1
|
Yu C, Xun M, Yu F, Li H, Liu Y, Zhang W, Yan J. An MHC-Related Gene's Signature Predicts Prognosis and Immune Microenvironment Infiltration in Glioblastoma. Int J Mol Sci 2025; 26:4609. [PMID: 40429753 DOI: 10.3390/ijms26104609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Glioma is the most common primary malignant intracranial tumor with limited treatment options and a dismal prognosis. This study aimed to develop a robust gene expression-based prognostic signature for GBM using the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets. Using WGCNA and LASSO algorithms, we identified four MHC-related genes (TNFSF14, MXRA5, FCGR2B, and TNFRSF9) as prognostic biomarkers for glioma. A risk model based on these genes effectively stratified patients into high- and low-risk groups with distinct survival outcomes across TCGA and CGGA cohorts. This signature correlated with immune pathways and glioma progression mechanisms, showing strong associations with immune function and tumor microenvironment infiltration patterns. The risk score reflected tumor microenvironment remodeling, suggesting its prognostic relevance. We further propose I-BET-762 and Enzastaurin as potential therapeutic candidates for glioma. In conclusion, the four-gene signature we identified and the corresponding risk score model constructed from it provide valuable tools for the prognosis prediction of glioblastoma multiforme (GBM) and may guide personalized treatment strategies. The least absolute shrinkage and selection operator (LASSO) risk score has demonstrated significant prognostic evaluation utility in clinical GBM patients, bringing potential implications for patient stratification and the optimization of treatment regimens.
Collapse
Affiliation(s)
- Caiyuan Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau SAR 999078, China
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
- College of Agroforestry and Medicine, The Open University of China, Beijing 100039, China
| | - Mingjuan Xun
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Fei Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau SAR 999078, China
| | - Hengyu Li
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau SAR 999078, China
| | - Ying Liu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau SAR 999078, China
| | - Wei Zhang
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau SAR 999078, China
| | - Jun Yan
- Laboratory of Brain Disorders, Beijing Institute of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Han X, Zhang J, Li W, Huang X, Wang X, Wang B, Gao L, Chen H. The role of B2M in cancer immunotherapy resistance: function, resistance mechanism, and reversal strategies. Front Immunol 2025; 16:1512509. [PMID: 40191187 PMCID: PMC11968357 DOI: 10.3389/fimmu.2025.1512509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Immunotherapy has emerged as a preeminent force in the domain of cancer therapeutics and achieved remarkable breakthroughs. Nevertheless, the high resistance has become the most substantial impediment restricting its clinical efficacy. Beta-2 microglobulin (B2M), the light chain of major histocompatibility complex (MHC) class I, plays an indispensable part by presenting tumor antigens to cytotoxic T lymphocytes (CTLs) for exerting anti-tumor effects. Accumulating evidence indicates that B2M mutation/defect is one of the key mechanisms underlying tumor immunotherapy resistance. Therefore, elucidating the role played by B2M and devising effective strategies to battle against resistance are pressing issues. This review will systematically expound upon them, aiming to provide insight into the potential of B2M as a promising target in anticancer immune response.
Collapse
Affiliation(s)
- Xiaowen Han
- Lanzhou University Second Hospital, Lanzhou, China
| | - Jiayi Zhang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Weidong Li
- Lanzhou University Second Hospital, Lanzhou, China
| | | | - Xueyan Wang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Bofang Wang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Lei Gao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Hao Chen
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Environmental Oncology of Gansu Province, Lanzhou, China
| |
Collapse
|
3
|
Song Z, Tao Y, You J. The potential applications of peptide-loading complex in cancer treatment. Front Immunol 2025; 16:1526137. [PMID: 40098955 PMCID: PMC11911339 DOI: 10.3389/fimmu.2025.1526137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy for cancer has made significant strides in the last several years. The prognosis for cancer patients has significantly improved as a result, particularly in hematological diseases. However, it was discovered that translating these achievements to solid tumors proved challenging. The peptide-loading complex (PLC), a temporary multisubunit membrane assembly in the endoplasmic reticulum (ER), is crucial for initiating a hierarchical immune response. Chaperones calreticulin and tapasin make up the PLC, unique to class I glycoproteins, thiooxido-reductase ERp57, and a transporter associated with antigen processing. The loading and editing of major histocompatibility complex class I (MHC-I) molecules with peptide translocation into the ER are synchronized by the PLC. One of the immune escape strategies revealed for tumors so far is changes in the expression of MHC molecules. This is because MHC antigens are crucial in presenting antigens to T-lymphocytes and controlling NK cell activity. Furthermore, decreased MHC-I expression has been linked to malignancies resistant to T-cell-based cancer immunotherapies (adoptive transfer of antitumor CD8 T-cells or checkpoint inhibition). The PLC is essential for T-cell priming, differentiation, and tumor growth control because it can bind to a wide range of MHC-I allomorphs. In this review, we have looked into PLC's function and effects in all forms of cancer to improve cancer therapy techniques.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin You
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Fu W, Xie Q, Yu P, Liu S, Xu L, Ye X, Zhao W, Wang Q, Pan Y, Zhang Z, Wang Z. Pig jejunal single-cell RNA landscapes revealing breed-specific immunology differentiation at various domestication stages. Front Immunol 2025; 16:1530214. [PMID: 40151618 PMCID: PMC11947726 DOI: 10.3389/fimmu.2025.1530214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background Domestication of wild boars into local and intensive pig breeds has driven adaptive genomic changes, resulting in significant phenotypic differences in intestinal immune function. The intestine relies on diverse immune cells, but their evolutionary changes during domestication remain poorly understood at single-cell resolution. Methods We performed single-cell RNA sequencing (scRNA-seq) and marker gene analysis on jejunal tissues from wild boars, a Chinese local breed (Jinhua), and an intensive breed (Duroc). Then, we developed an immune cell evaluation system that includes immune scoring, gene identification, and cell communication analysis. Additionally, we mapped domestication-related clustering relationships, highlighting changes in gene expression and immune function. Results We generated a single-cell atlas of jejunal tissues, analyzing 26,246 cells and identifying 11 distinct cell lineages, including epithelial and plasma cells, and discovered shared and unique patterns in intestinal nutrition and immunity across breeds. Immune cell evaluation analysis confirmed the conservation and heterogeneity of immune cells, manifested by highly conserved functions of immune cell subgroups, but wild boars possess stronger immune capabilities than domesticated breeds. We also discovered four patterns of domestication-related breed-specific genes related to metabolism, immune surveillance, and cytotoxic functions. Lastly, we identified a unique population of plasma cells with distinctive antibody production in Jinhua pig population. Conclusions Our findings provide valuable single-cell insights into the cellular heterogeneity and immune function evolution in the jejunum during pig at various domestication stages. The single-cell atlas also serves as a resource for comparative studies and supports breeding programs aimed at enhancing immune traits in pigs.
Collapse
Affiliation(s)
- Wenyu Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qinqin Xie
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Pengfei Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lingyao Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowei Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei Zhao
- SciGene Biotechnology Co., Ltd, Hefei, China
| | - Qishan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yuchun Pan
- Hainan Institute of Zhejiang University, Building 11, Yongyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Hainan Yazhou Bay Seed Lab, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya, China
| | - Zhe Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Livestock and Poultry Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
5
|
Tao JH, Zhang J, Li HS, Zhou Y, Guan CX. Nature killer cell for solid tumors: Current obstacles and prospective remedies in NK cell therapy and beyond. Crit Rev Oncol Hematol 2025; 205:104553. [PMID: 39515404 DOI: 10.1016/j.critrevonc.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, cell therapy has emerged as an innovative treatment method for the management of clinical tumors following immunotherapy. Among them, Natural killer (NK) cell therapy has achieved a significant breakthrough in the treatment of hematological tumors. However, the therapeutic effectiveness of NK cells in the treatment of solid tumors remains challenging. With the progress of gene editing and culture techniques and their application to NK cell engineering, it is expected that NK cell therapy will revolutionize the treatment of solid tumors. In this review, we explore the discovery and biological properties of NK cells, their role in the tumor microenvironment, and the therapeutic strategies, clinical trials, challenges, and prospects of NK cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jun Zhang
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China
| | - Hua-Shun Li
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
6
|
Tavakoli S, Samareh-Salavati M, Abdolahi S, Verdi J, Seyhoun I, Vousooghi N, Vaezi M, Ghaderi A, Ghavamzadeh A, Barkhordar M, Ahmadvand M. Cell Therapy Using Anti-NKG2A Pretreated Natural Killer Cells in Patients with Hepatocellular Carcinoma. Adv Pharm Bull 2024; 14:918-926. [PMID: 40190667 PMCID: PMC11970500 DOI: 10.34172/apb.43869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 04/09/2025] Open
Abstract
Purpose The activities and functions of natural killer (NK) cells are regulated by a limited repertoire of activating and inhibitory receptors. Thus, we provided a study of inhibition of the NKG2A using monoclonal antibodies (mAbs), and as a primary endpoint, we evaluated whether it can be translated to enhance adoptive NK cell immunotherapy, as the secondary endpoint, we investigated safety and feasibility. Methods In this study, we investigated the safety of anti-NKG2A-pretreated NK cells in improving ADCC function to manage hepatocellular carcinoma (HCC). After a conditioning regimen, we initiated a pilot study of expanded donor haploidentical NK cell infusion. Patients received a fludarabine/cyclophosphamide conditioning followed by adoptive immunotherapy with IL2-activated haploidentical NK cells. Anti-NKG2A pretreated NK cells were infused on days 0,+5, and+10 post-conditioning regimens at a dose of 7×108 cells (n=3). The median follow-up was 4 months for all patients. Results Although all patients were alive at the last follow-up, two of them showed progressive disease and an increase in tumor size. In addition, all patients showed a relative decrease in alpha-fetoprotein (AFP) expression levels after one month. Conclusion This study demonstrated the safety and feasibility of infusing high doses of ex vivo expanded NK cells after conditioning with transient side effects.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Samareh-Salavati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Seyhoun
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ghaderi
- Department of Internal Medicine, Hematology and Medical Oncology Ward, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ardeshir Ghavamzadeh
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Barkhordar
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Li J, Wang X, Cao G, Wu Y, Cheng M, Chen Y, Sun H, Sun R, Peng H, Tian Z. CD94 deficiency or blockade unleashes the anti-tumor immunity in mice and humanized murine models. Cancer Lett 2024; 605:217305. [PMID: 39424259 DOI: 10.1016/j.canlet.2024.217305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
NKG2 family members have emerged as promising targets in tumor immunotherapy. CD94 can dimerize with both inhibitory and activating NKG2 proteins, while the overall effect and value of targeting CD94 on anti-tumor immunity are unclear. Here, it is shown that the expression of CD94 is upregulated on tumor-infiltrating natural killer (NK) cells and CD8+ T cells, and is related to their exhausted characteristics. Tumor-bearing CD94 knockout (CD94-KO) mice exhibit delayed tumor growth, decreased lung metastases, and prolonged survival. Single cell RNA-seq reveals a remodeled tumor microenvironment in CD94-KO mice, with a reduction in immunosuppressive cells and an increase in anti-tumor immune cells. Moreover, NK cells and CD8+ T cells become proliferative and strongly tumoricidal in CD94-KO mice, thus contributing to the tumor inhibition effect of CD94 deficiency. Treatment with a humanized anti-CD94 blocking antibody (h15C10) alone, in tumor-bearing humanized mouse, delays tumor progression, and improves the therapeutic efficacy of PD-L1 blockade through combination therapy. Our study indicates that CD94 may work as a candidate target in checkpoint immunotherapy.
