1
|
Teng T, Huang F, Xu M, Li X, Zhang L, Yin B, Cai Y, Chen F, Zhang L, Zhang J, Geng A, Chen C, Yu X, Sui J, Zhu ZJ, Guo K, Zhang C, Zhou X. Microbiota alterations leading to amino acid deficiency contribute to depression in children and adolescents. MICROBIOME 2025; 13:128. [PMID: 40390033 PMCID: PMC12087099 DOI: 10.1186/s40168-025-02122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/22/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) in children and adolescents is a growing global public health concern. Metabolic alterations in the microbiota-gut-brain (MGB) axis have been implicated in MDD pathophysiology, but their specific role in pediatric populations remains unclear. RESULTS We conducted a multi-omics study on 256 MDD patients and 307 healthy controls in children and adolescents, integrating plasma metabolomics, fecal metagenomics, and resting-state functional magnetic resonance imaging (rs-fMRI) of the brain. KEGG enrichment analysis of 360 differential expressed metabolites (DEMs) indicated significant plasma amino acid (AA) metabolism deficiencies (p-value < 0.0001). We identified 58 MDD-enriched and 46 MDD-depleted strains, as well as 6 altered modules in amino acid metabolism in fecal metagenomics. Procrustes analysis revealed the association between the altered gut microbiome and circulating AA metabolism (p-value = 0.001, M2 = 0.932). Causal analyses suggested that plasma AAs might mediate the impact of altered gut microbiota on depressive and anxious symptoms. Additionally, rs-fMRI revealed that connectivity deficits in the frontal lobe are associated with depression and 22 DEMs in AA metabolism. Furthermore, transplantation of fecal microbiota from MDD patients to adolescent rats induced depressive-like behaviors and 14 amino acids deficiency in the prefrontal cortex (PFC). Moreover, the dietary lysine restriction increased depression susceptibility in adolescent rats by reducing the expression of excitatory amino acid transporters in the PFC. CONCLUSIONS Our findings highlight that gut microbiota alterations contribute to AAs deficiency, particularly lysine, which plays a crucial role in MDD pathogenesis in children and adolescents. Targeting AA metabolism may offer novel therapeutic strategies for pediatric depression. Video Abstract.
Collapse
Affiliation(s)
- Teng Teng
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Fang Huang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- China Mobile Research Institute, Beijing, 100032, China
| | - Xuemei Li
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lige Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bangmin Yin
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuping Cai
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fei Chen
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Luman Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jushuang Zhang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Aoyi Geng
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kai Guo
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xinyu Zhou
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
2
|
Cao B, Liu YL, Wang N, Huang Y, Lu CX, Li QY, Zou HY. Alterations of serum metabolic profile in major depressive disorder: A case-control study in the Chinese population. World J Psychiatry 2025; 15:102618. [DOI: 10.5498/wjp.v15.i5.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/22/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by persistent depressed mood and cognitive symptoms. This study aimed to discover biomarkers for MDD, explore its pathological mechanisms, and examine the associations of the identified biomarkers with clinical and psychological variables.
AIM To discover candidate biomarkers for MDD identification and provide insight into the pathological mechanism of MDD.
METHODS The current study adopted a single-center cross-sectional case-control design. Serum samples were obtained from 100 individuals diagnosed with MDD and 97 healthy controls (HCs) aged between 18 to 60 years. Metabolomics was performed on an Ultimate 3000 UHPLC system coupled with Q-Exactive MS (Thermo Scientific). The online software Metaboanalyst 6.0 was used to process and analyze the acquired raw data of peak intensities from the instrument.
RESULTS The study included 100 MDD patients and 97 HCs. Metabolomic profiling identified 35 significantly different metabolites (e.g., cortisol, sebacic acid, and L-glutamic acid). Receiver operating characteristic curve analysis highlighted 8-HETE, 10-HDoHE, cortisol, 12-HHTrE, and 10-hydroxydecanoic acid as top diagnostic biomarkers for MDD. Significant correlations were found between metabolites (e.g., some lipids, steroids, and amino acids) and clinical and psychological variables.
CONCLUSION Our study reported metabolites (some lipids, steroids, amino acids, carnitines, and alkaloids) responsible for discriminating MDD patients and HCs. This metabolite profile may enable the development of a laboratory-based diagnostic test for MDD. The mechanisms underlying the association between psychological or clinical variables and differential metabolites deserve further exploration.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yuan-Li Liu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Na Wang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yan Huang
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Chen-Xuan Lu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Qian-Ying Li
- Department of Laboratory Medicine, Jiulongpo District Psychiatric Health Center of Chongqing, Chongqing 401329, China
| | - Hong-Yu Zou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400000, China
| |
Collapse
|
3
|
Zheng ZQ, Shen L, Zhao LM, Ji HF. B vitamins as adjunct therapies for depressive disorder. Trends Endocrinol Metab 2025:S1043-2760(25)00082-7. [PMID: 40374496 DOI: 10.1016/j.tem.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025]
Abstract
The rising prevalence of depressive disorder worldwide requires better interventional avenues. B vitamins are gaining increasing interest as potential therapeutic approaches in this context given current evidence for a bidirectional association between B vitamin deficiency and depressive disorder. We discuss how B vitamins and B vitamin-associated probiotic supplementation may represent an effective adjunctive treatment for depression, and highlight the key metabolic mechanisms involved. We also provide a perspective on the future of this field and advocate for further high-quality clinical trials to assess the benefits of B vitamins in this context and optimize their clinical implementation.
Collapse
Affiliation(s)
- Zi-Qing Zheng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; Institute of Food and Drug Research for One Health, School of Food Engineering, Ludong University, Yantai 264025, China
| | - Liang Shen
- Institute of Food and Drug Research for One Health, School of Food Engineering, Ludong University, Yantai 264025, China.
| | - Li-Ming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China.
| | - Hong-Fang Ji
- Institute of Food and Drug Research for One Health, School of Food Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
4
|
Ogawa S, Hori H, Niwa M, Itoh M, Lin M, Yoshida F, Ino K, Kawanishi H, Narita M, Nakano W, Imai R, Matsui M, Kamo T, Kunugi H, Hattori K, Kim Y. Serum lipid and plasma fatty acid profiles in PTSD patients and healthy individuals: Associations with symptoms, cognitive function, and inflammatory markers. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111298. [PMID: 39988258 DOI: 10.1016/j.pnpbp.2025.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Increasing evidence suggests that posttraumatic stress disorder (PTSD), a serious mental health condition, is associated with physical health problems. Lipid-related molecules are crucial for central nervous system functions associated with PTSD symptoms; however, case-control studies exploring the relationship between PTSD and lipid-related molecules are scarce. We examined 68 civilian PTSD patients and 97 healthy controls, evaluating PTSD symptoms, childhood maltreatment history, suicidality, and cognitive functions. Cholesterol, triglycerides, and inflammation-related marker levels were analyzed in serum, while fatty acid levels were measured in plasma. Compared to controls, patients exhibited significantly lower high-density lipoprotein cholesterol and n-6 linoleic acid levels, alongside higher saturated palmitic acid levels and the triene-to-tetraene (T/T) ratio. PTSD symptoms, particularly hyperarousal, were significantly positively correlated with n-6 γ-linolenic, n-6 dihomo-γ-linolenic, and n-9 mead acid levels, and the T/T ratio. Cognitive functions were significantly positively correlated with n-3 docosahexaenoic acid and total n-3 fatty acid levels, and negatively correlated with saturated lauric, palmitic, and total saturated fatty acid levels. Suicidality was significantly positively correlated with dihomo-γ-linolenic acid, mead acid levels, and the T/T ratio, and negatively correlated with polyunsaturated fatty acid (PUFA) levels. Inflammation-related marker levels were significantly correlated with higher palmitic, n-9 oleic, and total n-9 fatty acid levels, and lower linoleic acid and PUFA levels. Latent profile analysis (LPA) revealed distinct subgroups associated with unique fatty acid profiles. These lipid-related alterations may improve the understanding of PTSD pathophysiology. Distinct fatty acid profiles identified by LPA may help subtype PTSD patients and guide nutrition-based personalized treatment strategies.
Collapse
Affiliation(s)
- Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Madoka Niwa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Keiko Ino
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hitomi Kawanishi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Megumi Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Wakako Nakano
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Risa Imai
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan; Risa Irinaka Mental Clinic, Nagoya, Aichi, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Toshiko Kamo
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Wakamatsu-cho Mental and Skin Clinic, Shinjuku, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
5
|
Zhang W, Jiang G, Kang H, Wang J, Liu Z, Wang Z, Huang D, Gao A. Environmental Enrichment Exposure Alleviates Geriatric Depressive-Like Symptoms through Regulating Neurogenesis and Neuroinflammation. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:259-270. [PMID: 40144319 PMCID: PMC11934201 DOI: 10.1021/envhealth.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 03/28/2025]
Abstract
Environmental enrichment (EE) is a significant approach to influencing brain function by altering the environment and changing living conditions and has been shown to modulate mood-related diseases, including depression. Among the elderly, depression is particularly prevalent and is often linked to social isolation. However, the specific role of EE in social isolation-related geriatric depression remains imprecise. This study was intended to explore the status of EE exposure in geriatric depression and to uncover its underlying mechanisms. We utilized 19-month-old male C57BL/6J mice, which are equivalent to humans aged 50-60 years, and induced depression through social isolation. After 2 weeks of social isolation, mice were identified as depressive by using the sugar preference test and then classified into either standard or enrichment environment groups for 4 weeks. Subsequently, conventional indices associated with depression, including neurogenesis, neurotrophic factors, and neuroinflammation, were measured. Results display that EE alleviated the depressive-like symptoms in elderly mice and enriched their social activities. Concurrently, EE regulated levels of certain neurotransmitters in the hippocampus, including the systems of glutamate, tyrosine, and histamine. Moreover, the ability of neurogenesis also increased in the hippocampus of EE mice. At the neuroinflammation level, the activation of Natural Killer (NK) cells and ARG1+ microglia is considered a major contributor to mediating the effects of EE-regulated geriatric depression. Collectively, these results underline the importance of EE in the treatment of geriatric depression and partially elucidate its underlying mechanism, offering valuable suggestions for treating social isolation--related depression via environmental modulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Guangyu Jiang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Jingyu Wang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Wang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Danyang Huang
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department
of Occupational Health and Environmental Health, School of Public
Health, Capital Medical University, Beijing 100069, China
- Beijing
Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Modesti MN, Arena JF, Del Casale A, Gentile G, Borro M, Parmigiani G, Simmaco M, Guariglia C, Ferracuti S. Lipidomics and genomics in mental health: insights into major depressive disorder, bipolar disorder, schizophrenia, and obsessive-compulsive disorder. Lipids Health Dis 2025; 24:89. [PMID: 40069786 PMCID: PMC11895309 DOI: 10.1186/s12944-025-02512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/01/2025] [Indexed: 03/15/2025] Open
Abstract
INTRODUCTION This systematic review explores the hypothesis that various lipid categories and lipid metabolism-related genomic variations link to mental disorders, seeking potential clinically useful markers. METHODS We searched PubMed, Scopus, and PsycInfo databases until October 12th, 2024, using terms related to lipidomics, lipid-related genomics, and different mental disorders, i.e., Major Depressive Disorder (MDD), Bipolar Disorder (BD), Schizophrenia (SCZ), and Obsessive-Compulsive Disorder (OCD). Eligible studies were assessed. Extracted data included author, year, methodology, outcomes, genes, and lipids linked to disorders. Bias and evidence certainty were evaluated. The systematic review adhered to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and a registered protocol (PROSPERO: CRD42023438862). RESULTS A total of 27 studies were included. SCZ showed alterations in 77 lipids, including triglycerides (TG), ceramides, and phosphatidylcholine, while MDD and BD exhibited 97 and 47 altered lipids, respectively, with overlap among disorders. Shared genes, such as ABCA13, DGKZ, and FADS, and pathways involving inflammation, lipid metabolism, and mitochondrial function were identified. OCD was associated with sphingolipid signaling and peroxisomal metabolism. DISCUSSION Lipid signatures in MDD, BD, and SCZ shed light on underlying processes. Further research is needed to validate biomarkers and refine their clinical applications in precision psychiatry.
