1
|
Lin MT, Christenson ES, Pallavajjala A, Eshleman JR. Highly sensitive and specific markers for detection of mismatch repair deficiency by next-generation sequencing. Am J Clin Pathol 2025:aqaf026. [PMID: 40318191 DOI: 10.1093/ajcp/aqaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/16/2025] [Indexed: 05/07/2025] Open
Abstract
OBJECTIVE To identify exonic markers that could improve analytic performance characteristics of next-generation sequencing (NGS) in detecting mismatch repair deficiency (dMMR) using colorectal cancer (CRC) as a model. METHODS Coding sequences of a target NGS panel (~1.13 megabase) were compared between dMMR CRC and mismatch repair-proficient (pMMR) CRC in a training cohort (41 dMMR CRCs and 213 pMMR CRCs) and a validation cohort (33 dMMR CRCs and 307 pMMR CRCs) with documented mismatch repair status by immunohistochemical and/or microsatellite instability assays. RESULTS The dMMR CRC cases showed significantly higher insertion/deletion (indel) mutations within exonic homopolymers (homo-indels), occurring predominantly within longer repeats of 5 to 10 nucleotides (92%, P < .0001), rather than shorter repeats of 2 to 4 nucleotides seen in pMMR CRC (62%). Homo-indels in dMMR CRC were not random. Hotspot loci were consistent between the training and validation cohorts. The dMMR defined by indels within homopolymers of 5 or more nucleotides, homopolymers of 7 or more nucleotides, or a panel of hotspots all showed 100% sensitivity and specificity with a range of cutoffs. CONCLUSIONS We propose that this approach allows one to identify highly sensitive and specific markers for detecting dMMR CRC by NGS alone. Further studies are warranted to test whether these markers are applicable to non-CRC neoplasms.
Collapse
Affiliation(s)
- Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Eric S Christenson
- Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Aparna Pallavajjala
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| |
Collapse
|
2
|
Nicka CM, Green DC, Tsongalis GJ, Tafe LJ. Detection of Microsatellite Instability in Endometrial Carcinoma Using a Novel Homopolymer Assay. Int J Surg Pathol 2025:10668969241311500. [PMID: 40033864 DOI: 10.1177/10668969241311500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Approximately 30% of endometrial cancers are associated with microsatellite instability (MSI) caused by deficiencies in the DNA mismatch repair (MMR) genes (dMMR). MMR testing by immunohistochemistry for MMR proteins and MSI testing by polymerase chain reaction (PCR) are routinely utilized to screen patients with colorectal cancer and endometrial cancer for Lynch syndrome and, more recently, to identify patients eligible for immunotherapy. The Biocartis Idylla™ MSI assay is a fully automated, cartridge-based real-time PCR assay. The assay uses as little as one formalin-fixed paraffin-embedded (FFPE) tumor section and is designed to detect seven novel MSI biomarkers consisting of short homopolymers located in ACVR2A, BTBD7, DIDO1, MRE11, RYR3, SEC31A and SULF2 genes. Mutation in two of these markers is considered MSI-H. FFPE of 35 ECs (25 dMMR and 10 microsatellite stable (MSS)) were used in this study. When tumor content was ≤20% on a slide, macrodissection was performed. The overall percent agreement with MMR IHC was 97% (31/32) with sensitivity = 96% and specificity = 100%. Pre-analytic evaluation of the manufacturer's recommended 20% tumor content cut-off is essential to ensure valid results. The Idylla MSI assay offers several advantages over other PCR-based assays including minimal hands-on time, rapid turn-around-time, no requirement for a paired normal sample and the use of FFPE directly without an extraction step.
Collapse
Affiliation(s)
- Catherine M Nicka
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Donald C Green
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Gregory J Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
- The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Laura J Tafe
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Dartmouth Cancer Center, Lebanon, NH, USA
- The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
3
|
Jantus-Lewintre E, Rappa A, Ruano D, van Egmond D, Gallach S, Gozuyasli D, Durães C, Costa JL, Camps C, Lacroix L, Kashofer K, van Wezel T, Barberis M. Multicenter In-House Evaluation of an Amplicon-Based Next-Generation Sequencing Panel for Comprehensive Molecular Profiling. Mol Diagn Ther 2025; 29:249-261. [PMID: 39798063 PMCID: PMC11860996 DOI: 10.1007/s40291-024-00766-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods. METHODS This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors. A series of 193 research samples (125 DNA and 68 RNA samples) was analyzed to evaluate the correlation and concordance of the OCA Plus panel with orthogonal methods, as well as its reproducibility (n = 5 DNA samples) across laboratories. RESULTS The success rate for DNA and RNA sequencing was 96.6% and 89.7%, respectively. In a single workflow, the OCA Plus panel provided a detailed genomic profile with a high success rate for all biomarkers tested: single nucleotide variants/indels, copy number variants, and fusions, as well as complex biomarkers such as microsatellite instability, tumor mutational burden, and homologous recombination deficiency. The concordance for single nucleotide variants/indels was 94.8%, for copy number variants 96.5%, for fusions 94.2%, for microsatellite instability 80.8%, for tumor mutational burden 81.3%, and for homologous recombination deficiency 100%. The results showed high reproducibility across the five European research centers, each analyzing shared pre-characterized tissue biopsies (average of 1890 single nucleotide variants/indels per sample). CONCLUSIONS This multicenter evaluation of the OCA Plus panel confirms the results of previous single-center studies and demonstrates the high reproducibility and accuracy of this assay.
Collapse
Affiliation(s)
- Eloisa Jantus-Lewintre
- Fundación Investigación Hospital General Universitario de València, Universitat Politècnica de València, CIBERONC, Valencia, Spain
| | - Alessandra Rappa
- Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Dina Ruano
- Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sandra Gallach
- Fundación Investigación Hospital General Universitario de València, Universitat Politècnica de València, CIBERONC, Valencia, Spain
| | | | | | | | - Carlos Camps
- Consorcio Hospital General Universitario de València, Universitat de València, CIBERONC, Valencia, Spain
| | | | | | - Tom van Wezel
- Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Massimo Barberis
- Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
| |
Collapse
|
4
|
Zhou B, Wang Y, Ding L, Tian X, Sun W, Zhang W, Liu YH. A novel algorithm for the detection of microsatellite instability in endometrial cancer using next‑generation sequencing data. Oncol Lett 2025; 29:86. [PMID: 39664615 PMCID: PMC11632413 DOI: 10.3892/ol.2024.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
The molecular-based detection of microsatellite instability (MSI) in endometrial cancer is complex, due to the low sensitivity of PCR and a lack of standardization in next-generation sequencing (NGS) methods. In the present study, sequenced data were obtained from an NGS panel following the addition of five commonly used microsatellite loci. Subsequently, a novel algorithm, namely MSIPeak, was developed for data analysis. Results of the present study demonstrated that MSI data obtained using MSIPeak were presented in a peak, using a threshold of 1.10 to distinguish stable and unstable loci. MSIPeak was further validated using synthetic DNA samples and endometrial cancer tissue and the results were compared with the immunohistochemical analysis-determined mismatch repair status. The PCR results demonstrated a 3-base-pair (bp) deletion in synthetic DNA samples, compared with 1- and 2-bp deletion controls. Results obtained using MSIPeak demonstrated notable differences in peak profiles and positive scores in synthetic DNA samples with 1-, 2- and 3-bp deletions, compared with controls. Thus, the results of the present study demonstrated that NGS-based MSI detection exhibited a higher sensitivity compared with PCR. In addition, NGS-based MSI detection exhibited higher levels of repeatability and applicability compared with other MSI-NGS-based methods, such as MSISensor2 and MANTIS. Collectively, the results of the present study highlighted that the combination of MSIPeak and NGS exhibits potential in the detection of cancer.
Collapse
Affiliation(s)
- Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Yu Wang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Lu Ding
- Department of Gynecology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaolei Tian
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wu Sun
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wei Zhang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Yin-Hua Liu
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
5
|
Sowter P, Gallon R, Hayes C, Phelps R, Borthwick G, Prior S, Combe J, Buist H, Pearlman R, Hampel H, Goodfellow P, Evans DG, Crosbie EJ, Ryan N, Burn J, Santibanez-Koref M, Jackson MS. Detection of Mismatch Repair Deficiency in Endometrial Cancer: Assessment of IHC, Fragment Length Analysis, and Amplicon Sequencing Based MSI Testing. Cancers (Basel) 2024; 16:3970. [PMID: 39682157 DOI: 10.3390/cancers16233970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Mismatch repair (MMR) deficiency can be indicative of Lynch syndrome (LS) and guide treatment with immune checkpoint inhibitors. Colorectal cancers (CRCs) and endometrial cancers (ECs) are routinely screened to identify LS, primarily using immunohistochemistry (IHC) or microsatellite instability (MSI) testing, but concordance between these methods is variable in ECs. Here, we investigate this variability in 361 ECs from the Ohio OCCPI/OPTEC (n = 196) and Manchester PETALS (n = 165) trials, where concordance between assays differed significantly. Methods: Samples were re-tested using the amplicon-sequencing-based Newcastle MSI assay (NCL_MSI), and analysed with respect to existing IHC, MSI and MLH1 promoter hypermethylation data. Results: NCL_MSI showed consistency with the Ohio results (94% and 97% concordance with IHC and original MSI assays, respectively) and increased concordance within the Manchester cohort from 78% to 86% (MSI) and 84% (IHC). Among discordant Manchester samples, NCL_MSI was significantly associated with MLH1 promoter methylation status (p = 0.0028) and had the highest concordance with methylation, (62/69 samples, 90%), indicating utility as a screening tool in this tumour type. However, tumours with germline MSH6 defects were only detected efficiently with IHC; seven out of eight LS tumours classified as MSS by either MSI assay had isolated MSH6 loss, compared to four out of twelve classified as MSI-H by both (p = 0.028). Furthermore, reduced MSI signal was observed in tumours with isolated MSH6 loss (p = 0.009 Ohio, p = 6.2 × 10-5 Manchester) and in both ECs and CRCs with germline defects, although this only reached significance in CRCs (p = 0.002). Conclusions: These results provide further evidence that ECs with MSH6 loss in particular and LS tumours in general have an attenuated MSI signal, providing support for current guidelines specifically recommending IHC for LS detection and immune checkpoint therapy assessment in EC.
Collapse
Affiliation(s)
- Peter Sowter
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Richard Gallon
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Christine Hayes
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Rachel Phelps
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Gillian Borthwick
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shaun Prior
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jenny Combe
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Holly Buist
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Rachel Pearlman
- Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Heather Hampel
- Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Paul Goodfellow
- Department of Obstetrics and Gynecology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - D Gareth Evans
- Division of Evolution Infection and Genomic Science, University of Manchester, Manchester M13 9PL, UK
| | - Emma J Crosbie
- Division of Gynaecology, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Cancer Sciences, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| | - Neil Ryan
- College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH16 4SB, UK
| | - John Burn
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | | | - Michael S Jackson
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
6
|
Albertí-Valls M, Olave S, Olomí A, Macià A, Eritja N. Advances in Immunotherapy for Endometrial Cancer: Insights into MMR Status and Tumor Microenvironment. Cancers (Basel) 2024; 16:3918. [PMID: 39682106 DOI: 10.3390/cancers16233918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Endometrial cancer is one of the most common gynecological malignancies, and while early-stage cases are highly treatable, recurrent or advanced EC remains challenging to manage. Immunotherapy, particularly immune checkpoint inhibitors, has revolutionized treatment approaches in oncology, and its application in EC has shown promising results. Key to immunotherapy efficacy in EC is the tumor's mismatch repair status, with MMR-deficient tumors demonstrating a higher tumor mutational burden and increased PD-L1 expression, making them more susceptible to immune checkpoint inhibitors (ICIs) such as pembrolizumab, durvalumab, and dostarlimab. However, not all mismatch repair-deficient (MMRd) tumors respond to ICIs, particularly those with a "cold" tumor microenvironment (TME) characterized by poor immune infiltration. In contrast, some MMR-proficient tumors with a "hot" TME respond well to ICIs, underscoring the complex interplay between MMR status, tumor mutational burden (TMB), and TME. To overcome resistance in cold tumors, novel therapies, including Chimeric Antigen Receptor (CAR) T cells and tumor-infiltrating lymphocytes are being explored, offering targeted immune-based strategies to enhance treatment efficacy. This review discusses the current understanding of immunotherapy in EC, emphasizing the prognostic and therapeutic implications of MMR status, TME composition, and emerging cell-based therapies.
