1
|
Guo W, Yang Y, Liu G, Zhao J, Zhang Y, Li Y, Yang B, Zhu X, Li D, Qin X, Zhang P, Yang Z, Guo W, Kong D, Zhang W. The anti-neuroinflammatory effects of cepharanthine in uric acid-induced neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119409. [PMID: 39870338 DOI: 10.1016/j.jep.2025.119409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cepharanthine (CEP) is an alkaloid extracted from Stephania cephalantha Hayata, a traditional Chinese medicine (TCM) renowned for its heatclearing and dehumidifying properties. For centuries, Stephania cephalantha Hayata has been employed in the treatment of a wide range of diseases, including pain, edema, inflammation, and fever. AIM OF THE STUDY Our research aims to investigate the role and mechanism of Cepharanthine in ameliorating uric acid (UA) induced neuroinflammatory responses. MATERIALS AND METHODS The Connectivity Map (CMap) was utilized to identify the therapeutic drug Cepharanthine, based on the proteomic disturbances associated with uric acid (UA). Limited proteolysis small molecule mapping (LiP-SMap) and thermal proteome profiling (TPP) technologies were used to identify the direct target proteins for UA and Cepharanthine. Additionally, we used the induced-fit docking algorithm integrated within the Schrodinger suite to explore the interactions between Cepharanthine and uric acid targets. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology was employed to determine the concentration of Cepharanthine in the mice cerebral cortex. The pro-inflammatory cytokine genes were also quantified by qPCR in U251 cells and in hyperuricemic mice. RESULTS The findings indicated that uric acid increased the transcription of pro-inflammatory cytokines and the expression levels of proteins linked to inflammation in U251 cells. PPP2R1A was identified as a potential candidate for direct interaction with uric acid, potentially initiating inflammation. Based on the CMap prediction, Cepharanthine was identified as a candidate drug for interaction with PPP2R1A. TPP analysis indicated that Cepharanthine could reduce the thermal stability of PPP2R1A. Molecular docking confirmed that Cepharanthine could directly bind to PPP2R1A. Furthermore, the detection of Cepharanthine in the cerebral cortex suggested its ability to cross the blood-brain barrier. Proteomic analysis of Cepharanthine-treated mice revealed significant enrichments of differentially expressed proteins (DEPs) in inflammation-related pathways and biological processes. Additionally, Cepharanthine was effective in decreasing the expression of pro-inflammatory cytokine genes induced by uric acid in U251 cells and in hyperuricemic mice. CONCLUSION Cepharanthine could effectively alleviate hyperuricemia-induced neuroinflammation via binding to PPP2R1A. This study offers a novel approach for prevention and treatment of neurological diseases caused by hyperuricemia.
Collapse
Affiliation(s)
- Wenyan Guo
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, 050017, China
| | - Yi Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Guangyuan Liu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Jiaojiao Zhao
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yuyu Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Yahui Li
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Bingkun Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; Department of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Xiaoque Zhu
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., Shijiazhuang, Hebei Province, 050017, China
| | - Dandan Li
- Department of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China; CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., Shijiazhuang, Hebei Province, 050017, China
| | - Xia Qin
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Panpan Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Zuxiao Yang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Wei Guo
- Department of Pharmacy, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China
| | - Dezhi Kong
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| | - Wei Zhang
- Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, The Key Laboratory of Tranquilizing TCM, Hebei Provincial Administration of Traditional Chinese Medicine, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei Province, 050017, China.
| |
Collapse
|
2
|
Cassarino MC, Colado A, Martinez VS, Martines C, Bonato A, Bertini M, Pavlovksy M, Custidiano R, Bezares FR, Morande PE, Vermeulen M, Gamberale R, Giordano M, Efremov DG, Borge M. G-protein coupled receptor kinase-2 regulates the migration of chronic lymphocytic leukaemia cells to sphingosine-1 phosphate in vitro and their trafficking in vivo. Sci Rep 2025; 15:6530. [PMID: 39988601 PMCID: PMC11847938 DOI: 10.1038/s41598-025-91536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/21/2025] [Indexed: 02/25/2025] Open
Abstract
Disease progression and drug resistance in patients with chronic lymphocytic leukaemia (CLL) depend on signals from the tumour microenvironment in lymphoid sites. GRK2 inhibits the egress of normal B cells from lymphoid tissues by inducing the downregulation of the S1P-receptor 1 (S1PR1). In this study we investigated the role of GRK2 in the context of CLL using in vitro and in vivo murine models, and also primary samples from CLL patients. We found that pharmacological inhibition of GRK2 enhanced the migration of leukemic cells from CLL patients towards S1P and impaired the S1P-induced downregulation of S1PR1. Likewise, CRISPR/Cas9-mediated GRK2 deletion in a murine leukemic cell line derived from the Eµ-TCL1 mouse model of CLL also increased migratory capacity toward S1P in vitro. Furthermore, when injected into mice, GRK2-deficient murine leukemic cells exhibited an altered in vivo localization, with a higher presence in the blood and spleen compared to the bone marrow. Within the spleen, these cells displayed reduced localization to the follicles compared to control murine leukemic cells. Deletion of GRK2 on murine leukemic cells did not affect their in vitro proliferation, but notably, conferred a growth disadvantage in vivo. These findings underscore GRK2 as a critical regulator of the localization of CLL cells in vivo and suggest its potential as a therapeutic target to disrupt survival niches in CLL.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Animals
- Humans
- G-Protein-Coupled Receptor Kinase 2/metabolism
- G-Protein-Coupled Receptor Kinase 2/genetics
- Mice
- Cell Movement
- Lysophospholipids/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Cell Line, Tumor
- Sphingosine-1-Phosphate Receptors/metabolism
- Sphingosine-1-Phosphate Receptors/genetics
- Tumor Microenvironment
- Female
- Male
Collapse
Affiliation(s)
- María Chiara Cassarino
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine
| | - Ana Colado
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine
| | - Valeria Sarapura Martinez
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine
| | - Claudio Martines
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alice Bonato
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Martin Bertini
- General Acute Care Hospital "Dr. Teodoro Álvarez", CABA, Argentine
| | | | | | | | - Pablo Elías Morande
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine
| | - Mónica Vermeulen
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine
| | - Romina Gamberale
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine
| | - Mirta Giordano
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine
| | - Dimitar G Efremov
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| | - Mercedes Borge
- Institute of Experimental Medicine (IMEX) - CONICET- National Academy of Medicine (ANM) , CABA, Argentine.
| |
Collapse
|
3
|
Lin Y, Zheng L, Xu Y, Wang X, Li J, Zheng L, Liang G, Chen L. Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) Degraders for Treating Inflammatory Diseases: Advances and Prospects. J Med Chem 2025; 68:902-914. [PMID: 39762193 DOI: 10.1021/acs.jmedchem.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is involved in various inflammation-related diseases. Both the kinase and scaffolding functions of IRAK4 initiate pro-inflammatory factor transcription and expression. The scaffolding function of IRAK4 is essential for Myddosome assembly and NF-κB activation. Conventional small-molecule inhibitors effectively inhibit the kinase function of IRAK4 but do not block its scaffolding function. Recently, various IRAK4 degraders have shown promising therapeutic potential in inflammatory diseases. The most advanced IRAK4-selective degrader, KT-474 (SAR444656), significantly reduced inflammatory biomarker levels in patients and demonstrated high safety and tolerability. This perspective introduces and discusses the physiological biology of IRAK4, its associated diseases, and the current development of IRAK4 degraders, thereby offering insights into future research directions.