Collapse
Affiliation(s)
- Martina Nicole Modesti
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| | - Jan Francesco Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Giovanna Gentile
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant 'Andrea University Hospital, Rome, Italy
| | - Marina Borro
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant 'Andrea University Hospital, Rome, Italy
| | | | - Maurizio Simmaco
- Department of Neuroscience, Mental Health, and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Laboratory of Clinical Biochemistry, Advanced Molecular Diagnostic Unit, Sant 'Andrea University Hospital, Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, "Santa Lucia" Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
7
|
Wang Z, Xiang Y, Dang R, Wang P, Du X, Xie P. Sex-specific differences in peripheral blood metabolites and biological functions in major depressive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2025; 170:106052. [PMID: 39920925 DOI: 10.1016/j.neubiorev.2025.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
To explore the sex-specific peripheral blood metabolites and biological functions altered in patients with major depressive disorder (MDD). A search was conducted on PubMed, Cochrane, Embase, Web of Science, and other databases published up to 11/2023. To maximize the search, we also reviewed systematic reviews and meta-analyses on the same topic. We included studies that conducted metabolic characterizations during current depressive episodes or after antidepressant treatments, with all data stratified by sex. Fifty-eight studies involving 83 cohorts with 5285 MDD participants were included in this meta-analysis. Random effects meta-analysis was conducted for data from ≥3 cohorts. We identified 5 sex-specific metabolites from 22 candidate peripheral blood metabolites. In males with MDD, we observed lower levels of estradiol and progesterone, alongside higher levels of androstenedione, dihydrotestosterone, and uric acid compared with female MDD patients. In addition, steroid hormone biosynthesis has been identified as a potentially sex-specific pathway. Our findings highlight significant evidence for targeting sex hormones as a broad understanding of MDD, providing potentially objective diagnostic and therapeutic insights.
Collapse
Affiliation(s)
- Zhengyang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruozhi Dang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Du
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Inoue T, Ogawa S, Narita Z, Sekiguchi M, Asari Y, Kataoka Y, Hattori J, Hori H, Kim Y, Inada K. A Longitudinal Study of the Association of Blood Unsaturated Fatty Acids With Posttraumatic Stress Disorder (PTSD). Neuropsychopharmacol Rep 2025; 45:e12522. [PMID: 39963001 PMCID: PMC11833162 DOI: 10.1002/npr2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 02/21/2025] Open
Abstract
AIM This study aimed to investigate the association between blood fatty acid fractions and posttraumatic stress disorder (PTSD) judgment in individuals who have experienced physical trauma. METHODS Patients admitted to the emergency department for trauma, excluding those with brain damage or serious psychiatric disorders, were enrolled. Blood samples were collected on admission, and PTSD symptoms were assessed using a questionnaire 1 and 3 months after the injury. Multiple regression analysis was used to evaluate the association between fatty acids and Posttraumatic Diagnostic Scale severity scores, adjusting for age, sex, the Childhood Trauma Questionnaire (CTQ), and the use of psychotropic medications. RESULTS A significant association was observed between certain fatty acids and PTSD judgment. Mann-Whitney U test results revealed that arachidonic acid was associated with PTSD judgment at 1 month and palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, eicosenoic acid, and eicosadiene acid with PTSD judgment at 3 months. Multiple regression analysis revealed that stearic acid, linoleic acid, arachidic acid, docosatetraenoic acid, lignoceric acid, docosahexaenoic acid, and total omega-6 fatty acids (ω6) were associated with PTSD judgment after 1 month after trauma. In contrast, only linoleic acid and total ω6 were associated with PTSD judgment 3 months after trauma. CONCLUSIONS This study is the first to enroll patients with general physical trauma and examine the relationship between fatty acids and PTSD. The findings suggest a potential relationship between blood fatty acid fractions and the development of PTSD symptoms in individuals who have experienced physical trauma. However, further research is needed to confirm and expand on these findings.
Collapse
Affiliation(s)
- Tomoko Inoue
- Department of PsychiatryKitasato University, School of MedicineSagamiharaKanagawaJapan
| | - Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Zui Narita
- Department of Behavioral Medicine, National Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Masayuki Sekiguchi
- Department of Molecular Therapy, National Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
| | - Yasushi Asari
- Department of Emergency and Critical Care MedicineKitasato University School of MedicineSagamiharaKanagawaJapan
| | - Yuichi Kataoka
- Department of Emergency and Critical Care MedicineKitasato University School of MedicineSagamiharaKanagawaJapan
| | - Jun Hattori
- Department of Emergency and Critical Care MedicineKitasato University School of MedicineSagamiharaKanagawaJapan
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Yoshiharu Kim
- Emeritus Director General, National Institute of Mental HealthNational Center of Neurology and PsychiatryTokyoJapan
| | - Ken Inada
- Department of PsychiatryKitasato University, School of MedicineSagamiharaKanagawaJapan
| |
Collapse
|
9
|
Liu F, Zhong X, Wang C. Lower creatinine levels are associated with an increased risk of depression: evidence from the China Health and Retirement Longitudinal Study. Front Psychiatry 2025; 16:1446897. [PMID: 40071279 PMCID: PMC11894454 DOI: 10.3389/fpsyt.2025.1446897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Previous studies have found that depressive patients tend to have low levels of creatinine; however, the extent to which creatinine levels are associated with depression has been poorly investigated. Therefore, this study aimed to explore the relationship between creatinine levels and depression. Methods The participants and follow-up data from the China Health and Retirement Longitudinal Study (CHARLS), as well as metabolomics data from the Metabolite Network of Depression Database (MENDA), were collected. The 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) was used to assess the severity of depression. Spearman correlation analysis, spline regression, and binary logistic regression models were employed to explore the relationship between creatinine levels and depression. Results A total of 7,826 participants and 3,886 follow-up participants were included in the CHARLS 2011 and 2015 surveys. Of these, 37.9% (2,966/7,826) and 34.6% (13,44/3,886) of participants experienced depression in CHARLS 2011 and 2015, respectively. The creatinine level was negatively correlated with the total CESD-10 score and dimensions scores, showing an inverse dose-response relationship between creatinine levels and depression. Compared with participants with high creatinine levels, those with middle creatinine levels were associated with a higher risk of depression (OR = 1.22, 95% CI = 1.08-1.38), while participants with low creatinine levels had the highest risk of depression (OR = 1.30, 95% CI = 1.13-1.49) in the fully adjusted model. Similar results were observed in the follow-up data, and the MENDA metabolomics data validated the negative correlation between creatinine levels and the severity of depression. Conclusion Lower levels of creatinine were closely associated with a higher risk of depression, and it could serve as a potential marker for identifying individuals at high risk of depression.
Collapse
Affiliation(s)
- Fajin Liu
- Department of Neurological Rehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- College of Rehabilitation Medicine, Chongqing Medical University, Chongqing, China
- Department of Neurological Rehabilitation, Rehabilitation Hospital of, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cuiting Wang
- Department of Neurological Rehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- College of Rehabilitation Medicine, Chongqing Medical University, Chongqing, China
- Department of Neurological Rehabilitation, Rehabilitation Hospital of, Chongqing, China
| |
Collapse
|
10
|
Pu J, Liu Y, Wu H, Liu C, Chen Y, Tang W, Yu Y, Gui S, Zhong X, Wang D, Chen X, Chen Y, Chen X, Qiao R, Jiang Y, Zhang H, Ren Y, Fan L, Wang H, Xie P. Characterizing metabolomic and proteomic changes in depression: a systematic analysis. Mol Psychiatry 2025:10.1038/s41380-025-02919-z. [PMID: 39955468 DOI: 10.1038/s41380-025-02919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/21/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Despite the widespread use of metabolomics and proteomics to explore the molecular landscape of depression, there is a lack of consensus regarding dysregulated molecules with replicable evidence. Thus, this study aimed to identify robust metabolomic and proteomic features in depression by integrating evidence from large-scale studies. In this study, a knowledge base-mining approach was adopted to compile a list of dysregulated molecules derived from metabolomic and proteomic studies. A vote-counting approach was performed to identify consistently altered molecules in the blood and urine samples of patients with depression. A total of 2398 molecular entries were selected, comprising 857 unique metabolites and 468 unique proteins from 143 metabolomic and 23 proteomic studies in depression. The results of vote-counting analyses revealed that 11 metabolites in blood and 5 metabolites in urine exhibited consistent disturbances across studies. Circulating levels of glutamic acid and phosphatidylcholine (32:0) were elevated in depressive patients, whereas the levels of tryptophan, kynurenic acid, kynurenine, acetylcarnitine, serotonin, creatinine, inosine, phenylalanine, and valine were lower. Urinary levels of isobutyric acid, alanine, and nicotinic acid were higher, whereas the levels of N-methylnicotinamide and tyrosine were lower. Moreover, analysis of the proteomic dataset identified only one circulating protein, ceruloplasmin, that was consistently dysregulated. Convergence comparison prioritized tryptophan as the top-ranked circulating metabolite, followed by kynurenic acid, acetylcarnitine, creatinine, serotonin, and valine. Collectively, robust evidence of metabolomic changes was observed in patients with depression, pointing to a role as potential biomarkers. Further investigation of consensus proteomic features for depression is necessitated.
Collapse
Affiliation(s)
- Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hailin Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chi Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Tang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renjie Qiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yanyi Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Jinfeng Laboratory, Chongqing, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, China.
| |
Collapse
|
11
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
12
|
Atanasova K, Knödler LL, Reindl W, Ebert MP, Thomann AK. Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases. Semin Immunopathol 2025; 47:12. [PMID: 39870972 PMCID: PMC11772462 DOI: 10.1007/s00281-025-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood. The aim of this narrative review is to highlight contemporary empirical findings supporting a pivotal role of the gut microbiome in the pathophysiology of highly prevalent neuropsychiatric symptoms in inflammatory bowel diseases such as fatigue, depression, and anxiety. Finally, we focus on microbiome modulation as potential treatment option for comorbid neuropsychiatric symptoms in immune-mediated diseases and especially in inflammatory bowel diseases. High-quality clinical trials are required to clarify how microbiome modulation through dietary interventions or probiotic, prebiotic or synbiotic treatment can be used clinically to improve mental health and thus quality of life of patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Konstantina Atanasova
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Psychosomatic Medicine, Medical Faculty Mannheim, Central Institute for Mental Health Mannheim, Heidelberg University, Mannheim, Germany.
| | - Laura-Louise Knödler
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
13
|
Wang N, Zhu S, Chen S, Zou J, Zeng P, Tan S. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Rev Neurosci 2025:revneuro-2024-0147. [PMID: 39829004 DOI: 10.1515/revneuro-2024-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of "exerkines" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shuyang Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| |
Collapse
|
14
|
Kim R, Yang S, Lee CH, Park SA. Horticultural activity in soil inoculated with Streptomyces rimosus improved depressive mood with altered electroencephalogram and serum metabolism in adults. Sci Rep 2025; 15:2197. [PMID: 39820093 PMCID: PMC11739573 DOI: 10.1038/s41598-024-79159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 01/19/2025] Open
Abstract
This study investigated the psychophysiological and metabolomic changes during horticultural activities involving the inhalation of volatile organic compounds (VOCs) in individuals experiencing depressive mood based on the presence or absence of the soil microbe Streptomyces rimosus, which emits VOCs. Thirty participants met the specific depression and anxiety criteria and engaged in horticultural activities using soil inoculated with S. rimosus (experimental group) or medium (control group). Electroencephalogram (EEG) was used to analyze the resulting psychophysiological response, and blood samples were collected after each activity. Significant increases were observed in the FZ channel of the central frontal lobe for relative theta, relative alpha, relative slow alpha, ratio of sensorimotor rhythm mid beta to theta, and ratio of alpha to high beta, whereas significant decreases were noted for relative beta, relative high beta, and relative gamma and spectral edge frequency 50% and 90%. GC-TOF-MS analysis identified 44 altered serum metabolites, showing an increasing trend in succinate, glycolate, glycerate, acetate, palmitate, myristate, laurate, caprynate, and octanoate, which are related to the citrate cycle, glyoxylate and dicarboxylate metabolism, and fatty acid biosynthesis. In conclusion, this study suggests that inhalation of VOCs during horticultural activities can help alleviate depression and depressive moods.