Collapse
Affiliation(s)
- Manel Albertí-Valls
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Sara Olave
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Anna Olomí
- Developmental and Oncogenic Signaling, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Anna Macià
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Núria Eritja
- Oncologic Pathology Group, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida (UdL), Av. Rovira Roure 80, 25198 Lleida, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
7
|
Vink-Börger E, den Bakker M, Voorham R, van Nederveen F, Nagtegaal I. Mismatch repair deficiency: how reliable is the two-antibody approach? A national real-life study. Histopathology 2024; 85:639-648. [PMID: 38859771 DOI: 10.1111/his.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
AIMS Traditionally, mismatch repair (MMR) status is determined by a panel of four antibodies (MLH1, PMS2, MSH2, MSH6). If all proteins are retained, cases are MMR proficient (pMMR), while loss of one or more proteins is indicative of MMR deficiency (dMMR). This approach has been challenged in favour of a two-antibody approach, using PMS2 and MSH6 as a first screening. Their retainment is deemed sufficient to declare cases pMMR. In this study we aim to verify the validity of the two-antibody approach. METHODS AND RESULTS We performed a nationwide study in colorectal cancer (CRC) and endometrial cancer (EC) diagnosed between 2016 and 2023, including 47,657 patients to evaluate the two-antibody approach. In 0.17% and 0.4% of cases of CRC and EC, respectively, dMMR cases would be missed with the two-antibody approach. Subgroup analyses pointed towards slightly increased miss rates in younger patients (under the age of 50 years) in both groups and identified special subtypes (signet ring cell carcinoma, medullary carcinoma, and mucinous carcinoma in CRC and clear cell carcinoma in EC) with increased miss rates. For these specific subgroups, a low threshold should be used for further testing. In case of ambiguous or heterogeneous staining patterns, four antibodies should be used. CONCLUSION In general, the application of a two-antibody MMR testing strategy does not lead to considerable failure of dMMR identification and saves costs.
Collapse
Affiliation(s)
| | | | | | | | - Iris Nagtegaal
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Mendiola M, Heredia-Soto V, Ruz-Caracuel I, Baillo A, Ramon-Patino JL, Berjon A, Escudero FJ, Pelaez-Garcia A, Hernandez A, Feliu J, Hardisson D, Redondo A. Performance of the Idylla microsatellite instability test in endometrial cancer. Mol Cell Probes 2024; 77:101976. [PMID: 39069012 DOI: 10.1016/j.mcp.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT DNA mismatch repair (MMR) deficiency (dMMR) testing is now recommended in endometrial cancer. Defect identification in the molecules participating in this pathway, or the presence of microsatellite instability, are commonly employed for this purpose. Novel methods are continuously evolving to report dMMR/microsatellite instability and to easily perform routine diagnoses. OBJECTIVE The main aim of this study was to compare the concordance of the Idylla microsatellite instability test for the identification of dMMR endometrial cancer samples defined by immunohistochemistry and MMR genomic status. DESIGN We applied the Idylla MSI test to 126 early-stage endometrial cancer cases with MMR testing by immunohistochemistry and genomic characterization (methylation in MLH1 and sequence alterations in MLH1, PMS2, MSH2 and MSH6). Individual markers and overall specific performance indicators were explored. RESULTS The Idylla platform achieved a higher global concordance rate with MMR genomic status than with immunohistochemistry (75 % and 66 %, respectively). Sensitivity and specificity are also higher (75 % vs 66 % and 96 % vs 90 %, respectively). Clustering analysis split the patients into 2 well-differentiated clusters, the pMMR and the dMMR group, represented by MLH1/PMS2 loss and the MLH1 methylated promoter. Overall, immunohistochemistry and MMR genomic status identified more dMMR cases than did the Idylla test, although correlations were improved with a modified Idylla test cut-off. CONCLUSIONS Performance of the Idylla test was better correlated with MMR genomic status than MMR immunohistochemistry status, which improved with a modified test cut-off. Further studies are needed to confirm the cut-off accuracy.
Collapse
Affiliation(s)
- Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Victoria Heredia-Soto
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Pathology, La Paz University Hospital, 28046, Madrid, Spain
| | - Amparo Baillo
- Mathematics Department, Autonomous University of Madrid, 28049, Madrid, Spain
| | | | - Alberto Berjon
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Department of Pathology, La Paz University Hospital, 28046, Madrid, Spain
| | - Francisco Javier Escudero
- Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Alberto Pelaez-Garcia
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain
| | - Alicia Hernandez
- Department of Obstetrics and Gynecology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain
| | - Jaime Feliu
- Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Department of Medical Oncology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain; Cátedra UAM-ANGEM, Faculty of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Center for Biomedical Research in the Cancer Network (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Pathology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain
| | - Andres Redondo
- Translational Oncology Research Laboratory, Hospital La Paz Institute for Health Research (IdiPAZ), 28046, Madrid, Spain; Department of Medical Oncology, La Paz University Hospital, 28046, Madrid, Spain; School of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain; Cátedra UAM-ANGEM, Faculty of Medicine, Autonomous University of Madrid, 28046, Madrid, Spain.
| |
Collapse
|
9
|
Davies KD, Smith LP, Guimaraes-Young A, Corr BR, Fisher CM, Guntupalli SR, Berning AA, Post MD, Pino D, Aisner DL, Wolsky RJ. Prospective Clinical Prognostication of Endometrial Carcinomas Based on Next-Generation Sequencing and Immunohistochemistry-Real-World Implementation and Results at a Tertiary Care Center. Int J Gynecol Pathol 2024; 43:335-348. [PMID: 37922951 DOI: 10.1097/pgp.0000000000000994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Based on findings from The Cancer Genome Atlas and the Proactive Molecular Risk Classifier for Endometrial Cancer algorithm, endometrial carcinoma can now be stratified into 4 prognostically distinct subgroups based on molecular alterations and immunohistochemical (IHC) aberrations. In this study, we describe the de novo adoption and clinical reporting of prognostic subgroup classification based on next-generation sequencing (NGS) and IHC analyses of all endometrial carcinoma resections at a single institution, framed by the Exploration, Preparation, Implementation, and Sustainment model. Results from the first 13 months show 188 tumors underwent analysis by a combination of IHC and a medium-sized (56 analyzed genes) NGS-based assay. All cases were assigned as either POLE ( POLE -mutated) (5.3%), mismatch repair deficient (27.7%), no specific molecular profile (45.7%), or p53 abnormal (21.3%) inclusive of multiple-classifier cases. NGS-based analysis revealed additional distinctions among the subgroups, including reduced levels of PI3K pathway activation in the p53 abnormal subgroup, an increased rate of CTNNB1 activating mutation in the no specific molecular profile subgroup, and lower TP53 mutation variant allele frequencies in POLE and mismatch repair deficient subgroups compared with the p53 abnormal subgroup. Overall, we describe the testing protocol, reporting, and results of a combination of NGS and IHC to prospectively prognosticate endometrial carcinomas at a single tertiary care center.
Collapse
|
10
|
Qiu W, Zhang R, Qian Y. POLE -related gene signature predicts prognosis, immune feature, and drug therapy in human endometrioid carcinoma. Heliyon 2024; 10:e29548. [PMID: 38660244 PMCID: PMC11040042 DOI: 10.1016/j.heliyon.2024.e29548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
The POLE subtype of Endometrial carcinoma (EC) is linked to a favourable prognosis in the molecular classification. We proposed to ascertain the potential connection between the POLE subtype and improved prognosis. In order to forecast the prognosis, least absolute shrinkage and selection operator (LASSO) Cox regression analysis and weighted gene co-expression network analysis (WGCNA) were employed, and a POLE-related risk signature (PRS) model was developed and validated. Single-sample gene set enrichment analysis (ssGSEA) with the "GSVA" package was employed to analyse immunity characteristics. Drug susceptibility studies were conducted to compare the half-maximal inhibitory concentration (IC50) of medicines between high- and low-risk groups. The PRS model was generated employing the LASSO Cox regression coefficients of the ELF1, MMADHC, andAL021707.6 genes. Our study demonstrated that the risk score was linked to tumour stage, grade, and survival. Furthermore, the low-risk group possessed elevated levels of gene expression connected with immunological checkpoints and HLA. Our outcomes emerged that the PRS model might have value in identifying patients with a good prognosis and in facilitating personalised treatment in the clinic.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, HuShan Road, Nanjing, 211100, China
| | - Runjie Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai, 200336, China
| | - Yingchen Qian
- Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, No.169, HuShan Road, Nanjing, 211100, China
| |
Collapse
|
11
|
Kaya M, Post CCB, Tops CM, Nielsen M, Crosbie EJ, Leary A, Mileshkin LR, Han K, Bessette P, de Boer SM, Jürgenliemk-Schulz IM, Lutgens L, Jobsen JJ, Haverkort MAD, Nout RA, Kroep J, Creutzberg CL, Smit VTHBM, Horeweg N, van Wezel T, Bosse T. Molecular and Clinicopathologic Characterization of Mismatch Repair-Deficient Endometrial Carcinoma Not Related to MLH1 Promoter Hypermethylation. Mod Pathol 2024; 37:100423. [PMID: 38191122 DOI: 10.1016/j.modpat.2024.100423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Universal tumor screening in endometrial carcinoma (EC) is increasingly adopted to identify individuals at risk of Lynch syndrome (LS). These cases involve mismatch repair-deficient (MMRd) EC without MLH1 promoter hypermethylation (PHM). LS is confirmed through the identification of germline MMR pathogenic variants (PV). In cases where these are not detected, emerging evidence highlights the significance of double-somatic MMR gene alterations as a sporadic cause of MMRd, alongside POLE/POLD1 exonuclease domain (EDM) PV leading to secondary MMR PV. Our understanding of the incidence of different MMRd EC origins not related to MLH1-PHM, their associations with clinicopathologic characteristics, and the prognostic implications remains limited. In a combined analysis of the PORTEC-1, -2, and -3 trials (n = 1254), 84 MMRd EC not related to MLH1-PHM were identified that successfully underwent paired tumor-normal tissue next-generation sequencing of the MMR and POLE/POLD1 genes. Among these, 37% were LS associated (LS-MMRd EC), 38% were due to double-somatic hits (DS-MMRd EC), and 25% remained unexplained. LS-MMRd EC exhibited higher rates of MSH6 (52% vs 19%) or PMS2 loss (29% vs 3%) than DS-MMRd EC, and exclusively showed MMR-deficient gland foci. DS-MMRd EC had higher rates of combined MSH2/MSH6 loss (47% vs 16%), loss of >2 MMR proteins (16% vs 3%), and somatic POLE-EDM PV (25% vs 3%) than LS-MMRd EC. Clinicopathologic characteristics, including age at tumor onset and prognosis, did not differ among the various groups. Our study validates the use of paired tumor-normal next-generation sequencing to identify definitive sporadic causes in MMRd EC unrelated to MLH1-PHM. MMR immunohistochemistry and POLE-EDM mutation status can aid in the differentiation between LS-MMRd EC and DS-MMRd EC. These findings emphasize the need for integrating tumor sequencing into LS diagnostics, along with clear interpretation guidelines, to improve clinical management. Although not impacting prognosis, confirmation of DS-MMRd EC may release patients and relatives from burdensome LS surveillance.
