-associated neurology and neuropathology. Brain 2021; 144:3355-3370. [PMID: 34196664 PMCID: PMC8677536 DOI: 10.1093/brain/awab251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/28/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy are primarily manifested as impaired behaviours, glial activation/neuroinflammation and compromised neuronal integrity, for which there are no effective treatments currently available. In the current study, we used doxycycline-inducible astrocyte-specific HIV Tat transgenic mice (iTat), a surrogate HAND model, and determined effects of PNU-125096, a positive allosteric modulator of α7 nicotinic acetylcholine receptor (α7 nAChR) on Tat-induced behavioural impairments and neuropathologies. We showed that PNU-125096 treatment significantly improved locomotor, learning and memory deficits of iTat mice while inhibited glial activation and increased PSD-95 expression in the cortex and hippocampus of iTat mice. Using α7 nAChR knockout mice, we showed that α7 nAChR knockout eliminated the protective effects of PNU-125096 on iTat mice. In addition, we showed that inhibition of p38 phosphorylation by SB239063, a p38 MAPK-specific inhibitor exacerbated Tat neurotoxicity in iTat mice. Last, we used primary mouse cortical individual cultures and neuron-astrocytes co-cultures and in vivo staining of iTat mouse brain tissues and showed that glial activation was directly involved in the interplay among Tat neurotoxicity, α7 nAChR activation and the p38 MAPK signalling pathway. Taken together, these findings demonstrated for the first time that α7 nAChR activation led to protection against HAND and suggested that α7 nAChR modulator PNU-125096 holds significant promise for development of therapeutics for HAND.
Collapse
Affiliation(s)
- Xiaojie Zhao
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Kelly Wilson
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA
| | - Victor Uteshev
- Department of Pharmacology and Neuroscience, Graduate School of Biomedical Sciences of University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.,Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA
| |
Collapse
|
20
|
Jasper AE, Sapey E, Thickett DR, Scott A. Understanding potential mechanisms of harm: the drivers of electronic cigarette-induced changes in alveolar macrophages, neutrophils, and lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2021; 321:L336-L348. [PMID: 34009037 DOI: 10.1152/ajplung.00081.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electronic (e-) cigarettes are growing in popularity despite uncertainties regarding their long-term health implications. The link between cigarette smoking and initiation of chronic lung disease took decades to unpick so in vitro studies mimicking e-cigarette exposure aim to detect early indicators of harm. In response to e-cigarette exposure, alveolar macrophages adopt a proinflammatory phenotype of increased secretion of proinflammatory cytokines, reduction in phagocytosis, and efferocytosis and reactive oxygen species generation. These effects are largely driven by free radical exposure, changes in PI3K/Akt signaling pathways, nicotine-induced reduction in phagocytosis receptors, and impaired lipid homeostasis leading to a foam-like lipid-laden phenotype. Neutrophils exhibit disrupted chemotaxis and transmigration to chemokines, reduced phagocytosis and bacterial killing, and an increase in protease secretion without corresponding antiproteases in response to e-cigarette exposure. This is driven by an altered ability to respond and to polarize toward chemoattractants, an activation of the p38 MAPK signaling pathway and inability to assemble NADPH oxidase. E-cigarettes induce lung epithelial cells to display decreased ciliary beat frequency and ion channel conductance as well as changes in chemokine secretion and surface protein expression. Changes in gene expression, mitochondrial function, and signaling pathways have been demonstrated in lung epithelial cells to explain these changes. Many functional outputs of alveolar macrophages, neutrophils, and lung epithelial cells have not been fully explored in the context of e-cigarette exposure and the underlying driving mechanisms are poorly understood. This review discusses current evidence surrounding the effects of e-cigarettes on alveolar macrophages, neutrophils, and lung epithelial cells with particular focus on the cellular mechanisms of change.