Collapse
Affiliation(s)
- Yaoxiang Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310000, China
| | - Ying Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinyan Wang
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Jie Li
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Lei Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Lingfeng Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
4
|
Feng Y, Chen C, Shao A, Wu L, Hu H, Zhang T. Emerging interleukin-1 receptor-associated kinase 4 (IRAK4) inhibitors or degraders as therapeutic agents for autoimmune diseases and cancer. Acta Pharm Sin B 2024; 14:5091-5105. [PMID: 39807338 PMCID: PMC11725142 DOI: 10.1016/j.apsb.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Interleukin-1 receptor-related kinase (IRAK4) is a widely expressed serine/threonine kinase involved in the regulation of innate immunity. IRAK4 plays a pivotal role as a key kinase within the downstream signaling pathway cascades of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs). The signaling pathways orchestrated by IRAK4 are integral to inflammatory responses, and its overexpression is implicated in the pathogenesis of inflammatory diseases, autoimmune disorders, and cancer. Consequently, targeting IRAK4-mediated signaling pathways has emerged as a promising therapeutic strategy. Small molecule inhibitors and degraders designed to modulate IRAK4 have shown efficacy in mitigating related diseases. In this paper, we will provide a detailed description of the structure and function of IRAK4, the role of IRAK4 in related diseases, as well as the currently reported small molecule inhibitors and degraders of IRAK4. It is expected to provide new directions for enriching the clinical treatment of inflammation and related diseases.
Collapse
Affiliation(s)
- Yifan Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Anqi Shao
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haiyu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
6
|
Xu D, Bai C, Hu R, Li X, Guo F, Zhang D, Shi B. Exploring the Changes in IL-6 and Related Cytokines in Angiogenesis after Tibial Transverse Transplantation in Diabetic Foot Ulcers. Orthop Surg 2024; 16:2181-2190. [PMID: 39223795 PMCID: PMC11572566 DOI: 10.1111/os.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The transverse tibial transfer technique is employed primarily to treat diabetic foot ulcers (DFUs), aiming to enhance leg circulation and promote new blood vessel growth. This technique is also beneficial for various conditions associated with poor blood flow in the lower extremities. However, there is no clear molecular mechanism to explain the relationship between the transverse tibial transfer technique and angiogenesis in patients with diabetic foot. This study aims to preliminarily explore the change of IL-6 and related cytokines in promoting angiogenesis during transverse tibial transplantation, providing a direction for future research. METHODS We retrospectively assessed a study from April 2022 to November 2023 on 76 patients with severe DFUs at Wagner stages 3-4. Flow cytometry was used to detect the levels of 12 cytokines in serum before the operation and 3, 7, 14, 21, and 35 days after the operation. Ankle-brachial index (ABI), transcutaneous oxygen tension (TcPO2), and glycosylated hemoglobin (Hba1c) were recorded at admission and discharge. We examined the variations in cytokine levels, wound healing duration, amputation rates, infection incidence, and other key outcomes. RESULTS In our investigation, a total of 76 individuals participated, comprising 49 males and 27 females. These subjects had an average age of 64.7 years, with a standard deviation of 13 years. The mean ulcer healing time was 74 ± 31 days, amputation occurred in 3 patients, pin tract infection occurred in one patient (1.3%), and incision infection occurred in one patient (1.3%). By day 35 following the surgery, both the ABI and TcPO2 values showed a significant increase from their preoperative levels. HbA1c significantly improved compared with presurgery (p < 0.001), IL-6 levels were significantly increased compared with presurgery (p < 0.05), and then decreased. CONCLUSION The transverse tibial transfer (TTT) technique is safe and efficient for managing DFUs. The wound healing time in patients who smoke or consume alcohol is statistically significant compared with that of nonsmoking and nondrinking patients. IL-6 exhibited substantial changes at various postoperative time points. Future research could investigate the role of IL-6 in tibial transverse translation.
Collapse
Affiliation(s)
- Daofei Xu
- Chengdu Medical CollegeChengduChina
- Department of OrthopaedicsMianyang Central HospitalMianyangChina
| | - Chunxia Bai
- Department of OrthopaedicsMianyang Central HospitalMianyangChina
| | - Rong Hu
- Department of OrthopaedicsMianyang Central HospitalMianyangChina
| | - Xiaoya Li
- Department of OrthopaedicsMianyang Central HospitalMianyangChina
| | - Fudie Guo
- Department of OrthopaedicsMianyang Central HospitalMianyangChina
| | - Dingwei Zhang
- Department of OrthopaedicsMianyang Central HospitalMianyangChina
| | - Bo Shi
- Department of OrthopaedicsMianyang Central HospitalMianyangChina
| |
Collapse
|
7
|
Ménoret A, Agliano F, Karginov TA, Hu X, Vella AT. IRAK4 is an immunological checkpoint in neuropsychiatric systemic lupus erythematosus. Sci Rep 2024; 14:16393. [PMID: 39014006 PMCID: PMC11252422 DOI: 10.1038/s41598-024-63567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
The search for dementia treatments, including treatments for neuropsychiatric lupus (NPSLE), has not yet uncovered useful therapeutic targets that mitigate underlying inflammation. Currently, NPSLE's limited treatment options are often accompanied by severe toxicity. Blocking toll-like receptor (TLR) and IL-1 receptor signal transduction by inhibiting interleukin-1 receptor-associated kinase 4 (IRAK4) offers a new pathway for intervention. Using a pre-clinical NPSLE model, we compare lupus-like B6.MRL-Faslpr (MRL) mice with B6.MRL-Faslpr-IRAK4 kinase-dead (MRL-IRAK4-KD) mice, which are were less prone to 'general' lupus-like symptoms. We demonstrate that lupus-prone mice with a mutation in the kinase domain of IRAK4 no longer display typical lupus hallmarks such as splenomegaly, inflammation, production of hormones, and anti-double-stranded (ds)DNA antibody. water maze behavioral testing, which measures contextual associative learning, revealed that mice without functional IRAK4 displayed a recovery in memory acquisition deficits. RNA-seq approach revealed that cytokine and hormone signaling converge on the JAK/STAT pathways in the mouse hippocampus. Ultimately, the targets identified in this work may result in broad clinical value that can fill the significant scientific and therapeutic gaps precluding development of cures for dementia.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Federica Agliano
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Timofey A Karginov
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Xiangyou Hu
- Department of Neuroscience, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Anthony T Vella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
8
|
Zhuang S, Liu Z, Wu J, Yao Y, Li Z, Shen Y, Yu B, Wu D. Can O-GIcNAc Transferase (OGT) Complex Be Used as a Target for the Treatment of Hematological Malignancies? Pharmaceuticals (Basel) 2024; 17:664. [PMID: 38931332 PMCID: PMC11206344 DOI: 10.3390/ph17060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
The circulatory system is a closed conduit system throughout the body and consists of two parts as follows: the cardiovascular system and the lymphatic system. Hematological malignancies usually grow and multiply in the circulatory system, directly or indirectly affecting its function. These malignancies include multiple myeloma, leukemia, and lymphoma. O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates the function and stability of substrate proteins through O-GlcNAc modification. Abnormally expressed OGT is strongly associated with tumorigenesis, including hematological malignancies, colorectal cancer, liver cancer, breast cancer, and prostate cancer. In cells, OGT can assemble with a variety of proteins to form complexes to exercise related biological functions, such as OGT/HCF-1, OGT/TET, NSL, and then regulate glucose metabolism, gene transcription, cell proliferation, and other biological processes, thus affecting the development of hematological malignancies. This review summarizes the complexes involved in the assembly of OGT in cells and the role of related OGT complexes in hematological malignancies. Unraveling the complex network regulated by the OGT complex will facilitate a better understanding of hematologic malignancy development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donglu Wu
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (S.Z.); (Z.L.); (J.W.); (Y.Y.); (Z.L.); (Y.S.); (B.Y.)