Collapse
Affiliation(s)
- Risu Kim
- Department of Bio & Healing Convergence, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Yang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
- Digital Humanities Agro-Healing Convergence Research Center, Konkuk University, 05029, Seoul, Republic of Korea.
| | - Sin-Ae Park
- Department of Bio & Healing Convergence, Konkuk University, Seoul, 05029, Republic of Korea.
- Digital Humanities Agro-Healing Convergence Research Center, Konkuk University, 05029, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Sun L, Bai Y, Kang F, Lei Y. Biosignals in the Gut-Brain Axis Transmission: Function and Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67045-67053. [PMID: 38572786 DOI: 10.1021/acsami.4c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The gut-brain axis (GBA) is an important information pathway connecting the brain, the central nervous system (CNS), and the gastrointestinal (GI) tract. On the one hand, gut microbiota can influence the function brain through GBA; on the other hand, the brain can also change the structural composition of gut microbiota via GBA. It contains a myriad of biosignals, such as monoamines, inflammatory cytokines, and macro-biomolecules, as the information carriers. Highly selective, sensitive, and reliable sensing techniques are essential to resolve the specific function of individual biosignals. This review summarizes the widely reported biosignals related to GBA and their functions, and organizes the latest sensing tools to provide feasible characterization ideas for GBA-related work. In addition, these low-cost, fast-responding sensors can also be used for early identification and diagnosis of GBA-related diseases (e.g., depression). Finally, the problems and deficiencies in this field are pointed out to provide a reference for the orientation of researchers in the sensing field.
Collapse
Affiliation(s)
- Linxuan Sun
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yichao Bai
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| | - Yu Lei
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P. R. China
| |
Collapse
|
16
|
Chen Y, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen W, Chen X, Qiao R, Li Z, Tao X, Xie P. Treatment response of venlafaxine induced alterations of gut microbiota and metabolites in a mouse model of depression. Metab Brain Dis 2024; 39:1505-1521. [PMID: 39150654 DOI: 10.1007/s11011-024-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Antidepressants remain the first-line treatment for depression. However, the factors influencing medication response are still unclear. Accumulating evidence implicates an association between alterations in gut microbiota and antidepressant response. Therefore, the aim of this study is to investigate the role of the gut microbiota-brain axis in the treatment response of venlafaxine. After chronic social defeat stress and venlafaxine treatment, mice were divided into responders and non-responders groups. We compared the composition of gut microbiota using 16 S ribosomal RNA sequencing. Meanwhile, we quantified metabolomic alterations in serum and hippocampus, as well as hippocampal neurotransmitter levels using liquid chromatography-mass spectrometry. We found that the abundances of 29 amplicon sequence variants (ASVs) were significantly altered between the responders and non-responders groups. These ASVs belonged to 8 different families, particularly Muribaculaceae. Additionally, we identified 38 and 39 differential metabolites in serum and hippocampus between the responders and non-responders groups, respectively. Lipid, amino acid, and purine metabolisms were enriched in both serum and hippocampus. In hippocampus, the concentrations of tryptophan, phenylalanine, gamma-aminobutyric acid, glutamic acid, and glutamine were increased, while the level of succinic acid was decreased in the responders group, compared with the non-responders group. Our findings suggest that the gut microbiota may play a role in the antidepressant effect of venlafaxine by modulating metabolic processes in the central and peripheral tissues. This provides a novel microbial and metabolic framework for understanding the impact of the gut microbiota-brain axis on antidepressant response.
Collapse
Affiliation(s)
- Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Renjie Qiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China
| | - Zhuocan Li
- Psychologic Medicine Science, Chongqing Medical University, Chongqing, China
| | - Xiangkun Tao
- Psychologic Medicine Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, China.
| |
Collapse
|
17
|
Wijdeveld LFJM, Collinet ACT, Huiskes FG, Brundel BJJM. Metabolomics in atrial fibrillation - A review and meta-analysis of blood, tissue and animal models. J Mol Cell Cardiol 2024; 197:108-124. [PMID: 39476947 DOI: 10.1016/j.yjmcc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/10/2024]
Abstract
BACKGROUND Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia associated with severe cardiovascular complications. AF presents a growing global challenge, however, current treatment strategies for AF do not address the underlying pathophysiology. To advance diagnosis and treatment of AF, a deeper understanding of AF root causes is needed. Metabolomics is a fast approach to identify, quantify and analyze metabolites in a given sample, such as human serum or atrial tissue. In the past two decades, metabolomics have enabled research on metabolite biomarkers to predict AF, metabolic features of AF, and testing metabolic mechanisms of AF in animal models. Due to the field's rapid evolution, the methods of AF metabolomics studies have not always been optimal. Metabolomics research has lacked standardization and requires expertise to face methodological challenges. PURPOSE OF THE REVIEW We summarize and meta-analyze metabolomics research on AF in human plasma and serum, atrial tissue, and animal models. We present the current progress on metabolic biomarkers candidates, metabolic features of clinical AF, and the translation of metabolomics findings from animal to human. We additionally discuss strengths and weaknesses of the metabolomics method and highlight opportunities for future AF metabolomics research.
Collapse
Affiliation(s)
- Leonoor F J M Wijdeveld
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands; Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, MA 02142, Cambridge, United States
| | - Amelie C T Collinet
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Fabries G Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
18
|
Zhong X, Chen Y, Chen W, Liu Y, Gui S, Pu J, Wang D, He Y, Chen X, Chen X, Qiao R, Xie P. Identification of Potential Biomarkers for Major Depressive Disorder: Based on Integrated Bioinformatics and Clinical Validation. Mol Neurobiol 2024; 61:10355-10364. [PMID: 38722514 DOI: 10.1007/s12035-024-04217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/06/2024] [Indexed: 11/24/2024]
Abstract
Major depressive disorder (MDD) is a severe mental illness characterized by a lack of objective biomarkers. Mounting evidence suggests there are extensive transcriptional molecular changes in the prefrontal cortex (PFC) of individuals with MDD. However, it remains unclear whether there are specific genes that are consistently altered and possess diagnostic power. In this study, we conducted a systematic search of PFC datasets of MDD patients from the Gene Expression Omnibus database. We calculated the differential expression of genes (DEGs) and identified robust DEGs using the RRA and MetaDE methods. Furthermore, we validated the consistently altered genes and assessed their diagnostic power through enzyme-linked immunosorbent assay experiments in our clinical blood cohort. Additionally, we evaluated the diagnostic power of hub DEGs in independent public blood datasets. We obtained eight PFC datasets, comprising 158 MDD patients and 263 healthy controls, and identified a total of 1468 unique DEGs. Through integrated analysis, we identified 290 robustly altered DEGs. Among these, seven hub DEGs (SLC1A3, PON2, AQP1, EFEMP1, GJA1, CENPD, HSD11B1) were significantly down-regulated at the protein level in our clinical blood cohort. Moreover, these hub DEGs exhibited a negative correlation with the Hamilton Depression Scale score (P < 0.05). Furthermore, these hub DEGs formed a panel with promising diagnostic power in three independent public blood datasets (average AUCs of 0.85) and our clinical blood cohort (AUC of 0.92). The biomarker panel composed of these genes demonstrated promising diagnostic efficacy for MDD and serves as a useful tool for its diagnosis.
Collapse
Affiliation(s)
- Xiaogang Zhong
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Yue Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyi Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
| | - Xiang Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaopeng Chen
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Jin Feng Laboratory, Chongqing, 401329, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renjie Qiao
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
- NHC Key Laboratory of Diagnosis and Treatment On Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- The Jin Feng Laboratory, Chongqing, 401329, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
19
|
Wu L, Chen J, Yu Q, Lu C, Shu Y. Hypoxanthine Produces Rapid Antidepressant Effects by Suppressing Inflammation in Serum and Hippocampus. ACS Chem Neurosci 2024; 15:3970-3980. [PMID: 39441118 DOI: 10.1021/acschemneuro.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The occurrence and development of depression are closely related to disorders of the brain and peripheral substances. Abnormal metabolites in the blood affect the signal regulation function of the nerve center, which is one of the key factors for depression episodes. This study was focused on metabolites in serum and the mechanism of its antidepressant in the hippocampus. In the present study, serum metabolites in patients with depression were screened by metabolomic techniques. Various depressive mouse models and behavioral tests were used to assess its antidepressant effects. The expressions of inflammatory signaling were detected by using Western blot, ELISA, and immunofluorescence. We found that the metabolite hypoxanthine in the serum of patients with depression was significantly reduced, and the same result was also found in two mouse models of depression such as chronic unpredictable mild stress (CUMS) and social defeat stress (SD). By administering different doses of hypoxanthine (5, 10, 15 mg/kg), we found that only 15 mg/kg was able to significantly reduce the latency and increase food consumption in the novelty suppressed-feeding test (NSF), which was also able to reverse the depressive phenotypes of mice in the CUMS model after a single administration at 2 h later. Hypoxanthine obviously reduced the expressions of inflammation in serum and downregulated the expressions of MAPK and NLRP3-related pathways in the hippocampus in CUMS mice. Moreover, hypoxanthine also suppressed the activations of glial cells including GFAP and IBA-1 in hippocampal CA1, CA3, and dentate gyrus (DG). To sum up, hypoxanthine exerted antidepressant effect relying on the inhibition of peripheral and hippocampal inflammations by regulating MAPK, NLRP3-related pathways, and glial cells. This was the first time that we have found a disordered metabolite in patients with depression and further systematically demonstrated its efficacy and potential mechanism of antidepressants, providing new ideas for antidepressant drug development.
Collapse
Affiliation(s)
- Lei Wu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Avenue, Qinhuai District, Nanjing 210029, P. R. China
| | - Jianhuai Chen
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Avenue, Qinhuai District, Nanjing 210029, P. R. China
| | - Qiao Yu
- Department of Reproductive Center, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huaian 223300, P. R. China
| | - Chao Lu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Avenue, Qinhuai District, Nanjing 210029, P. R. China
| | - Yachun Shu
- Department of Pharmacy, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Avenue, Qinhuai District, Nanjing 210029, P. R. China
| |
Collapse
|
20
|
Campisi SC, Liang M, Anthony SJ, Dettmer E, Korczak DJ. A personalised nutrition intervention for adolescent depression: a mixed-methods feasibility pilot study. Br J Nutr 2024:1-13. [PMID: 39469787 DOI: 10.1017/s0007114524001338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Randomised controlled trials have demonstrated the benefit of diet modification to improve diet quality in the treatment of adult major depressive disorder (MDD). However, research examining nutritional interventions for adolescents with MDD is sparse. This pilot study examined the feasibility of a personalised nutrition intervention for adolescents with MDD. Ten adolescents with MDD and their parents recruited from a tertiary care setting participated in an 8-week, single-arm mixed-methods study. Feasibility was assessed using five criteria (demand, acceptability, implementation, adaptation and limited efficacy testing) alongside qualitative interviews. The intervention involved four bi-weekly virtual nutrition counselling sessions with a stepped approach to dietary change, menu planning, grocery delivery and educational eHealth messages. Study participants sought positive changes in diet, health and lifestyle for adolescents and family-wide benefits. Recruitment challenges included concerns about managing mood fluctuations, anticipated dietary restrictions and the potential time and effort required for diet adherence. Feedback based on interviews emphasised moderate to high acceptability, satisfaction with menu planning and counselling and recognition of the benefits of trying new foods and sustaining positive dietary changes beyond the study. Improvements in depression symptoms (Cohen's d = 0·36, 95 % CI (-0·24, 3·36)), parent food modeling (Cohen's d = 0·24, 95 % CI (-0·43, 1·16) and the family food environment (Cohen's d = 0·61, 95 % CI (-0·04, 2·61)) were observed. This nutrition intervention was feasible for adolescents with MDD and was acceptable to both parents and depressed adolescents. These preliminary data suggest that further examination of the intervention and its potential benefits on depression symptoms and family food dynamics are warranted.