Collapse
Affiliation(s)
- Merve Kaya
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cathalijne C B Post
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carli M Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma J Crosbie
- Department of Gynaecology, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alexandra Leary
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Linda R Mileshkin
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Kathy Han
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada
| | - Paul Bessette
- Department of Obstetrics and Gynaecology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephanie M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ludy Lutgens
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands
| | - Jan J Jobsen
- Department of Radiation Oncology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Marie A D Haverkort
- Department of Radiation Oncology, Radiotherapiegroep, Arnhem, The Netherlands
| | - Remi A Nout
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Kroep
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Carien L Creutzberg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nanda Horeweg
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Wong RWC, Cheung ANY. Predictive and prognostic biomarkers in female genital tract tumours: an update highlighting their clinical relevance and practical issues. Pathology 2024; 56:214-227. [PMID: 38212229 DOI: 10.1016/j.pathol.2023.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 01/13/2024]
Abstract
The evaluation of biomarkers by molecular techniques and immunohistochemistry has become increasingly relevant to the treatment of female genital tract tumours as a consequence of the greater availability of therapeutic options and updated disease classifications. For ovarian cancer, mutation testing for BRCA1/2 is the standard predictive biomarker for poly(ADP-ribose) polymerase inhibitor therapy, while homologous recombination deficiency testing may allow the identification of eligible patients among cases without demonstrable BRCA1/2 mutations. Clinical recommendations are available which specify how these predictive biomarkers should be applied. Mismatch repair (MMR) protein and folate receptor alpha immunohistochemistry may also be used to guide treatment in ovarian cancer. In endometrial cancer, MMR immunohistochemistry is the preferred test for predicting benefit from immune checkpoint inhibitor (ICI) therapy, but molecular testing for microsatellite instability may have a supplementary role. HER2 testing by immunohistochemistry and in situ hybridisation is applicable to endometrial serous carcinomas to assess trastuzumab eligibility. Immunohistochemistry for oestrogen receptor and progesterone receptor expression may be used for prognostication in endometrial cancer, but its predictive value for hormonal therapy is not yet proven. POLE mutation testing and p53 immunohistochemistry (as a surrogate for TP53 mutation status) serve as prognostic markers for favourable and adverse outcomes, respectively, in endometrial cancer, especially when combined with MMR testing for molecular subtype designation. For cervical cancer, programmed death ligand 1 immunohistochemistry may be used to predict benefit from ICI therapy although its predictive value is under debate. In vulvar cancer, p16 and p53 immunohistochemistry has established prognostic value, stratifying patients into three groups based on the human papillomavirus and TP53 mutation status of the tumour. Awareness of the variety and pitfalls of expression patterns for p16 and p53 in vulvar carcinomas is crucial for accurate designation. It is hoped that collaborative efforts in standardising and optimising biomarker testing for gynaecological tumours will contribute to evidence-based therapeutic decisions.
Collapse
Affiliation(s)
- Richard Wing-Cheuk Wong
- Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong Special Administrative Region of China.
| | - Annie N Y Cheung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| |
Collapse
|
13
|
Adachi S, Kimata JI, Hanami K, Adachi K, Igarashi T, Liang SG, Ishida Y, Fujino T, Yamazaki K. Applicability of the FDA-approved Immunohistochemical Panel for Identification of MMRd Phenotype in Uterine Endometrioid Carcinoma. Appl Immunohistochem Mol Morphol 2024; 32:24-31. [PMID: 37859432 DOI: 10.1097/pai.0000000000001170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Recently, the US Food and Drug Administration (FDA) approved the Ventana MMR RxDx Panel as the first immunohistochemical companion diagnostic test for identification of tumors with mismatch repair (MMR) status. The aim of this study was to investigate the accuracy of this test in comparison with polymerase chain reaction (PCR)-based microsatellite instability (MSI) analysis. We assessed the MMR/MSI concordance rate in 140 cases of endometrioid carcinoma. MMR status was evaluated by immunohistochemistry (MMR-IHC), and MSI status was evaluated by PCR-based analysis (MSI-PCR). Potential molecular mechanisms responsible for MSH6 staining variations were also analyzed. Immunohistochemistry showed that 34 tumors (24.3%) were MMRd; these included 26 with combined MLH1/PMS2 loss, 2 with combined MSH2/MSH6 loss, and 6 with isolated MSH6 loss. Heterogeneous MSH6 loss was found in 10 tumors and was recognized only in tumors with combined MLH1/PMS2 loss. Eight of 10 tumors with heterogeneous MSH6 loss harbored MSH6 C8 tract instability, suggesting a secondary somatic event after MLH1/PMS2 loss. MSI-PCR revealed that 102 tumors were MSS, 4 were MSI-low, and 34 were MSI-high. Consequently, MMR-IHC and MSI-PCR showed perfect concordance (kappa=0.080, P <0.0001). However, 10 of the 34 MSI-high tumors, including the 6 tumors with isolated MSH6 loss, showed only minimal microsatellite shift by MSI-PCR, which may have been erroneously interpreted as MSS or MSI-low. On the basis of these findings, we consider that the FDA-approved immunohistochemical panel can detect MMR variations consistently and is more accurate than MSI-PCR for determining the applicability of immune checkpoint inhibitors for treatment of endometrioid carcinomas.
Collapse
Affiliation(s)
| | | | | | - Katsuyuki Adachi
- Gynecology, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Toshio Igarashi
- Gynecology, Teikyo University Chiba Medical Center, Chiba, Japan
| | - Shan-Guang Liang
- Gynecology, Teikyo University Chiba Medical Center, Chiba, Japan
| | | | | | | |
Collapse
|
14
|
Beauchamp K, Moran B, O'Brien T, Brennan D, Crown J, Sheahan K, Cotter MB. Carcinoma of unknown primary (CUP): an update for histopathologists. Cancer Metastasis Rev 2023; 42:1189-1200. [PMID: 37394540 PMCID: PMC10713813 DOI: 10.1007/s10555-023-10101-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/03/2023] [Indexed: 07/04/2023]
Abstract
Carcinoma of unknown primary (CUP) is a heterogeneous group of metastatic cancers in which the site of origin is not identifiable. These carcinomas have a poor outcome due to their late presentation with metastatic disease, difficulty in identifying the origin and delay in treatment. The aim of the pathologist is to broadly classify and subtype the cancer and, where possible, to confirm the likely primary site as this information best predicts patient outcome and guides treatment. In this review, we provide histopathologists with diagnostic practice points which contribute to identifying the primary origin in such cases. We present the current clinical evaluation and management from the point of view of the oncologist. We discuss the role of the pathologist in the diagnostic pathway including the control of pre-analytical conditions, assessment of sample adequacy, diagnosis of cancer including diagnostic pitfalls, and evaluation of prognostic and predictive markers. An integrated diagnostic report is ideal in cases of CUP, with results discussed at a forum such as a molecular tumour board and matched with targeted treatment. This highly specialized evolving area ultimately leads to personalized oncology and potentially improved outcomes for patients.
Collapse
Affiliation(s)
- Katie Beauchamp
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland.
| | - Bruce Moran
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Timothy O'Brien
- Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Donal Brennan
- Systems Biology Ireland, UCD School of Medicine, Belfield, Dublin4, Ireland
- UCD Gynaecological Oncology Group, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Kieran Sheahan
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| | - Maura Bríd Cotter
- Department of Histopathology, St Vincent's University Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
15
|
Chung Y, Nam SK, Chang HE, Lee C, Kang GH, Lee HS, Park KU. Evaluation of an eight marker-panel including long mononucleotide repeat markers to detect microsatellite instability in colorectal, gastric, and endometrial cancers. BMC Cancer 2023; 23:1100. [PMID: 37953261 PMCID: PMC10641958 DOI: 10.1186/s12885-023-11607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Accurate determination of microsatellite instability (MSI) status is critical for optimal treatment in cancer patients. Conventional MSI markers can sometimes display subtle shifts that are difficult to interpret, especially in non-colorectal cases. We evaluated an experimental eight marker-panel including long mononucleotide repeat (LMR) markers for detection of MSI. METHODS The eight marker-panel was comprised of five conventional markers (BAT-25, BAT-26, NR-21, NR-24, and NR-27) and three LMR markers (BAT-52, BAT-59 and BAT-62). MSI testing was performed against 300 specimens of colorectal, gastric, and endometrial cancers through PCR followed by capillary electrophoresis length analysis. RESULTS The MSI testing with eight marker-panel showed 99.3% (295/297) concordance with IHC analysis excluding 3 MMR-focal deficient cases. The sensitivity of BAT-59 and BAT-62 was higher than or comparable to that of conventional markers in gastric and endometrial cancer. The mean shift size was larger in LMR markers compared to conventional markers for gastric and endometrial cancers. CONCLUSIONS The MSI testing with eight maker-panel showed comparable performance with IHC analysis. The LMR markers, especially BAT-59 and BAT-62, showed high sensitivity and large shifts which can contribute to increased confidence in MSI classification, especially in gastric and endometrial cancers. Further study is needed with large number of samples for the validation of these LMR markers.
Collapse
Affiliation(s)
- Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul, Republic of Korea
| | - Soo Kyung Nam
- Department of Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Eun Chang
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Pathology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
16
|
Bacher JW, Udho EB, Strauss EE, Vyazunova I, Gallinger S, Buchanan DD, Pai RK, Templeton AS, Storts DR, Eshleman JR, Halberg RB. A Highly Sensitive Pan-Cancer Test for Microsatellite Instability. J Mol Diagn 2023; 25:806-826. [PMID: 37544360 PMCID: PMC10629437 DOI: 10.1016/j.jmoldx.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Microsatellite instability (MSI) is an evolving biomarker for cancer detection and treatment. MSI was first used to identify patients with Lynch syndrome, a hereditary form of colorectal cancer (CRC), but has recently become indispensable in predicting patient response to immunotherapy. To address the need for pan-cancer MSI detection, a new multiplex assay was developed that uses novel long mononucleotide repeat (LMR) markers to improve sensitivity. A total of 469 tumor samples from 20 different cancer types, including 319 from patients with Lynch syndrome, were tested for MSI using the new LMR MSI Analysis System. Results were validated by using deficient mismatch repair (dMMR) status according to immunohistochemistry as the reference standard and compared versus the Promega pentaplex MSI panel. The sensitivity of the LMR panel for detection of dMMR status by immunohistochemistry was 99% for CRC and 96% for non-CRC. The overall percent agreement between the LMR and Promega pentaplex panels was 99% for CRC and 89% for non-CRC tumors. An increased number of unstable markers and the larger size shifts observed in dMMR tumors using the LMR panel increased confidence in MSI determinations. The LMR MSI Analysis System expands the spectrum of cancer types in which MSI can be accurately detected.