| |
Collapse
|
9
|
Kremer A, Ryaykenen T, Haraszti RA. Systematic optimization of siRNA productive uptake into resting and activated T cells ex vivo. Biomed Pharmacother 2024; 172:116285. [PMID: 38382331 DOI: 10.1016/j.biopha.2024.116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
RNA-based medicines are ideally suited for precise modulation of T cell phenotypes in anti-cancer immunity, in autoimmune diseases and for ex vivo modulation of T-cell-based therapies. Therefore, understanding productive siRNA uptake to T cells is of particular importance. Most studies used unmodified siRNAs or commercially available siRNAs with undisclosed chemical modification patterns to show functionality in T cells. Despite being an active field of research, robust siRNA delivery to T cells still represents a formidable challenge. Therefore, a systematic approach is needed to further optimize and understand productive siRNA uptake pathways to T cells. Here, we compared conjugate-mediated and nanoparticle-mediated delivery of siRNAs to T cells in the context of fully chemically modified RNA constructs. We showed that lipid-conjugate-mediated delivery outperforms lipid-nanoparticle-mediated and extracellular-vesicle-mediated delivery in activated T cells ex vivo. Yet, ex vivo manipulation of T cells without the need of activation is of great therapeutic interest for CAR-T, engineered TCR-T and allogeneic donor lymphocyte applications. We are first to report productive siRNA uptake into resting T cells using lipid-conjugate-mediated delivery. Interestingly, we observed strong dependence of silencing activity on lipid-conjugate-identity in resting T cells but not in activated T cells. This phenomenon is consistent with our early uptake kinetics data. Lipid-conjugates also enabled delivery of siRNA to all mononuclear immune cell types, including both lymphoid and myeloid lineages. These findings are expected to be broadly applicable for ex vivo modulation of immune cell therapies.
Collapse
Affiliation(s)
- A Kremer
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany; Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University Tuebingen, Germany
| | - T Ryaykenen
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany; Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University Tuebingen, Germany
| | - R A Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany; Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University Tuebingen, Germany.
| |
Collapse
|
10
|
Khalilian P, Eskandari N, Sharifi MJ, Soltani M, Nematollahi P. Toll-Like Receptor 4, 2, and Interleukin 1 Receptor Associated Kinase4: Possible Diagnostic Biomarkers in Myelodysplastic Syndrome Patients. Adv Biomed Res 2024; 13:17. [PMID: 38525404 PMCID: PMC10958736 DOI: 10.4103/abr.abr_67_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 03/26/2024] Open
Abstract
Background Myelodysplastic syndrome (MDS) is a clonal hematologic disorder that requires the integration of morphologic, cytogenetic, hematologic, and clinical findings for a successful diagnosis. Trying to find ancillary tests such as biomarkers improve the diagnosis process. Several studies showed that a disordered immune system is associated with MDS. The chronic activated innate immune system, particularly the Toll-like receptors (TLRs) pathway could be involved in the induction of the inflammation. Materials and Methods In the present study, we investigated the expression of TLR2, TLR4, and IRAK4 in bone marrow (BM) of MDS patients, the leukemia group, and the healthy group. For this purpose, we assessed the expression of TLR2, TLR4, and IRAK4 by real time-PCR. Results In line with new findings, we demonstrated that the expression of TLR2, TLR4, and IRAK4 significantly increased in MDS BM compared with the healthy group. Moreover, IRAK4 expression raised significantly in MDS patients compared with other studied hematologic neoplasms. Also, the expression levels of TLR2 and TLR4 significantly increased in MDS in comparison to some studied non-MDS malignancies (P ˂ 0.05). Receiver operating characteristics (ROC) analysis and area under the curve (AUC) suggested that the expression of TLR2, TLR4, and IRAK4 (AUC = 0.702, AUC = 0.75, and AUC = 0.682, respectively) had acceptable diagnostic values to identify MDS from the other understudied leukemias. Conclusion Overall, the expression of TLR2, TLR4, and IRAK4 could be potential biomarkers for discriminating MDS from some hematologic disorders.
Collapse
Affiliation(s)
- Parvin Khalilian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Jafar Sharifi
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Soltani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pardis Nematollahi
- Department of Pathology, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Zhang Z, Song Y, Zhang X, Wang S, Jia Z, Wang L, Wang C, Wang X, Mao J. Optimized new Shengmai powder ameliorates myocardial fibrosis in rats with heart failure by inhibition of the MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117210. [PMID: 37739104 DOI: 10.1016/j.jep.2023.117210] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/10/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Optimized New Shengmai Powder (ONSMP) is a traditional Chinese medicine (TCM) formula for heart failure treatment. MAPK signaling pathway is the key driver of myocardial fibrosis in heart failure. However, the mechanism of ONSMP on myocardial fibrosis and MAPK signaling pathway remains unclear. AIM OF THE STUDY To evaluate the effect of ONSMP against myocardial fibrosis in heart failure and the underlying mechanisms. MATERIALS AND METHODS Firstly, UHPLC-Q-Exactive-MS/MS was used to identify the active components in ONSMP. Secondly, a rat model of heart failure was established by ligating the left anterior descending branch of the coronary artery. After four weeks of intragastric administration of ONSMP, we used various classic tests, including echocardiography, exhaustive swimming, cardiopulmonary coefficient, heart failure markers, and cardiac pathological section, to assess the prescription's anti-myocardial fibrosis in heart failure properties. AGEs, Ang Ⅱ, VEGF, CTGF, and TGFβ levels in rat serum were quantified using ELISA. The positive expression of p-ERK1/2 and p-JNK1/2 of rat myocardium was determined immunohistochemical. The protein and mRNA levels of genes involved in the MAPK signaling pathway and myocardial fibrosis were measured using western blotting or real-time PCR. RESULTS The main components of ONSMP that regulate the MAPK signaling pathway are isorhamnetin, kaempferol, quercetin, and tanshinone ⅡA. ONSMP ameliorated cardiac function and exercise tolerance and reduced cardiopulmonary coefficient, heart failure marker levels, and myocardial fibrosis in the heart failure rats. In addition, ONSMP diminished the serum MAPK pathway activator levels, positive expression level of p-ERK1/2 and p-JNK1/2, protein and mRNA levels of components of the MAPK signaling pathway in the myocardial tissue of heart failure rat, indicating that it inhibits MAPK signaling pathway. CONCLUSIONS ONSMP delayed heart failure by inhibiting myocardial fibrosis via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Yuwei Song
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Xuan Zhang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Shuai Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Zhuangzhuang Jia
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Lin Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Ci Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Xianliang Wang
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Jingyuan Mao
- Department of First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| |
Collapse
|
12
|
Chang JS, Vinogradov AA, Zhang Y, Goto Y, Suga H. Deep Learning-Driven Library Design for the De Novo Discovery of Bioactive Thiopeptides. ACS CENTRAL SCIENCE 2023; 9:2150-2160. [PMID: 38033794 PMCID: PMC10683472 DOI: 10.1021/acscentsci.3c00957] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Broad substrate tolerance of ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic enzymes has allowed numerous strategies for RiPP engineering. However, despite relaxed specificities, exact substrate preferences of RiPP enzymes are often difficult to pinpoint. Thus, when designing combinatorial libraries of RiPP precursors, balancing the compound diversity with the substrate fitness can be challenging. Here, we employed a deep learning model to streamline the design of mRNA display libraries. Using an in vitro reconstituted thiopeptide biosynthesis platform, we performed mRNA display-based profiling of substrate fitness for the biosynthetic pathway involving five enzymes to train an accurate deep learning model. We then utilized the model to design optimal mRNA libraries and demonstrated their utility in affinity selections against IRAK4 kinase and the TLR10 cell surface receptor. The selections led to the discovery of potent thiopeptide ligands against both target proteins (KD up to 1.3 nM for the best compound against IRAK4 and 300 nM for TLR10). The IRAK4-targeting compounds also inhibited the kinase at single-digit μM concentrations in vitro, exhibited efficient internalization into HEK293H cells, and suppressed NF-kB-mediated signaling in cells. Altogether, the developed approach streamlines the discovery of pseudonatural RiPPs with de novo designed biological activities and favorable pharmacological properties.