Collapse
Affiliation(s)
- Susan C Campisi
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Nutrition and Dietetics Program, Clinical Public Health Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Megan Liang
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
| | - Samantha J Anthony
- Child Health Evaluative Sciences Program, The Hospital for Sick Children, Toronto, Canada
- Factor-Inwentash Faculty of Social Work, University of Toronto, Toronto, Canada
| | - Elizabeth Dettmer
- Department of Psychology and the Healthy Living Clinic, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daphne J Korczak
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Xu Z, Rasteh AM, Dong A, Wang P, Liu H. Identification of molecular targets of Hypericum perforatum in blood for major depressive disorder: a machine-learning pharmacological study. Chin Med 2024; 19:141. [PMID: 39385284 PMCID: PMC11465934 DOI: 10.1186/s13020-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is one of the most common psychiatric disorders worldwide. Hypericum perforatum (HP) is a traditional herb that has been shown to have antidepressant effects, but its mechanism is unclear. This study aims to identify the molecular targets of HP for the treatment of MDD. METHODS We performed differential analysis and weighted gene co-expression network analysis (WGCNA) with blood mRNA expression cohort of MDD and healthy control to identify DEGs and significant module genes (gene list 1). Three databases, CTD, DisGeNET, and GeneCards, were used to retrieve MDD-related gene intersections to obtain MDD-predicted targets (gene list 2). The validated targets were retrieved from the TCMSP database (gene list 3). Based on these three gene lists, 13 key pathways were identified. The PPI network was constructed by extracting the intersection of genes and HP-validated targets on all key pathways. Key therapeutic targets were obtained using MCODE and machine learning (LASSO, SVM-RFE). Clinical diagnostic assessments (Nomogram, Correlation, Intergroup expression), and gene set enrichment analysis (GSEA) were performed for the key targets. In addition, immune cell analysis was performed on the blood mRNA expression cohort of MDD to explore the association between the key targets and immune cells. Finally, molecular docking prediction was performed for the targets of HP active ingredients on MDD. RESULTS Differential expression analysis and WGCNA module analysis yielded 933 potential targets for MDD. Three disease databases were intersected with 982 MDD-predicted targets. The TCMSP retrieved 275 valid targets for HP. Separate enrichment analysis intersected 13 key pathways. Five key targets (AKT1, MAPK1, MYC, EGF, HSP90AA1) were finally screened based on all enriched genes and HP valid targets. Combined with the signaling pathway and immune cell analysis suggested the effect of peripheral immunity on MDD and the important role of neutrophils in immune inflammation. Finally, the binding of HP active ingredients (quercetin, kaempferol, and luteolin) and all 5 key targets were predicted based on molecular docking. CONCLUSIONS The active constituents of Hypericum perforatum can act on MDD and key targets and pathways of this action were identified.
Collapse
Affiliation(s)
- Zewen Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | | | - Panpan Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Hengrui Liu
- Cancer Research Institute, Jinan University, Guangzhou, China.
- Tianjin Yinuo Biomedical Co., Ltd, Tianjin, China.
| |
Collapse
|
22
|
Sun Y, Fan C, Lei D. Association between gut microbiota and postpartum depression: A bidirectional Mendelian randomization study. J Affect Disord 2024; 362:615-622. [PMID: 39029663 DOI: 10.1016/j.jad.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUNDS Empirical investigations have shown an association between gut microbiota and postpartum depression (PPD); nevertheless, the precise cause-and-effect relationship between these two variables remains ambiguous. This research aimed to examine the possible reciprocal causal relationship between the gut microbiota and PPD. METHODS In this work, we used Mendelian randomization (MR) to analyze the relationship between the gut microbiota (n = 18,340) and PPD (n = 67,205). We obtained the relevant SNPs from publicly accessible genome-wide association studies (GWAS). The SNP estimations were combined by the inverse-variance weighted (IVW) method, including sensitivity analyses such as weighted median, MR Egger, and MR Pleiotropy Residual Sum and Outlier (PRESSO). RESULTS We have identified strong correlations between six bacterial characteristics and the likelihood of developing PPD. Our research revealed that the genus Ruminococcaceae UCG010, the family Veillonellaceae, and the class Clostridia had a beneficial effect on preventing PPD. The class Alphaproteobacteria, genus Slackia, and order NB1n were found to have a significant negative impact on PPD. The sensitivity studies conducted on these bacterial features consistently confirmed these finding. LIMITATIONS It is crucial to acknowledge that our study was conducted just within a European society, which may restrict its applicability to other groups. CONCLUSIONS The findings from our MR investigation indicate a potential causal relationship between certain kinds of gut bacteria and PPD. Additional investigation is required to elucidate the influence of gut microbiota on the advancement of PPD.
Collapse
Affiliation(s)
- Yonghao Sun
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Cuifang Fan
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| | - Di Lei
- Department of Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430000, China.
| |
Collapse
|
23
|
Sun T, Chen G, Jiang W, Xu W, You L, Jiang C, Chen S, Wang D, Zheng X, Yuan Y. Distinguishing bipolar depression, bipolar mania, and major depressive disorder by gut microbial characteristics. Bipolar Disord 2024; 26:584-594. [PMID: 38647010 DOI: 10.1111/bdi.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND Gut microbial disturbance has been widely confirmed in mood disorders. However, little is known about whether gut microbial characteristics can distinguish major depressive disorder (MDD), bipolar depression (BP-D), and bipolar mania (BP-M). METHODS This was a prospective case-control study. The composition of gut microbiota was profiled using 16S ribosomal RNA (rRNA) gene sequencing of fecal samples and compared between healthy controls (HC; n = 46), MDD (n = 51), BP-D (n = 44), and patients with BP-M (n = 45). RESULTS Gut microbial compositions were remarkably changed in the patients with MDD, BP-D, and BP-M. Compared to HC, distinct gut microbiome signatures were found in MDD, BP-D, and BP-M, and some gut microbial changes were overlapping between the three mood disorders. Furthermore, we identified a signature of 7 operational taxonomic units (OUT; Prevotellaceae-related OUT22, Prevotellaceae-related OUT31, Prevotellaceae-related OTU770, Ruminococcaceae-related OUT70, Bacteroidaceae-related OTU1536, Propionibacteriaceae-related OTU97, Acidaminococcaceae-related OTU34) that can distinguish patients with MDD from those with BP-D, BP-M, or HC, with area under the curve (AUC) values ranging from 0.910 to 0.996. CONCLUSION Our results provide the clinical rationale for the discriminative diagnosis of MDD, BP-D, and BP-M by characteristic gut microbial features.
Collapse
Affiliation(s)
- Taipeng Sun
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Gang Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of Medical Psychology, Huai'an Third People's Hospital, Huaian, Jiangsu, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Linlin You
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Chenguang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Dan Wang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital; School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Saengmearnuparp T, Pintana H, Apaijai N, Chunchai T, Thonusin C, Kongkaew A, Lojanapiwat B, Chattipakorn N, Chattipakorn SC. Long-term Treatment with a 5-Alpha-Reductase Inhibitor Alleviates Depression-like Behavior in Obese Male Rats. Behav Brain Res 2024; 472:115155. [PMID: 39032869 DOI: 10.1016/j.bbr.2024.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Several studies have reported side effects of finasteride (FIN), such as anxiety/depression in young men. Obesity is also positively associated with anxiety/depression symptoms; however, the impacts of long-term FIN treatment and FIN withdrawal in young obese individuals are still elusive. The present study aimed to investigate the effect of long-term treatment and its withdrawal on anxiety/depression and brain pathologies in lean and obese adult male rats. Forty-eight male Wistar rats were equally divided into two groups and fed either a normal or high-fat diet. At age 13 weeks, rats in each dietary group were divided into three subgroups: 1) the control group receiving drinking water, 2) the long-term treatment group receiving FIN orally at 5 mg/kg/day for 6 weeks, and 3) the withdrawal group receiving FIN orally at 5 mg/kg/day for 2 weeks followed by a 4-week withdrawal period. Anxiety/depression-like behaviors, biochemical analysis, brain inflammation, oxidative stress, neuroactive steroids, brain metabolites, and microglial complexity were tested. The result showed that lean rats treated with long-term FIN and its withdrawal exhibited metabolic disturbances, depressive-like behavior, and both groups showed increased neurotoxic metabolites and reduced microglial complexity. Obesity itself led to metabolic disturbances and brain pathologies, including increased inflammation, oxidative stress, and quinolinic acid, as well as reduced microglial complexity, resulting in increased anxiety- and depression-like behaviors. Interestingly, the long-term FIN treatment group in obese rats showed attenuation of depressive-like behaviors, brain inflammation, and oxidative stress, along with increased brain antioxidants, suggesting the possible benefits of FIN in obese conditions.
Collapse
Affiliation(s)
- Thiraphat Saengmearnuparp
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hiranya Pintana
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanisa Thonusin
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Bannakij Lojanapiwat
- Urology division, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
25
|
Medina-Rodríguez EM, Martínez-Raga J, Sanz Y. Intestinal Barrier, Immunity and Microbiome: Partners in the Depression Crime. Pharmacol Rev 2024; 76:956-969. [PMID: 39084934 DOI: 10.1124/pharmrev.124.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Depression is a highly prevalent disorder and a leading cause of disability worldwide. It has a major impact on the affected individual and on society as a whole. Regrettably, current available treatments for this condition are insufficient in many patients. In recent years, the gut microbiome has emerged as a promising alternative target for treating and preventing depressive disorders. However, the microbes that form this ecosystem do not act alone but are part of a complicated network connecting the gut and the brain that influences our mood. Host cells that are in intimate contact with gut microbes, such as the epithelial cells forming the gut barrier and the immune cells in their vicinity, play a key role in the process. These cells continuously shape immune responses to maintain healthy communication between gut microbes and the host. In this article, we review how the interplay among epithelial cells, the immune system, and gut microbes mediates gut-brain communication to influence mood. We also discuss how advances in our knowledge of the mechanisms underlying the gut-brain axis could contribute to addressing depression. SIGNIFICANCE STATEMENT: This review does not aim to systematically describe intestinal microbes that might be beneficial or detrimental for depression. We have adopted a novel point of view by focusing on potential mechanisms underlying the crosstalk between gut microbes and their intestinal environment to control mood. These pathways could be targeted by well defined and individually tailored dietary interventions, microbes, or microbial metabolites to ameliorate depression and decrease its important social and economic impact.