Collapse
Affiliation(s)
- Jeffery W Bacher
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin; Department of Medicine, University of Wisconsin, Madison, Wisconsin.
| | - Eshwar B Udho
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | | | - Irina Vyazunova
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - Steven Gallinger
- Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Rish K Pai
- Health Science Research, Mayo Clinic, Scottsdale, Arizona
| | | | - Douglas R Storts
- R&D Clinical Diagnostics, Promega Corporation, Madison, Wisconsin
| | - James R Eshleman
- School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Richard B Halberg
- Department of Medicine, University of Wisconsin, Madison, Wisconsin; Department of Oncology, McArdle Laboratory of Cancer Research, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.
| |
Collapse
|
17
|
Disis ML, Adams SF, Bajpai J, Butler MO, Curiel T, Dodt SA, Doherty L, Emens LA, Friedman CF, Gatti-Mays M, Geller MA, Jazaeri A, John VS, Kurnit KC, Liao JB, Mahdi H, Mills A, Zsiros E, Odunsi K. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gynecologic cancer. J Immunother Cancer 2023; 11:e006624. [PMID: 37295818 PMCID: PMC10277149 DOI: 10.1136/jitc-2022-006624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Advanced gynecologic cancers have historically lacked effective treatment options. Recently, immune checkpoint inhibitors (ICIs) have been approved by the US Food and Drug Administration for the treatment of cervical cancer and endometrial cancer, offering durable responses for some patients. In addition, many immunotherapy strategies are under investigation for the treatment of earlier stages of disease or in other gynecologic cancers, such as ovarian cancer and rare gynecologic tumors. While the integration of ICIs into the standard of care has improved outcomes for patients, their use requires a nuanced understanding of biomarker testing, treatment selection, patient selection, response evaluation and surveillance, and patient quality of life considerations, among other topics. To address this need for guidance, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel of experts to develop a clinical practice guideline. The Expert Panel drew on the published literature as well as their own clinical experience to develop evidence- and consensus-based recommendations to provide guidance to cancer care professionals treating patients with gynecologic cancer.
Collapse
Affiliation(s)
- Mary L Disis
- Cancer Vaccine Institute, University of Washington, Seattle, Washington, USA
| | - Sarah F Adams
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Jyoti Bajpai
- Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Marcus O Butler
- Department of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Tyler Curiel
- Dartmouth-Hitchcock's Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire, USA
| | | | - Laura Doherty
- Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, USA
| | - Leisha A Emens
- Department of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Margaret Gatti-Mays
- Pelotonia Institute for Immuno-Oncology, Division of Medical Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Melissa A Geller
- Department of Obstetrics, Gynecology & Women's Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amir Jazaeri
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Veena S John
- Department of Medical Oncology & Hematology, Northwell Health Cancer Institute, Lake Success, New York, USA
| | - Katherine C Kurnit
- University of Chicago Medicine Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| | - John B Liao
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Haider Mahdi
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anne Mills
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kunle Odunsi
- The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
Casas-Arozamena C, Moiola CP, Vilar A, Bouso M, Cueva J, Cabrera S, Sampayo V, Arias E, Abalo A, García Á, Lago-Lestón RM, Oltra S, Díaz E, Ruiz-Bañobre J, López-López R, Moreno-Bueno G, Gil-Moreno A, Colás E, Abal M, Muinelo-Romay L. Noninvasive detection of microsatellite instability in patients with endometrial cancer. Int J Cancer 2023; 152:2206-2217. [PMID: 36650670 DOI: 10.1002/ijc.34435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023]
Abstract
The analysis of mismatch repair proteins in solid tissue is the standard of care (SoC) for the microsatellite instability (MSI) characterization in endometrial cancer (EC). Uterine aspirates (UAs) or circulating-DNA (cfDNA) samples capture the intratumor heterogeneity and provide a more comprehensive and dynamic molecular diagnosis. Thus, MSI analysis by droplet-digital PCR (ddPCR) in UAs and cfDNA can provide a reliable tool to characterize and follow-up the disease. The UAs, paraffin-embedded tumor tissue (FFPE) and longitudinal plasma samples from a cohort of 90 EC patients were analyzed using ddPCR panel and compared to the SoC. A high concordance (96.67%) was obtained between the analysis of MSI markers in UAs and the SoC. Three discordant cases were validated as unstable by ddPCR on FFPE samples. Besides, a good overall concordance (70.27%) was obtained when comparing the performance of the ddPCR assay on UAs and cfDNA in high-risk tumors. Importantly, our results also evidenced the value of MSI analysis to monitor the disease evolution. MSI evaluation in minimally invasive samples shows great accuracy and sensitivity and provides a valuable tool for the molecular characterization and follow-up of endometrial tumors, opening new opportunities for personalized management of EC.
Collapse
Affiliation(s)
- Carlos Casas-Arozamena
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Department of Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Cristian Pablo Moiola
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ana Vilar
- Gynecology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Marta Bouso
- Pathology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Juan Cueva
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Silvia Cabrera
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Victoria Sampayo
- Gynecology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Efigenia Arias
- Gynecology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Alicia Abalo
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Ángel García
- Pathology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Ramón Manuel Lago-Lestón
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Sara Oltra
- Translational Research Group, Foundation MD Anderson International, Madrid, Spain
| | - Eva Díaz
- Translational Research Group, Foundation MD Anderson International, Madrid, Spain
| | - Juan Ruiz-Bañobre
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Rafael López-López
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Medical Oncology Department, University Clinical Hospital of Santiago de Compostela, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Gema Moreno-Bueno
- Translational Research Group, Foundation MD Anderson International, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Biochemistry Department, Medicine Faculty, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Gynecology Department, Vall Hebron University Hospital, Barcelona, Spain
| | - Eva Colás
- Biomedical Research Group in Gynecology, Vall Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Miguel Abal
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Muinelo-Romay
- Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
19
|
Mendoza RP, Wang P, Schulte JJ, Tjota MY, Jani I, Martinez AC, Haridas R, Wanjari P, Steinhardt G, Brown N, Betz BL, Chapel DB, Kertowidjojo E, Yamada SD, Bennett JA. Endometrial Carcinomas With Subclonal Loss of Mismatch Repair Proteins: A Clinicopathologic and Genomic Study. Am J Surg Pathol 2023; 47:589-598. [PMID: 36866757 DOI: 10.1097/pas.0000000000002031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 03/04/2023]
Abstract
Subclonal loss of mismatch repair (MMR) proteins has been described in a small subset of endometrial carcinomas (ECs), but the genomic basis for this phenomenon has received limited attention. Herein, we retrospectively evaluated all ECs with MMR immunohistochemistry (n=285) for subclonal loss, and in those (n=6), performed a detailed clinicopathologic and genomic comparison of the MMR-deficient and MMR-proficient components. Three tumors were FIGO stage IA, and one each stage IB, II, and IIIC2. Patterns of subclonal loss were as follows: (1) 3 FIGO grade 1 endometrioid carcinomas with subclonal MLH1/PMS2, MLH1 promoter hypermethylation, and no MMR gene mutations; (2) POLE -mutated FIGO grade 3 endometrioid carcinoma with subclonal PMS2, and PMS2 and MSH6 mutations limited to the MMR-deficient component; (3) dedifferentiated carcinoma with subclonal MSH2/MSH6, as well as complete loss of MLH1/PMS2, MLH1 promoter hypermethylation, and PMS2 and MSH6 mutations in both components; (4) dedifferentiated carcinoma with subclonal MSH6, and somatic and germline MSH6 mutations in both components, but with a higher allele frequency in MMR-deficient foci. Recurrences occurred in 2 patients, one consisted of the MMR-proficient component from a FIGO 1 endometrioid carcinoma, while the other was from the MSH6 -mutated dedifferentiated endometrioid carcinoma. At the last follow-up (median: 44 mo), 4 patients were alive and disease-free and 2 were alive with disease. In summary, subclonal MMR loss reflects subclonal and often complex genomic and epigenetic alterations, which may have therapeutic implications and therefore must be reported when present. In addition, subclonal loss can occur in both POLE -mutated and Lynch syndrome-associated ECs.
Collapse
Affiliation(s)
| | | | - Jefree J Schulte
- Departments of Pathology
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI
| | | | - Ina Jani
- Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | - Anna C Martinez
- Departments of Pathology
- Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | | | | | | | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Bryan L Betz
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - David B Chapel
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | - S D Yamada
- Obstetrics and Gynecology, University of Chicago, Chicago, IL
| | | |
Collapse
|
20
|
Abstract
The pathological classification of endometrial carcinomas, one of the cornerstones in patient clinical management, has traditionally been based on morphologic features. However, this classification system does not fully reflect the biological diversity of endometrial carcinomas and has limited reproducibility. In the last decade, several studies have reported the strong prognostic value of the molecular endometrial carcinoma subgroups and, more recently, its potential to inform adjuvant treatment decisions. This has in turn resulted in a transition from a purely morphological classification towards an integrated histological and molecular system in the latest World Health Organization (WHO) classification of tumors of female reproductive organs. The new European treatment guidelines combine the molecular subgroups with traditional clinicopathological features in order to guide treatment decision-making. Accurate molecular subgroup assignment is therefore essential for adequate patient management. This review aims to address caveats and evolution of molecular techniques relevant in the implementation of the molecular endometrial carcinoma classification, as well as challenges in the integration of the molecular subgroups with traditional clinicopathological features.
Collapse
|
21
|
Rafaniello-Raviele P, Betella I, Rappa A, Vacirca D, Tolva G, Guerrieri-Gonzaga A, Bertario L, Barberis M, Bonanni B, Marabelli M. Microsatellite instability evaluation: which test to use for endometrial cancer? J Clin Pathol 2023; 76:29-33. [PMID: 34312297 DOI: 10.1136/jclinpath-2021-207723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 12/27/2022]
Abstract
AIMS Analysis of microsatellite instability (MSI) is strongly recommended in endometrial cancer (EC) and colorectal cancer to screen for Lynch syndrome, to predict prognosis and to determine optimal treatment and follow-up. In a large monoinstitutional series of ECs, we evaluated the reliability and accuracy of Idylla assay, a rapid, fully automated system to detect MSI, and we compared its performance with two routine reference methods. METHODS We evaluated MSI status in 174 formalin-fixed, paraffin-embedded EC tissue samples using immunohistochemistry (IHC) for mismatch repair (MMR) proteins and Idylla assay. Samples with discordant or equivocal results were analysed with a third technique, the Promega MSI kit. RESULTS Idylla MSI assay and IHC were highly concordant (overall agreement: 154/170=90.59%, 95% CI 85.26% to 94.12%). However, in four samples, MMR-IHC staining was equivocal; moreover, 16 cases showed discordant results, that is, MMR deficient using IHC and microsatellite stable using Idylla. These 20 samples were reanalysed using the MSI-Promega kit, which showed the same results of Idylla assay in 18/20 cases (overall agreement: 90%, 95% CI 69.90% to 97.21%). CONCLUSIONS Our results suggest that IHC is an efficient method to determine MMR status in ECs. However, the Idylla MSI assay is a rapid and reliable tool to define MSI status, and it could represent a valuable alternative to conventional MSI-PCR methods.