Collapse
Affiliation(s)
- Jun Shi Chang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Alexander A. Vinogradov
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Parrondo RD, Iqbal M, Von Roemeling R, Von Roemeling C, Tun HW. IRAK-4 inhibition: emavusertib for the treatment of lymphoid and myeloid malignancies. Front Immunol 2023; 14:1239082. [PMID: 37954584 PMCID: PMC10637517 DOI: 10.3389/fimmu.2023.1239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.
Collapse
Affiliation(s)
- Ricardo D. Parrondo
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Madiha Iqbal
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | | | | | - Han W. Tun
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| |
Collapse
|
14
|
Hanafy RM, Demian SR, Abou-Shamaa LA, Ghallab O, Osman EM. In-vitro Modulation of mTOR-HIF-1α Axis by TLR7/8 Agonist (Resiquimod) in B-Chronic Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2023; 39:537-545. [PMID: 37786827 PMCID: PMC10542076 DOI: 10.1007/s12288-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/20/2023] [Indexed: 10/04/2023] Open
Abstract
Targeting toll-like receptors (TLRs), via TLR agonists, has been implicated in the regulation of immunometabolism. B-chronic lymphocytic leukemia (B-CLL) represents a suitable model for B-cell derived malignancies with shifted metabolic adaptations. Several signaling pathways have been found to be critical in metabolic reprogramming of CLL, including mechanistic target of rapamycin- hypoxia inducible factor-1α (mTOR- HIF-1α) pathway, the main metabolic regulator of glycolysis. Here, we investigated the effect of TLR7/8 agonist (Resiquimod) on the expression of mTOR and HIF-1α in patients with CLL. B cells were purified using Rosettesep Human B cell Enrichment Cocktail (Stem cell Technologies, Vancouver, BC, Canada#15,024) from peripheral venous blood of CLL patients (n = 20) and healthy individuals (n = 15). Isolated B cells were then cultured in both presence and absence of Resiquimod. Gene expression of mTOR and HIF-1α were assessed using qRT-PCR. Resiquimod significantly decreased mTOR and HIF-1α gene expression in both CLL (p < 0.001and p < 0.001, respectively) and Normal B cells (p = 0.004 and p = 0.001, respectively). Resiquimod may reprogram immunometabolism of malignant B-CLL cells via down-regulation of key glycolytic metabolic actors, mTOR and HIF-1α genes. Accordingly, Resiquimod may be an adjuvant as a therapeutic tool for CLL, which needs to be studied further. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-023-01649-y.
Collapse
Affiliation(s)
- Rana M. Hanafy
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Soheir R. Demian
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lobna A. Abou-Shamaa
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - O. Ghallab
- Internal Medicine Department (Hematology Unit), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman M. Osman
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Bai YR, Yang WG, Hou XH, Shen DD, Zhang SN, Li Y, Qiao YY, Wang SQ, Yuan S, Liu HM. The recent advance of Interleukin-1 receptor associated kinase 4 inhibitors for the treatment of inflammation and related diseases. Eur J Med Chem 2023; 258:115606. [PMID: 37402343 DOI: 10.1016/j.ejmech.2023.115606] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/06/2023]
Abstract
The interleukin-1 receptor associated kinase 4 (IRAK-4) is a member of serine-threonine kinase family, which plays an important role in the regulation of interleukin-1 receptors (IL-1R) and Toll-like receptors (TLRs) related signaling pathways. At present, the IRAK-4 mediated inflammation and related signaling pathways contribute to inflammation, which are also responsible for other autoimmune diseases and drug resistance in cancers. Therefore, targeting IRAK-4 to develop single-target, multi-target inhibitors and proteolysis-targeting chimera (PROTAC) degraders is an important direction for the treatment of inflammation and related diseases. Moreover, insight into the mechanism of action and structural optimization of the reported IRAK-4 inhibitors will provide the new direction to enrich the clinical therapies for inflammation and related diseases. In this comprehensive review, we introduced the recent advance of IRAK-4 inhibitors and degraders with regards to structural optimization, mechanism of action and clinical application that would be helpful for the development of more potent chemical entities against IRAK-4.
Collapse
Affiliation(s)
- Yi-Ru Bai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei-Guang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Xue-Hui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Dan-Dan Shen
- Department of Obstetrics and Gynecology, Zhengzhou Key Laboratory of Endometrial Disease Prevention and Treatment Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Sheng-Nan Zhang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yan Li
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Yan-Yan Qiao
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Sai-Qi Wang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory of Precision Therapy of Gastrointestinal Cancer, Zhengzhou, 450008, China.
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [DOI: https:/doi.org/10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
|
17
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [PMID: 37172355 DOI: 10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a vital protein involved in Toll-like and interleukin-1 receptor signal transduction. Several studies have reported regarding the crystal structure, dynamic properties, and interactions with inhibitors of the phosphorylated form of IRAK4. However, no dynamic properties of inhibitor-bound unphosphorylated IRAK4 have been previously studied. Herein, we report the intrinsic dynamics of unphosphorylated IRAK4 (uIRAK4) bound to type I and type II inhibitors. The corresponding apo and inhibitor-bound forms of uIRAK4 were subjected to three independent simulations of 500 ns (total 1.5 μs) each, and their trajectories were analyzed. The results indicated that all three systems were relatively stable, except for the type II inhibitor-bound form of uIRAK4, which exhibited less compact folding and higher solvent surface area. The intra-hydrogen bonds corroborated the structural deformation of the type-II inhibitor-bound complex, which could be attributed to the long molecular structure of the type-II inhibitor. Moreover, the type II inhibitor bound to uIRAK4 showed higher binding free energy with uIRAK4 than the type I inhibitor. The free energy landscape analysis showed a reorientation of Phe330 side chain from the DFG motif at different metastable states for all the systems. The intra-residual distance between residues Lys213, Glu233, Tyr262, and Phe330 suggests a functional interplay when the inhibitors are bound to uIRAK4, thereby hinting at their crucial role in the inhibition mechanism. Ultimately, the intrinsic dynamics study observed between type I/II inhibitor-bound forms of uIRAK4 may assist in better understanding the enzyme and designing therapeutic compounds.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
18
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
19
|
Macrophage- and BCR-derived but not TLR-derived signals support the growth of CLL and Richter syndrome murine models in vivo. Blood 2022; 140:2335-2347. [PMID: 36084319 DOI: 10.1182/blood.2022016272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
A large amount of circumstantial evidence has accumulated suggesting that Toll-like receptor (TLR) signals are involved in driving chronic lymphocytic leukemia (CLL) cell proliferation, but direct in vivo evidence for this is still lacking. We have now further addressed this possibility by pharmacologically inhibiting or genetically inactivating the TLR pathway in murine CLL and human Richter syndrome (RS) patient-derived xenograft (PDX) cells. Surprisingly, we show that pharmacologic inhibition of TLR signaling by treatment with an IRAK1/4 inhibitor delays the growth of the transplanted malignant cells in recipient mice, but genetic inactivation of the same pathway by CRISPR/Cas9-mediated disruption of IRAK4 or its proximal adaptor MyD88 has no effect. We further show that treatment with the IRAK1/4 inhibitor results in depletion of macrophages and demonstrate that these cells can support the survival and enhance the proliferation of both murine Eμ-TCL1 leukemia and human RS cells. We also show that genetic disruption of the B-cell receptor (BCR) by CRISPR/Cas9 editing of the immunoglobulin M constant region gene inhibits the growth of human RS-PDX cells in vivo, consistent with our previous finding with murine Eμ-TCL1 leukemia cells. Finally, we show that genetic disruption of IRAK4 does not result in negative selection of human CLL cell lines xenografted in immunodeficient mice. The obtained data suggest that TLR signals are unlikely to represent a major driver of CLL/RS cell proliferation and provide further evidence that signals from macrophages and the BCR promote the growth and survival of CLL and RS cells in vivo.