Collapse
Affiliation(s)
- Alice E Jasper
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Elizabeth Sapey
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - David R Thickett
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Aaron Scott
- Birmingham Acute Care Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
21
|
Yeon GB, Shin WH, Yoo SH, Kim D, Jeon BM, Park WU, Bae Y, Park JY, You S, Na D, Kim DS. NFIB induces functional astrocytes from human pluripotent stem cell-derived neural precursor cells mimicking in vivo astrogliogenesis. J Cell Physiol 2021; 236:7625-7641. [PMID: 33949692 DOI: 10.1002/jcp.30405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022]
Abstract
The ability to generate astrocytes from human pluripotent stem cells (hPSCs) offers a promising cellular model to study the development and physiology of human astrocytes. The extant methods for generating functional astrocytes required long culture periods and there remained much ambiguity on whether such paradigms follow the innate developmental program. In this report, we provided an efficient and rapid method for generating physiologically functional astrocytes from hPSCs. Overexpressing the nuclear factor IB in hPSC-derived neural precursor cells induced a highly enriched astrocyte population in 2 weeks. RNA sequencing and functional analyses demonstrated progressive transcriptomic and physiological changes in the cells, resembling in vivo astrocyte development. Further analyses substantiated previous results and established the MAPK pathway necessary for astrocyte differentiation. Hence, this differentiation paradigm provides a prospective in vitro model for human astrogliogenesis studies and the pathophysiology of neurological diseases concerning astrocytes.
Collapse
Affiliation(s)
- Gyu-Bum Yeon
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Seo Hyun Yoo
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dongyun Kim
- Department of Biotechnology, Korea University, Seoul, Korea
| | | | - Won-Ung Park
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Yeonju Bae
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Korea
| | - Seungkwon You
- Department of Biotechnology, Korea University, Seoul, Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, Korea
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, Seoul, Korea.,Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Zhang W, Chen H, Ding L, Gong J, Zhang M, Guo W, Xu P, Li S, Zhang Y. Trojan Horse Delivery of 4,4'-Dimethoxychalcone for Parkinsonian Neuroprotection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004555. [PMID: 33977069 PMCID: PMC8097374 DOI: 10.1002/advs.202004555] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Indexed: 05/04/2023]
Abstract
Parkinson's disease (PD) is characterized by the progressive deterioration of dopamine (DA) neurons, and therapeutic endeavors are aimed at preventing DA loss. However, lack of effective brain delivery approaches limits this strategy. In this study, a "Trojan horse" system is used for substantia nigra-targeted delivery of a blood brain barrier-penetrating peptide (RVG29) conjugated to the surface of nanoparticles loaded with the natural autophagy inducer 4,4'-dimethoxychalcone (DMC) (designated as RVG-nDMC). Here, the neuroprotective effects of DMC are demonstrated in PD. Specifically, RVG-nDMC penetrates the blood brain barrier with enhanced brain-targeted delivery efficiency and is internalized by DA neurons and microglia. In vivo studies demonstrate that RVG-nDMC ameliorates motor deficits and nigral DA neuron death in PD mice without causing overt adverse effects in the brain or other major organs. Moreover, RVG-nDMC reverses tyrosine hydroxylase ubiquitination and degradation, alleviates oxidative stress in DA neurons, and exerts antiinflammatory effects in microglia. The "Trojan horse" strategy for targeted delivery of DMC thus provides a potentially powerful and clinically feasible approach for PD intervention.