Collapse
Affiliation(s)
- Jiarui Li
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xianwei Wang
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Guoshuai Cao
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Yuwei Wu
- Hefei TG ImmunoPharma Corporation Limited, Hefei, China
| | - Ming Cheng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yawen Chen
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Haoyu Sun
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, The Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Hefei TG ImmunoPharma Corporation Limited, Hefei, China.
| |
Collapse
|
8
|
Fesneau O, Samson KA, Rosales W, Jones B, Moudgil T, Fox BA, Rajamanickam V, Duhen T. IL-12 drives the expression of the inhibitory receptor NKG2A on human tumor-reactive CD8 T cells. Nat Commun 2024; 15:9988. [PMID: 39557863 PMCID: PMC11574270 DOI: 10.1038/s41467-024-54420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Blockade of NKG2A/HLA-E interaction is a promising strategy to unleash the anti-tumor response. Yet the role of NKG2A+ CD8 T cells in the anti-tumor response and the regulation of NKG2A expression on human tumor-infiltrating T cells are still poorly understood. Here, by performing CITE-seq on T cells derived from head and neck squamous cell carcinoma and colorectal cancer, we show that NKG2A expression is induced on CD8 T cells differentiating into cytotoxic, CD39+CD103+ double positive (DP) cells, a phenotype associated with tumor-reactive T cells. This developmental trajectory leads to TCR repertoire overlap between the NKG2A- and NKG2A+ DP CD8 T cells, suggesting shared antigen specificities. Mechanistically, IL-12 is essential for the expression of NKG2A on CD8 T cells in a CD40/CD40L- dependent manner, in conjunction with TCR stimulation. Our study thus reveals that NKG2A is induced by IL-12 on human tumor-reactive CD8 T cells exposed to a TGF-β-rich environment, highlighting an underappreciated immuno-regulatory feedback loop dependent on IL-12 stimulation.
Collapse
Affiliation(s)
- Olivier Fesneau
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Kimberly A Samson
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Wesley Rosales
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Bretton Jones
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Tarsem Moudgil
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - Thomas Duhen
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
9
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Le Luduec JB, Kontopoulos T, Panjwani MK, Sottile R, Liu H, Schäfer G, Massalski C, Lange V, Hsu KC. Polygenic polymorphism is associated with NKG2A repertoire and influences lymphocyte phenotype and function. Blood Adv 2024; 8:5382-5399. [PMID: 39158076 PMCID: PMC11568789 DOI: 10.1182/bloodadvances.2024013508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/20/2024] Open
Abstract
ABSTRACT CD94/NKG2A is a heterodimeric receptor commonly found on natural killer (NK) and T cells, and its interaction with its ligand HLA-E on adjacent cells leads to inhibitory signaling and cell suppression. We have identified several killer cell lectin-like receptor (KLR)C1 (NKG2A) single nucleotide polymorphisms (SNPs) that are associated with NKG2A expression on NK cells, CD8+ T cells, and Vγ9/Vδ2+ T cells. Additionally, due to strong linkage disequilibrium, polymorphisms in KLRC2 (NKG2C) and KLRK1 (NKG2D) are also associated with NKG2A surface density and frequency. NKG2A surface expression correlates with single-cell NK responsiveness, and NKG2A+ NK cell frequency is associated with total NK repertoire response and inhibitability, making the identification of SNPs responsible for expression and frequency important for predicting the innate immune response. Because HLA-E expression is dependent on HLA class I signal peptides, we analyzed the relationship between peptide abundance and HLA-E expression levels. Our findings revealed a strong association between peptide availability and HLA-E expression. We identified the HLA-C killer immunoglobulin-like receptor ligand epitope as a predictive marker for HLA-ABC expression, with the HLA-C1 epitope associated with high HLA-E expression and the HLA-C2 epitope associated with low HLA-E expression. The relationship between HLA-C epitopes and HLA-E expression was independent of HLA-E allotypes and HLA-B leader peptides. Although HLA-E expression showed no significant influence on NKG2A-mediated NK education, it did affect NK cell inhibition. In summary, these findings underscore the importance of NKG2A SNPs and HLA-C epitopes as predictive markers of NK cell phenotype and function and should be evaluated as prognostic markers for diseases that express high levels of HLA-E.
Collapse
Affiliation(s)
- Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Theodota Kontopoulos
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - M Kazim Panjwani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Humanitas Clinical and Research Center, Pieve Emanuele, Italy
| | - Hongtao Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gesine Schäfer
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Carolin Massalski
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Vinzenz Lange
- Genotyping Laboratory, Deutsche Knochenmarkspenderdatei Life Science Lab, Dresden, Germany
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
11
|
Li J, Wu Y, Zhang X, Wang X. Causal relationship between beta-2 microglobulin and B-cell malignancies: genome-wide meta-analysis and a bidirectional two-sample Mendelian randomization study. Front Immunol 2024; 15:1448476. [PMID: 39434879 PMCID: PMC11491367 DOI: 10.3389/fimmu.2024.1448476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Beta-2 microglobulin (β2M) is acknowledged as a prognostic biomarker for B-cell malignancies. However, insights into the impact of β2M on B-cell malignancy risk, and vice versa, are limited. Methods We conducted a genome-wide meta-analysis (GWMA), bidirectional two-sample Mendelian randomization (TSMR) analysis, and pathway enrichment analysis to explore the causal relationship between β2M and B-cell malignancies and the underlying biological processes. Results The GWMA identified 55 lead SNPs across five genomic regions (three novel: WDR72, UMOD, and NLRC5) associated with β2M. In the UKB, genetically predicted β2M showed a positive association with diffuse large B-cell lymphoma (DLBCL; odds ratio [OR]: 1.742 per standard deviation increase in β2M; 95% confidence interval [CI]: 1.215-2.498; P = 3.00 × 10-3; FDR = 7.50× 10-3) and Hodgkin lymphoma (HL; OR: 2.270; 95% CI: 1.525-3.380; P = 5.15 × 10-5; FDR =2.58 × 10-4). However, no associations were found with follicular lymphoma (FL), chronic lymphoid leukemia (CLL), or multiple myeloma (MM). Reverse TSMR analysis revealed no association between genetically predicted B-cell malignancies and β2M. In FinnGen, β2M was found to be associated with an increased risk of DLBCL (OR: 2.098; 95% CI: 1.358-3.242; P = 8.28 × 10-4; FDR = 4.14 × 10-3), HL (OR: 1.581; 95% CI: 1.167-2.142; P = 3.13 × 10-3; FDR = 5.22 × 10-3), and FL (OR: 2.113; 95% CI: 1.292-3.455; P = 2.90 × 10-3; FDR = 5.22 × 10-3). However, no association was found with CLL or MM. Reverse TSMR analysis indicated that genetically predicted DLBCL, FL, and MM may perturb β2M levels. Pathway enrichment analysis suggested that the innate immune system represents a convergent biological process underlying β2M, DLBCL, and HL. Conclusions Our findings suggested that elevated levels of β2M were associated with an increased risk of DLBCL and HL, which is potentially linked to dysfunction of the innate immune system.
Collapse
Affiliation(s)
| | | | | | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital of Jilin University,
Changchun, Jilin, China
| |
Collapse
|
12
|
He T, Hu C, Li S, Fan Y, Xie F, Sun X, Jiang Q, Chen W, Jia Y, Li W. The role of CD8 + T-cells in colorectal cancer immunotherapy. Heliyon 2024; 10:e33144. [PMID: 39005910 PMCID: PMC11239598 DOI: 10.1016/j.heliyon.2024.e33144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy has been an advanced and effective approach to treating various types of solid tumors in recent years, and the most successful strategy is immune checkpoint inhibitors (ICIs), which have shown beneficial effects in patients with colorectal cancer (CRC). Drug resistance to ICIs is usually associated with CD8+ T-cells targeting tumor antigens; thus, CD8+ T-cells play an important role in immunotherapy. Unfortunately, Under continuous antigen stimulation, tumor microenvironment(TME), hypoxia and other problems it leads to insufficient infiltration of CD8+ T-cells, low efficacy and mechanism exhaustion, which have become obstacles to immunotherapy. Thus, this article describes the relationship between CRC and the immune system, focuses on the process of CD8+ T-cells production, activation, transport, killing, and exhaustion, and expounds on related mechanisms leading to CD8+ T-cells exhaustion. Finally, this article summarizes the latest strategies and methods in recent years, focusing on improving the infiltration, efficacy, and exhaustion of CD8+ T-cells, which may help to overcome the barriers to immunotherapy.
Collapse
Affiliation(s)
- Tao He
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Chencheng Hu
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Shichao Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yao Fan
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Fei Xie
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Xin Sun
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Qingfeng Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Weidong Chen
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yingtian Jia
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Wusheng Li
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou City, Sichuan Province, China
| |
Collapse
|
13
|
Rodriguez-Garcia GJ, Graves DK, Mirza MB, Idrees K, Kim YJ, Korrer MJ, Rathmell JC. Cancer Cell Small Molecule Secretome Induces the Immune Checkpoint NKG2A and Dysfunction of Human CD8+ T Cells. Immunohorizons 2024; 8:464-477. [PMID: 38922288 PMCID: PMC11220743 DOI: 10.4049/immunohorizons.2400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
PD-1 blockade has been approved for head and neck squamous cell carcinoma (HNSCC) patients. However, many HNSCC patients do not respond to this treatment, and other tumor microenvironmental factors may promote resistance to PD-1 blockade. We previously identified increased expression of the inhibitory receptor NKG2A on CD8+ T cells in HNSCC tumors compared with T cells in matching PBMC samples. Mechanisms that promote NKG2A expression and the role of NKG2A on human T cells in the tumor microenvironment, however, are uncertain. In this study, we show that tumor-conditioned media (TCM) of HNSCC cancer cell lines or ascites fluid from colorectal carcinoma patients is sufficient to induce the expression of NKG2A and other inhibitory receptors on activated CD8+ T cells isolated from PBMCs of healthy donors. Boiling or small molecular mass cutoff filtering did not eliminate the effect of TCM, suggesting that a small molecule promotes NKG2A. T cell activation in TCM decreased the basal and maximal mitochondrial respiration to metabolically restrain CD8+ T cells. Functionally, T cell activation in TCM reduced CD8+ T cell cytotoxicity as shown by lower production of cytokines, granzyme B, and perforin. Furthermore, TCM prevented CD8+ T cells from killing cancer cells in response to an anti-CD19/anti-CD3 bispecific T cell engager. Thus, a small secreted molecule from HNSCC cells can induce NKG2A expression and promote T cell dysfunction. Our findings may lead to targets for novel cancer therapies or biomarkers for NKG2A blockade response and provide a model to study T cell dysfunction and impaired metabolism.
Collapse
Affiliation(s)
| | - Diana K. Graves
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Muhammad B. Mirza
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Kamran Idrees
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Young J. Kim
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
- Regeneron Pharmaceutical, Tarrytown, NY
| | - Michael J. Korrer
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
14
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
15
|
Luo Z, Liu X, Chen Y, Shen L, Qin H, Zha Q, Hu F, Wang Y. Gene features of tumor-specific T cells relevant to immunotherapy, targeted therapy and chemotherapy in lung cancer. Heliyon 2024; 10:e28374. [PMID: 38590880 PMCID: PMC10999884 DOI: 10.1016/j.heliyon.2024.e28374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
1 BACKGROUND In lung cancer, the use of small-molecule inhibitors, chemotherapy and immunotherapy has led to unprecedented survival benefits in selected patients. Considering most patients will experience a relapse within a short period of time due to single drug resistance, combination therapy is also particularly important to improve patient prognosis. Therefore, more robust biomarkers to predict responses to immunotherapy, targeted therapy, chemotherapy and rationally drug combination therapies may be helpful in clinical treatment choices. 2 METHODS We defined tumor-specific T cells (TSTs) and their features (TSTGs) by single-cell RNA sequencing. We applied LASSO regression to filter out the most survival-relevant TSTGs to form the Tumor-specific T cell score (TSTS). Immunological characteristics, enriched pathways, and mutation were evaluated in high- and low TSTS groups. 3 RESULTS We identified six clusters of T cells as TSTs in lung cancer, and four most robust genes from 9 feature genes expressed only on tumor-specific T cells were screened to construct a tumor-specific T cells score (TSTS). TSTS was positively correlated with immune infiltration and angiogenesis and negatively correlated with malignant cell proliferation. Moreover, potential vascular-immune crosstalk in lung cancer provides the theoretical basis for combined anti-angiogenic and immunotherapy. Noticeable, patients in high TSTS had better response to ICB and targeted therapy and patients in the low TSTS group often benefit from chemotherapy. 4 CONCLUSION The proposed TSTS is a promising indicator to predict immunotherapy, targeted therapy and chemotherapy responses in lung cancer patients for helping clinical treatment choices.