Collapse
|
20
|
Duan Z, Xing J, Shi H, Wang Y, Zhao C. The matrix protein of Newcastle disease virus inhibits inflammatory response through IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Int J Biol Macromol 2022; 218:295-309. [PMID: 35872314 DOI: 10.1016/j.ijbiomac.2022.07.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
The matrix (M) protein of several cytoplasmic RNA viruses has been reported to be an NF-κB pathway antagonist. However, the function and mechanism of NDV M protein antagonizing NF-κB activation remain largely unknown. In this study, we found that the expression levels of IRAK4, TRAF6, TAK1, and RELA/p65 were obviously reduced late in NDV infection. In addition, the cytoplasmic M protein rather than other viral proteins decreased the expression of these proteins in a dose-dependent manner. Further indepth analysis showed that the N-terminal 180 amino acids of M protein were not only responsible for the reduced expression of these proteins, but also responsible for the inhibition of NF-κB activation and nuclear translocation of RELA/p65, as well as the production of inflammatory cytokines. Moreover, small interference RNA-mediated knockdown of IRAK4 or overexpression of IRAK4 markedly enhanced or reduced NDV replication by decreasing or increasing inflammatory cytokines production through the IRAK4/TRAF6/TAK1/NF-κB signaling pathway. Strangely, there were no interactions detected between NDV M protein and IRAK4, TRAF6, TAK1 or RELA/p65. Our findings described here contribute to a better understanding of the innate immune antagonism function of M protein and the molecular mechanism underlying the replication and pathogenesis of NDV.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Jingru Xing
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Haiying Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Yanbi Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Caiqin Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
22
|
Alcoceba M, García-Álvarez M, Medina A, Maldonado R, González-Calle V, Chillón MC, Sarasquete ME, González M, García-Sanz R, Jiménez C. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int J Mol Sci 2022; 23:5570. [PMID: 35628381 PMCID: PMC9141891 DOI: 10.3390/ijms23105570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
The MYD88 gene has a physiological role in the innate immune system. Somatic mutations in MYD88, including the most common L265P, have been associated with the development of certain types of lymphoma. MYD88L265P is present in more than 90% of patients with Waldenström's macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The absence of MYD88 mutations in WM patients has been associated with a higher risk of transformation into aggressive lymphoma, resistance to certain therapies (BTK inhibitors), and shorter overall survival. The MyD88 signaling pathway has also been used as a target for specific therapies. In this review, we summarize the clinical applications of MYD88 testing in the diagnosis, prognosis, follow-up, and treatment of patients. Although MYD88L265P is not specific to WM, few tumors present a single causative mutation in a recurrent position. The role of the oncogene in the pathogenesis of WM is still unclear, especially considering that the mutation can be found in normal B cells of patients, as recently reported. This may have important implications for early lymphoma detection in healthy elderly individuals and for the treatment response assessment based on a MYD88L265P analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.A.); (M.G.-Á.); (A.M.); (R.M.); (V.G.-C.); (M.C.C.); (M.E.S.); (M.G.); (C.J.)
| | | |
Collapse
|
23
|
Robak T, Witkowska M, Smolewski P. The Role of Bruton's Kinase Inhibitors in Chronic Lymphocytic Leukemia: Current Status and Future Directions. Cancers (Basel) 2022; 14:771. [PMID: 35159041 PMCID: PMC8833747 DOI: 10.3390/cancers14030771] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022] Open
Abstract
The use of Bruton's tyrosine kinase (BTK) inhibitors has changed the management and clinical history of patients with chronic lymphocytic leukemia (CLL). BTK is a critical molecule that interconnects B-cell antigen receptor (BCR) signaling. BTKis are classified into two categories: irreversible (covalent) inhibitors and reversible (non-covalent) inhibitors. Ibrutinib was the first irreversible BTK inhibitor approved by the U.S. Food and Drug Administration in 2013 as a breakthrough therapy in CLL patients. Subsequently, several studies have evaluated the efficacy and safety of new agents with reduced toxicity when compared with ibrutinib. Two other irreversible, second-generation BTK inhibitors, acalabrutinib and zanubrutinib, were developed to reduce ibrutinib-mediated adverse effects. Additionally, new reversible BTK inhibitors are currently under development in early-phase studies to improve their activity and to diminish adverse effects. This review summarizes the pharmacology, clinical efficacy, safety, dosing, and drug-drug interactions associated with the treatment of CLL with BTK inhibitors and examines their further implications.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Magda Witkowska
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.W.); (P.S.)
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (M.W.); (P.S.)
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy. RECENT FINDINGS Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers. SUMMARY IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
25
|
Nalairndran G, Chung I, Abdul Razack AH, Chung FF, Hii L, Lim W, Looi CK, Mai C, Leong C. Inhibition of Janus Kinase 1 synergizes docetaxel sensitivity in prostate cancer cells. J Cell Mol Med 2021; 25:8187-8200. [PMID: 34322995 PMCID: PMC8419172 DOI: 10.1111/jcmm.16684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy and is the fifth leading cause of cancer mortality among men globally. Docetaxel-based therapy remains the first-line treatment for metastatic castration-resistant prostate cancer. However, dose-limiting toxicity including neutropenia, myelosuppression and neurotoxicity is the major reason for docetaxel dose reductions and fewer cycles administered, despite a recent study showing a clear survival benefit with increased total number of docetaxel cycles in PCa patients. Although previous studies have attempted to improve the efficacy and reduce docetaxel toxicity through drug combination, no drug has yet demonstrated improved overall survival in clinical trial, highlighting the challenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identified 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa cells via a high-throughput kinome-wide loss-of-function screen. Further drug-gene interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target with existing experimental inhibitors and FDA-approved drugs. We demonstrated that depletion of endogenous JAK1 enhanced docetaxel-induced apoptosis in PCa cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes docetaxel sensitivity in both androgen receptor (AR)-negative DU145 and PC3 cells, but not in the AR-positive LNCaP cells. In contrast, no synergistic effects were observed in cells treated with JAK2-specific inhibitor, fedratinib, suggesting that the synergistic effects are mainly mediated through JAK1 inhibition. In conclusion, the combination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic strategy in the treatment of prostate cancers.