Collapse
Affiliation(s)
- Eva M Medina-Rodríguez
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - José Martínez-Raga
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - Yolanda Sanz
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| |
Collapse
|
26
|
Zhu Y, Shutta KH, Huang T, Balasubramanian R, Zeleznik OA, Clish CB, Ávila-Pacheco J, Hankinson SE, Kubzansky LD. Persistent PTSD symptoms are associated with plasma metabolic alterations relevant to long-term health: A metabolome-wide investigation in women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311628. [PMID: 39148851 PMCID: PMC11326341 DOI: 10.1101/2024.08.07.24311628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background Posttraumatic stress disorder (PTSD) is characterized by severe distress and associated with cardiometabolic diseases. Studies in military and clinical populations suggest dysregulated metabolomic processes may be a key mechanism. Prior work identified and validated a metabolite-based distress score (MDS) linked with depression and anxiety and subsequent cardiometabolic diseases. Here, we assessed whether PTSD shares metabolic alterations with depression and anxiety and also if additional metabolites are related to PTSD. Methods We leveraged plasma metabolomics data from three subsamples nested within the Nurses' Health Study II, including 2835 women with 2950 blood samples collected across three timepoints (1996-2014) and 339 known metabolites consistently assayed by mass spectrometrybased techniques. Trauma and PTSD exposures were assessed in 2008 and characterized as follows: lifetime trauma without PTSD, lifetime PTSD in remission, and persistent PTSD symptoms. Associations between the exposures and the MDS or individual metabolites were estimated within each subsample adjusting for potential confounders and combined in random-effects meta-analyses. Results Persistent PTSD symptoms were associated with higher levels of the previously developed MDS for depression and anxiety. Out of 339 metabolites, we identified nine metabolites (primarily elevated glycerophospholipids) associated with persistent symptoms (false discovery rate<0.05). No metabolite associations were found with the other PTSD-related exposures. Conclusions As the first large-scale, population-based metabolomics analysis of PTSD, our study highlighted shared and distinct metabolic differences linked to PTSD versus depression or anxiety. We identified novel metabolite markers associated with PTSD symptom persistence, suggesting further connections with metabolic dysregulation that may have downstream consequences for health.
Collapse
Affiliation(s)
- Yiwen Zhu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Katherine H. Shutta
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Tianyi Huang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Raji Balasubramanian
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Oana A. Zeleznik
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Julián Ávila-Pacheco
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Susan E. Hankinson
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Laura D. Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
27
|
Liu Y, Li C, Ren H, Han K, Wang X, Zang S, Zhao G. The relationship of peripheral blood cell inflammatory biomarkers and psychological stress in unmedicated major depressive disorder. J Psychiatr Res 2024; 176:155-162. [PMID: 38865865 DOI: 10.1016/j.jpsychires.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Recent research has explored the linkage between major depressive disorder (MDD) and inflammation, especially via altered peripheral blood immune markers. However, the relationship between several novel leukocyte-derived ratios (LDR) and psychological stress in MDD remains uncertain. This study aimed to explore the relationship between LDR, clinical characteristics, recent life events, and childhood maltreatment in MDD patients. METHODS A cross-sectional case-control study was conducted involving 59 healthy controls (HC) and 50 unmedicated MDD patients. Subjects underwent psychological assessments and peripheral blood measurements. LDR assessed in this study included neutrophil-to-lymphocyte ratio (NLR), derived NLR (dNLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-lymphocyte ratio (PLR), white blood cell-to-mean platelet volume ratio (WMR), systemic immune inflammation index (SII), multiplication of neutrophil and monocyte counts (MNM), and systemic inflammation response index (SIRI). RESULTS MDD patients displayed significant alterations in WMR, PLR, and MNM compared to HC, as well as correlations between several LDR and various clinical features (duration of untreated psychosis and dNLR, the nine-item Patient Health Questionnaire and PLR, the 7-item Generalized Anxiety Disorder Questionnaire and SIRI (NLR and dNLR). There was a significant difference in the comparison of WMR in first-episode patients than in recurrent patients. Analyses further revealed an association between Life Event Scale total scores and NLR (dNLR). No correlation was found between Childhood Trauma Questionnaire total (or subscale) scores and LDR. Additionally, WMR and dNLR presented potential predictive value for distinguishing between MDD and HC. CONCLUSION The study concludes that MDD and some clinical features are associated with alterations in some peripheral blood LDR. These findings emphasize the potential role of peripheral blood LDR in the pathogenesis and clinical heterogeneity of MDD.
Collapse
Affiliation(s)
- Yigang Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cuicui Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Honghong Ren
- Department of Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ke Han
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan, Shandong, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shuqi Zang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan, Shandong, China
| | - Guoqing Zhao
- Department of Psychology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
28
|
Filipović D, Inderhees J, Korda A, Tadić P, Schwaninger M, Inta D, Borgwardt S. Serum Metabolites as Potential Markers and Predictors of Depression-like Behavior and Effective Fluoxetine Treatment in Chronically Socially Isolated Rats. Metabolites 2024; 14:405. [PMID: 39195501 DOI: 10.3390/metabo14080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Metabolic perturbation has been associated with depression. An untargeted metabolomics approach using liquid chromatography-high resolution mass spectrometry was employed to detect and measure the rat serum metabolic changes following chronic social isolation (CSIS), an animal model of depression, and effective antidepressant fluoxetine (Flx) treatment. Univariate and multivariate statistics were used for metabolic data analysis and differentially expressed metabolites (DEMs) determination. Potential markers and predictive metabolites of CSIS-induced depressive-like behavior and Flx efficacy in CSIS were evaluated by the receiver operating characteristic (ROC) curve, and machine learning (ML) algorithms, such as support vector machine with linear kernel (SVM-LK) and random forest (RF). Upregulated choline following CSIS may represent a potential marker of depressive-like behavior. Succinate, stachydrine, guanidinoacetate, kynurenic acid, and 7-methylguanine were revealed as potential markers of effective Flx treatment in CSIS rats. RF yielded better accuracy than SVM-LK (98.50% vs. 85.70%, respectively) in predicting Flx efficacy in CSIS vs. CSIS, however, it performed almost identically in classifying CSIS vs. control (75.83% and 75%, respectively). Obtained DEMs combined with ROC curve and ML algorithms provide a research strategy for assessing potential markers or predictive metabolites for the designation or classification of stress-induced depressive phenotype and mode of drug action.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Predrag Tadić
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Bioanalytic Core Facility, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Dragoš Inta
- Department for Community Health, Faculty of Natural Sciences, Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Center of Brain Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
29
|
Cui J, Zhai Q, Yang Z, Liu Y. The role of gut microbiota and blood metabolites in postpartum depression: a Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1416298. [PMID: 39050131 PMCID: PMC11266010 DOI: 10.3389/fcimb.2024.1416298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background Postpartum depression (PPD) is a common complication of pregnancy that imposes a heavy health and economic burden on individuals, families and society. The etiology of PPD is complex and incompletely defined, and recent studies have identified an important role for gut microbiota (GM) and their metabolites in neurological disorders. However, fewer studies on GM and PPD are available and have not yielded uniform results. Methods Instrumental variables for GM and blood metabolites were obtained from the MiBioGen consortium and metabolomics GWAS server. Single nucleotide polymorphisms (SNPs) associated with PPD phenotypes were obtained from the FinnGen consortium. Inverse variance weighted (IVW), weighted median, weighted mode, and MR-Egger methods were used to assess causal effects. Inverse MR analysis and sensitivity analysis were also utilized to improve the stability of the results. Results In this study, 5 intestinal species and 24 blood metabolites causally associated with PPD were identified using MR analysis. In addition, MR analysis showed that Prevotellaceae and Bifidobacteria may reduce the risk of PPD by elevating Xanthine and 1-arachidonoylglycerophosphoinositol (LysoPI) levels. Conclusions This study identified GM and blood metabolites causally associated with PPD. The results of this study may provide a theoretical basis for the discovery of PPD-related biomarkers and the treatment of the disease by regulating the gut microenvironment.
Collapse
Affiliation(s)
- Ji Cui
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qilong Zhai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Zhao Y, Xiang J, Shi X, Jia P, Zhang Y, Li M. MDDOmics: multi-omics resource of major depressive disorder. Database (Oxford) 2024; 2024:baae042. [PMID: 38917209 PMCID: PMC11197964 DOI: 10.1093/database/baae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Major depressive disorder (MDD) is a pressing global health issue. Its pathogenesis remains elusive, but numerous studies have revealed its intricate associations with various biological factors. Consequently, there is an urgent need for a comprehensive multi-omics resource to help researchers in conducting multi-omics data analysis for MDD. To address this issue, we constructed the MDDOmics database (Major Depressive Disorder Omics, (https://www.csuligroup.com/MDDOmics/), which integrates an extensive collection of published multi-omics data related to MDD. The database contains 41 222 entries of MDD research results and several original datasets, including Single Nucleotide Polymorphisms, genes, non-coding RNAs, DNA methylations, metabolites and proteins, and offers various interfaces for searching and visualization. We also provide extensive downstream analyses of the collected MDD data, including differential analysis, enrichment analysis and disease-gene prediction. Moreover, the database also incorporates multi-omics data for bipolar disorder, schizophrenia and anxiety disorder, due to the challenge in differentiating MDD from similar psychiatric disorders. In conclusion, by leveraging the rich content and online interfaces from MDDOmics, researchers can conduct more comprehensive analyses of MDD and its similar disorders from various perspectives, thereby gaining a deeper understanding of potential MDD biomarkers and intricate disease pathogenesis. Database URL: https://www.csuligroup.com/MDDOmics/.
Collapse
Affiliation(s)
- Yichao Zhao
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| | - Ju Xiang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, No.45 Chiling Road, Changsha 410114, China
| | - Xingyuan Shi
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| | - Pengzhen Jia
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| | - Yan Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, No.139 Renmin Road Central, Changsha 410011, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, No.932 South Lushan Road, Changsha 410083, China
| |
Collapse
|
31
|
Gao Y, Liang Z, Mao B, Zheng X, Shan J, Jin C, Liu S, Kolliputi N, Chen Y, Xu F, Shi L. Gut microbial GABAergic signaling improves stress-associated innate immunity to respiratory viral infection. J Adv Res 2024; 60:41-56. [PMID: 37353002 PMCID: PMC10284622 DOI: 10.1016/j.jare.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihao Liang
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Shijia Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
32
|
Pu J, Yu Y, Liu Y, Wang D, Gui S, Zhong X, Chen W, Chen X, Chen Y, Chen X, Qiao R, Jiang Y, Zhang H, Fan L, Ren Y, Chen X, Wang H, Xie P. ProMENDA: an updated resource for proteomic and metabolomic characterization in depression. Transl Psychiatry 2024; 14:229. [PMID: 38816410 PMCID: PMC11139925 DOI: 10.1038/s41398-024-02948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Depression is a prevalent mental disorder with a complex biological mechanism. Following the rapid development of systems biology technology, a growing number of studies have applied proteomics and metabolomics to explore the molecular profiles of depression. However, a standardized resource facilitating the identification and annotation of the available knowledge from these scattered studies associated with depression is currently lacking. This study presents ProMENDA, an upgraded resource that provides a platform for manual annotation of candidate proteins and metabolites linked to depression. Following the establishment of the protein dataset and the update of the metabolite dataset, the ProMENDA database was developed as a major extension of its initial release. A multi-faceted annotation scheme was employed to provide comprehensive knowledge of the molecules and studies. A new web interface was also developed to improve the user experience. The ProMENDA database now contains 43,366 molecular entries, comprising 20,847 protein entries and 22,519 metabolite entries, which were manually curated from 1370 human, rat, mouse, and non-human primate studies. This represents a significant increase (more than 7-fold) in molecular entries compared to the initial release. To demonstrate the usage of ProMENDA, a case study identifying consistently reported proteins and metabolites in the brains of animal models of depression was presented. Overall, ProMENDA is a comprehensive resource that offers a panoramic view of proteomic and metabolomic knowledge in depression. ProMENDA is freely available at https://menda.cqmu.edu.cn .