Collapse
Affiliation(s)
- Ziwei Luo
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xuefei Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Shenzhen Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Ying Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Lize Shen
- LC-Bio Technology Co.ltd, Hangzhou, 310018, China
| | - Hui Qin
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Qiongfang Zha
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Feng Hu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| | - Yali Wang
- Department of Respiratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200120, China
| |
Collapse
|
16
|
Wang X, Li H, Chen H, Fang K, Chang X. Overexpression of circulating CD38+ NK cells in colorectal cancer was associated with lymph node metastasis and poor prognosis. Front Oncol 2024; 14:1309785. [PMID: 38463232 PMCID: PMC10921414 DOI: 10.3389/fonc.2024.1309785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction Lymph node metastasis (LNM) is a critical prognostic factor for colorectal cancer (CRC). Due to the potential influence of immune system on CRC progression, investigation into lymphocyte subsets as clinical markers has gained attention. The objective of this study was to assess the capability of lymphocyte subsets in evaluating the lymph node status and prognosis of CRC. Methods Lymphocyte subsets, including T cells (CD3+), natural killer cells (NK, CD3- CD56+), natural killer-like T cells (NK-like T, CD3+ CD56+), CD38+ NK cells (CD3- CD56+ CD38+) and CD38+ NK-like T cells (CD3+ CD56+ CD38+), were detected by flow cytometry. Univariate and multivariate analyses were used to assess the risk factors of LNM. The prognostic role of parameters was evaluated by survival analysis. Results The proportion of CD38+ NK cells within the NK cell population was significantly higher in LNM-positive patients (p <0.0001). However, no significant differences were observed in the proportions of other lymphocyte subsets. Poorer histologic grade (odds ratio [OR] =4.76, p =0.03), lymphovascular invasion (LVI) (OR =22.38, p <0.01), and CD38+ NK cells (high) (OR =4.54, p <0.01) were identified as independent risk factors for LNM. Furthermore, high proportion of CD38+ NK cells was associated with poor prognosis of CRC patients (HR=2.37, p =0.03). Conclusions It was demonstrated that the proportion of CD38+ NK cells was a marker overexpressed in LNM-positive patients compared with LNM-negative patients. Moreover, an elevated proportion of CD38+ NK cells is a risk factor for LNM and poor prognosis in CRC.
Collapse
Affiliation(s)
- Xueling Wang
- Center for Clinical Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huixian Chen
- Center for Clinical Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kehua Fang
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Center for Clinical Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023; 22:194. [PMID: 38041084 PMCID: PMC10693139 DOI: 10.1186/s12943-023-01899-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The molecules of Major histocompatibility class I (MHC-I) load peptides and present them on the cell surface, which provided the immune system with the signal to detect and eliminate the infected or cancerous cells. In the context of cancer, owing to the crucial immune-regulatory roles played by MHC-I molecules, the abnormal modulation of MHC-I expression and function could be hijacked by tumor cells to escape the immune surveillance and attack, thereby promoting tumoral progression and impairing the efficacy of cancer immunotherapy. Here we reviewed and discussed the recent studies and discoveries related to the MHC-I molecules and their multidirectional functions in the development of cancer, mainly focusing on the interactions between MHC-I and the multiple participators in the tumor microenvironment and highlighting the significance of targeting MHC-I for optimizing the efficacy of cancer immunotherapy and a deeper understanding of the dynamic nature and functioning mechanism of MHC-I in cancer.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Rui Jiang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
18
|
O'Neil TR, Harman AN, Cunningham AL, Nasr N, Bertram KM. OMIP-096: A 24-color flow cytometry panel to identify and characterize CD4+ and CD8+ tissue-resident T cells in human skin, intestinal, and type II mucosal tissue. Cytometry A 2023; 103:851-856. [PMID: 37772977 PMCID: PMC10953338 DOI: 10.1002/cyto.a.24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 04/06/2023] [Accepted: 07/24/2023] [Indexed: 09/30/2023]
Abstract
There is a great need to understand human immune cells within tissue, where disease manifests and infection occurs. Tissue-resident memory T cells (TRMs) were discovered over a decade ago, there is a great need to understand their role in human disease. We developed a 24-color flow cytometry panel to comprehensively interrogate CD4+ and CD8+ TRMs isolated from human tissues. When interrogating cells within human tissue, enzymatic methods used to liberate cells from within the tissue can cause cleavage of cell surface markers needed to phenotype these cells. Here we carefully select antibody clones and evaluate the effect of enzymatic digestion on the expression of markers relevant to the identification of T cell residency, as well as markers relevant to the activation and immunoregulation status of these cells. We have designed this panel to be applicable across a range of human tissues including skin, intestine, and type II mucosae such as the vagina.
Collapse
Affiliation(s)
- Thomas R. O'Neil
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Andrew N. Harman
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical ResearchWestmeadAustralia
- The Westmead Clinical School, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| |
Collapse
|
19
|
Luo J, He MW, Luo T, Lv GQ. Identification of multiple risk factors for colorectal cancer relapse after laparoscopic radical resection. World J Gastrointest Surg 2023; 15:2211-2221. [PMID: 37969700 PMCID: PMC10642461 DOI: 10.4240/wjgs.v15.i10.2211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common life-threatening disease that often requires surgical intervention, such as laparoscopic radical resection. However, despite successful surgeries, some patients experience disease relapse. Identifying the risk factors for CRC relapse can help guide clinical interventions and improve patient outcomes. AIM To determine the risk factors that may lead to CRC relapse after laparoscopic radical resection. METHODS We performed a retrospective analysis using the baseline data of 140 patients with CRC admitted to our hospital between January 2018 and January 2020. All included participants were followed up until death or for 3 years. The baseline data and laboratory indicators were compared between the patients who experienced relapse and those who did not experienced relapse. RESULTS Among the 140 patients with CRC, 30 experienced relapse within 3 years after laparoscopic radical resection and 110 did not experience relapse. The relapse group had a higher frequency of rectal tumors with low differentiation and lymphatic vessel invasion than that of the non-relapse group. The expression of serum markers and the prognostic nutritional index were lower, whereas the neutrophil-to-lymphocyte ratio, expression of cytokeratin 19 fragment antigen 21-1, vascular endothelial growth factor, and Chitinase-3-like protein 1 were significantly higher in the relapse group than those in the non-relapse group. The groups did not differ significantly based on other parameters. Logistic regression analysis revealed that all the above significantly altered factors were independent risk factors for CRC relapse. CONCLUSION We identified multiple risk factors for CRC relapse following surgery, which can be considered for the clinical monitoring of patients to reduce disease recurrence and improve patient survival.
Collapse
Affiliation(s)
- Jun Luo
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Mei-Wen He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Ting Luo
- Department of Operating Room, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Guo-Qing Lv
- Department of Gastrointestinal Surgery, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| |
Collapse
|
20
|
Kaulfuss M, Mietz J, Fabri A, Vom Berg J, Münz C, Chijioke O. The NK cell checkpoint NKG2A maintains expansion capacity of human NK cells. Sci Rep 2023; 13:10555. [PMID: 37386090 PMCID: PMC10310841 DOI: 10.1038/s41598-023-37779-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Human natural killer (NK) cells are cytotoxic effector cells that are increasingly harnessed in cancer immunotherapy. NKG2A/CD94 is an inhibitory receptor on NK cells that has established regulatory functions in the direct interaction with target cells when engaged with its ligand, the non-classical HLA class I molecule HLA-E. Here, we confirmed NKG2A as a checkpoint molecule in primary human NK cells and identified a novel role for NKG2A in maintaining NK cell expansion capacity by dampening both proliferative activity and excessive activation-induced cell death. Maintenance of NK cell expansion capacity might contribute to the preferential accumulation of human NKG2A+ NK cells after hematopoietic cell transplantation and enrichment of functionally impaired NK cells in human cancers. Functional silencing of NKG2A for cancer immunotherapy is highly attractive but will need to consider that this might also lead to a reduced survival by driving activation-induced cell death in targeted NK cells.
Collapse
Affiliation(s)
- Meike Kaulfuss
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Astrid Fabri
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
- Institute of Immunity & Transplantation, University College London Division of Infection & Immunity, London, UK
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zürich, Schlieren, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Li L, Li J. Dimerization of Transmembrane Proteins in Cancer Immunotherapy. MEMBRANES 2023; 13:393. [PMID: 37103820 PMCID: PMC10143916 DOI: 10.3390/membranes13040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Transmembrane proteins (TMEMs) are integrated membrane proteins that span the entire lipid bilayer and are permanently anchored to it. TMEMs participate in various cellular processes. Some TMEMs usually exist and perform their physiological functions as dimers rather than monomers. TMEM dimerization is associated with various physiological functions, such as the regulation of enzyme activity, signal transduction, and cancer immunotherapy. In this review, we focus on the dimerization of transmembrane proteins in cancer immunotherapy. This review is divided into three parts. First, the structures and functions of several TMEMs related to tumor immunity are introduced. Second, the characteristics and functions of several typical TMEM dimerization processes are analyzed. Finally, the application of the regulation of TMEM dimerization in cancer immunotherapy is introduced.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jingying Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
22
|
Jia Y, Zhang B, Zhang C, Kwong DL, Chang Z, Li S, Wang Z, Han H, Li J, Zhong Y, Sui X, Fu L, Guan X, Qin Y. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Esophageal Squamous Cell Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204565. [PMID: 36709495 PMCID: PMC9982558 DOI: 10.1002/advs.202204565] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Lymph node metastasis, the leading cause of mortality in esophageal squamous carcinoma (ESCC) with a highly complex tumor microenvironment, remains underexplored. Here, the transcriptomes of 85 263 single cells are analyzed from four ESCC patients with lymph node metastases. Strikingly, it is observed that the metastatic microenvironment undergoes the emergence or expansion of interferon induced IFIT3+ T, B cells, and immunosuppressive cells such as APOC1+ APOE+ macrophages and myofibroblasts with highly expression of immunoglobulin genes (IGKC) and extracellular matrix component and matrix metallopeptidase genes. A poor-prognostic epithelial-immune dual expression program regulating immune effector processes, whose activity is significantly enhanced in metastatic malignant epithelial cells and enriched in CD74+ CXCR4+ and major histocompatibility complex (MHC) class II genes upregulated malignant epithelia cells is discovered. Comparing with primary tumor, differential intercellular communications of metastatic ESCC microenvironment are revealed and furtherly validated via multiplexed immunofluorescence and immunohistochemistry staining, which mainly rely on the crosstalk of APOC1+ APOE+ macrophages with tumor and stromal cell. The data highlight potential molecular mechanisms that shape the lymph-node metastatic microenvironment and may inform drug discovery and the development of new strategies to target these prometastatic nontumor components for inhibiting tumor growth and overcoming metastasis to improve clinical outcomes.