Collapse
Affiliation(s)
- Wenlong Zhang
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Huaqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Liuyan Ding
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Junwei Gong
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Mengran Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Wenyuan Guo
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Pingyi Xu
- Department of NeurologyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510120China
| | - Shiying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Fifth Affiliated HospitalGuangzhou Medical UniversityGuangzhou511436China
| | - Yunlong Zhang
- Key Laboratory of Neurological Function and HealthSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| |
Collapse
|
23
|
Kim SR, Park EJ, Dusabimana T, Je J, Jeong K, Yun SP, Kim HJ, Cho KM, Kim H, Park SW. Platycodon grandiflorus Fermented Extracts Attenuate Endotoxin-Induced Acute Liver Injury in Mice. Nutrients 2020; 12:nu12092802. [PMID: 32933130 PMCID: PMC7551015 DOI: 10.3390/nu12092802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Endotoxin-induced acute liver injury is mediated by an excessive inflammatory response, hepatocellular oxidative stress, and apoptosis. Traditional medicinal plants have been used to treat various disorders. Platycodon grandifloras (PG) has been shown to be beneficial in relieving cough and asthma and to have anti-tumor, anti-inflammatory, anti-diabetic activities. The pharmacological action of PG is mainly due to saponins, flavonoids, phenolic, and other compounds. However, raw PG exhibits some side effects at high doses. Here, we extracted raw PG with varying fermentation methods and examined its anti-inflammatory effect and associated signaling kinases in Raw264.7 cells. Then, we investigated the effect of fermented black PG (FBPG) on endotoxin-induced liver injury. Mice were administered FBPG orally at 1 h before the lipopolysaccharide and D-galactosamine (LPS/GalN) injection and sacrificed after 5 h. Black PG (BPG) and FBPG showed a significant reduction in pro-inflammatory cytokines and extracellular nitric oxide (NO); p-38 and ERK signaling was involved in reducing inducible NO synthase in Raw264.7 cells. Consistently, FBPG attenuates LPS/GalN-induced liver injury; plasma ALT and AST, hepatic necrosis, pro-inflammatory cytokines, apoptosis, and lipid peroxidation were all reduced. In conclusion, PG extracts, particularly FBPG, play anti-inflammatory, antioxidant, and anti-apoptotic roles, alleviating endotoxin-induced acute liver injury. Processing raw PG into FBPG extract may be clinically useful by improving the pharmacologically active ingredients and reducing the required dosage.
Collapse
Affiliation(s)
- So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Kye Man Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| |
Collapse
|
24
|
Xiao J, Zhang G, Gao S, Shen J, Feng H, He Z, Xu C. Combined administration of SHP2 inhibitor SHP099 and the α7nAChR agonist PNU282987 protect mice against DSS‑induced colitis. Mol Med Rep 2020; 22:2235-2244. [PMID: 32705242 PMCID: PMC7411392 DOI: 10.3892/mmr.2020.11324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/28/2020] [Indexed: 01/16/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition with complex pathogenesis that currently has no cure. α7 nicotinic acetylcholine receptor (α7nAChR) is known to regulate multiple aspects of immune function. The present study aimed to evaluate the protective effects of PNU282987 and SHP099, which are a selective agonist of α7nAChR and an SHP2 inhibitor, respectively, in dextran sulfate sodium (DSS)‑induced colitis in mice. Acute colitis was induced in mice using 3% DSS, and weight loss, colonic histology and cytokine production from colonic lamina propria were analyzed to evaluate disease severity. Bone marrow‑derived macrophages were treated with lipopolysaccharide (LPS) to induce an inflammatory response. Cytokine expression and reactive oxygen species (ROS) levels were quantified. The α7nAChR agonist, PNU282987, and the SHP2 inhibitor, SHP099, were administered alone or in combination to LPS‑induced macrophages or to colitic model mice to evaluate the inflammatory response and protective efficacy in colitis. α7nAChR protein levels were found to be markedly increased in the colon of DSS‑induced colitic mice, and were found to co‑localize with macrophages. Consistently, α7nAChR mRNA and protein levels were upregulated with colitis progression in DSS‑induced colitic mice. Colonic inflammation was attenuated by PNU282987 treatment in DSS‑induced mice, as evidenced by reduced weight loss and alleviated colonic epithelial cell disruption. These effects of PNU282987 on colitis were enhanced when it was combined with SHP099. Cytokine production and ROS levels induced by LPS in macrophages were decreased by a combination treatment of PNU282987 and SHP099. These findings identified α7nAChR as an essential element in the role of intestinal macrophages in colonic repair and demonstrated a synergistic effect of PNU282987 and SHP099, suggesting a new potential therapy for IBD.