Collapse
Affiliation(s)
- Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, MN, 55901, USA
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renjie Qiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanyi Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Fan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- The Jinfeng Laboratory, Chongqing, 401336, China.
- Chongqing Institute for Brain and Intelligence, Chongqing, 400072, China.
| |
Collapse
|
33
|
Lin Y, Xie Z, Li Z, Yuan C, Zhang C, Li Y, Xie K, Wang K. The microbiota-gut-brain axis: A crucial immunomodulatory pathway for Bifidobacterium animalis subsp. lactis' resilience against LPS treatment in neonatal rats. Int J Biol Macromol 2024; 266:131255. [PMID: 38556221 DOI: 10.1016/j.ijbiomac.2024.131255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
An imbalanced gut microflora may contribute to immune disorders in neonates due to an immature gut barrier. Bacterial toxins, particularly, can trigger the immune system, potentially resulting in uncontrolled gut and systemic inflammation. Previous research has revealed that Bifidobacterium animalis subsp. lactis (B. lactis) could protect against early-life pathogen infections by enhancing the gut barrier. However, the effects of B. lactis on a compromised immune system remain uncertain. Hence, this study concentrated on the immunomodulatory effects and mechanisms of B. lactis in neonatal rats intraperitoneally injected with lipopolysaccharide (LPS), a bacterial toxin and inflammatory mediator. First, B. lactis significantly alleviated the adverse effects induced by LPS on the growth, development, and body temperature of neonatal rats. Second, B. lactis significantly reduced the immune responses and damage induced by LPS, affecting both systemic and local immune responses in the peripheral blood, gut, and brain. Notably, B. lactis exhibited extra potent neuroprotective and neurorepair effects. Our research found that pre-treatment with B. lactis shaped the diverse gut microecology by altering both microbial populations and metabolic biomolecules, closely linked to immunomodulation. Overall, this study elucidated the multifaceted roles of B. lactis in neonatal hosts against pathogenic infection and immune disorder, revealing the existence of the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Yugui Lin
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China; Department of Microbiology, Guangxi Medical University, 530021 Nanning, China.
| | - Zhong Xie
- Department of Microbiology, Guangxi Medical University, 530021 Nanning, China
| | - Zhouyi Li
- Department of Microbiology, Guangxi Medical University, 530021 Nanning, China
| | - Chunlei Yuan
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Chilun Zhang
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Yanfen Li
- Microbiology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Kunke Xie
- Immunology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| | - Ke Wang
- Immunology Laboratory, Zhongshan Bo'ai Hospital, 528400 Zhongshan, China
| |
Collapse
|
34
|
Holthuijsen DDB, van Roekel EH, Bours MJL, Ueland PM, Breukink SO, Janssen-Heijnen MLG, Keulen ETP, Gigic B, Gsur A, Meyer K, Ose J, Ulvik A, Weijenberg MP, Eussen SJPM. Longitudinal associations of plasma kynurenines and ratios with anxiety and depression scores in colorectal cancer survivors up to 12 months post-treatment. Psychoneuroendocrinology 2024; 163:106981. [PMID: 38335827 DOI: 10.1016/j.psyneuen.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) survivors often experience neuropsychological symptoms, including anxiety and depression. Mounting evidence suggests a role for the kynurenine pathway in these symptoms due to potential neuroprotective and neurotoxic roles of involved metabolites. However, evidence remains inconclusive and insufficient in cancer survivors. Thus, we aimed to explore longitudinal associations of plasma tryptophan, kynurenines, and their established ratios with anxiety and depression in CRC survivors up to 12 months post-treatment. METHODS In 249 stage I-III CRC survivors, blood samples were collected at 6 weeks, 6 months, and 12 months post-treatment to analyze plasma concentrations of tryptophan and kynurenines using liquid-chromatography tandem-mass spectrometry (LC/MS-MS). At the same timepoints, anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Confounder-adjusted linear mixed models were used to analyze longitudinal associations. Sensitivity analyses with false discovery rate (FDR) correction were conducted to adjust for multiple testing. RESULTS Higher plasma tryptophan concentrations were associated with lower depression scores (β as change in depression score per 1 SD increase in the ln-transformed kynurenine concentration: -0.31; 95%CI: -0.56,-0.05), and higher plasma 3-hydroxyanthranilic acid concentrations with lower anxiety scores (-0.26; -0.52,-0.01). A higher 3-hydroxykynurenine ratio (HKr; the ratio of 3-hydroxykynurenine to the sum of kynurenic acid, xanthurenic acid, anthranilic acid, and 3-hydroxyanthranilic acid) was associated with higher depression scores (0.34; 0.04,0.63) and higher total anxiety and depression scores (0.53; 0.02,1.04). Overall associations appeared to be mainly driven by inter-individual associations, which were statistically significant for tryptophan with depression (-0.60; -1.12,-0.09), xanthurenic acid with total anxiety and depression (-1.04; -1.99,-0.10), anxiety (-0.51; -1.01,-0.01), and depression (-0.56; -1.08,-0.05), and kynurenic-acid-to-quinolinic-acid ratio with depression (-0.47; -0.93,-0.01). In sensitivity analyses, associations did not remain statistically significant after FDR adjustment. CONCLUSION We observed that plasma concentrations of tryptophan, 3-hydroxyanthranilic acid, xanthurenic acid, 3-hydroxykynurenine ratio, and kynurenic-acid-to-quinolinic-acid ratio tended to be longitudinally associated with anxiety and depression in CRC survivors up to 12 months post-treatment. Future studies are warranted to further elucidate the association of plasma kynurenines with anxiety and depression.
Collapse
Affiliation(s)
- Daniëlle D B Holthuijsen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands.
| | - Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | | | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Reproduction, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Clinical Epidemiology, VieCuri Medical Centre, Venlo, the Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre Sittard-Geleen, Geleen, the Netherlands
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | - Jennifer Ose
- University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands; Department of Epidemiology, CAPHRI School for Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
35
|
Wang W, Liu Y, Yao Z, Chen D, Tang Y, Cui J, Zhang J, Liu H, Hao Z. A microfluidic-based gut-on-a-chip model containing the gut microbiota of patients with depression reveals physiological characteristics similar to depression. LAB ON A CHIP 2024; 24:2537-2550. [PMID: 38623757 DOI: 10.1039/d3lc01052j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The diverse commensal microbiome of the human intestine has been considered to play a central role in depression. However, no host-microbiota co-culture system has been developed for depression, which hinders the controlled study of the interaction between depression and gut microbiota. We designed and manufactured a microfluidic-based gut-on-a-chip model containing the gut microbiota of patients with depression (depression-on-gut-chip, DoGC), which enables the extended co-culture of viable aerobic human intestinal epithelial cells and anaerobic gut microbiota, and allows the direct study of interactions between human gut microbiota and depression. We introduced representative gut microbiota from individuals with depression into our constructed DoGC model, successfully recapitulating the gut microbiota structure of depressed patients. This further led to the manifestation of physiological characteristics resembling depression, such as reduced gut barrier function, chronic low-grade inflammatory responses and decreased neurotransmitter 5-HT levels. Metabolome analysis of substances in the DoGC revealed a significant increase in lipopolysaccharides and tyrosine, while hyodeoxycholic acid, L-proline and L-threonine were significantly reduced, indicating the occurrence of depression. The proposed DoGC can serve as an effective platform for studying the gut microbiota of patients with depression, providing important cues for their roles in the pathology of this condition and acting as a powerful tool for personalized medicine.
Collapse
Affiliation(s)
- Wenxin Wang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yiyuan Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Zhikai Yao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Dengbo Chen
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yue Tang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Jingwei Cui
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
36
|
Chen M, Wang L, Lou Y, Huang Z. Effects of chronic unpredictable mild stress on gut microbiota and fecal amino acid and short-chain fatty acid pathways in mice. Behav Brain Res 2024; 464:114930. [PMID: 38432300 DOI: 10.1016/j.bbr.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Depression is a serious disease that has a significant impact on social functioning. However, the exact causes of depression are still not fully understood. Therefore, it is necessary to explore new pathways leading to depression. In this study, we used 16 S rDNA to examine changes in gut microbiota and predict related pathways in depression-like mice. Additionally, we employed liquid chromatography-mass spectrometry (LC-MS) to identify changes in amino acids and gas chromatography-mass spectrometry (GC-MS) to identify changes in short-chain fatty acids (SCFAs) in fecal samples. We conducted Pearson/Spearman correlation analysis to investigate the associations between changes in amino acids/SCFAs and behavioral outcomes. The 16 S rDNA sequencing revealed significant alterations in gut microbiota at the phylum and genus levels in mice subjected to chronic unpredictable mild stress (CUMS). The relative abundances of Bacteroidetes, Proteobacteria, Bacteroides, and Alloprevotella were increased, while Firmicutes, Verrucomicrobia, Actinobacteria, Lactobacillus, Akkermansia, Lachnospirillum, and Enterobacter were decreased in the CUMS mice. We used PICRUSt software to annotate the kyoto encyclopedia of genes and genomes (KEGG) pathway function related to depression-like behavior in mice. Our analysis identified sixty functional pathways associated with the gut microbiota of mice exhibiting depression-like behavior. In the amino acid concentration analysis, we observed decreased levels of hydroxyproline and tryptophan, and increased levels of alanine in CUMS mice. In the SCFAs concentration assay, we found decreased levels of butyric acid and valeric acid, and increased levels of acetic acid in CUMS mice. Some of these changes were significantly correlated with depressive-like behaviors. Our study contributes to the understanding of the mechanism of the gut-brain axis in the occurrence and development of depression.
Collapse
Affiliation(s)
- Mengjing Chen
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingfeng Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | | | - Zhen Huang
- Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
37
|
Yin B, Cai Y, Teng T, Wang X, Liu X, Li X, Wang J, Wu H, He Y, Ren F, Kou T, Zhu ZJ, Zhou X. Identifying plasma metabolic characteristics of major depressive disorder, bipolar disorder, and schizophrenia in adolescents. Transl Psychiatry 2024; 14:163. [PMID: 38531835 DOI: 10.1038/s41398-024-02886-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SCZ) are classified as major mental disorders and together account for the second-highest global disease burden, and half of these patients experience symptom onset in adolescence. Several studies have reported both similar and unique features regarding the risk factors and clinical symptoms of these three disorders. However, it is still unclear whether these disorders have similar or unique metabolic characteristics in adolescents. We conducted a metabolomics analysis of plasma samples from adolescent healthy controls (HCs) and patients with MDD, BD, and SCZ. We identified differentially expressed metabolites between patients and HCs. Based on the differentially expressed metabolites, correlation analysis, metabolic pathway analysis, and potential diagnostic biomarker identification were conducted for disorders and HCs. Our results showed significant changes in plasma metabolism between patients with these mental disorders and HCs; the most distinct changes were observed in SCZ patients. Moreover, the metabolic differences in BD patients shared features with those in both MDD and SCZ, although the BD metabolic profile was closer to that of MDD than to SCZ. Additionally, we identified the metabolites responsible for the similar and unique metabolic characteristics in multiple metabolic pathways. The similar significant differences among the three disorders were found in fatty acid, steroid-hormone, purine, nicotinate, glutamate, tryptophan, arginine, and proline metabolism. Interestingly, we found unique characteristics of significantly altered glycolysis, glycerophospholipid, and sphingolipid metabolism in SCZ; lysine, cysteine, and methionine metabolism in MDD and BD; and phenylalanine, tyrosine, and aspartate metabolism in SCZ and BD. Finally, we identified five panels of potential diagnostic biomarkers for MDD-HC, BD-HC, SCZ-HC, MDD-SCZ, and BD-SCZ comparisons. Our findings suggest that metabolic characteristics in plasma vary across psychiatric disorders and that critical metabolites provide new clues regarding molecular mechanisms in these three psychiatric disorders.