Collapse
Affiliation(s)
| | - Ilaria Betella
- Department of Gynecologic Oncology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Alessandra Rappa
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Davide Vacirca
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Gianluca Tolva
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Lucio Bertario
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| | - Monica Marabelli
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Lombardy, Italy
| |
Collapse
|
22
|
Amemiya K, Hirotsu Y, Nagakubo Y, Watanabe S, Amemiya S, Mochizuki H, Oyama T, Kondo T, Omata M. Simple IHC reveals complex MMR alternations than PCR assays: Validation by LCM and next-generation sequencing. Cancer Med 2022; 11:4479-4490. [PMID: 35596629 PMCID: PMC9741978 DOI: 10.1002/cam4.4832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
Evaluation of the status of mismatch repair (MMR) in tumors is crucial for determining the application of immune checkpoint inhibitors (ICIs). Conventional PCR (MSI-PCR) is the gold standard for confirming the MMR status. However, it requires visual confirmation and presents difficulties in determining MMR status. Immunohistochemistry (IHC) is a simple method and can confirming MMR protein expression in the whole tumor. We aim to investigate IHC is more suitable for evaluating MMR status in the tumor. We compared MSI-PCR and IHC by testing 319 samples from 284 patients across 14 cancer types. In discordant cases, we performed laser-capture microdissection and microsatellite instability assay by next-generation sequencing (MSI-NGS). The concordance rate between IHC and MSI-PCR testing was 98.1% (313/319). Two reasons for these discrepancies were ambiguous MSI-PCR results and heterogeneous MSI status within the tumor. Among six cases (1.9%), three were judged as MSI-H by MSI-PCR but with proficient MMR by IHC. The results of MSI-NGS revealed microsatellite stable in these three cases. The remaining three cases, two of three were MSI-H and one was MSS in whole tumor in MSI-PCR. IHC showed a "mosaic" pattern containing both proficient MMR and deficient MMR portions by IHC in all three cases. We performed microdissection and MSI-PCR and found intratumoral heterogeneity of MMR status. These results indicated the advantages of IHC and performed expanded samples (n = 1082) and two additional mosaic cases were identified. Our results clearly indicated that simple IHC is the best choice for determining MMR alterations in critical cases for ICIs treatment.
Collapse
Affiliation(s)
- Kenji Amemiya
- Division of Genetics and Clinical LaboratoryYamanashi Cental HospitalYamanashiJapan
- Genome Analysis CenterYamanashi Cental HospitalYamanashiJapan
- Department of Pathology, School of MedicineUniversity of YamanashiYamanashiJapan
| | - Yosuke Hirotsu
- Division of Genetics and Clinical LaboratoryYamanashi Cental HospitalYamanashiJapan
- Genome Analysis CenterYamanashi Cental HospitalYamanashiJapan
| | - Yuki Nagakubo
- Division of Genetics and Clinical LaboratoryYamanashi Cental HospitalYamanashiJapan
| | | | - Saki Amemiya
- Department of PathologyYamanashi Central HospitalYamanashiJapan
| | | | - Toshio Oyama
- Department of PathologyYamanashi Central HospitalYamanashiJapan
| | - Tetsuo Kondo
- Department of Pathology, School of MedicineUniversity of YamanashiYamanashiJapan
| | - Masao Omata
- Department of GastroenterologyYamanashi Central HospitalYamanashiJapan
- Department of GastroenterologyThe University of TokyoTokyoJapan
| |
Collapse
|
23
|
Marques AC, Ferraro-Peyret C, Michaud F, Song L, Smith E, Fabre G, Willig A, Wong MML, Xing X, Chong C, Brayer M, Fenouil T, Hervieu V, Bancel B, Devouassoux M, Balme B, Meyronet D, Menu P, Lopez J, Xu Z. Improved NGS-based detection of microsatellite instability using tumor-only data. Front Oncol 2022; 12:969238. [PMID: 36465367 PMCID: PMC9714634 DOI: 10.3389/fonc.2022.969238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 01/09/2024] Open
Abstract
Microsatellite instability (MSI) is a molecular signature of mismatch repair deficiency (dMMR), a predictive marker of immune checkpoint inhibitor therapy response. Despite its recognized pan-cancer value, most methods only support detection of this signature in colorectal cancer. In addition to the tissue-specific differences that impact the sensitivity of MSI detection in other tissues, the performance of most methods is also affected by patient ethnicity, tumor content, and other sample-specific properties. These limitations are particularly important when only tumor samples are available and restrict the performance and adoption of MSI testing. Here we introduce MSIdetect, a novel solution for NGS-based MSI detection. MSIdetect models the impact of indel burden and tumor content on read coverage at a set of homopolymer regions that we found are minimally impacted by sample-specific factors. We validated MSIdetect in 139 Formalin-Fixed Paraffin-Embedded (FFPE) clinical samples from colorectal and endometrial cancer as well as other more challenging tumor types, such as glioma or sebaceous adenoma or carcinoma. Based on analysis of these samples, MSIdetect displays 100% specificity and 96.3% sensitivity. Limit of detection analysis supports that MSIdetect is sensitive even in samples with relatively low tumor content and limited microsatellite instability. Finally, the results obtained using MSIdetect in tumor-only data correlate well (R=0.988) with what is obtained using tumor-normal matched pairs, demonstrating that the solution addresses the challenges posed by MSI detection from tumor-only data. The accuracy of MSI detection by MSIdetect in different cancer types coupled with the flexibility afforded by NGS-based testing will support the adoption of MSI testing in the clinical setting and increase the number of patients identified that are likely to benefit from immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
| | - Carole Ferraro-Peyret
- Cancer Research Centre of Lyon, INSERM 1052, Centre National de la Recherche Scientifique (CNRS) 5286, University of Lyon, Lyon, France
- Hospices Civils de Lyon, Biopathology of Tumours, GH Est (GHE) Hospital, Bron, France
| | | | - Lin Song
- SOPHiA GENETICS, Saint-Sulpice, Switzerland
| | - Ewan Smith
- SOPHiA GENETICS, Saint-Sulpice, Switzerland
| | | | | | | | | | | | | | - Tanguy Fenouil
- Hospices Civils de Lyon, Biopathology of Tumours, GH Est (GHE) Hospital, Bron, France
| | - Valérie Hervieu
- Hospices Civils de Lyon, Biopathology of Tumours, GH Est (GHE) Hospital, Bron, France
| | - Brigitte Bancel
- Hospices Civils de Lyon, Biopathology of Tumours, GH Est (GHE) Hospital, Bron, France
| | - Mojgan Devouassoux
- Hospices Civils de Lyon, Department of Anatomopathology, Lyon-Sud Hospital, Lyon, France
| | - Brigitte Balme
- Hospices Civils de Lyon, Department of Anatomopathology, Lyon-Sud Hospital, Lyon, France
| | - David Meyronet
- Hospices Civils de Lyon, Biopathology of Tumours, GH Est (GHE) Hospital, Bron, France
| | | | - Jonathan Lopez
- Cancer Research Centre of Lyon, INSERM 1052, Centre National de la Recherche Scientifique (CNRS) 5286, University of Lyon, Lyon, France
- Hospices Civils de Lyon, Biochemistry and Molecular Biology Department, Lyon-Sud Hospital, Lyon, France
| | - Zhenyu Xu
- SOPHiA GENETICS, Saint-Sulpice, Switzerland
| |
Collapse
|
24
|
Imyanitov E, Sokolenko A. Integrative Genomic Tests in Clinical Oncology. Int J Mol Sci 2022; 23:13129. [PMID: 36361916 PMCID: PMC9656402 DOI: 10.3390/ijms232113129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
Many clinical decisions in oncology practice rely on the presence or absence of an alteration in a single genetic locus, be it a pathogenic variant in a hereditary cancer gene or activating mutation in a drug target. In addition, there are integrative tests that produce continuous variables and evaluate complex characteristics of the entire tumor genome. Microsatellite instability (MSI) analysis identifies tumors with the accumulation of mutations in short repetitive nucleotide sequences. This procedure is utilized in Lynch syndrome diagnostic pipelines and for the selection of patients for immunotherapy. MSI analysis is well-established for colorectal malignancies, but its applications in other cancer types lack standardization and require additional research. Homologous repair deficiency (HRD) indicates tumor sensitivity to PARP inhibitors and some cytotoxic drugs. HRD-related "genomic scars" are manifested by a characteristic pattern of allelic imbalances, accumulation of deletions with flanking homology, and specific mutation signatures. The detection of the genetic consequences of HRD is particularly sophisticated and expensive, as it involves either whole genome sequencing (WGS) or the utilization of large next-generation sequencing (NGS) panels. Tumor mutation burden (TMB) can be determined by whole exome sequencing (WES) or middle-throughput NGS multigene testing. Although TMB is regarded as an agnostic indicator of tumor sensitivity to immunotherapy, the clinical utility of this test is proven only for a few cancer types.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Anna Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
25
|
The Role of Immunohistochemistry Markers in Endometrial Cancer with Mismatch Repair Deficiency: A Systematic Review. Cancers (Basel) 2022; 14:cancers14153783. [PMID: 35954447 PMCID: PMC9367287 DOI: 10.3390/cancers14153783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The objective of this systematic review was to summarize our current knowledge of the role of immunohistochemistry (IHC) markers for identifying mismatch repair-deficient (MMRd) tumors in endometrial cancer (EC). Identification of MMRd tumors, which occur in 13% to 30% of all ECs, has become critical for patients with colorectal and endometrial cancer for therapeutic management, clinical decision making, and prognosis. This review was conducted by two authors applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using the following terms: “immunohistochemistry and microsatellite instability endometrial cancer” or “immunohistochemistry and mismatch repair endometrial cancer” or “immunohistochemistry and mismatch repair deficient endometrial cancer”. Among 596 retrieved studies, 161 fulfilled the inclusion criteria. Articles were classified and presented according to their interest for the diagnosis, prognosis, and theragnostics for patients with MMRd EC. We identified 10, 18, and 96 articles using IHC expression of two, three, or four proteins of the MMR system (MLH1, MSH2, MHS6, and PMS2), respectively. MLH1 promoter methylation was analyzed in 57 articles. Thirty-four articles classified MMRd tumors with IHC markers according to their prognosis in terms of recurrence-free survival (RFS), overall survival (OS), stage, grade, and lymph node invasion. Theragnostics were studied in eight articles underlying the important concentration of PD-L1 in MMRd EC. Even though the role of IHC has been challenged, it represents the most common, robust, and cheapest method for diagnosing MMRd tumors in EC and is a valuable tool for exploring novel biotherapies and treatment modalities.
Collapse
|
26
|
Libera L, Sahnane N, Pepe F, Pisapia P, De Luca C, Russo G, Parente P, Covelli C, Chiaravalli AM, Sessa F, Malapelle U, Furlan D. Critical aspects of MSI testing in endometrial cancer: a comparison study. Hum Pathol 2022; 128:134-140. [PMID: 35872156 DOI: 10.1016/j.humpath.2022.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
The identification of mismatch repair deficient (dMMR) and microsatellite unstable (MSI) endometrial cancers (ECs) is important in screening, diagnosis and therapeutic stratification of patients. We compared the diagnostic performance of four MSI molecular tests based on fragment length assay in capillary electrophoresis (OncoMate™ MSI assay, Promega) and in microcapillary electrophoresis (TapeStation 4200, Agilent); with high-resolution melting (HRM) analysis approaches (Idylla™ MSI Test, Biocartis; EasyPGX® ready MSI, Diatech Pharmacogenetics) on a series of 56 ECs, which was well characterized for MMR status with immunohistochemical approach (IHC, non-molecular reference test). The concordance of fluorescence capillary electrophoresis with IHC (AUC 0.98) was higher respect to the other molecular methodologies. Otherwise, HRM approaches and microcapillary electrophoresis platform failed to detect MSI-ECs showing minimal microsatellite shifts. In conclusion, whereas in colorectal site several technologies are eligible for MSI test, in ECs MSI test should be based on fluorescent capillary electrophoresis as it identifies a higher proportion of cases that could be misdiagnosed with other strategies.