Collapse
Affiliation(s)
- Yongxu Jia
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Baifeng Zhang
- Departments of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518009P. R. China
- Departments of Clinical OncologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
| | - Chunyang Zhang
- Department of Thoracic SurgeryThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Dora Lai‐Wan Kwong
- Departments of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518009P. R. China
- Departments of Clinical OncologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
| | - Zhiwei Chang
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Shanshan Li
- Departments of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518009P. R. China
| | - Zehua Wang
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Huiqiong Han
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Jing Li
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Yali Zhong
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Xin Sui
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and DiseasesDepartment of Pharmacology and International Cancer CenterShenzhen University Health Science CenterShenzhen518060P. R. China
| | - Xinyuan Guan
- Departments of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhen518009P. R. China
- Departments of Clinical OncologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongP. R. China
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhou528200China
| | - Yanru Qin
- Department of Clinical OncologyThe First Affiliated HospitalZhengzhou UniversityZhengzhou450052P. R. China
| |
Collapse
|
23
|
Liu W, Sheng S, Zhu C, Li C, Zou Y, Yang C, Chen ZJ, Wang F, Jiao X. Increased NKG2A +CD8 + T-cell exhaustion in patients with adenomyosis. Mucosal Immunol 2023; 16:121-134. [PMID: 36828189 DOI: 10.1016/j.mucimm.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
Immune dysregulation has long been proposed to be associated with adenomyosis, but the underlying mediators and mechanisms remain largely unexplored. Here, we used flow cytometry to investigate the alterations in immune cell subsets in adenomyotic uteri and analyze the phenotype and function of abnormal immune cells. We found that an increase in cluster of differentiation (CD)8+ T-cell number was the predominant alteration in ectopic lesions in patients with adenomyosis and was significantly associated with the severity of adenomyosis. Importantly, we identified an exhausted natural killer group protein 2A (NKG2A)+CD8+ T-cell subset that was associated with the severity of adenomyosis and found that the number of these cells was significantly increased in the eutopic endometrium and ectopic lesions. In addition, the increases in the expression of NKG2A ligand histocompatibility leucocyte antigen E and interleukin-15 in glandular epithelial cells in the adenomyotic microenvironment might contribute to CD8+ T-cell exhaustion by promoting NKG2A expression on CD8+ T cells or inhibiting the effector function of these cells. In conclusion, our data revealed a previously unrecognized role for NKG2A+CD8+ T-cell exhaustion in the pathogenesis of adenomyosis, indicating that therapeutic interventions designed to target and reinvigorate exhausted CD8+ T cells may be beneficial for patients with adenomyosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Shuman Sheng
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Chendi Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Key Laboratory of Reproductive Medicine, Jinan, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yonghui Zou
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Chunrun Yang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Key Laboratory of Reproductive Medicine, Jinan, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Fei Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, China; Shandong Key Laboratory of Reproductive Medicine, Jinan, China.
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China; Shandong Key Laboratory of Reproductive Medicine, Jinan, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China; Shandong Technology Innovation Center for Reproductive Health, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China; Suzhou Institute of Shandong University, Suzhou, China.
| |
Collapse
|
24
|
NKG2A Immune Checkpoint in Vδ2 T Cells: Emerging Application in Cancer Immunotherapy. Cancers (Basel) 2023; 15:cancers15041264. [PMID: 36831606 PMCID: PMC9954046 DOI: 10.3390/cancers15041264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Immune regulation has revolutionized cancer treatment with the introduction of T-cell-targeted immune checkpoint inhibitors (ICIs). This successful immunotherapy has led to a more complete view of cancer that now considers not only the cancer cells to be targeted and destroyed but also the immune environment of the cancer cells. Current challenges associated with the enhancement of ICI effects are increasing the fraction of responding patients through personalized combinations of multiple ICIs and overcoming acquired resistance. This requires a complete overview of the anti-tumor immune response, which depends on a complex interplay between innate and adaptive immune cells with the tumor microenvironment. The NKG2A was revealed to be a key immune checkpoint for both Natural Killer (NK) cells and T cells. Monalizumab, a humanized anti-NKG2A antibody, enhances NK cell activity against various tumor cells and rescues CD8 αβ T cell function in combination with PD-1/PD-L1 blockade. In this review, we discuss the potential for targeting NKG2A expressed on tumor-sensing human γδ T cells, mostly on the specific Vδ2 T cell subset, in order to emphasize its importance and potential in the development of new ICI-based therapeutic approaches.
Collapse
|
25
|
Dutta S, Ganguly A, Chatterjee K, Spada S, Mukherjee S. Targets of Immune Escape Mechanisms in Cancer: Basis for Development and Evolution of Cancer Immune Checkpoint Inhibitors. BIOLOGY 2023; 12:biology12020218. [PMID: 36829496 PMCID: PMC9952779 DOI: 10.3390/biology12020218] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
Immune checkpoint blockade (ICB) has emerged as a novel therapeutic tool for cancer therapy in the last decade. Unfortunately, a small number of patients benefit from approved immune checkpoint inhibitors (ICIs). Therefore, multiple studies are being conducted to find new ICIs and combination strategies to improve the current ICIs. In this review, we discuss some approved immune checkpoints, such as PD-L1, PD-1, and CTLA-4, and also highlight newer emerging ICIs. For instance, HLA-E, overexpressed by tumor cells, represents an immune-suppressive feature by binding CD94/NKG2A, on NK and T cells. NKG2A blockade recruits CD8+ T cells and activates NK cells to decrease the tumor burden. NKG2D acts as an NK cell activating receptor that can also be a potential ICI. The adenosine A2A and A2B receptors, CD47-SIRPα, TIM-3, LAG-3, TIGIT, and VISTA are targets that also contribute to cancer immunoresistance and have been considered for clinical trials. Their antitumor immunosuppressive functions can be used to develop blocking antibodies. PARPs, mARTs, and B7-H3 are also other potential targets for immunosuppression. Additionally, miRNA, mRNA, and CRISPR-Cas9-mediated immunotherapeutic approaches are being investigated with great interest. Pre-clinical and clinical studies project these targets as potential immunotherapeutic candidates in different cancer types for their robust antitumor modulation.
Collapse
Affiliation(s)
- Shovan Dutta
- The Center for Immunotherapy & Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India
| | | | - Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA
- Correspondence: (S.S.); (S.M.)
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: (S.S.); (S.M.)
| |
Collapse
|
26
|
Tan L, Fu D, Liu F, Liu J, Zhang Y, Li X, Gao J, Tao K, Wang G, Wang L, Wang Z. MXRA8 is an immune-relative prognostic biomarker associated with metastasis and CD8 + T cell infiltration in colorectal cancer. Front Oncol 2023; 12:1094612. [PMID: 36703779 PMCID: PMC9871988 DOI: 10.3389/fonc.2022.1094612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background Colorectal cancer (CRC) is the second most common cause of cancer-related deaths worldwide. Tumor metastasis and CD8+ T cell infiltration play a crucial role in CRC patient survival. It is important to determine the etiology and mechanism of the malignant progression of CRC to develop more effective treatment strategies. Methods We conducted weighted gene co-expression network analysis (WGCNA) to explore vital modules of tumor metastasis and CD8+ T cell infiltration, then with hub gene selection and survival analysis. Multi-omics analysis is used to explore the expression pattern, immunity, and prognostic effect of MXRA8. The molecular and immune characteristics of MXRA8 are analyzed in independent cohorts, clinical specimens, and in vitro. Results MXRA8 expression was strongly correlated with tumor malignancy, metastasis, recurrence, and immunosuppressive microenvironment. Furthermore, MXRA8 expression predicts poor prognosis and is an independent prognostic factor for OS in CRC. Conclusion MXRA8 may be a potential immunotherapeutic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Lulu Tan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Lin Wang, ; Zheng Wang,
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Lin Wang, ; Zheng Wang,
| |
Collapse
|
27
|
Ghazvinian Z, Abdolahi S, Tokhanbigli S, Tarzemani S, Piccin A, Reza Zali M, Verdi J, Baghaei K. Contribution of natural killer cells in innate immunity against colorectal cancer. Front Oncol 2023; 12:1077053. [PMID: 36686835 PMCID: PMC9846259 DOI: 10.3389/fonc.2022.1077053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Natural killer cells are members of the innate immune system and promote cytotoxic activity against tumor or infected cells independently from MHC recognition. NK cells are modulated by the expression of activator/inhibitory receptors. The ratio of this activator/inhibitory receptors is responsible for the cytotoxic activity of NK cells toward the target cells. Owing to the potent anti-tumor properties of NK cells, they are considered as interesting approach in tumor treatment. Colorectal cancer (CRC) is the second most common cause of death in the world and the incidence is about 2 million new cases per year. Metastatic CRC is accompanied by a poor prognosis with less than three years of overall survival. Chemotherapy and surgery are the most adopted treatments. Besides, targeted therapy and immune checkpoint blockade are novel approach to CRC treatment. In these patients, circulating NK cells are a prognostic marker. The main target of CRC immune cell therapy is to improve the tumor cell's recognition and elimination by immune cells. Adaptive NK cell therapy is the milestone to achieve the purpose. Allogeneic NK cell therapy has been widely investigated within clinical trials. In this review, we focus on the NK related approaches including CAR NK cells, cell-based vaccines, monoclonal antibodies and immunomodulatory drugs against CRC tumoral cells.
Collapse
Affiliation(s)
- Zeinab Ghazvinian
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Abdolahi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Andrea Piccin
- Northern Ireland Blood Transfusion Service, Belfast, United Kingdom
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Chen X, Yi G, Zhou Y, Hu W, Xi L, Han W, Wang F. Prognostic Biomarker SLCO4A1 Is Correlated with Tumor Immune Infiltration in Colon Adenocarcinoma. Mediators Inflamm 2023; 2023:4926474. [PMID: 37124063 PMCID: PMC10137198 DOI: 10.1155/2023/4926474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background Solute carrier organic anion transporter family member 4A1 (SLCO4A1), a member of solute carrier organic anion family, is a key gene regulating bile metabolism, organic anion transport, and ABC transport. However, the association of SLCO4A1 with prognosis and tumor immune infiltration in colon adenocarcinoma (COAD) remains indistinct. Methods Firstly, we explored the expression level of SLCO4A1 in COAD via GEPIA, Oncomine, and UALCAN databases. Secondly, we used the Kaplan-Meier plotter and PrognoScan databases to investigate the effect of SLCO4A1 on prognosis in COAD patients. In addition, the correlation between SLCO4A1 and tumor immune infiltration was studied by using TIMER and TISIDB databases. Results Our results showed that SLCO4A1 was overexpressed in COAD tissues. At the same time, our study showed that high expression of SLCO4A1 was associated with poor overall survival, disease-free survival, and disease-specific survival in COAD patients. The expression level of SLCO4A1 was negatively linked to the infiltrating levels of B cells, CD8+ T cells, and dendritic cells in COAD. Moreover, the expression of SLCO4A1 was significantly correlated with numerous immune markers in COAD. Conclusions These results indicated that SLCO4A1 could be associated with the prognosis of COAD patients and the levels of tumor immune infiltration. Our study suggested that SLCO4A1 could be a valuable biomarker for evaluating prognosis and tumor immune infiltration in COAD patients.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Gangfeng Yi
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Yu Zhou
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Weijun Hu
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Lingyun Xi
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Weilan Han
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Fei Wang
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| |
Collapse
|
29
|
Defining the Immune Checkpoint Landscape in Human Colorectal Cancer Highlights the Relevance of the TIGIT/CD155 Axis for Optimizing Immunotherapy. Cancers (Basel) 2022; 14:cancers14174261. [PMID: 36077799 PMCID: PMC9454990 DOI: 10.3390/cancers14174261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
While immune checkpoint (IC) therapies, particularly those targeting the PD-1/PD-L1 axis, have revolutionized the treatment of melanoma and several other cancers, their effect remains very limited in colorectal cancer (CRC). To define a comprehensive landscape of ICs in the human CRC tumor microenvironment (TME), we evaluated, using multiparametric flow cytometry, their ex vivo expression via tumor-infiltrating lymphocytes (TILs) (n = 40 CRCs) as well as that of their respective ligands on tumor and myeloid cells (n = 29). Supervised flow cytometry analyses showed that (i) most CD3+ TILs expressed PD-1 and TIGIT and, to a lesser extent, Tim-3, Lag3 and NKG2A, and (ii) EpCAM+ tumor cells and CD11b+ myeloid cells differed in their IC ligand expression profile, with a strikingly high expression of CD155 by tumor cells. An in situ analysis of IC and their ligands using immunohistochemistry on paraffin sections of CRC confirmed the overexpression of TIGIT and its ligand, CD155, in the TME. Most interestingly, an unsupervised clustering analysis of IC co-expression on CD4+ and CD8+ TILs identified two tumor subgroups, named IChigh and IClow. Altogether, our findings highlight the TIGIT/CD155 axis as a potential target that could be used in combination IC therapy in CRC.