Collapse
Affiliation(s)
- Junhua Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gufang Zhang
- Department of Pharmacology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Sujun Gao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiaqing Shen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhilong He
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
25
|
Ramanathan S, Kumar M S, Sanjeevi G, Narayanan B, Kurien AA. Thiamethoxam, a Neonicotinoid Poisoning Causing Acute Kidney Injury via a Novel Mechanism. Kidney Int Rep 2020; 5:1111-1113. [PMID: 32647772 PMCID: PMC7335955 DOI: 10.1016/j.ekir.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Sakthirajan Ramanathan
- Department of Nephrology, Vijaya Medical and Educational Trust, Chennai, Tamil Nadu, India
| | - Senthil Kumar M
- Department of Internal Medicine, Vijaya Medical and Educational Trust, Chennai, Tamil Nadu, India
| | - Gopal Sanjeevi
- Department of Internal Medicine, Vijaya Medical and Educational Trust, Chennai, Tamil Nadu, India
| | - Babu Narayanan
- Department of Critical Care, Vijaya Medical and Educational Trust, Chennai, Tamil Nadu, India
| | | |
Collapse
|
26
|
Antunes GL, Silveira JS, Kaiber DB, Luft C, da Costa MS, Marques EP, Ferreira FS, Breda RV, Wyse ATS, Stein RT, Pitrez PM, da Cunha AA. Cholinergic anti-inflammatory pathway confers airway protection against oxidative damage and attenuates inflammation in an allergic asthma model. J Cell Physiol 2019; 235:1838-1849. [PMID: 31332773 DOI: 10.1002/jcp.29101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1β, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.
Collapse
Affiliation(s)
- Géssica Luana Antunes
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Josiane Silva Silveira
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Daniela Benvenutti Kaiber
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Carolina Luft
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Mariana Severo da Costa
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Eduardo Peil Marques
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Fernanda Silva Ferreira
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Ricardo Vaz Breda
- Laboratory of Neurosciences, Brain Institute - BraIns, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| | - Renato Tetelbom Stein
- Laboratory of Pediatric Respirology, Infant Center, School of Medical, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paulo Márcio Pitrez
- Laboratory of Pediatric Respirology, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Hospital Moinhos de Vento, HMV, Porto Alegre, Brazil
| | - Aline Andrea da Cunha
- Laboratory of Pediatric Respirology, Infant Center, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Hospital Moinhos de Vento, HMV, Porto Alegre, Brazil
| |
Collapse
|
27
|
Inoue T, Tanaka S, Rosin DL, Okusa MD. Bioelectronic Approaches to Control Neuroimmune Interactions in Acute Kidney Injury. Cold Spring Harb Perspect Med 2019; 9:a034231. [PMID: 30126836 PMCID: PMC6546041 DOI: 10.1101/cshperspect.a034231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent studies have shown renal protective effects of bioelectric approaches, including ultrasound treatment, electrical vagus nerve stimulation, and optogenetic brainstem C1 neuron stimulation. The renal protection acquired by all three modalities was lost in splenectomized mice and/or α7 subunit of the nicotinic acetylcholine receptor-deficient mice. C1 neuron-mediated renal protection was blocked by β2-adrenergic receptor antagonist. These findings indicate that all three methods commonly, at least partially, activate the cholinergic anti-inflammatory pathway, a well-studied neuroimmune pathway. In this article, we summarize the current understanding of neuroimmune axis-mediated kidney protection in preclinical models of acute kidney injury by these three modalities. Examination of the differences among these three modalities might lead to a further elucidation of the neuroimmune axis involved in renal protection and is of interest for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia Health System Charlottesville, Virginia 22908
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|