Collapse
Affiliation(s)
- Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Wang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tianzhang Kou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
38
|
Wang Y, Cai X, Ma Y, Yang Y, Pan CW, Zhu X, Ke C. Metabolomics on depression: A comparison of clinical and animal research. J Affect Disord 2024; 349:559-568. [PMID: 38211744 DOI: 10.1016/j.jad.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/13/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Depression is a major cause of suicide and mortality worldwide. This study aims to conduct a systematic review to identify metabolic biomarkers and pathways for major depressive disorder (MDD), a prevalent subtype of clinical depression. METHODS We searched for metabolomics studies on depression published between January 2000 and January 2023 in the PubMed and Web of Science databases. The reported metabolic biomarkers were systematically evaluated and compared. Pathway analysis was implemented using MetaboAnalyst 5.0. RESULTS We included 26 clinical studies on MDD and 78 metabolomics studies on depressive-like animal models. A total of 55 and 77 high-frequency metabolites were reported consistently in two-thirds of clinical and murine studies, respectively. In the comparison between murine and clinical studies, we identified 9 consistently changed metabolites (tryptophan, tyrosine, phenylalanine, methionine, fumarate, valine, deoxycholic acid, pyruvate, kynurenic acid) in the blood, 1 consistently altered metabolite (indoxyl sulfate) in the urine and 14 disturbed metabolic pathways in both types of studies. These metabolic dysregulations and pathways are mainly implicated in enhanced inflammation, impaired neuroprotection, reduced energy metabolism, increased oxidative stress damage and disturbed apoptosis, laying solid molecular foundations for MDD. LIMITATIONS Due to unavailability of original data like effect-size results in many metabolomics studies, a meta-analysis cannot be conducted, and confounding factors cannot be fully ruled out. CONCLUSIONS This systematic review delineated metabolic biomarkers and pathways related to depression in the murine and clinical samples, providing opportunities for early diagnosis of MDD and the development of novel diagnostic targets.
Collapse
Affiliation(s)
- Yibo Wang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Xinyi Cai
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuchen Ma
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Yang Yang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaohong Zhu
- Suzhou Centers for Disease Control and Prevention, Suzhou, China.
| | - Chaofu Ke
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
39
|
Yan S, Sun W, Tian S, Meng Z, Diao J, Zhou Z, Li L, Zhu W. Pre-mating nitenpyram exposure in male mice leads to depression-like behavior in offspring by affecting tryptophan metabolism in gut microbiota. J Environ Sci (China) 2024; 137:120-130. [PMID: 37980001 DOI: 10.1016/j.jes.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
Several studies have confirmed that the health status of the paternal affects the health of the offspring, however, it remains unknown whether paternal exposure to pesticides affect the offspring health. Here, we used untargeted metabolomics and 16S rRNA sequencing technology, combined with tail suspension test and RT-qPCR to explore the effects of paternal exposure to nitenpyram on the neurotoxicity of offspring. Our results found that the paternal exposure to nitenpyram led to the offspring's depressive-like behaviors, accompanied by the reduction of tryptophan content and the disorder of microbial abundance in the gut of the offspring. Further, we determined the expression of tryptophan metabolism-related genes tryptophanase (tnaA) and tryptophan hydroxylase 1 (TpH1) in gut bacteria and colonic tissues. We found that tryptophan is metabolized to indoles rather than being absorbed into colonocytes, which coursed the reduce of tryptophan availability after nitenpyram exposure. In conclusion, our study deepens our understanding of the intergenerational toxic effects of pesticides.
Collapse
Affiliation(s)
- Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- College of Plant Protection/Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Bernhardsen GP, Thomas O, Mäntyselkä P, Niskanen L, Vanhala M, Koponen H, Lehto SM. Metabolites and depressive symptoms: Network- and longitudinal analyses from the Finnish Depression and Metabolic Syndrome in Adults (FDMSA) Study. J Affect Disord 2024; 347:199-209. [PMID: 38000471 DOI: 10.1016/j.jad.2023.11.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Depression is associated with metabolic abnormalities linked to metabolic syndrome and tissue inflammation, but the interplay between metabolic markers and their association with subsequent depression is unknown. Therefore, we aimed to describe the network of metabolites and their prospective association with depressive symptoms. METHODS The Finnish Depression and Metabolic Syndrome in Adults (FDMSA) cohort, originally a prospective case-control study, comprised a group with Beck Depression Inventory (BDI)-I scores ≥10 at baseline, and controls (n = 319, BDI-I < 10); mean (sd) follow-up time: 7.4 (0.7) years. Serum metabolic biomarkers were determined by proton nuclear magnetic resonance (NMR), and depressive symptoms sum-score by using the BDI-I. We examined the prospective associations between metabolites at baseline and BDI score at follow-up utilizing multivariate linear regression, parsimonious predictions models and network analysis. RESULTS Some metabolites tended to be either negatively (e.g. histidine) or positively associated (e.g. glycoprotein acetylation, creatinine and triglycerides in very large high density lipoproteins [XL-HDL-TG]) with depressive symptoms. None of the associations were significant after correction for multiple testing. The network analysis suggested high correlation among the metabolites, but that none of the metabolites directly influenced subsequent depressive symptoms. LIMITATIONS Although the sample size may be considered satisfactory in a prospective context, we cannot exclude the possibility that our study was underpowered. CONCLUSIONS Our results suggest that the investigated metabolic biomarkers are not a driving force in the development of depressive symptoms. These findings should be confirmed in studies with larger samples and studies that account for the heterogeneity of depressive disorders.
Collapse
Affiliation(s)
- Guro Pauck Bernhardsen
- Department of Research and Development, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway.
| | - Owen Thomas
- Division of Research and Innovation, Akershus University Hospital, Lørenskog, Norway
| | - Pekka Mäntyselkä
- Institute of Public Health and Clinical Nutrition, General Practice, University of Eastern Finland, Kuopio, Finland; Clinical Research and Trials Centre, Kuopio University Hospital, Wellbeing Services County of North Savo, Kuopio, Finland
| | - Leo Niskanen
- Institute of Public Health and Clinical Nutrition, General Practice, University of Eastern Finland, Kuopio, Finland; Departments of Internal Medicine, Endocrinology/Diabetology, Päijät-Häme Central Hospital, Lahti, Finland; Eira Medical Center and Hospital, Helsinki, Finland
| | - Mauno Vanhala
- Institute of Public Health and Clinical Nutrition, General Practice, University of Eastern Finland, Kuopio, Finland
| | - Hannu Koponen
- Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Soili M Lehto
- Department of Research and Development, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Brown SJ, Christofides K, Weissleder C, Huang XF, Shannon Weickert C, Lim CK, Newell KA. Sex- and suicide-specific alterations in the kynurenine pathway in the anterior cingulate cortex in major depression. Neuropsychopharmacology 2024; 49:584-592. [PMID: 37735504 PMCID: PMC10789861 DOI: 10.1038/s41386-023-01736-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
Major depressive disorder (MDD) is a serious psychiatric disorder that in extreme cases can lead to suicide. Evidence suggests that alterations in the kynurenine pathway (KP) contribute to the pathology of MDD. Activation of the KP leads to the formation of neuroactive metabolites, including kynurenic acid (KYNA) and quinolinic acid (QUIN). To test for changes in the KP, postmortem anterior cingulate cortex (ACC) was obtained from the National Institute of Health NeuroBioBank. Gene expression of KP enzymes and relevant neuroinflammatory markers were investigated via RT-qPCR (Fluidigm) and KP metabolites were measured using liquid chromatography-mass spectrometry in tissue from individuals with MDD (n = 44) and matched nonpsychiatric controls (n = 36). We report increased IL6 and IL1B mRNA in MDD. Subgroup analysis found that female MDD subjects had significantly decreased KYNA and a trend decrease in the KYNA/QUIN ratio compared to female controls. In addition, MDD subjects that died by suicide had significantly decreased KYNA in comparison to controls and MDD subjects that did not die by suicide, while subjects that did not die by suicide had increased KYAT2 mRNA, which we hypothesise may protect against a decrease in KYNA. Overall, we found sex- and suicide-specific alterations in the KP in the ACC in MDD. This is the first molecular evidence in the brain of subgroup specific changes in the KP in MDD, which not only suggests that treatments aimed at upregulation of the KYNA arm in the brain may be favourable for female MDD sufferers but also might assist managing suicidal behaviour.
Collapse
Affiliation(s)
- Samara J Brown
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | | | - Christin Weissleder
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Mechanism and Therapy of Genetic Brain Diseases, Institut Imagine, Paris, France
| | - Xu-Feng Huang
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA
- Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Chai K Lim
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kelly A Newell
- School of Medical, Indigenous and Health Sciences and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
42
|
Cavaleri D, Crocamo C, Morello P, Bartoli F, Carrà G. The Kynurenine Pathway in Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis of Blood Concentrations of Tryptophan and Its Catabolites. J Clin Med 2024; 13:583. [PMID: 38276089 PMCID: PMC10815986 DOI: 10.3390/jcm13020583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Preliminary evidence shows that the kynurenine pathway (KP) may be altered in attention-deficit/hyperactivity disorder (ADHD). We thus conducted a systematic review and meta-analysis exploring the peripheral blood concentrations of tryptophan catabolites (TRYCATs) in people with ADHD. We searched the main electronic databases up to 7th December 2023. Standardised mean differences (SMDs) with 95% confidence intervals (95%CIs) were used to compare TRYCAT concentrations between participants with ADHD and healthy controls (HCs). We included eight studies. Random-effects meta-analyses found higher kynurenine (SMD = 0.56; 95%CI: 0.04 to 1.08; p = 0.033; I2 = 90.3%) and lower kynurenic acid (SMD = -0.33; 95%CI: -0.49 to -0.17; p < 0.001; I2 = 0%) concentrations in people with ADHD compared to HCs. Additional analyses on drug-free children with ADHD showed higher tryptophan (SMD = 0.31; 95%CI: 0.11 to 0.50; p = 0.002; I2 = 0%) and kynurenine (SMD = 0.74; 95%CI: 0.30 to 1.17; p < 0.001; I2 = 76.5%), as well as lower kynurenic acid (SMD = -0.37; 95%CI: -0.59 to -0.15; p < 0.001; I2 = 0%) blood levels, as compared to HCs. Despite some limitations, our work provides preliminary evidence on KP alterations in ADHD that may suggest decreased neuroprotection. Further research is needed to clarify the role of the KP in ADHD.
Collapse
Affiliation(s)
- Daniele Cavaleri
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (D.C.); (C.C.); (P.M.); (F.B.)
| | - Cristina Crocamo
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (D.C.); (C.C.); (P.M.); (F.B.)
| | - Pietro Morello
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (D.C.); (C.C.); (P.M.); (F.B.)
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (D.C.); (C.C.); (P.M.); (F.B.)
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (D.C.); (C.C.); (P.M.); (F.B.)