Collapse
|
30
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
31
|
Prašnikar E, Perdih A, Borišek J. What a Difference an Amino Acid Makes: An All-Atom Simulation Study of Nonameric Peptides in Inhibitory HLA-E/NKG2A/CD94 Immune Complexes. Front Pharmacol 2022; 13:925427. [PMID: 35991867 PMCID: PMC9385950 DOI: 10.3389/fphar.2022.925427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I antigen E (HLA-E), a ligand for the inhibitory NKG2A/CD94 receptor of the immune system, is responsible for evading the immune surveillance in several settings, including senescent cell accumulation and tumor persistence. The formation of this ligand-receptor interaction promotes the inhibition of the cytolytic action of immune system natural killer (NK) cells and CD8+ T-cells expressing this receptor. The final outcome of the HLA-E/NKG2A/CD94 interaction on target cells is also highly dependent on the identity of the nonameric peptide incorporated into the HLA-E ligand. To better understand the role played by a nonameric peptide in these immune complexes, we performed a series of multi-microsecond all-atom molecular dynamics simulations. We generated natural and alternative variants of the nonameric peptide bound to the HLA-E ligand alone or in the HLA-E/NKG2A/CD94 complexes. A systematic study of molecular recognition between HLA-E and peptides led to the development of new variants that differ at the strategic 6th position (P6) of the peptide and have favorable in silico properties comparable to those of natural binding peptides. Further examination of a selected subset of peptides in full complexes revealed a new variant that, according to our previously derived atomistic model, can interfere with the signal transduction via HLA-E/NKG2A/CD94 and thus prevent the target cell from evading immune clearance by NK and CD8+ T-cells. These simulations provide an atomistic picture of how a small change in amino acid sequence can lead to a profound effect on binding and molecular recognition. Furthermore, our study also provides new data on the peptide interaction motifs as well as the energetic and conformational properties of the binding interface, laying the structure-based foundation for future development of potential therapeutic peptides, peptidomimetics, or even small molecules that would bind to the HLA-E ligand and abrogate NKG2A/CD94 recognition. Such external intervention would be useful in the emerging field of targeting senescent cells in a variety of age-related diseases, as well as in novel cancer immunotherapies.
Collapse
Affiliation(s)
- Eva Prašnikar
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Medicine, Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| | - Jure Borišek
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| |
Collapse
|
32
|
Battaglia NG, Murphy JD, Uccello TP, Hughson A, Gavras NW, Caldon JJ, Gerber SA, Lord EM. Combination of NKG2A and PD-1 Blockade Improves Radiotherapy Response in Radioresistant Tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:629-640. [PMID: 35840162 PMCID: PMC9339479 DOI: 10.4049/jimmunol.2100044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Radiotherapy (RT) is commonly employed to treat solid tumors. Immune checkpoint blockade of programmed cell death protein 1 (PD-1) and CTLA-4 improves survival in RT patients, yet many fail to respond to combination therapy. Natural killer group 2 (NKG2) family receptors, particularly inhibitory NKG2A and activating NKG2D, have emerged as promising therapeutic targets to improve antitumor T cell responses; thus, we examined how these receptors and their ligands (Qa-1b and retinoic acid early inducible 1 [Rae-1], respectively) regulate the RT response in C57BL/6 mice bearing syngeneic B16F10 melanoma and MC38 colorectal adenocarcinoma tumors. RT (15 Gy) transiently reduced B16F10 tumor burden, whereas MC38 tumors exhibited durable response to RT. Intratumoral NK and CD8 T cells expressed NKG2A and NKG2D in both models, which was unaltered by RT. In vitro/in vivo RT increased tumor/stromal cell Qa-1b and Rae-1 expression in both models, especially B16F10 tumors, but IFN-γ stimulation induced both Qa-1b and Rae-1 only in B16F10 tumors. NKG2A/Qa-1b inhibition alone did not improve RT response in either model, but combined RT and NKG2A/PD-1 blockade improved survival in the B16F10 model. Depletion experiments indicate that the triple therapy efficacy is CD8 T cell-dependent with negligible NK cell contribution. RNA sequencing of CD8 T cells from triple therapy-treated B16F10 tumors showed increased proliferative capacity compared with RT and PD-1 blockade alone. Our work demonstrates that RT modulates NKG2A ligand expression, which inhibits RT-induced T cell responses in tumors that fail to respond to combined RT and PD-1 blockade. These results provide a rationale for combining NKG2A blockade with immune checkpoint blockade therapies and RT to improve clinical response.
Collapse
Affiliation(s)
- Nicholas G Battaglia
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Joseph D Murphy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Taylor P Uccello
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Angela Hughson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY; and
| | - Nicholas W Gavras
- Department of Surgery, University of Rochester Medical Center, Rochester, NY; and
| | | | - Scott A Gerber
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
- Department of Surgery, University of Rochester Medical Center, Rochester, NY; and
| | - Edith M Lord
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY;
| |
Collapse
|
33
|
Xing C, Du Y, Duan T, Nim K, Chu J, Wang HY, Wang RF. Interaction between microbiota and immunity and its implication in colorectal cancer. Front Immunol 2022; 13:963819. [PMID: 35967333 PMCID: PMC9373904 DOI: 10.3389/fimmu.2022.963819] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the world. Besides genetic causes, colonic inflammation is one of the major risk factors for CRC development, which is synergistically regulated by multiple components, including innate and adaptive immune cells, cytokine signaling, and microbiota. The complex interaction between CRC and the gut microbiome has emerged as an important area of current CRC research. Metagenomic profiling has identified a number of prominent CRC-associated bacteria that are enriched in CRC patients, linking the microbiota composition to colitis and cancer development. Some microbiota species have been reported to promote colitis and CRC development in preclinical models, while a few others are identified as immune modulators to induce potent protective immunity against colitis and CRC. Mechanistically, microbiota regulates the activation of different immune cell populations, inflammation, and CRC via crosstalk between innate and adaptive immune signaling pathways, including nuclear factor kappa B (NF-κB), type I interferon, and inflammasome. In this review, we provide an overview of the potential interactions between gut microbiota and host immunity and how their crosstalk could synergistically regulate inflammation and CRC, thus highlighting the potential roles and mechanisms of gut microbiota in the development of microbiota-based therapies to prevent or alleviate colitis and CRC.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yang Du
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tianhao Duan
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Kelly Nim
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Junjun Chu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Helen Y. Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
34
|
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, Marcenaro E, Rutigliani M, Provinciali N, Paleari L, DeCensi A, Sivori S, Carlomagno S. NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines (Basel) 2022; 10:1033. [PMID: 35891197 PMCID: PMC9323201 DOI: 10.3390/vaccines10071033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Giordano
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | | | | | - Laura Paleari
- A.Li.Sa., Liguria Region Health Authority, 16121 Genoa, Italy;
| | - Andrea DeCensi
- Medical Oncology, Galliera Hospital, 16128 Genoa, Italy; (N.P.); (A.D.)
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| |
Collapse
|
35
|
Xue JS, Ding ZN, Meng GX, Yan LJ, Liu H, Li HC, Yao SY, Tian BW, Dong ZR, Chen ZQ, Hong JG, Wang DX, Li T. The Prognostic Value of Natural Killer Cells and Their Receptors/Ligands in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Immunol 2022; 13:872353. [PMID: 35464489 PMCID: PMC9021421 DOI: 10.3389/fimmu.2022.872353] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background Natural killer (NK) cells play major roles in eliminating tumor cells. Preliminary studies have shown that NK cells and their receptors/ligands have prognostic value in malignant tumors. However, the relevance of NK cells and their receptors/ligands level to the prognosis of hepatocellular carcinoma (HCC) remains unclear. Methods Several electronic databases were searched from database inception to November 8, 2021. Random effects were introduced to this meta-analysis. The relevance of NK cells and their receptors/ligands level to the prognosis of HCC was evaluated using hazard ratios (HRs) with 95% confidence interval (95%CI). Results 26 studies were included in the analysis. The pooled results showed that high NK cells levels were associated with better overall survival (HR=0.70, 95%CI 0.57–0.86, P=0.001) and disease-free survival (HR=0.61, 95%CI 0.40-0.93, P=0.022) of HCC patients. In subgroup analysis for overall survival, CD57+ NK cells (HR=0.70, 95%CI 0.55-0.89, P=0.004) had better prognostic value over CD56+ NK cells (HR=0.69, 95%CI 0.38-1.25, P=0.224), and intratumor NK cells had better prognostic value (HR=0.71, 95%CI 0.55-0.90, P=0.005) over peripheral NK cells (HR=0.66, 95%CI 0.41-1.06, P=0.088). In addition, high level of NK cell inhibitory receptors predicted increased recurrence of HCC, while the prognostic role of NK cell activating receptors remained unclear. Conclusion NK cells and their inhibitory receptors have prognostic value for HCC. The prognostic role of NK cell activating receptors is unclear and more high-quality prospective studies are essential to evaluate the prognostic value of NK cells and their receptors/ligands for HCC.
Collapse
Affiliation(s)
- Jun-Shuai Xue
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Sheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Wen Tian
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China.,Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
36
|
Ducoin K, Oger R, Bilonda Mutala L, Deleine C, Jouand N, Desfrançois J, Podevin J, Duchalais E, Cruard J, Benlalam H, Labarrière N, Bossard C, Jarry A, Gervois-Segain N. Targeting NKG2A to boost anti-tumor CD8 T-cell responses in human colorectal cancer. Oncoimmunology 2022; 11:2046931. [PMID: 35295095 PMCID: PMC8920231 DOI: 10.1080/2162402x.2022.2046931] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recently, the inhibitory CD94/NKG2A receptor has joined the group of immune checkpoints (ICs) and its expression has been documented in NK cells and CD8+ T lymphocytes in several cancers and some infectious diseases. In colorectal cancer (CRC), we previously reported that NKG2A+ tumor-infiltrating lymphocytes (TILs) are predominantly CD8+ αβ T cells and that CD94 overexpression and/or its ligand HLA-E were associated with a poor prognosis. This study aimed to thoroughly characterize the NKG2A+ CD8+ TIL subpopulation and document the impact of NKG2A on anti-tumor responses in CRC. Our findings highlight new features of this subpopulation: (i) enrichment in colorectal tumors compared to paired normal colonic mucosa, (ii) their character as tissue-resident T cells and their majority terminal exhaustion status, (iii) co-expression of other ICs delineating two subgroups differing mainly in the level of NKG2A expression and the presence of PD-1, (iv) high functional avidity despite reduced proliferative capacity and finally (v) inhibition of anti-tumor reactivity that is overcome by blocking NKG2A. From a clinical point of view, these results open a promising alternative for immunotherapies based on NKG2A blockade in CRC, which could be performed alone or in combination with other IC inhibitors, adoptive cell transfer or therapeutic vaccination.