Collapse
Affiliation(s)
- Laura Libera
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria and ASST Sette-Laghi, 21100 Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Nora Sahnane
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria and ASST Sette-Laghi, 21100 Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy.
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Claudia Covelli
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Anna Maria Chiaravalli
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria and ASST Sette-Laghi, 21100 Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Fausto Sessa
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria and ASST Sette-Laghi, 21100 Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Daniela Furlan
- Unit of Pathology, Department of Medicine and Surgery, University of Insubria and ASST Sette-Laghi, 21100 Varese, Italy; Research Center for the Study of Hereditary and Familial Tumors, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
27
|
Peripheral node addressin, a ligand for L-selectin is found in tumor cells and in high endothelial venules in endometrial cancer. Pathol Res Pract 2022; 233:153888. [DOI: 10.1016/j.prp.2022.153888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022]
|
28
|
Yap TA, Bessudo A, Hamilton E, Sachdev J, Patel MR, Rodon J, Evilevitch L, Duncan M, Guo W, Kumar S, Lu S, Dezube BJ, Gabrail N. IOLite: phase 1b trial of doublet/triplet combinations of dostarlimab with niraparib, carboplatin-paclitaxel, with or without bevacizumab in patients with advanced cancer. J Immunother Cancer 2022; 10:jitc-2021-003924. [PMID: 35332062 PMCID: PMC8948406 DOI: 10.1136/jitc-2021-003924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Doublet combination therapies targeting immune checkpoints have shown promising efficacy in patients with advanced solid tumors, but it is unknown if rational triplet combinations will be well tolerated and associated with improved antitumor activity. The objective of this trial was to determine the recommended phase 2 doses (RP2Ds) and to assess the safety and efficacy of the programmed cell death protein 1 (PD-1) inhibitor dostarlimab in combination with (1) the poly(ADP-ribose) polymerase inhibitor niraparib with or without vascular endothelial growth factor inhibitor bevacizumab or (2) carboplatin-paclitaxel chemotherapy with or without bevacizumab, in patients with advanced cancer. METHODS IOLite is a multicenter, open-label, multi-arm clinical trial. Patients with advanced solid tumors were enrolled. Patients received dostarlimab in combination with niraparib with or without bevacizumab or in combination with carboplatin-paclitaxel with or without bevacizumab until disease progression, unacceptable toxicity, or withdrawal from the study. Prespecified endpoints in all parts were to evaluate the dose-limiting toxicities (DLTs), RP2Ds, pharmacokinetics (PKs), and preliminary efficacy for each combination. RESULTS A total of 55 patients were enrolled; patients received dostarlimab and: (1) niraparib in part A (n=22); (2) carboplatin-paclitaxel in part B (n=14); (3) niraparib plus bevacizumab in part C (n=13); (4) carboplatin-paclitaxel plus bevacizumab in part D (n=6). The RP2Ds of all combinations were determined. All combinations were safe and tolerable, with no new safety signals observed. DLTs were reported in 2, 1, 2, and 0 patients, in parts A-D, respectively. Preliminary antitumor activity was observed, with confirmed Response Evaluation Criteria in Solid Tumors v1.1 complete/partial responses reported in 4 of 22 patients (18.2%), 6 of 14 patients (42.9%), 4 of 13 patients (30.8%), and 3 of 6 (50.0%) patients, in parts A-D, respectively. Disease control rates were 40.9%, 57.1%, 84.6%, and 83.3%, in parts A-D, respectively. Dostarlimab PK was unaffected by any combinations tested. Coadministration of bevacizumab showed no impact on niraparib PKs. The overall mean PD-1 receptor occupancy was 99.0%. CONCLUSIONS Dostarlimab was well tolerated in both doublet and triplet regimens tested, with promising antitumor activity observed with all combinations. We observed higher disease control rates in the triplet regimens than in doublet regimens. TRIAL REGISTRATION NUMBER NCT03307785.
Collapse
Affiliation(s)
- Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alberto Bessudo
- California Cancer Associates for Research and Excellence, San Diego, California, USA
| | - Erika Hamilton
- Sara Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee, USA
| | - Jasgit Sachdev
- HonorHealth Research Institute/TGen, Scottsdale, Arizona, USA
| | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics (Phase 1 Program), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Wei Guo
- GlaxoSmithKline, Waltham, Massachusetts, USA
| | | | - Sharon Lu
- GlaxoSmithKline, Waltham, Massachusetts, USA
| | | | - Nashat Gabrail
- Department of Oncology, Gabrail Cancer Center, Canton, Ohio, USA
| |
Collapse
|
29
|
Bennett JA, Fleming GF, Kurnit KC, Mills KA, vanWeelden WJ. Tumor board presentation of a woman with metastatic, hormone receptor-positive, mismatch repair-deficient endometrial cancer. CA Cancer J Clin 2022; 72:102-111. [PMID: 35077576 DOI: 10.3322/caac.21715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Affiliation(s)
| | - Gini F Fleming
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois
| | - Kathryn A Mills
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, Illinois
| | - Willem Jan vanWeelden
- Departments of Obstetrics and Gynecology, Rijnstate Ziekenhuis, Arnhem, Netherlands
- Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
30
|
Gatius S, Velasco A, Varela M, Cuatrecasas M, Jares P, Setaffy L, Bonhomme B, Santon A, Lindemann K, Croce S, Davidson B, Lax S, Palacios J, Matias-Guiu X. Comparison of the Idylla™ MSI assay with the Promega™ MSI Analysis System and immunohistochemistry on formalin-fixed paraffin-embedded tissue of endometrial carcinoma: results from an international, multicenter study. Virchows Arch 2022; 480:1031-1039. [DOI: 10.1007/s00428-022-03291-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
|
31
|
Targeting immune checkpoints in gynecologic cancer: updates & perspectives for pathologists. Mod Pathol 2022; 35:142-151. [PMID: 34493822 DOI: 10.1038/s41379-021-00882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Checkpoint inhibitor-based immunotherapy is increasingly used in the treatment of gynecologic cancers, and most often targets the PD-1/PD-L1 axis. Pathologists should be familiar with the biomarkers required to determine candidacy for these treatments based on existing FDA approvals, including mismatch repair protein immunohistochemistry, microsatellite instability testing, tumor mutation burden testing, and PD-L1 immunohistochemistry. This review summarizes the rationale behind these treatments and their associated biomarkers and delivers guidance on how to utilize and readout these tests. It also introduces additional biomarkers which may provide information regarding immunotherapeutic vulnerability in the future such as neoantigen load; POLE mutation status; and immunohistochemical expression of immunosuppressive checkpoints like LAG-3, TIM-3, TIGIT, and VISTA; immune-activating checkpoints such as CD27, CD40, CD134, and CD137; enzymes such as IDO-1 and adenosine-related compounds; and MHC class I.
Collapse
|
32
|
Lin JH, Chen S, Pallavajjala A, Guedes LB, Lotan TL, Bacher JW, Eshleman JR. Validation of Long Mononucleotide Repeat Markers for Detection of Microsatellite Instability. J Mol Diagn 2021; 24:144-157. [PMID: 34864149 DOI: 10.1016/j.jmoldx.2021.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Mismatch repair deficiency (dMMR) predicts response to immune checkpoint inhibitor therapy in solid tumors. Long mononucleotide repeat (LMR) markers may improve the interpretation of microsatellite instability (MSI) assays. Our cohorts included mismatch repair (MMR) proficient and dMMR colorectal cancer (CRC) samples, MMR proficient and dMMR endometrial cancer (EC) samples, dMMR prostate cancer samples, MSI-high (MSI-H) samples of other cancer types, and MSI-low (MSI-L) samples of various cancer types. MMR status was determined by immunohistochemical staining and/or MSI Analysis System Version 1.2 (V1.2). The sensitivity and specificity of the LMR MSI panel for dMMR detection were both 100% in CRC. The sensitivity values of the MSI V1.2 and LMR MSI panels in EC were 88% and 98%, respectively, and the specificity values were both 100%. The sensitivity of the LMR panel was 75% in dMMR prostate cancer detected by immunohistochemistry. The 22 samples of other cancer types that were previously classified as MSI-H were also classified as MSI-H using the LMR MSI panel. For the 12 samples that were previously classified as MSI-L, 1 sample was classified as microsatellite stable using the LMR MSI panel, 8 as MSI-L, and 3 as MSI-H. The LMR MSI panel showed high concordance to the MSI V1.2 panel in CRC and greater sensitivity in EC. The LMR MSI panel improves dMMR detection in noncolorectal cancers.
Collapse
Affiliation(s)
- John H Lin
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suping Chen
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aparna Pallavajjala
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liana B Guedes
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - James R Eshleman
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
33
|
Buza N. Immunohistochemistry in gynecologic carcinomas: Practical update with diagnostic and clinical considerations based on the 2020 WHO classification of tumors. Semin Diagn Pathol 2021; 39:58-77. [PMID: 34750021 DOI: 10.1053/j.semdp.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023]
Abstract
This review provides an update on immunohistochemistry applications-diagnostic, prognostic, and predictive-in the pathology evaluation of gynecologic carcinomas. The 5th edition of the WHO Classification of Female Genital Tumors introduced important changes in the diagnostic classification of lower genital tract, endometrial, and ovarian carcinomas, with major influence on the routine pathology practice. Lower genital tract carcinomas and their precursor lesions are now classified based on their human papillomavirus (HPV)-associated and HPV-independent pathogenesis, reflecting the clinically significant prognostic differences and impacting the therapeutic decision-making. Immunohistochemical markers have an increasing role in the pathology evaluation of endometrial carcinomas: in addition to their traditional use in the differential diagnosis and histologic subtyping, they have also been recently advocated for prognostic classification as surrogates for the TCGA (The Cancer Genome Atlas) molecular groups. New entities - mesonephric-like adenocarcinoma and gastric (gastrointestinal)-type mucinous adenocarcinoma of the endometrium - have also been added and often require immunostains for diagnostic confirmation. Ovarian carcinomas frequently show overlapping morphologic patterns and heterogeneous appearance within the same tumor, necessitating immunohistochemical work-up. Beyond diagnostic applications, there is increasing clinical demand for screening of inherited cancer syndromes, prediction of prognosis and guiding targeted therapy. Practical issues and pitfalls related to mismatch repair protein immunohistochemistry, HER2, and PD-L1 testing are also discussed.