Collapse
Affiliation(s)
- Geetha Nalairndran
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Ivy Chung
- Department of PharmacologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- University of Malaya Cancer Research InstituteFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | | | - Felicia Fei‐Lei Chung
- Mechanisms of Carcinogenesis Section (MCA)Epigenetics Group (EGE)International Agency for Research on Cancer World Health OrganizationLyon CEDEX 08France
| | - Ling‐Wei Hii
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Wei‐Meng Lim
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| | - Chin King Looi
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of Postgraduate StudiesInternational Medical UniversityKuala LumpurMalaysia
| | - Chun‐Wai Mai
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med X Clinical Stem Cell Research CenterDepartment of UrologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Chee‐Onn Leong
- Center for Cancer and Stem Cell ResearchInstitute for ResearchDevelopment and Innovation (IRDI)International Medical UniversityKuala LumpurMalaysia
- School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
| |
Collapse
|
26
|
Umar S, Palasiewicz K, Van Raemdonck K, Volin MV, Romay B, Amin MA, Zomorrodi RK, Arami S, Gonzalez M, Rao V, Zanotti B, Fox DA, Sweiss N, Shahrara S. IRAK4 inhibition: a promising strategy for treating RA joint inflammation and bone erosion. Cell Mol Immunol 2021; 18:2199-2210. [PMID: 32415262 PMCID: PMC8429735 DOI: 10.1038/s41423-020-0433-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 01/22/2023] Open
Abstract
Flares of joint inflammation and resistance to currently available biologic therapeutics in rheumatoid arthritis (RA) patients could reflect activation of innate immune mechanisms. Herein, we show that a TLR7 GU-rich endogenous ligand, miR-Let7b, potentiates synovitis by amplifying RA monocyte and fibroblast (FLS) trafficking. miR-Let7b ligation to TLR7 in macrophages (MΦs) and FLSs expanded the synovial inflammatory response. Moreover, secretion of M1 monokines triggered by miR-Let7b enhanced Th1/Th17 cell differentiation. We showed that IRAK4 inhibitor (i) therapy attenuated RA disease activity by blocking TLR7-induced M1 MΦ or FLS activation, as well as monokine-modulated Th1/Th17 cell polarization. IRAK4i therapy also disrupted RA osteoclastogenesis, which was amplified by miR-Let7b ligation to joint myeloid TLR7. Hence, the effectiveness of IRAK4i was compared with that of a TNF inhibitor (i) or anti-IL-6R treatment in collagen-induced arthritis (CIA) and miR-Let7b-mediated arthritis. We found that TNF or IL-6R blocking therapies mitigated CIA by reducing the infiltration of joint F480+iNOS+ MΦs, the expression of certain monokines, and Th1 cell differentiation. Unexpectedly, these biologic therapies were unable to alleviate miR-Let7b-induced arthritis. The superior efficacy of IRAK4i over anti-TNF or anti-IL-6R therapy in miR-Let7b-induced arthritis or CIA was due to the ability of IRAK4i therapy to restrain the migration of joint F480+iNOS+ MΦs, vimentin+ fibroblasts, and CD3+ T cells, in addition to negating the expression of a wide range of monokines, including IL-12, MIP2, and IRF5 and Th1/Th17 lymphokines. In conclusion, IRAK4i therapy may provide a promising strategy for RA therapy by disconnecting critical links between inflammatory joint cells.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - M Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Arami
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark Gonzalez
- Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Vikram Rao
- Pfizer Research, Cambridge, MA, 02139, USA
| | - Brian Zanotti
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, 60515, USA
| | - David A Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, MI, 481096, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, 60612, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
27
|
Khanfar MA. Structure-Based Pharmacophore Screening Coupled with QSAR Analysis Identified Potent Natural-Product-Derived IRAK-4 Inhibitors. Mol Inform 2021; 40:e2100025. [PMID: 34427398 DOI: 10.1002/minf.202100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022]
Abstract
Interleukin-1 Receptor-Associated Kinase 4 (IRAK-4) has crucial functions in inflammation, innate immunity, and malignancy. Structure-based pharmacophore modeling integrated with validated QSAR analysis was implemented to discover structurally novel IRAK-4 inhibitors from natural products database. The QSAR model combined molecular descriptors with structure-based pharmacophore capable of explaining bioactivity variation of structurally diverse IRAK-4 inhibitors. Manually built pharmacophore model, validated with receiver operating characteristic curve, and selected using the statistically optimum QSAR equation, was applied as a 3D-search query to mine AnalytiCon Discovery database of natural products. Experimental in vitro testing of highest-ranked hits identified uvaretin, saucerneol, and salvianolic acid B as active IRAK-4 inhibitors with IC50 values in low micromolar range.
Collapse
Affiliation(s)
- Mohammad A Khanfar
- College of Pharmacy, Alfaisal University, Al Takhassusi Rd, P.O. Box 50927, Riyadh 1, 1533, Saudi Arabia.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, P.O Box 13140, Amman, 11942, Jordan
| |
Collapse
|
28
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
29
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
30
|
Chen Y, Sun D, Yang R, Lim J, Sondey C, Presland J, Rakhilina L, Addona G, Kariv I, Chen H. Establishing and Validating Cellular Functional Target Engagement Assay for Selective IRAK4 Inhibitor Discovery. SLAS DISCOVERY 2021; 26:1040-1054. [PMID: 34130529 DOI: 10.1177/24725552211021074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the main reasons for the lack of drug efficacy in late-stage clinical trials is the lack of specific and selective target engagement. To increase the likelihood of success of new therapeutics, one approach is to conduct proximal target engagement testing during the early phases of preclinical drug discovery. To identify and optimize selective IRAK4 inhibitors, a kinase that has been implicated in multiple inflammatory and autoimmune diseases, we established an electrochemiluminescence (ECL)-based cellular endogenous IRAK1 activation assay as the most proximal functional evaluation of IRAK4 engagement to support structure-activity relationship (SAR) studies. Since IRAK1 activation is dependent on both the IRAK4 scaffolding function in Myddosome formation and IRAK4 kinase activity for signal transduction, this assay potentially captures inhibitors with different mechanisms of action. Data from this IRAK1 assay with compounds representing different structural classes showed statistically significant correlations when compared with results from both IRAK4 biochemical kinase activity and functional peripheral blood mononuclear cell (PBMC)-derived tumor necrosis factor α (TNFα) secretion assays, validating the biological relevancy of the IRAK1 target engagement as a biomarker of the IRAK4 activity. Plate uniformity and potency reproducibility evaluations demonstrated that this assay is amenable to high throughput. Using Bland-Altman assay agreement analysis, we demonstrated that incorporating such proximal pharmacological assessment of cellular target engagement to an in vitro screening funnel for SAR studies can prevent compound optimization toward off-target activity.