Collapse
Affiliation(s)
- Kathleen Ducoin
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Romain Oger
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
| | - Linda Bilonda Mutala
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
- Institut Roche, Boulogne-Billancourt, France
| | - Cécile Deleine
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nicolas Jouand
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Juliette Desfrançois
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France
| | - Juliette Podevin
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Emilie Duchalais
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Jonathan Cruard
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
| | - Houssem Benlalam
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nathalie Labarrière
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Céline Bossard
- LabEx IGO, Université de Nantes, Nantes, France
- Université de Nantes, INSERM, CRCINA, F-44000 Nantes, France
- CHU Nantes, Department of Digestive Surgery and IMAD, Nantes, France
| | - Anne Jarry
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| | - Nadine Gervois-Segain
- Nantes Université, Univ Angers, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302. F-44000 Nantes, France
- LabEx IGO, Université de Nantes, Nantes, France
| |
Collapse
|
37
|
Fumet JD, Lardenois E, Ray-Coquard I, Harter P, Joly F, Canzler U, Truntzer C, Tredan O, Liebrich C, Lortholary A, Pissaloux D, Leary A, Pfisterer J, Eeckhoutte A, Hilpert F, Fabbro M, Caux C, Alexandre J, Houlier A, Sehouli J, Sohier E, Kimmig R, Dubois B, Spaeth D, Treilleux I, Frenel JS, Herwig U, Le Saux O, Bendriss-Vermare N, du Bois A. Genomic Instability Is Defined by Specific Tumor Microenvironment in Ovarian Cancer: A Subgroup Analysis of AGO OVAR 12 Trial. Cancers (Basel) 2022; 14:cancers14051189. [PMID: 35267497 PMCID: PMC8909387 DOI: 10.3390/cancers14051189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Following disappointing results with PD-1/PD-L1 inhibitors in ovarian cancer, it is essential to explore other immune targets. The aim of this study is to describe the tumor immune microenvironment (TME) according to genomic instability in high grade serous ovarian carcinoma (HGSOC) patients receiving primary debulking surgery followed by carboplatin-paclitaxel chemotherapy +/− nintedanib. Methods: 103 HGSOC patients’ tumor samples from phase III AGO-OVAR-12 were analyzed. A comprehensive analysis of the TME was performed by immunohistochemistry on tissue microarray. Comparative genomic hybridization was carried out to evaluate genomic instability signatures through homologous recombination deficiency (HRD) score, genomic index, and somatic copy number alterations. The relationship between genomic instability and TME was explored. Results: Patients with high intratumoral CD3+ T lymphocytes had longer progression-free survival (32 vs. 19.6 months, p = 0.009) and overall survival (OS) (median not reached). High HLA-E expression on tumor cells was associated with a longer OS (median OS not reached vs. 52.9 months, p = 0.002). HRD profile was associated with high HLA-E expression on tumor cells and an improved OS. In the multivariate analysis, residual tumor, intratumoral CD3, and HLA-E on tumor cells were more predictive than other parameters. Conclusions: Our results suggest HLA-E/CD94-NKG2A/2C is a potential immune target particularly in the HRD positive ovarian carcinoma subgroup.
Collapse
Affiliation(s)
- Jean-David Fumet
- GINECO & Department of Medical Oncology, Center GF Leclerc, 1 rue du Professeur Marion, 21000 Dijon, France
- Platform of Transfer in Cancer Biology, 21079 Dijon, France;
- University of Bourgogne-Franche-Comté, 21000 Dijon, France
- Correspondence: (J.-D.F.); (N.B.-V.)
| | - Emilie Lardenois
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, “Cancer Immune Surveillance and Therapeutic Targeting” Team, 69000 Lyon, France; (E.L.); (I.R.-C.); (C.C.); (B.D.); (O.L.S.)
- Leon Berard Center, Department of Pathology, 69000 Lyon, France; (D.P.); (A.H.); (I.T.)
| | - Isabelle Ray-Coquard
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, “Cancer Immune Surveillance and Therapeutic Targeting” Team, 69000 Lyon, France; (E.L.); (I.R.-C.); (C.C.); (B.D.); (O.L.S.)
- GINECO & Medical Oncology Department, Centre Léon Bérard, 28, rue Laennec, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Philipp Harter
- AGO & Department of Gynecology and Gynecologic Oncology, Evang. Kliniken Essen-Mitte, 45136 Essen, Germany;
| | - Florence Joly
- GINECO & Department of Medical Oncology, Baclesse Cancer Center, 14118 Caen, France;
| | - Ulrich Canzler
- AGO & Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany & National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany;
| | - Caroline Truntzer
- Platform of Transfer in Cancer Biology, 21079 Dijon, France;
- Genetic and Immunology Medical Institute (GIMI), 21000 Dijon, France
- UMR INSERM 1231, 21000 Dijon, France
| | - Olivier Tredan
- GINECO & Medical Oncology Department, Centre Léon Bérard, 28, rue Laennec, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Clemens Liebrich
- AGO & Klinikum Wolfsburg, amO—Interdisziplinäres ambulantes Onkologiezentrum am Klieversberg, Sauerbruchstrasse 7, 38840 Wolfsburg, Germany;
| | - Alain Lortholary
- GINECO & Confluent Private Hospital, Institut de Cancérologie Catherine de Sienne, 44200 Nantes, France;
| | - Daniel Pissaloux
- Leon Berard Center, Department of Pathology, 69000 Lyon, France; (D.P.); (A.H.); (I.T.)
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, 69000 Lyon, France
| | - Alexandra Leary
- GINECO & Medical Oncology Department, Institut Gustave Roussy, 94805 Villejuif, France;
| | - Jacobus Pfisterer
- AGO & Zentrum für Gynäkologische Onkologie, Herzog-Friedrich-Str. 21, 24103 Kiel, Germany;
| | - Alexandre Eeckhoutte
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.m) PSL Research University, Institut Curie, 75005 Paris, France;
| | - Felix Hilpert
- AGO & Krankenhaus Jerusalem, Moorkamp 2-6, Onkologische Tagesklinik, 20357 Hamburg, Germany;
| | - Michel Fabbro
- GINECO & ICM Val d’Aurelle, oncologie médicale, 208, Avenue des Apothicaires, 34298 Montpellier, France;
| | - Christophe Caux
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, “Cancer Immune Surveillance and Therapeutic Targeting” Team, 69000 Lyon, France; (E.L.); (I.R.-C.); (C.C.); (B.D.); (O.L.S.)
- Laboratory for Immunotherapy of Cancer of Lyon (LICL), Centre Léon Bérard, 69000 Lyon, France
| | - Jérôme Alexandre
- GINECO & Medical Oncology Department, Hopital Cochin, 75014 Paris, France;
| | - Aurélie Houlier
- Leon Berard Center, Department of Pathology, 69000 Lyon, France; (D.P.); (A.H.); (I.T.)
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Equipe Labellisée Ligue contre le Cancer, 69000 Lyon, France
| | - Jalid Sehouli
- AGO & Charité, Medical University of Berlin, Department of Gynecology with Center of Oncological Surgery, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Emilie Sohier
- Synergie Lyon Cancer, Bio-Informatics Platform, 69000 Lyon, France;
| | - Rainer Kimmig
- AGO & West-German Cancer Center, Department of Gynecology and Obstetrics, University of Duisburg-Essen Germany, 45136 Essen, Germany;
| | - Bertrand Dubois
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, “Cancer Immune Surveillance and Therapeutic Targeting” Team, 69000 Lyon, France; (E.L.); (I.R.-C.); (C.C.); (B.D.); (O.L.S.)
- Laboratory for Immunotherapy of Cancer of Lyon (LICL), Centre Léon Bérard, 69000 Lyon, France
| | - Dominique Spaeth
- GINECO & Medical Oncology Department Centre d’Oncologie de Gentilly, 54000 Nancy, France;
| | - Isabelle Treilleux
- Leon Berard Center, Department of Pathology, 69000 Lyon, France; (D.P.); (A.H.); (I.T.)
| | - Jean-Sébastien Frenel
- GINECO & Medical Oncology Department Institut de cancerologie de l’Ouest site René Gauducheau, 44800 Saint Herblain, France;
| | - Uwe Herwig
- AGO & Albertinen-Krankenhaus, Department Gynecology, Süntelstraße 11a, 22457 Hamburg, Germany;
| | - Olivia Le Saux
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, “Cancer Immune Surveillance and Therapeutic Targeting” Team, 69000 Lyon, France; (E.L.); (I.R.-C.); (C.C.); (B.D.); (O.L.S.)
- GINECO & Medical Oncology Department, Centre Léon Bérard, 28, rue Laennec, Université Claude Bernard Lyon 1, 69008 Lyon, France;
| | - Nathalie Bendriss-Vermare
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, “Cancer Immune Surveillance and Therapeutic Targeting” Team, 69000 Lyon, France; (E.L.); (I.R.-C.); (C.C.); (B.D.); (O.L.S.)
- Laboratory for Immunotherapy of Cancer of Lyon (LICL), Centre Léon Bérard, 69000 Lyon, France
- Correspondence: (J.-D.F.); (N.B.-V.)
| | - Andreas du Bois
- AGO & Evangelische Kliniken Essen Mitte (KEM), 45136 Essen, Germany;
| |
Collapse
|
38
|
Denis Musquer M, Jouand N, Pere M, Lamer JE, Bézieau S, Matysiak T, Faroux R, Caroli Bosc FX, Rousselet MC, Leclair F, Mosnier JF, Toquet C, Gervois N, Bossard C. High-Density of FcγRIIIA + (CD16 +) Tumor-Associated Neutrophils in Metastases Improves the Therapeutic Response of Cetuximab in Metastatic Colorectal Cancer Patients, Independently of the HLA-E/CD94-NKG2A Axis. Front Oncol 2021; 11:684478. [PMID: 34211852 PMCID: PMC8239306 DOI: 10.3389/fonc.2021.684478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Antibody-dependent cellular cytotoxicity (ADCC) in the anti-tumor effect of cetuximab in metastatic colorectal cancer (mCRC) is only based on the impact of FcγRIIIA (CD16) polymorphisms as predictive of therapeutic response. However, nature, density and therapeutic impact of FcγRIIIA+ (CD16) effector cells in tumor remain poorly documented. Moreover, the inhibition of cetuximab-mediated ADCC induced by NK cells by the engagement of the new inhibitory CD94-NKG2A immune checkpoint has only been demonstrated in vitro. This multicentric study aimed to determine, on paired primary and metastatic tissue samples from a cohort of mCRC patients treated with cetuximab: 1) the nature and density of FcγRIIIA+ (CD16) immune cells, 2) the expression profile of HLA-E/β2m by tumor cells as well as the density of CD94+ immune cells and 3) their impact on both objective response to cetuximab and survival. We demonstrated that FcγRIIIA+ (CD16) intraepithelial immune cells mainly correspond to tumor-associated neutrophils (TAN), and their high density in metastases was significantly associated with a better response to cetuximab, independently of the expression of the CD94/NKG2A inhibitory immune checkpoint. However, HLA-E/β2m, preferentially overexpressed in metastases compared with primary tumors and associated with CD94+ tumor infiltrating lymphocytes (TILs), was associated with a poor overall survival. Altogether, these results strongly support the use of bispecific antibodies directed against both EGFR and FcγRIIIA (CD16) in mCRC patients, to boost cetuximab-mediated ADCC in RAS wild-type mCRC patients. The preferential overexpression of HLA-E/β2m in metastases, associated with CD94+ TILs and responsible for a poor prognosis, provides convincing arguments to inhibit this new immune checkpoint with monalizumab, a humanized anti-NKG2A antibody, in combination with anti- FcγRIIIA/EGFR bispecific antibodies as a promising therapeutic perspective in RAS wild-type mCRC patients.
Collapse
Affiliation(s)
| | - Nicolas Jouand
- Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Morgane Pere
- Biostatistics Plateform, University Hospital of Nantes, Nantes, France
| | | | - Stéphane Bézieau
- Department of Genetic, University Hospital of Nantes, Nantes, France
| | - Tamara Matysiak
- Department of Gastroenterology, University Hospital of Nantes, Nantes, France
| | - Roger Faroux
- Department of Gastroenterology, Hospital of La Roche sur Yon, La Roche sur Yon, France
| | | | | | - François Leclair
- Department of Pathology, Hospital of La Roche sur Yon, La Roche sur Yon, France
| | | | - Claire Toquet
- Department of Pathology, University Hospital of Nantes, Nantes, France
| | - Nadine Gervois
- Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Céline Bossard
- Department of Pathology, University Hospital of Nantes, Nantes, France.,Université de Nantes, Inserm, CRCINA, Nantes, France.,LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| |
Collapse
|
39
|
Beta2-microglobulin(B2M) in cancer immunotherapies: Biological function, resistance and remedy. Cancer Lett 2021; 517:96-104. [PMID: 34129878 DOI: 10.1016/j.canlet.2021.06.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapies have made much headway during the past decades. Techniques including the immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT) have harvested impressive efficacy and provided far-reaching tools for treating cancer patients. However, due to inadequate priming of the immune system, a certain subgroup of patients remains resistant to cancer immunotherapies during or after the treatment. β2-microglobulin (B2M) is an important subunit of major histocompatibility complex (MHC) class I which exerts substantive biological functions in tumorigenesis and immune control. Accumulating evidence has shown that alterations of B2M gene and B2M proteins contribute to poor reaction to cancer immunotherapies by dampening antigen presentation. Here, we discuss the basic biological functions of B2M, its distribution in a spectrum of cancers, and current understanding of its role in ICI, cancer vaccines and chimeric antigen receptor T cell (CAR-T) therapies. Furthermore, we summarize some promising therapeutic strategies to improve the efficacy inhibited by B2M defects.