- Division of Psychiatry, University College London, Maple House 149, London W1T 7BN, UK
| |
Collapse
|
43
|
You Z, Wang C, Lan X, Li W, Shang D, Zhang F, Ye Y, Liu H, Zhou Y, Ning Y. The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: A metabolomic analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110849. [PMID: 37659714 DOI: 10.1016/j.pnpbp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Approximately one-third of major depressive disorder (MDD) patients do not respond to standard antidepressants and develop treatment-resistant depression (TRD). We aimed to reveal metabolic differences and discover promising potential biomarkers in TRD. METHODS Our study recruited 108 participants including healthy controls (n = 40) and patients with TRD (n = 35) and first-episode drug-naive MDD (DN-MDD) (n = 33). Plasma samples were presented to ultra performance liquid chromatography-tandem mass spectrometry. Then, a machine-learning algorithm was conducted to facilitate the selection of potential biomarkers. RESULTS TRD appeared to be a distinct metabolic disorder from DN-MDD and healthy controls (HCs). Compared to HCs, 199 and 176 differentially expressed metabolites were identified in TRD and DN-MDD, respectively. Of all the metabolites that were identified, spermine, spermidine, and carnosine were considered the most promising biomarkers for diagnosing TRD and DN-MDD patients, with the resulting area under the ROC curve of 0.99, 0.99, and 0.93, respectively. Metabolic pathway analysis yielded compelling evidence of marked changes or imbalances in both polyamine metabolism and energy metabolism, which could potentially represent the primary altered pathways associated with MDD. Additionally, L-glutamine, Beta-alanine, and spermine were correlated with HAMD score. CONCLUSIONS A more disordered metabolism structure is found in TRD than in DN-MDD and HCs. Future investigations should prioritize the comprehensive analysis of potential roles played by these differential metabolites and disturbances in polyamine pathways in the pathophysiology of TRD and depression.
Collapse
Affiliation(s)
- Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
44
|
Ait Tayeb AEK, Colle R, Chappell K, El-Asmar K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Metabolomic profiles of 38 acylcarnitines in major depressive episodes before and after treatment. Psychol Med 2024; 54:289-298. [PMID: 37226550 DOI: 10.1017/s003329172300140x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid β-oxidation impairment during major depression.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire; Unité Médicale Pathologies Héréditaires du Métabolisme et du Globule Rouge; Centre de Biologie et Pathologie Est; CHU de Lyon; F-69500 Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| |
Collapse
|
45
|
Liu X, Zhang B, Tian J, Han Y. Plasma metabolomics reveals the intervention mechanism of different types of exercise on chronic unpredictable mild stress-induced depression rat model. Metab Brain Dis 2024; 39:1-13. [PMID: 37999885 DOI: 10.1007/s11011-023-01310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To study the effects of different types of exercise on the plasma metabolomics of chronic unpredictable mild stress (CUMS)-induced depressed rats based on 1H-NMR metabolomics techniques, and to explore the potential mechanisms of exercise for the treatment of depression. Rats were randomly divided into blank control group (C), CUMS control group (D), pre-exercise with CUMS group (P), CUMS with aerobic exercise group, CUMS with resistance exercise group (R), and CUMS with aerobic + resistance exercise group (E). The corresponding protocol intervention was applied to each group of rats. Body weight, sucrose preference and open field tests were performed weekly during the experiment to evaluate the extent of depression in rats. Plasma samples from each group of rats were collected at the end of the experiment, and then the plasma was analyzed by 1H-NMR metabolomics combined with multivariate statistical analysis methods to identify differential metabolites and perform metabolic pathway analysis. (1) Compared with the group D, the body weight, sucrose preference rate, and the number of crossings and standings in the different types of exercise groups were significantly improved (p < 0.05 or p < 0.01). (2) Compared to group C, a total of 15 differential metabolites associated with depression were screened in the plasma of rats in group D, involving 6 metabolic pathways. Group P can regulate the levels of 6 metabolites: valine, lactate, inositol, glucose, phosphocreatine, acetoacetic acid. Group A can regulate the levels of 6 metabolites: N-acetylglycoprotein, leucine, lactate, low density lipoprotein, glucose and acetoacetic acid. Group R can regulate the levels of 6 metabolites: choline, lactate, inositol, glucose, phosphocreatine and acetoacetic acid. Group E can regulate the levels of 5 metabolites: choline, citric acid, glucose, acetone and acetoacetic acid. The different types of exercise groups can improve the depressive symptoms in CUMS rats, and there are common metabolites and metabolic pathways for their mechanism of effects. This study provides a powerful analytical tool to study the mechanism of the antidepressant effect of exercise, and provides an important method and basis for the early diagnosis, prevention and treatment of depression.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Physical Education, Huainan Normal University, Huainan, China.
| | - Bo Zhang
- Changji Vocational and Technical College, Xinjiang, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China
| |
Collapse
|
46
|
Liang H, Wang JM, Wei XQ, Su XQ, Zhang BX. Thyroid function, renal function, and depression: an association study. Front Psychiatry 2023; 14:1182657. [PMID: 38179254 PMCID: PMC10765600 DOI: 10.3389/fpsyt.2023.1182657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
Objective To investigate the correlations between thyroid function, renal function, and depression. Methods Clinical data of 67 patients with Major depressive disorder (MDD) and 36 healthy control subjects between 2018 and 2021 were collected to compare thyroid and renal function. Thyroid and renal functions of depressed patients were then correlated with the Hamilton Depression Rating Scale (HAMD) and the Hamilton Anxiety Rating Scale (HAMA).Spearman correlation analysis was used to find the correlation between renal function, thyroid function, and depression. A logistic regression was performed to find significant predictors of depression. Results Triiodothyronine protamine (T3), thyroxine (T4), free triiodothyronine protamine (FT3), uric acid, sodium, and anion gap were lower in the MDD group than in the control group (p < 0.05). Correlation analysis of thyroid function, renal function, and factor terms of HAMD in the MDD group suggested that diurnal variation, hopelessness, and depression level were positively correlated with thyrotropin (TSH) (p < 0.05). Cognitive disturbance, retardation, and depression level were negatively correlated with creatinine (p < 0.05). Diurnal variation was negatively correlated with sodium ion (p < 0.01); hopelessness and depression level were positively correlated with chloride ion (p < 0.05); diurnal variation, retardation, and depression level were negatively correlated with anion gap (p < 0.05). Diurnal variation (p < 0.01) and retardation (p < 0.05) were negatively correlated with osmolality. Cognitive disturbance and depression level were positively correlated with estimated glomerular filtration rate (eGFR) (p < 0.05). In the MDD group, correlation analysis of thyroid function, renal function, and HAMA factor terms suggested that the total HAMA score and anxiety level were positively correlated with chloride ion (p < 0.05); psychic anxiety, total HAMA score, and anxiety level were negatively correlated with anion gap (p < 0.05). Furthermore, a low level of anion gap was an independent risk factor for depression and anxiety levels (p < 0.05). Conclusion Low thyroid function and reduced waste metabolized by the kidneys in patients with MDD suggest a low intake and low metabolism in depressed patients. In addition, subtle fluctuations in the anion gap in depressed patients were strongly correlated with the degree of depression and anxiety.
Collapse
Affiliation(s)
- Hai Liang
- Department of Neurology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Neurology, The Third Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jin-min Wang
- Department of Neurology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiao-qian Wei
- Department of Integrative Medicine and Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Xiao-qin Su
- Department of Neurology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bi-xia Zhang
- Department of Neurology, Minhou Country Hospital, Fuzhou, China
| |
Collapse
|
47
|
Mehdi S, Wani SUD, Krishna K, Kinattingal N, Roohi TF. A review on linking stress, depression, and insulin resistance via low-grade chronic inflammation. Biochem Biophys Rep 2023; 36:101571. [PMID: 37965066 PMCID: PMC10641573 DOI: 10.1016/j.bbrep.2023.101571] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/16/2023] Open
Abstract
Stress is a disturbance in homeostasis caused by psychological, physiological, or environmental factors. Prolonged reactions to chronic stress can be detrimental, resulting in various metabolic abnormalities, referred to as metabolic syndrome (MS). There is a reciprocal increased risk between MS and major depressive disorder. Recent studies established an association between inflammation and insulin signaling in type 2 diabetes mellitus with depression. In the present review, we discuss chronic low-grade inflammation, pathways of insulin resistance, and brain glucose metabolism in the context of neuroinflammation and depression. Specific attention is given to psychotropic drugs such as bupropion, mirtazapine, and nefazodone, anti-inflammatory drugs like Celecoxib (COX-2 inhibitor), Etanercept, adalimumab, IL-4Ra antagonist, Anti-IL- 17A antibody (Ixekizumab) and lifestyle modifications including exercise, dietary changes, and sleep hygiene. These therapeutic solutions offer potential in treating depression by targeting metabolic conditions like insulin resistance and inflammatory pathways. The article further explains the significance of a nutrition and antioxidants-rich diet, emphasizing the role of omega-3 fatty acids, vitamin D, zinc, and polyphenols, to improve immunity and activate anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - K.L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| | - Nabeel Kinattingal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| | - Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, 570 015, India
| |
Collapse
|
48
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
49
|
Hao M, Qin Y, Li Y, Tang Y, Ma Z, Tan J, Jin L, Wang F, Gong X. Metabolome subtyping reveals multi-omics characteristics and biological heterogeneity in major psychiatric disorders. Psychiatry Res 2023; 330:115605. [PMID: 38006718 DOI: 10.1016/j.psychres.2023.115605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Growing evidence suggests that major psychiatric disorders (MPDs) share common etiologies and pathological processes. However, the diagnosis is currently based on descriptive symptoms, which ignores the underlying pathogenesis and hinders the development of clinical treatments. This highlights the urgency of characterizing molecular biomarkers and establishing objective diagnoses of MPDs. Here, we collected untargeted metabolomics, proteomics and DNA methylation data of 327 patients with MPDs, 131 individuals with genetic high risk and 146 healthy controls to explore the multi-omics characteristics of MPDs. First, differential metabolites (DMs) were identified and we classified MPD patients into 3 subtypes based on DMs. The subtypes showed distinct metabolomics, proteomics and DNA methylation signatures. Specifically, one subtype showed dysregulation of complement and coagulation proteins, while the DNA methylation showed abnormalities in chemical synapses and autophagy. Integrative analysis in metabolic pathways identified the important roles of the citrate cycle, sphingolipid metabolism and amino acid metabolism. Finally, we constructed prediction models based on the metabolites and proteomics that successfully captured the risks of MPD patients. Our study established molecular subtypes of MPDs and elucidated their biological heterogeneity through a multi-omics investigation. These results facilitate the understanding of pathological mechanisms and promote the diagnosis and prevention of MPDs.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Farup PG, Rootwelt H, Hestad K. APOE Polymorphism Is Associated with Changes in the Kynurenine Pathway. Genes (Basel) 2023; 14:1955. [PMID: 37895304 PMCID: PMC10606170 DOI: 10.3390/genes14101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND APOE polymorphism and the Kynurenine pathway (KP) are associated with many disorders, but little is known about associations between APOE polymorphism and the KP. This study explored the associations between the KP and APOE polymorphism in disorders associated with APOE polymorphism and changes in the KP. METHODS Subjects with morbid obesity before and after bariatric surgery (numbers 139 and 95, respectively), depression (number 49), and unspecified neurological symptoms (number 39) were included. The following grouping of the APOE genotypes was used: E2 = ɛ2ɛ2 + ɛ2ɛ3, E3 = ɛ3ɛ3 + ɛ2ɛ4, and E4 = ɛ3ɛ4 + ɛ4ɛ4. The KP metabolites Tryptophan, Kynurenine, Kynurenic acid, Quinolinic acid, and Xanthurenic acid were quantified in serum. RESULTS The main findings were a significant positive association between E3 and Quinolinic acid (difference between E3 and E2E4: 12.0 (3.5; 18.6) ng/mL); p = 0.005), and a negative association between E4 and Kynurenine (difference between E4 and E2E3: -31.3 (-54.2; -3.2) ng/mL; p = 0.008). Quinolinic acid has been ascribed neurotoxic and inflammatory effects, and Kynurenine is a marker of inflammation. CONCLUSIONS The findings indicate that APOE polymorphism might cause changes in the KP that contribute to the disease. Inflammation could be the link between APOE and the KP.
Collapse
Affiliation(s)
- Per G. Farup
- Department of Research, Innlandet Hospital Trust, 2381 Brumunddal, Norway;
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway;
| | - Knut Hestad
- Department of Research, Innlandet Hospital Trust, 2381 Brumunddal, Norway;
- Department of Psychology, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|