Collapse
Affiliation(s)
- Yiping Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Dongyu Sun
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ruojing Yang
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jongwon Lim
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Christopher Sondey
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Jeremy Presland
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Larissa Rakhilina
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - George Addona
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Ilona Kariv
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| | - Hongmin Chen
- Department of Quantitative Bioscience, Merck & Co., Inc., Boston, MA, USA
| |
Collapse
|
31
|
Zhang Q, Yuan J, Liu Y, Liu X, Lv T, Zhou K, Song Y. KIAA0101 knockdown inhibits cell proliferation and induces cell cycle arrest and cell apoptosis in chronic lymphocytic leukemia cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:487. [PMID: 33850884 PMCID: PMC8039647 DOI: 10.21037/atm-21-626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with intense cytogenetic aberrations. Importantly, our recent report indicated that thyroid hormone receptor interactor 13 (TRIP13) is a potential new therapeutic target in CLL. In this study, we predicted 20 TRIP13-related genes and found that KIAA0101 is a novel gene that regulates cell proliferation and the cell cycle of CLL cells. Methods CD19+ B cells were isolated from the peripheral blood of 26 CLL patients and 6 healthy donors through magnetic cell sorting. Cell proliferation was assessed by the CCK-8 assay. The mRNA and protein levels of genes were examined through RT-qPCR and western blot assays, respectively. Cell cycle and cell apoptosis were measured through Annexin V-based flow cytometry and the caspase 3/7 activity assay. Potential targets of KIAA0101 were identified through microarray analysis. 20 TRIP13 related genes was predicted by Ingenuity Pathway Analysis (IPA). KIAA0101-regulated functions and molecular pathways were predicted through IPA. Results KIAA0101 knockdown had the strongest inhibitory effect on CLL cell proliferation among the 20 TRIP13-related genes. KIAA0101 was highly expressed in CD19+ B cells of CLL patients. KIAA0101 knockdown induced cell cycle arrest and cell apoptosis, and inhibited FOXO1, MYD88, and TLR4 expression in CLL cells. Conclusions Taken together, we demonstrated that KIAA0101 plays a critical role in cell proliferation and the cell cycle of human CLL cells. KIAA0101 knockdown induced cell apoptosis, and reduced FOXO1, MYD88, and TLR4 expression, and may therefore be used as a therapeutic target of CLL.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jingjing Yuan
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yanyan Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xingchen Liu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tianxin Lv
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
32
|
Phosphorylation of Microglial IRF5 and IRF4 by IRAK4 Regulates Inflammatory Responses to Ischemia. Cells 2021; 10:cells10020276. [PMID: 33573200 PMCID: PMC7912637 DOI: 10.3390/cells10020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Interferon Regulatory Factor (IRF) 5 and 4 play a determinant role in regulating microglial pro- and anti-inflammatory responses to cerebral ischemia. How microglial IRF5 and IRF4 signaling are activated has been elusive. We hypothesized that interleukin-1 receptor associated kinase 4 (IRAK4) phosphorylates and activates IRF5 and IRF4 in ischemic microglia. We aimed to explore the upstream signals of the two IRFs, and to determine how the IRAK4-IRF signaling regulates the expression of inflammatory mediators, and impacts neuropathology. Methods: Spontaneously Immortalized Murine (SIM)-A9 microglial cell line, primary microglia and neurons from C57BL/6 WT mice were cultured and exposed to oxygen-glucose deprivation (OGD), followed by stimulation with LPS or IL-4. An IRAK4 inhibitor (ND2158) was used to examine IRAK4′s effects on the phosphorylation of IRF5/IRF4 and the impacts on neuronal morphology by co-immunoprecipitation (Co-IP)/Western blot, ELISA, and immunofluorescence assays. Results: We confirmed that IRAK4 formed a Myddosome with MyD88/IRF5/IRF4, and phosphorylated both IRFs, which subsequently translocated into the nucleus. Inhibition of IRAK4 phosphorylation quenched microglial pro-inflammatory response primarily, and increased neuronal viability and neurite lengths after ischemia. Conclusions: IRAK4 signaling is critical for microglial inflammatory responses and a potential therapeutic target for neuroinflammatory diseases including cerebral ischemia.
Collapse
|
33
|
Abstract
B lymphocytes have a central role in autoimmune diseases, which are often defined by specific autoantibody patterns and feature a loss of B cell tolerance. A prototypic disease associated with B cell hyperactivity is systemic lupus erythematosus (SLE). In patients with SLE, the loss of B cell tolerance to autoantigens is controlled in a cell-intrinsic manner by Toll-like receptors (TLRs), which sense nucleic acids in endosomes. TLR7 drives the extrafollicular B cell response and the germinal centre reaction that are involved in autoantibody production and disease pathogenesis. Surprisingly, TLR9 seems to protect against SLE, even though it is required for the production of autoantibodies recognizing double-stranded DNA-associated antigens, which are abundant in SLE and are a hallmark of this disease. The protective function of TLR9 is at least partly mediated by its capacity to limit the stimulatory activity of TLR7. The roles of TLR7 and TLR9 in the effector function of B cells in lupus-like disease and in patients with SLE, and the unique features of TLR signalling in B cells, suggest that targeting TLR signalling in SLE might be therapeutically beneficial. Loss of B cell tolerance to autoantigens in systemic lupus erythematosus (SLE) is driven by TLR7, whereas TLR9 appears to protect against SLE by limiting the stimulatory activity of TLR7. The unique features of Toll-like receptor signalling in B cells implicate it as a therapeutic target in SLE. Intrinsic TLR7 and TLR9 signalling in B cells plays an important role in the development and pathogenesis of systemic lupus erythematosus (SLE). In patients with SLE, effector plasma cells are generated via the extrafollicular response and via the formation of spontaneous germinal centres. TLR7 plays key roles in the extrafollicular response and the response mediated by germinal centres. Some plasma cells produce IL-10 and can have protective roles in lupus-like disease.
Collapse
|
34
|
Gimenez N, Tripathi R, Giró A, Rosich L, López-Guerra M, López-Oreja I, Playa-Albinyana H, Arenas F, Mas JM, Pérez-Galán P, Delgado J, Campo E, Farrés J, Colomer D. Systems biology drug screening identifies statins as enhancers of current therapies in chronic lymphocytic leukemia. Sci Rep 2020; 10:22153. [PMID: 33335123 PMCID: PMC7746765 DOI: 10.1038/s41598-020-78315-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B lymphoid malignancy highly dependent on the microenvironment. Despite new targeted therapies such as ibrutinib and venetoclax, disease progression and relapse remain an issue. CLL cell interactions with the supportive tissue microenvironment play a critical role in disease pathogenesis. We used a platform for drug discovery based on systems biology and artificial intelligence, to identify drugs targeting key proteins described to have a role in the microenvironment. The selected compounds were screened in CLL cell lines in the presence of stromal cells to mimic the microenvironment and validated the best candidates in primary CLL cells. Our results showed that the commercial drug simvastatin was the most effective and selective out of the tested compounds. Simvastatin decreased CLL cell survival and proliferation as well as cell adhesion. Importantly, this drug enhanced the antitumor effect of venetoclax and ibrutinib. We proposed that systems biology approaches combined with pharmacological screening could help to find new drugs for CLL treatment and to predict new combinations with current therapies. Our results highlight the possibility of repurposing widely used drugs such as statins to target the microenvironment and to improve the efficacy of ibrutinib or venetoclax in CLL cells.