Collapse
Affiliation(s)
- Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
34
|
Smithgall MC, Remotti H, Hsiao SJ, Mansukhani M, Liu-Jarin X, Fernandes H. Investigation of discrepant mismatch repair immunohistochemistry and microsatellite instability polymerase chain reaction test results for gynecologic cancers using next-generation sequencing. Hum Pathol 2021; 119:41-50. [PMID: 34666078 DOI: 10.1016/j.humpath.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022]
Abstract
Gynecologic cancers are routinely screened for DNA mismatch repair (MMR) gene mutations using immunohistochemistry (IHC) and/or polymerase chain reaction (PCR) for microsatellite instability (MSI) to enable selection of immune checkpoint inhibitor therapy and screen for Lynch syndrome. The limited data that compare IHC and MSI in endometrial tumors have shown discordance rates of 5-10%. We reviewed MMR/MSI results in gynecologic cancers and used next-generation sequencing (NGS) to interrogate discrepancies. Of the 328 cases with both IHC and MSI results, 256 (78.0%) were microsatellite stable (MSS) with preserved MMR (pMMR), 64 (19.5%) cases were MSI-High (MSI-H) with MMR deficient (dMMR), 2 cases showed subclonal loss of MLH1 and PMS2 with MSI-H, and 6 cases were discordant. Overall, there was a 98.2% (322/328) IHC/MSI concordance. Discordant cases were retested and/or subject to NGS. Of the six discrepant cases, five showed dMMR with MSS and one showed pMMR with MSI-H. One dMMR/MSI-L case showed loss of PMS2 with a germline pathogenic mutation. The pMMR/MSI-H case was found to harbor pathogenic variants in MLH1 and MSH6. One of the two cases with subclonal populations demonstrated MSI-H in the dMMR area and MSS in the pMMR area. These results emphasize the importance of selecting the appropriate tumor tissue for both IHC and molecular testing and demonstrate that NGS can help resolve discrepant MMR and MSI results.
Collapse
Affiliation(s)
- Marie C Smithgall
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen Remotti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Susan J Hsiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Xiaolin Liu-Jarin
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen Fernandes
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
35
|
Ukkola I, Nummela P, Pasanen A, Kero M, Lepistö A, Kytölä S, Bützow R, Ristimäki A. Detection of microsatellite instability with Idylla MSI assay in colorectal and endometrial cancer. Virchows Arch 2021; 479:471-479. [PMID: 33755781 PMCID: PMC8448708 DOI: 10.1007/s00428-021-03082-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Universal testing of microsatellite instability (MSI) is recommended for colorectal cancer (CRC) and endometrial cancer (EC) to screen for Lynch syndrome and to aid in assessing prognosis and optimal treatment. We compared the performance of Idylla MSI test to immunohistochemistry (IHC) of mismatch repair (MMR) proteins in consecutive series of 100 CRC and 108 EC samples, as well as in retrospective series of 28 CRC and 33 EC specimens with known deficient MMR protein expression. The concordance between the Idylla test and IHC was 100% in all CRC samples (n=128) but lower in EC samples (87.2%; n=141). In the EC samples, sensitivity of Idylla test was 72.7% and specificity 100%. EC MSI/dMMR agreement was 85.4% for MLH1, 87.5% for MSH2, and only 35.3% for MSH6. When we analyzed 14 EC samples that were discrepant, i.e., dMMR using IHC and microsatellite stable using Idylla, with microsatellite markers BAT25 and BAT26, we found four cases to be replication error (RER) positive. All RER positive cases were deficient for MSH6 protein expression. We also re-analyzed EC samples with variable tumor cellularity to determine the limit of detection of the Idylla test and found that a 30% or higher tumor cellularity is required. We conclude that Idylla MSI test offers a sensitive and specific method for CRC diagnostics but is less sensitive in EC samples especially in the case of MSH6 deficiency.
Collapse
Affiliation(s)
- Iiris Ukkola
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
| | - Anna Lepistö
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Gastrointestinal Surgery, Helsinki University Hospital, Helsinki, Finland
| | - Soili Kytölä
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, HUS, FI-00029, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021. [PMID: 34440647 DOI: 10.3390/cells1008187828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
|
37
|
Malapelle U, Parente P, Pepe F, De Luca C, Pisapia P, Sgariglia R, Nacchio M, Gragnano G, Russo G, Conticelli F, Bellevicine C, Vigliar E, Iaccarino A, Covelli C, Balistreri M, Clemente C, Perrone G, Danza A, Scaramuzzi F, Fassan M, Troncone G, Graziano P. Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021; 10:1878. [PMID: 34440647 PMCID: PMC8391221 DOI: 10.3390/cells10081878] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Immune-checkpoint inhibitors (ICIs) play a key role in the treatment of advanced stage colorectal cancer (CRC) patients featuring a deficient DNA mismatch repair (dMMR) system or a high microsatellite instability (MSI-H) profile. However, beyond the established role in CRC patients, ICIs have highly proven efficacy in other solid tumors featuring MSI-H/dMMR status represented by endometrial, gastric, ovarian, prostatic, and pancreatic carcinomas (EC, GC, OC, PrC, and PaC). Our aim was to compare the concordance rates among the Idylla™ MSI test, TapeStation 4200, and immunohistochemical (IHC) analysis in assessing MSI-H/dMMR status in EC, GC, OC, PrC, and PaC patients. The Sanger sequencing-based Titano MSI test was used in discordant cases. One hundred and eighty-five cases (n = 40 PrC, n = 39 GC, n = 38 OC, n = 35 PaC, and n = 33 EC) were retrospectively selected. MMR protein expression was evaluated by IHC. After DNA quality and quantity evaluations, the IdyllaTM and TapeStation 4200 platforms were adopted for the evaluation of MSI status. Remarkably, compared to IHC, the Idylla™ platform achieved a global concordance rate of 94.5% (154/163) for the microsatellite stable (MSS)/proficient MMR (pMMR) cases and 77.3% (17/22) for the MSI-H/dMMR cases. Similarly, a global concordance rate of 91.4% (149/163) and 68.2% (15/22) for MSS/pMMR and MSI-H/dMMR cases was also identified between IHC and the TapeStation 4200 microfluidic system. In addition, a global concordance of 93.1% (148/159) and 69.2% (18/26) for MSS/pMMR and MSI-H/dMMR cases was observed between the Idylla™ and TapeStation 4200 platforms. Discordant cases were analyzed using the Titano MSI kit. Overall, our data pinpointed a central role for molecular techniques in the diagnostic evaluation of dMMR/MSI-H status not only in CRC patients but also in other types of solid tumors.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Paola Parente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Roberta Sgariglia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Gragnano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Floriana Conticelli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Claudia Covelli
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Mariangela Balistreri
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
| | - Celeste Clemente
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Giovanni Perrone
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Angela Danza
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Fabio Scaramuzzi
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (M.B.); (M.F.)
- Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (U.M.); (F.P.); (C.D.L.); (P.P.); (R.S.); (M.N.); (G.G.); (G.R.); (F.C.); (C.B.); (E.V.); (A.I.)
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy; (P.P.); (C.C.); (C.C.); (G.P.); (A.D.); (F.S.); (P.G.)
| |
Collapse
|
38
|
Dedeurwaerdere F, Claes KB, Van Dorpe J, Rottiers I, Van der Meulen J, Breyne J, Swaerts K, Martens G. Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Sci Rep 2021; 11:12880. [PMID: 34145315 PMCID: PMC8213758 DOI: 10.1038/s41598-021-91974-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
DNA mismatch repair deficiency (dMMR) testing is crucial for diagnosing Lynch syndrome and detection of microsatellite unstable (MSI) tumors eligible for immunotherapy. The aim of this study was to compare the relative diagnostic performance of three molecular MSI assays: polymerase chain reaction (PCR), MSI testing by Idylla and next-generation-sequencing (NGS) on 49 tumor samples (28 colorectal and 21 endometrial adenocarcinomas) versus immunohistochemistry (IHC). Discrepancies were investigated by MLH1 methylation analysis and integrated with germline results if available. Overall, the molecular assays achieved equivalent diagnostic performance for MSI detection with area under the ROC curves (AUC) of respectively 0.91 for Idylla and PCR, and 0.93 for NGS. In colorectal cancers with tumor cell percentages ≥ 30% all three molecular assays achieved 100% sensitivity and specificity (AUC = 1) versus IHC. Also, in endometrial cancers, all three molecular assays showed equivalent diagnostic performance, albeit at a clearly lower sensitivity ranging from 58% for Idylla to 75% for NGS, corresponding to negative predictive values from 78 to 86%. PCR, Idylla and NGS show similar diagnostic performance for dMMR detection in colorectal and endometrial cancers. Molecular MSI analysis has lower sensitivity for dMMR detection in endometrial cancer indicating that combined use of both IHC and molecular methods is recommended.Clinical Trial Number/IRB: B1172020000040, Ethical Committee, AZ Delta General Hospital.
Collapse
Affiliation(s)
| | - Kathleen Bm Claes
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
| | | | - Joni Van der Meulen
- Center for Medical Genetics, Ghent University Hospital, Gent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Gent, Belgium
- Molecular Diagnostics, Ghent University Hospital, Gent, Belgium
| | - Joke Breyne
- Department of Laboratory Medicine, Department of Laboratory Medicine, AZ Delta General Hospital, AZ Delta General Hospital, Deltalaan 1, 8800, Roeselare, Belgium
| | - Koen Swaerts
- Department of Laboratory Medicine, Department of Laboratory Medicine, AZ Delta General Hospital, AZ Delta General Hospital, Deltalaan 1, 8800, Roeselare, Belgium
| | - Geert Martens
- Department of Laboratory Medicine, Department of Laboratory Medicine, AZ Delta General Hospital, AZ Delta General Hospital, Deltalaan 1, 8800, Roeselare, Belgium.
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium.
| |
Collapse
|
39
|
Manz SM, Losa M, Fritsch R, Scharl M. Efficacy and side effects of immune checkpoint inhibitors in the treatment of colorectal cancer. Therap Adv Gastroenterol 2021; 14:17562848211002018. [PMID: 33948110 PMCID: PMC8053828 DOI: 10.1177/17562848211002018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancers (CRCs) remain one of the most common and challenging neoplasia in the Western world. The response rate of immunotherapeutic treatment approaches in a subset of advanced CRCs is remarkable and has sustainably changed treatment regimens. Unfortunately, currently available immunotherapeutics only displayed significant antitumoral activity - in terms of progression free survival (PFS) and objective response rate (ORR) - in microsatellite instability-high (MSI-H)/DNA mismatch repair deficient (dMMR) CRCs. Subsequently, these remarkable results had led to the US Food and Drug Administration's approval of both immune checkpoint inhibitors (ICIs) pembrolizumab and nivolumab in the treatment of advanced MSI-H/dMMR CRCs. However, in microsatellite stable (MSS)/DNA mismatch repair proficient (pMMR) CRCs, ICIs have clearly failed to meet their expectations and are therefore not considered effective. As the vast majority of CRCs display a molecular MSS/pMMR profile, current treatment approaches endeavor to improve tumor immunogenicity that consecutively leads to increased proinflammatory cytokine levels as well as tumor infiltrating T-cells, which in turn may be targeted by various immunotherapeutic agents. Therefore, ongoing studies are investigating novel synergistic therapy modalities and approaches to overcome a "cold" to "hot" tumor conversion in MSS/pMMR CRCs. In this review, we summarize the efficacy and possible immune-related adverse events as well as novel therapeutic approaches of ICIs in the treatment of MSI-H/dMMR and MSS/pMMR CRCs.