Collapse
|
40
|
Fang H, Wang W, Kadia TM, El Hussein S, Wang SA, Khoury JD. CD94 expression patterns in reactive and neoplastic T-cell and NK-cell proliferations. Leuk Res 2021; 108:106614. [PMID: 33990003 DOI: 10.1016/j.leukres.2021.106614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Lymphomas and leukemias of T-cell and NK-cell lineages are highly heterogeneous disorders and lack effective therapeutic strategies. Targeted therapies including anti-CD94 agents are currently under clinical investigation, but studies of CD94 expression on mature T/NK-cell neoplasms are limited. In this study, we investigated the landscape of CD94 protein expression in 15 patients with reactive T/NK-cell proliferations and 124 patients with various T/NK cell neoplasms. CD94 expression was detected at a high level in reactive NK-cells, with a lower level of expression in a subset of reactive CD8 + T-cells; reactive CD4 + T-cells were negative for CD94 expression. All NK-cell neoplasms surveyed had high-level CD94 expression, which was significantly higher than that in T cell neoplasms (p = 0.0174). In neoplastic T-cell proliferations, CD94 expression was positive in all 10 hepatosplenic T-cell lymphoma cases tested, with a high mean fluorescence intensity. Fifty-six percent of T-cell large granular lymphocytic leukemia cases were positive for CD94 expression in a subset of neoplastic cells. All T-cell prolymphocytic leukemia and 97 % of peripheral T-cell lymphoma cases showed no CD94 expression. Our findings demonstrate a broad range of CD94 expression among T/NK-cell neoplasms, in some at levels that suggest therapeutic vulnerability to CD94-targeted therapies.
Collapse
Affiliation(s)
- Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siba El Hussein
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Huot N, Rascle P, Tchitchek N, Wimmer B, Passaes C, Contreras V, Desjardins D, Stahl-Hennig C, Le Grand R, Saez-Cirion A, Jacquelin B, Müller-Trutwin M. Role of NKG2a/c +CD8 + T cells in pathogenic versus non-pathogenic SIV infections. iScience 2021; 24:102314. [PMID: 33870131 PMCID: PMC8040270 DOI: 10.1016/j.isci.2021.102314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in the blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2a/c+CD8+ T cells increase in the blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2a/c+CD8+ T cells were not expanded in lymph nodes, and CXCR5+NKG2a/c+CD8+ T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2a/c+CD8+ T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, and immunoregulatory and gut barrier function, including CD73. NKG2a/c+CD8+ T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2a/c+CD8+ T cells in intestinal inflammation during SIV/HIV infections. Molecular determination of NKG2a/c+CD8+ T cells in two species of nonhuman primates Tissue distribution of NKG2a/c+CD8+ T cell is profoundly sculpted by SIV infections Intestinal NKG2a/c+CD8+ T cells correlated negatively with IL-23 in SIV infection NKG2a/c+CD8+ T cells might play a protective gut barrier function in HIV/SIV infection
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Benedikt Wimmer
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Delphine Desjardins
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Christiane Stahl-Hennig
- Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
42
|
Kovalenko EI, Zvyagin IV, Streltsova MA, Mikelov AI, Erokhina SA, Telford WG, Sapozhnikov AM, Lebedev YB. Surface NKG2C Identifies Differentiated αβT-Cell Clones Expanded in Peripheral Blood. Front Immunol 2021; 11:613882. [PMID: 33664730 PMCID: PMC7921799 DOI: 10.3389/fimmu.2020.613882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
T cells that express CD56 in peripheral blood of healthy humans represent a heterogeneous and poorly studied subset. In this work, we analyzed this subset for NKG2C expression. In both CD56+ and CD56- subsets most of the NKG2C+ T cells had a phenotype of highly differentiated CD8+ TEMRA cells. The CD56+NKG2C+ T cells also expressed a number of NK cell receptors, such as NKG2D, CD16, KIR2DL2/DL3, and maturation marker CD57 more often than the CD56-NKG2C+CD3+ cells. TCR β-chain repertoire of the CD3+CD56+NKG2C+ cell fraction was limited by the prevalence of one or several clonotypes which can be found within the most abundant clonotypes in total or CD8+ T cell fraction TCRβ repertoire. Thus, NKG2C expression in highly differentiated CD56+ T cells was associated with the most expanded αβ T cell clones. NKG2C+ T cells produced almost no IFN-γ in response to stimulation with HCMV pp65-derived peptides. This may be partially due to the high content of CD45RA+CD57+ cells in the fraction. CD3+NKG2C+ cells showed signs of activation, and the frequency of this T-cell subset in HCMV-positive individuals was positively correlated with the frequency of NKG2C+ NK cells that may imply a coordinated in a certain extent development of the NKG2C+ T and NK cell subsets under HCMV infection.
Collapse
Affiliation(s)
- Elena I. Kovalenko
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ivan V. Zvyagin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria A. Streltsova
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Artem I. Mikelov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Sofya A. Erokhina
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - William G. Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alexander M. Sapozhnikov
- Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Yury B. Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|
43
|
Spinosa P, Musial-Siwek M, Presler M, Betts A, Rosentrater E, Villali J, Wille L, Zhao Y, McCaughtry T, Subramanian K, Liu H. Quantitative modeling predicts competitive advantages of a next generation anti-NKG2A monoclonal antibody over monalizumab for the treatment of cancer. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:220-229. [PMID: 33501768 PMCID: PMC7965834 DOI: 10.1002/psp4.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022]
Abstract
A semimechanistic pharmacokinetic (PK)/receptor occupancy (RO) model was constructed to differentiate a next generation anti-NKG2A monoclonal antibody (KSQ mAb) from monalizumab, an immune checkpoint inhibitor in multiple clinical trials for the treatment of solid tumors. A three-compartment model incorporating drug PK, biodistribution, and NKG2A receptor interactions was parameterized using monalizumab PK, in vitro affinity measurements for both monalizumab and KSQ mAb, and receptor burden estimates from the literature. Following calibration against monalizumab PK data in patients with rheumatoid arthritis, the model successfully predicted the published PK and RO observed in gynecological tumors and in patients with squamous cell carcinoma of the head and neck. Simulations predicted that the KSQ mAb requires a 10-fold lower dose than monalizumab to achieve a similar RO over a 3-week period following q3w intravenous (i.v.) infusion dosing. A global sensitivity analysis of the model indicated that the drug-target binding affinity greatly affects the tumor RO and that an optimal affinity is needed to balance RO with enhanced drug clearance due to target mediated drug disposition. The model predicted that the KSQ mAb can be dosed over a less frequent regimen or at lower dose levels than the current monalizumab clinical dosing regimen of 10 mg/kg q2w. Either dosing strategy represents a competitive advantage over the current therapy. The results of this study demonstrate a key role for mechanistic modeling in identifying optimal drug parameters to inform and accelerate progression of mAb to clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lucia Wille
- Applied BioMath, Concord, Massachusetts, USA
| | - Yang Zhao
- KSQ Therapeutics, Cambridge, Massachusetts, USA
| | | | | | - Hanlan Liu
- KSQ Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
44
|
Comprehensive analysis reveals a prognostic and therapeutic biomarker CD3D in the breast carcinoma microenvironment. Biosci Rep 2021; 41:227413. [PMID: 33350431 PMCID: PMC7791551 DOI: 10.1042/bsr20202898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/29/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Breast carcinoma (BRCA) is the most common carcinoma among women worldwide. Despite the great progress achieved in early detection and treatment, morbidity and mortality rates remain high. In the present study, we make a systematic analysis of BRCA using TCGA database by applying CIBERSORT and ESTIMATE computational methods, uncovered CD3D as a prognostic biomarker by intersection analysis of univariate COX and protein–protein interaction (PPI). It revealed that high CD3D expression was strongly associated with poor survival of BRCA, based on The Cancer Genome Atlas (TCGA) database and online websites. Gene Set Enrichment Analysis (GSEA) revealed that the high CD3D expression group was mainly enriched for the immune-related pathways and the low CD3D expression group was mainly enriched for metabolic-related activities. Based on CIBERSORT analysis, the difference test and correlation test suggested that CD3D had a strong correlation with T cells, particularly CD8 + T cells, which indicated that CD3D up-regulation may increase T cell immune infiltration in the TME and induce antitumor immunity by activating T lymphocytes. Furthermore, the correlation analysis showed that CD3D expression had a strongly positive correlation with immune checkpoints, which indicating that the underlying mechanism involves CD3D mediated regulation of T cell functions in BRCA, and single cell RNA-seq analysis revealed that CD3D correlate with CD8 + T cells and it is itself highly expressed in CD8 + T cells. In summary, we identified a prognostic biomarker CD3D in BRCA, which was associated with lymphocyte infiltration, immune checkpoints and could be developed for innovative therapeutics of BRCA.
Collapse
|
45
|
Mutala LB, Deleine C, Karakachoff M, Dansette D, Ducoin K, Oger R, Rousseau O, Podevin J, Duchalais E, Fourquier P, Thomas WEA, Gourraud PA, Bennouna J, Brochier C, Gervois N, Bossard C, Jarry A. The Caspase-1/IL-18 Axis of the Inflammasome in Tumor Cells: A Modulator of the Th1/Tc1 Response of Tumor-Infiltrating T Lymphocytes in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13020189. [PMID: 33430344 PMCID: PMC7825767 DOI: 10.3390/cancers13020189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
In colorectal cancer (CRC), a high density of T lymphocytes represents a strong prognostic marker in subtypes of CRC. Optimized immunotherapy strategies to boost this T-cell response are still needed. A good candidate is the inflammasome pathway, an emerging player in cancer immunology that bridges innate and adaptive immunity. Its effector protein caspase-1 matures IL-18 that can promote a T-helper/cytotoxic (Th1/Tc1) response. It is still unknown whether tumor cells from CRC possess a functional caspase-1/IL-18 axis that could modulate the Th1/Tc1 response. We used two independent cohorts of CRC patients to assess IL-18 and caspase-1 expression by tumor cells in relation to the density of TILs and the microsatellite status of CRC. Functional and multiparametric approaches at the protein and mRNA levels were performed on an ex vivo CRC explant culture model. We show that, in the majority of CRCs, tumor cells display an activated and functional caspase-1/IL-18 axis that contributes to drive a Th1/Tc1 response elicited by TILs expressing IL-18Rα. Furthermore, unsupervised clustering identified three clusters of CRCs according to the caspase-1/IL-18/TIL density/interferon gamma (IFNγ) axis and microsatellite status. Together, our results strongly suggest that targeting the caspase-1/IL-18 axis can improve the anti-tumor immune response in subgroups of CRC.
Collapse
Affiliation(s)
- Linda Bilonda Mutala
- Institut Roche, 92100 Boulogne-Billancourt, France; (L.B.M.); (C.B.)
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Cécile Deleine
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Matilde Karakachoff
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | | | - Kathleen Ducoin
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Romain Oger
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Olivia Rousseau
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | - Juliette Podevin
- Digestive Surgery Department and IMAD, CHU Nantes, 44093 Nantes, France; (J.P.); (E.D.)
| | - Emilie Duchalais
- Digestive Surgery Department and IMAD, CHU Nantes, 44093 Nantes, France; (J.P.); (E.D.)
| | - Pierre Fourquier
- Digestive Surgery Department, Hôpital Privé du Confluent, 44200 Nantes, France;
| | | | - Pierre-Antoine Gourraud
- Clinique des Données, CHU de Nantes, INSERM, CIC 1413, 44093 Nantes, France; (M.K.); (O.R.); (P.-A.G.)
| | - Jaafar Bennouna
- Digestive Oncology Department and IMAD, CHU, 44093 Nantes, France;
| | - Camille Brochier
- Institut Roche, 92100 Boulogne-Billancourt, France; (L.B.M.); (C.B.)
| | - Nadine Gervois
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
| | - Céline Bossard
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
- Pathology Department, CHU Nantes, 44093 Nantes, France;
| | - Anne Jarry
- Inserm, CRCINA, Université de Nantes, 44000 Nantes, France; (C.D.); (K.D.); (R.O.); (N.G.); (C.B.)