Collapse
Affiliation(s)
- Neus Gimenez
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Anaxomics Biotech, Barcelona, Spain
| | - Rupal Tripathi
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ariadna Giró
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Laia Rosich
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Mònica López-Guerra
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Irene López-Oreja
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Fabian Arenas
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | | | - Patricia Pérez-Galán
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Microenvironment in Lymphoma Pathogenesis and Therapy Group, IDIBAPS, Barcelona, Spain
| | - Julio Delgado
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Department of Hematology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Elias Campo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, Barcelona, Spain.,University of Barcelona, Barcelona, Spain
| | | | - Dolors Colomer
- Experimental Therapeutics in Lymphoid Malignancies Group, Institut d' Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain. .,Hematopathology Unit, Department of Pathology, Hospital Clinic, IDIBAPS, Barcelona, Spain. .,University of Barcelona, Barcelona, Spain.
| |
Collapse
|
35
|
Zhang J, Fu L, Shen B, Liu Y, Wang W, Cai X, Kong L, Yan Y, Meng R, Zhang Z, Chen YNP, Liu Q, Wan ZK, Zhou T, Wang X, Gavine P, Del Rosario A, Ahn K, Philippar U, Attar R, Yang J, Xu Y, Edwards JP, Dai X. Assessing IRAK4 Functions in ABC DLBCL by IRAK4 Kinase Inhibition and Protein Degradation. Cell Chem Biol 2020; 27:1500-1509.e13. [PMID: 32888499 DOI: 10.1016/j.chembiol.2020.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
The interleukin-1 receptor-activated kinase 4 (IRAK4) belongs to the IRAK family of serine/threonine kinases and plays a central role in the innate immune response. However, the function of IRAK4 in tumor growth and progression remains elusive. Here we sought to determine the enzymatic and scaffolding functions of IRAK4 in activated B-cell-like diffuse large B cell lymphoma (ABC DLBCL). We chose a highly selective IRAK4 kinase inhibitor to probe the biological effects of kinase inhibition and developed a series of IRAK4 degraders to evaluate the effects of protein degradation in ABC DLBCL cells. Interestingly, the results demonstrated that neither IRAK4 kinase inhibition nor protein degradation led to cell death or growth inhibition, suggesting a redundant role for IRAK4 in ABC DLBCL cell survival. IRAK4 degraders characterized in this study provide useful tools for understanding IRAK4 protein scaffolding function, which was previously unachievable using pharmacological perturbation.
Collapse
Affiliation(s)
- Jing Zhang
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Liqiang Fu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Bin Shen
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Yingtao Liu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Wenqian Wang
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Xin Cai
- Biomarker, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Linglong Kong
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Yilin Yan
- Biomarker, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Ryan Meng
- Nonclinical Safety, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Zhuming Zhang
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Ying-Nan P Chen
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Qian Liu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Zhao-Kui Wan
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Tianyuan Zhou
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Xiaotao Wang
- Biomarker, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Paul Gavine
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Amanda Del Rosario
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Kay Ahn
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Ulrike Philippar
- Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ricardo Attar
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Jennifer Yang
- Oncology Biology, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - Yanping Xu
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China
| | - James P Edwards
- Janssen Research & Development, LLC, 1400 McKean Road, Spring House, PA 19477, USA
| | - Xuedong Dai
- Medicinal Chemistry, Janssen (China) Research & Development Center, Shanghai 201210, China.
| |
Collapse
|
36
|
Mao YQ, Han SF, Zhang SL, Zhang ZY, Kong CY, Chen HL, Li ZM, Cai PR, Han B, Wang LS. An approach using Caenorhabditis elegans screening novel targets to suppress tumour cell proliferation. Cell Prolif 2020; 53:e12832. [PMID: 32452127 PMCID: PMC7309951 DOI: 10.1111/cpr.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tumour cell proliferation requires high metabolism to meet the bioenergetics and biosynthetic needs. Dauer in Caenorhabditis elegans is characterized by lower metabolism, and we established an approach with C elegans to find potential tumour therapy targets. MATERIALS AND METHODS RNAi screening was used to find dauer-related genes, and these genes were further analysed in glp-1(-) mutants for tumour-suppressing testing. The identified tumour-related genes were verified in clinical tumour tissues. RESULTS The lifespan of glp-1(-) mutants was found to be extended by classical dauer formation signalling. Then, 61 of 287 kinase-coding genes in Caenorhabditis elegans were identified as dauer-related genes, of which 27 were found to be homologous to human oncogenes. Furthermore, 12 dauer-related genes were randomly selected for tumour-suppressing test, and six genes significantly extended the lifespan of glp-1(-) mutants. Of these six genes, F47D12.9, W02B12.12 and gcy-21 were newly linked to dauer formation. These three new dauer-related genes significantly suppressed tumour cell proliferation and thus extended the lifespan of glp-1(-) mutants in a longevity- or dauer-independent manner. The mRNA expression profiles indicated that these dauer-related genes trigged similar low metabolism pattern in glp-1(-) mutants. Notably, the expression of homolog gene DCAF4L2/F47D12.9, TSSK6/W02B12.12 and NPR1/gcy-21 was found to be higher in glioma compared with adjacent normal tissue. In addition, the high expression of TSSK6/W02B12.12 and NPR1/gcy-21 correlated with a worse survival in glioma patients. CONCLUSIONS Dauer gene screening in combination with tumour-suppressing test in glp-1(-) mutants provided a useful approach to find potential targets for tumour therapy via suppressing tumour cell proliferation and rewiring tumour cell metabolism.
Collapse
Affiliation(s)
- Yu-Qin Mao
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - San-Feng Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Shi-Long Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zheng-Yan Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Chao-Yue Kong
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Chen
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhan-Ming Li
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Pei-Ran Cai
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Li-Shun Wang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Delvecchio VS, Sana I, Mantione ME, Vilia MG, Ranghetti P, Rovida A, Angelillo P, Scarfò L, Ghia P, Muzio M. Interleukin‐1 receptor‐associated kinase 4 inhibitor interrupts toll‐like receptor signalling and sensitizes chronic lymphocytic leukaemia cells to apoptosis. Br J Haematol 2020; 189:475-488. [DOI: 10.1111/bjh.16386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | - Ilenia Sana
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
- Università Vita‐Salute San Raffaele Milano Italy
| | - Maria Elena Mantione
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Maria Giovanna Vilia
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Pamela Ranghetti
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Alessandra Rovida
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Piera Angelillo
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Lydia Scarfò
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Paolo Ghia
- Università Vita‐Salute San Raffaele Milano Italy
- B‐Cell Neoplasia Unit and Strategic Research Program on CLL Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| | - Marta Muzio
- Cell signalling Unit Division of Experimental Oncology IRCCS San Raffaele Hospital Milano Italy
| |
Collapse
|
38
|
Roessner PM, Hanna BS, Öztürk S, Schulz R, Llaó Cid L, Yazdanparast H, Scheffold A, Colomer D, Stilgenbauer S, Lichter P, Seiffert M. TBET-expressing Th1 CD4 + T cells accumulate in chronic lymphocytic leukaemia without affecting disease progression in Eµ-TCL1 mice. Br J Haematol 2019; 189:133-145. [PMID: 31724172 DOI: 10.1111/bjh.16316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is associated with alterations in T cell number, subset distribution and function. Among these changes, an increase in CD4+ T cells was reported. CD4+ T cells are a heterogeneous population and distinct subsets have been described to exert pro- and anti-tumour functions. In CLL, controversial reports describing the dominance of IFNγ-expressing Th1 T cells or of IL-4-producing Th2 T cells exist. Our study shows that blood of CLL patients is enriched in Th1 T cells producing high amounts of IFNγ. Moreover, we observed that their frequency remains relatively stable in CLL patients over a time course of five years. Furthermore, we provide evidence for an accumulation of Th1 T cells in the Eµ-TCL1 mouse model of CLL. As TBET (encoded by Tbx21) is a crucial transcription factor for Th1 polarization, we generated Tbx21-/- bone marrow chimaeric mice which showed a lower number of IFNγ-producing Th1 T cells, and used them for adoptive transfer of Eµ-TCL1 leukaemia. Disease development in these mice was, however, comparable to that in wild-type controls, excluding a major role for TBET-expressing Th1 cells in Eµ-TCL1 leukaemia. Collectively, our data highlight that Th1 T cells accumulate in CLL but reducing their number has no impact on disease development.
Collapse
Affiliation(s)
| | - Bola S Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Ralph Schulz
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany.,Faculty of Biosciences, University of Heidelberg, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany.,Faculty of Biosciences, University of Heidelberg, Germany
| | | | | | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Peter Lichter
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| |
Collapse
|