Collapse
Affiliation(s)
- Salomon M. Manz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Losa
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ralph Fritsch
- Center for Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| |
Collapse
|
40
|
Casey L, Singh N. POLE, MMR, and MSI Testing in Endometrial Cancer: Proceedings of the ISGyP Companion Society Session at the USCAP 2020 Annual Meeting. Int J Gynecol Pathol 2021; 40:5-16. [PMID: 33290350 DOI: 10.1097/pgp.0000000000000710] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subclassification of endometrial carcinoma (EC) based on morphologic features alone has been shown to have suboptimal reproducibility, both in regard to biopsy versus hysterectomy findings, as well as interobserver agreement. This restricts the role of morphologic classification of EC as a tool for risk prediction and therefore treatment planning. A diagnostic algorithm based on The Cancer Genome Atlas (TCGA) classification of EC holds promise for improving accuracy in risk prediction. This classifies EC into 4 groups: those harbouring mutations in the exonuclease domain of DNA polymerase epsilon, POLE (POLEmut), those showing a mismatch repair defect, those showing mutations in TP53 (p53abn) and a heterogenous group showing none of these 3 abnormalities (currently termed no specific molecular profile). These groups can be accurately and reproducibly diagnosed on biopsy samples using a limited panel of tests, namely immunohistochemistry for mismatch repair proteins and p53, and testing for POLE exonuclease domain pathogenic variants. In this article we briefly review the biology, testing and interpretation of POLE and mismatch repair defects in EC.
Collapse
Affiliation(s)
- Laura Casey
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | | |
Collapse
|
41
|
Vanoli A, Perfetti V, Furlan D, Neri G, Viglio A, Sessa F, Martino M, Di Sabatino A, Solcia E, La Rosa S. Long Survival and Prolonged Remission after Surgery and Chemotherapy in a Metastatic Mismatch Repair Deficient Pancreatic Neuroendocrine Carcinoma with MLH1/PMS2 Immunodeficiency and Minimal Microsatellite Shift. Endocr Pathol 2020; 31:411-417. [PMID: 32388775 DOI: 10.1007/s12022-020-09622-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pancreatic neuroendocrine carcinomas (NECs) are rare and very aggressive neoplasms with dismal prognosis, especially when metastatic or with negative prognostic factors, such as vascular invasion. To the best of our knowledge, no case of pancreatic NEC with mismatch repair deficiency has been reported to date. We describe a 62-year-old patient who underwent pancreaticoduodenectomy for a NEC located in the pancreatic head, with peripancreatic lymph node metastases. Tumor necrosis was prominent and the Ki67 proliferative index was 60%. One year after the diagnosis, the patient experienced recurrence with a left supraclavicular lymph node metastasis, which was surgically removed, followed by standard cisplatin-etoposide chemotherapy. Neoplastic cells showed combined loss of expression of MLH1 and PMS2 in both primary tumor and lymph node metastasis. Microsatellite instability (MSI) test using a mononucleotide repeats pentaplex PCR (BAT-25, BAT-26, NR-21, NR-22, and NR-24) revealed minimal mononucleotide shifts showing deletion of less than 3 bp at NR-21, BAT-26, NR-24, and NR-22 loci. MLH1 methylation analysis revealed absence of the gene promoter methylation. BRAF and KRAS mutations were not detected. In gut, NECs' mismatch repair deficiency phenotype has been reported in about 10% of cases, and it represents an independent factor of more favorable outcome. Likewise, our patient is currently alive with a follow-up of more than 12 years after pancreaticoduodenectomy, by itself an unexpected finding for such an aggressive neoplasm.
Collapse
Affiliation(s)
- Alessandro Vanoli
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital, Via Carlo Forlanini 16, 27100, Pavia, Italy.
| | | | - Daniela Furlan
- Anatomic Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giuseppe Neri
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital, Via Carlo Forlanini 16, 27100, Pavia, Italy
| | - Alessandra Viglio
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital, Via Carlo Forlanini 16, 27100, Pavia, Italy
| | - Fausto Sessa
- Anatomic Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Michele Martino
- Department of Internal Medicine, IRCCS San Matteo Hospital and University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, IRCCS San Matteo Hospital and University of Pavia, Pavia, Italy
| | - Enrico Solcia
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia, and IRCCS San Matteo Hospital, Via Carlo Forlanini 16, 27100, Pavia, Italy
| | - Stefano La Rosa
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Yamamoto G, Takenoya T, Takahashi A, Osanai Y, Kakuta M, Tachikawa T, Washio T, Kamiyama M, Shiibashi M, Yamaguchi S, Akagi K. Quantitative evaluation of MSI testing using NGS detects the imperceptible microsatellite changed caused by MSH6 deficiency. Fam Cancer 2020; 20:137-143. [PMID: 32949329 DOI: 10.1007/s10689-020-00203-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microsatellite instability (MSI) is an effective biomarker for diagnosing Lynch syndrome (LS) and predicting the responsiveness of cancer therapy. MSI testing is conventionally performed by capillary electrophoresis, and MSI status is judged by visual assessment of allele size change. Here, we attempted to develop a quantitative evaluation model of MSI using next-generation sequencing (NGS). Microsatellite markers were analyzed in tumor and non-tumor tissues of colorectal cancer patients by NGS after a single multiplex polymerase chain reaction amplification. The read counts corresponding to microsatellite loci lengths were calculated independently of mapping against a reference genome, and their distribution was digitized by weighted mean. Weighted mean differences between tumor and non-tumor samples with different MSI status were assessed, and cut-off values for each marker in the discovery cohort were determined. Each microsatellite maker was defined as unstable if the weighted mean difference was greater than the cut-off value. In the discovery cohort, the evaluation model demonstrated sensitivity and specificity of 100% for all markers. In the validation cohort, MSI status determined by the new model was consistent with the outcome of the conventional method in 29/30 cases (97%). The single inconsistent case was classified as low-frequency MSI by the conventional method but considered MSI-high by NGS. Genetic testing for mismatch repair genes revealed a pathogenic variant in MSH6 in the discordant case. We successfully developed a quantitative evaluation method for determining MSI status using NGS. This is a robust and sensitive method and could improve LS diagnosis.
Collapse
Affiliation(s)
- Gou Yamamoto
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Takashi Takenoya
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Akemi Takahashi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Yukiko Osanai
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Miho Kakuta
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Tetsuhiko Tachikawa
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Takanori Washio
- Bioinformatics Department, Riken Genesis Co., Ltd., 1-2-2 Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan
| | - Masato Kamiyama
- Bioinformatics Department, Riken Genesis Co., Ltd., 1-2-2 Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan
| | - Michio Shiibashi
- Information Technology Center, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Shigeki Yamaguchi
- Department of Gastroenterological Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Kiwamu Akagi
- Department of Molecular Diagnosis and Cancer Prevention, Saitama Cancer Center, 780 Komuro, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan.
| |
Collapse
|
43
|
Wong S, Hui P, Buza N. Frequent loss of mutation-specific mismatch repair protein expression in nonneoplastic endometrium of Lynch syndrome patients. Mod Pathol 2020; 33:1172-1181. [PMID: 31932681 DOI: 10.1038/s41379-020-0455-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022]
Abstract
Lynch syndrome is most often caused by a germline mutation in one of four DNA mismatch repair (MMR) genes (MLH1, PMS2, MSH2, or MSH6) or EPCAM and is associated with a significantly increased risk of endometrial cancer in affected women. Although universal screening of endometrial cancer for Lynch syndrome is becoming increasingly common by various algorithms using MMR immunohistochemistry and/or microsatellite instability testing by PCR, establishing the diagnosis of Lynch syndrome can be still challenging. MMR-deficient nonneoplastic colonic crypts have been recently described in Lynch syndrome patients with colorectal carcinoma, and have been proposed to be a novel indicator of Lynch syndrome. Presence of MMR-deficient nonneoplastic endometrial glands have not yet been systematically evaluated in Lynch syndrome patients. We performed MMR protein immunohistochemistry in prophylactic hysterectomies and endometrial curettings/biopsies from 27 patients with known Lynch syndrome confirmed by germline mutation analysis. A total of 56 control benign endometrial tissues were also analyzed, and included benign endometrium adjacent to MMR-deficient sporadic (MLH1 promoter hypermethylated) endometrial carcinoma (n = 9), adjacent to MMR-intact sporadic endometrial carcinoma (n = 27), and normal endometrium from hysterectomies performed for benign disease (n = 20). MMR protein deficient nonneoplastic endometrial glands were identified in 70% (19 of 27) of Lynch syndrome patients. In all 19 cases the MMR protein loss was specific for the patients' known germline mutation. None of the control cases showed loss of MMR protein expression in nonneoplastic endometrium. Our findings suggest that MMR-deficient nonneoplastic endometrial glands may be a unique, specific marker of Lynch syndrome, and may provide an important insight into the pathogenesis of Lynch syndrome-associated endometrial cancer. Evaluation of MMR protein expression of benign background endometrium in endometrial cancer patients may be further explored as a possible useful addition to the Lynch syndrome screening algorithm.
Collapse
Affiliation(s)
- Serena Wong
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street LH 108, PO Box 208023, New Haven, CT, 06520-8023, USA
| | - Pei Hui
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street LH 108, PO Box 208023, New Haven, CT, 06520-8023, USA
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street LH 108, PO Box 208023, New Haven, CT, 06520-8023, USA.
| |
Collapse
|
44
|
Quantitative next-generation sequencing-based analysis indicates progressive accumulation of microsatellite instability between atypical hyperplasia/endometrial intraepithelial neoplasia and paired endometrioid endometrial carcinoma. Mod Pathol 2019; 32:1508-1520. [PMID: 31186530 DOI: 10.1038/s41379-019-0298-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022]
Abstract
Atypical hyperplasia/endometrial intraepithelial neoplasia is an accepted precursor to endometrioid-type endometrial carcinoma. Mismatch repair-deficient endometrial carcinomas are also known to be a biologically and clinically distinct subset of tumors. However, the development of microsatellite instability in endometrial carcinogenesis has not yet been evaluated by novel next-generation sequencing-based methods. We examined 17 mismatch repair-deficient endometrioid endometrial carcinomas and their paired atypical hyperplasia/endometrial intraepithelial neoplasia precursors using a next-generation sequencing panel with quantitative microsatellite instability detection at 336 loci. Findings were compared to histological features, polymerase chain reaction-based microsatellite instability testing, immunohistochemical expression of mismatch repair proteins, and tumor mutational burden calculations. All 17 endometrial carcinomas and 8/17 atypical hyperplasia/endometrial intraepithelial neoplasia showed microsatellite instability by next-generation sequencing-based testing. Endometrial carcinoma specimens showed significantly more unstable microsatellite loci than paired atypical hyperplasia/endometrial intraepithelial neoplasia (mean: 40.0% vs 19.9 unstable loci, respectively). Out of nine microsatellite-stable atypical hyperplasia/endometrial intraepithelial neoplasia specimens, four showed mismatch repair loss by immunohistochemistry. All atypical hyperplasia/endometrial intraepithelial neoplasia and endometrial carcinoma specimens with microsatellite instability were also mismatch repair-deficient by immunohistochemistry. Tumor mutational burden was significantly greater in endometrial carcinoma than in paired atypical hyperplasia/endometrial intraepithelial neoplasia specimens, and tumor mutational burden was significantly correlated with percent unstable microsatellite loci. Paired atypical hyperplasia/endometrial intraepithelial neoplasia and endometrial carcinoma specimens show progressive accumulation of unstable microsatellite loci following loss of mismatch repair protein expression. Comprehensive next-generation sequencing-based testing of endometrial carcinomas offers new insights into endometrial carcinogenesis and opportunities for improved tumor surveillance, diagnosis, and management.
Collapse
|