- LabEx IGO, Université de Nantes, 44000 Nantes, France
- Correspondence:
| |
Collapse
|
46
|
Odales J, Guzman Valle J, Martínez-Cortés F, Manoutcharian K. Immunogenic properties of immunoglobulin superfamily members within complex biological networks. Cell Immunol 2020; 358:104235. [PMID: 33137645 PMCID: PMC7548077 DOI: 10.1016/j.cellimm.2020.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/01/2022]
Abstract
Antibody-based therapies induce CDR-specific T and B cell responses. Idiotype-anti-idiotype network alters immune system memory compartment. Antigenized antibodies are efficient vaccine immunogen.
Antibodies, T cell receptors and major histocompatibility complex molecules are members of the immunoglobulin superfamily and have pivotal roles in the immune system. The fine interrelation between them regulates several immune functions. Here, we describe lesser-known functions ascribed to these molecules in generating and maintaining immune response. Particularly, we outline the contribution of antibody- and T cell receptor-derived complementarity-determining region neoantigens, antigenized antibodies, as well as major histocompatibility complex class I molecules-derived epitopes to the induction of protective/therapeutic immune responses against pathogens and cancer. We discuss findings of our own and other studies describing protective mechanisms, based on immunogenic properties of immunoglobulin superfamily members, and evaluate the perspectives of application of this class of immunogens in molecular vaccines design.
Collapse
Affiliation(s)
- Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico.
| |
Collapse
|
47
|
Suzuki T, Hayman L, Kilbey A, Edwards J, Coffelt SB. Gut γδ T cells as guardians, disruptors, and instigators of cancer. Immunol Rev 2020; 298:198-217. [PMID: 32840001 DOI: 10.1111/imr.12916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 08/17/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide with nearly 2 million cases per year. Immune cells and inflammation are a critical component of colorectal cancer progression, and they are used as reliable prognostic indicators of patient outcome. With the growing appreciation for immunology in colorectal cancer, interest is growing on the role γδ T cells have to play, as they represent one of the most prominent immune cell populations in gut tissue. This group of cells consists of both resident populations-γδ intraepithelial lymphocytes (γδ IELs)-and transient populations that each has unique functions. The homeostatic role of these γδ T cell subsets is to maintain barrier integrity and prevent microorganisms from breaching the mucosal layer, which is accomplished through crosstalk with enterocytes and other immune cells. Recent years have seen a surge in discoveries regarding the regulation of γδ IELs in the intestine and the colon with particular new insights into the butyrophilin family. In this review, we discuss the development, specialities, and functions of γδ T cell subsets during cancer progression. We discuss how these cells may be used to predict patient outcome, as well as how to exploit their behavior for cancer immunotherapy.
Collapse
Affiliation(s)
- Toshiyasu Suzuki
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Liam Hayman
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| |
Collapse
|
48
|
Borst L, van der Burg SH, van Hall T. The NKG2A-HLA-E Axis as a Novel Checkpoint in the Tumor Microenvironment. Clin Cancer Res 2020; 26:5549-5556. [PMID: 32409305 DOI: 10.1158/1078-0432.ccr-19-2095] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022]
Abstract
The success of checkpoint blockade therapy revolutionized cancer treatment. However, we need to increase the fraction of responding patients and overcome acquired resistance to these therapies. Recently, the inhibitory receptor NKG2A received attention as a new kid on the block of immune checkpoints. This receptor is selectively expressed on cytotoxic lymphocytes, including natural killer cells and CD8 T cells, and NKG2A+ T cells are preferentially residing in tissues, like the tumor microenvironment. Its ligand, histocompatibility leucocyte antigen E (HLA-E), is a conserved nonclassical HLA class I molecule that binds a limited peptide repertoire and its expression is commonly detected in human cancer. NKG2A blockade as a standalone therapy appears poorly effective in mouse tumor models, however, in the presence of activated T cells, for example, induced by PD-1/PD-L1 blockade or cancer vaccines, exerts strongly enhanced efficacy. Clinical trials demonstrated safety of the humanized NKG2A-blocking antibody, monalizumab, and first results of phase II trials demonstrate encouraging durable response rates. Further development of this axis is clearly warranted.
Collapse
Affiliation(s)
- Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
49
|
Hurkmans DP, Tamminga M, van Es B, Peters T, Karman W, van Wijck RTA, van der Spek PJ, Tauber T, Los M, van Schetsen A, Vu T, Hiltermann TJN, Schuuring E, Aerts JGJV, Chen S, Groen HJM. Molecular data show conserved DNA locations distinguishing lung cancer subtypes and regulation of immune genes. Lung Cancer 2020; 146:341-349. [PMID: 32645666 DOI: 10.1016/j.lungcan.2020.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Non-small-cell lung cancer exhibits a range of transcriptional and epigenetic patterns that not only define distinct phenotypes, but may also govern immune related genes, which have a major impact on survival. METHODS We used open-source RNA expression and DNA methylation data of the Cancer Genome Atlas with matched non-cancerous tissue to evaluate whether these pretreatment molecular patterns also influenced genes related to the immune system and overall survival. RESULTS The distinction between lung adenocarcinoma and squamous cell carcinoma are determined by 1083 conserved methylation loci and RNA expression of 203 genes which differ for >80 % of patients between the two subtypes. Using the RNA expression profiles of 6 genes, more than 95 % of patients could be correctly classified as having either adeno or squamous cell lung cancer. Comparing tumor tissue with matched normal tissue, no differences in RNA expression were found for costimulatory and co-inhibitory genes, nor genes involved in cytokine release. However, genes involved in antigen presentation had a lower expression and a wider distribution in tumor tissue. DISCUSSION Only a small number of genes, influenced by DNA methylation, determine the lung cancer subtype. The antigen presentation of cancer cells is dysfunctional, while other T cell immune functions appear to remain intact.
Collapse
Affiliation(s)
- Daan P Hurkmans
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Menno Tamminga
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Bram van Es
- Otravo B.V., Suikersilo-West 41, 1165 MP, Amsterdam-Halfweg, the Netherlands.
| | - Tom Peters
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Wouter Karman
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Rogier T A van Wijck
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Peter J van der Spek
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Tjebbe Tauber
- ABN-AMRO, Foppingadreef 22, 1102 BS Amsterdam, the Netherlands.
| | - Maureen Los
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Anouk van Schetsen
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Thu Vu
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - T Jeroen N Hiltermann
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Ed Schuuring
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| | - Joachim G J V Aerts
- Erasmus University Medical Center, Departments of Pulmonary Diseases, Internal Medicine and Pathology, Bioinformatic Unit, Dr. Molewaterplein 40, 3015 GD, the Netherlands.
| | - Sissy Chen
- PricewaterhouseCoopers Advisory NV, Thomas R. Malthusstraat 5, 1066 JR, Amsterdam, the Netherlands.
| | - Harry J M Groen
- University of Groningen and University Medical Center Groningen, Departments of Pulmonary Diseases and Pathology and Medical Biology, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
50
|
Parakrama R, Fogel E, Chandy C, Augustine T, Coffey M, Tesfa L, Goel S, Maitra R. Immune characterization of metastatic colorectal cancer patients post reovirus administration. BMC Cancer 2020; 20:569. [PMID: 32552875 PMCID: PMC7301987 DOI: 10.1186/s12885-020-07038-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND KRAS mutations are prevalent in 40-45% of patients with colorectal cancer (CRC) and targeting this gene has remained elusive. Viruses are well known immune sensitizing agents. The therapeutic efficacy of oncolytic reovirus in combination with chemotherapy is examined in a phase 1 study of metastatic CRC. This study evaluates the nature of immune response by determining the cytokine expression pattern in peripheral circulation along with the distribution of antigen presenting cells (APCs) and activated T lymphocytes. Further the study evaluates the alterations in exosomal and cellular microRNA levels along with the effect of reovirus on leukocyte transcriptome. METHODS Reovirus was administered as a 60-min intravenous infusion for 5 consecutive days every 28 days, at a tissue culture infective dose (TCID50) of 3 × 1010. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood prior to reovirus administration and post-reovirus on days 2, 8, and 15. The expression profile of 25 cytokines in plasma was assessed (post PBMC isolation) on an EMD Millipore multiplex Luminex platform. Exosome and cellular levels of miR-29a-3p was determined in pre and post reovirus treated samples. Peripheral blood mononuclear cells were stained with fluorophore labelled antibodies against CD4, CD8, CD56, CD70, and CD123, fixed and evaluated by flow cytometry. The expression of granzyme B was determined on core biopsy of one patient. Finally, Clariom D Assay was used to determine the expression of 847 immune-related genes when compared to pre reovirus treatment by RNA sequencing analysis. A change was considered if the expression level either doubled or halved and the significance was determined at a p value of 0.001. RESULTS Cytokine assay indicated upregulation at day 8 for IL-12p40 (2.95; p = 0.05); day 15 for GM-CSF (3.56; p = 0.009), IFN-y (1.86; p = 0.0004) and IL-12p70 (2.42; p = 0.02). An overall reduction in IL-8, VEGF and RANTES/CCL5 was observed over the 15-day period. Statistically significant reductions were observed at Day 15 for IL-8 (0.457-fold, 53.3% reduction; p = 0.03) and RANTES/CC5 (0.524-fold, 47.6% reduction; p = 0.003). An overall increase in IL-6 was observed, with statistical significance at day 8 (1.98- fold; 98% increase, p = 0.00007). APCs were stimulated within 48 h and activated (CD8+ CD70+) T cells within 168 h as determine by flow cytometry. Sustained reductions in exosomal and cellular levels of miR-29a-3p (a microRNA upregulated in CRC and associated with decreased expression of the tumor suppressor WWOX gene) was documented. Reovirus administration further resulted in increases in KRAS (33x), IFNAR1 (20x), STAT3(5x), and TAP1 (4x) genes after 2 days; FGCR2A (23x) and CD244 (3x) after 8 days; KLRD1 (14x), TAP1 (2x) and CD244(2x) after 15 days. Reductions (> 0.5x) were observed in VEGFA (2x) after 2 days; CXCR2 (2x), ITGAM (3x) after 15 days. CONCLUSIONS Reovirus has profound immunomodulatory properties that span the genomic, protein and immune cell distribution levels. This is the first study with reovirus in cancer patients that demonstrates these multi- layered effects, demonstrating how reovirus can function as an immune stimulant (augmenting the efficacy of immuno-chemo-therapeutic drugs), and an oncolytic agent. Reovirus thus functions bimodally as an oncolytic agent causing lysis of tumor cells, and facilitator of immune-mediated recognition and destruction of tumor cells.
Collapse
Affiliation(s)
- Ruwan Parakrama
- Montefiore Medical Center, 1695 Eastchester Road, Bronx, NY, 10461, USA
| | - Elisha Fogel
- Department of Biology, Yeshiva University, 500 West W 185th Street, New York, NY, 10033, USA
| | - Carol Chandy
- Montefiore Medical Center, 1695 Eastchester Road, Bronx, NY, 10461, USA
| | - Titto Augustine
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | | | - Lydia Tesfa
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Sanjay Goel
- Montefiore Medical Center, 1695 Eastchester Road, Bronx, NY, 10461, USA.,Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA
| | - Radhashree Maitra
- Montefiore Medical Center, 1695 Eastchester Road, Bronx, NY, 10461, USA. .,Department of Biology, Yeshiva University, 500 West W 185th Street, New York, NY, 10033, USA. .,Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY, 10461, USA.
| |
Collapse
|