1
|
Osada Y, Shimizu S, Morita K. Parasitic helminths and protozoa: Treasure boxes of disease modifying anti-rheumatic drugs. Parasitol Int 2025; 105:103000. [PMID: 39592081 DOI: 10.1016/j.parint.2024.103000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Parasites generally survive in their hosts by employing various immunomodulation and immune evasion mechanisms. "helminth therapy" is one strategy that harnesses these parasite-specific beneficial properties for the therapeutic treatment of autoimmune and allergic diseases. Although numerous experimental reports have documented the anti-autoimmune activities of parasitic infections and parasite-derived products, the underlying mechanisms remain insufficiently elucidated due to the significant diversity among parasite species and autoimmune conditions. Rheumatoid arthritis (RA) is one of the most prevalent autoimmune disorders, presenting a substantial opportunity for the therapeutic use of parasites as novel disease-modifying antirheumatic drugs (DMARDs). In this paper, we summarize the immunomodulatory properties of parasites, focusing on their anti-arthritic mechanisms, and discuss the potential of parasite-derived products for the treatment of RA.
Collapse
Affiliation(s)
- Yoshio Osada
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan.
| | - Shoichi Shimizu
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, University of Occupational and Environmental Health, Japan
| |
Collapse
|
2
|
Yousefi Y, Haider Z, Grondin JA, Wang H, Haq S, Banskota S, Seto T, Surette M, Khan WI. Gut microbiota regulates intestinal goblet cell response and mucin production by influencing the TLR2-SPDEF axis in an enteric parasitic infection. Mucosal Immunol 2025:S1933-0219(25)00033-9. [PMID: 40164286 DOI: 10.1016/j.mucimm.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Alterations in goblet cell biology constitute one of the most effective host responses against enteric parasites. In the gastrointestinal (GI) tract, millions of bacteria influence these goblet cell responses by binding to pattern recognition receptors such as toll-like receptors (TLRs). Studies suggest that the gut microbiota also interacts bidirectionally with enteric parasites, including Trichuris muris. Here, we study the roles of T. muris-altered microbiota and the TLR2-SPDEF axis in parasitic host defense. In acute T. muris infection, we observed altered gut microbiota composition, which, when transferred to germ-free mice, resulted in increased goblet cell numbers, Th2 cytokines and Muc2 expression, as well as increased Tlr2. Further, antibiotic (ABX)-treated TLR2-/- mice, despite having received the same T. muris-altered microbiota, displayed diminished Th2 response, Muc2 expression, and, intriguingly, diminished SPDEF expression compared to wildtype counterparts. When infected with T. muris, SPDEF-/- mice exhibited a reduced Th2 response and altered microbial composition compared to SPDEF+/+, particularly on day 14 post-infection, and this microbiota was sufficient to alter host goblet cell response when transferred to ABX-treated mice. Taken together, our findings suggest the TLR2-SPDEF axis, via T. muris-induced microbial changes, is an important regulator of goblet cell function and host's parasitic defense.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Zarin Haider
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jensine A Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
3
|
Vanhove MPM, Koblmüller S, Fernandes JMO, Hahn C, Plusquin M, Kmentová N. Cichlid fishes are promising underutilized models to investigate helminth-host-microbiome interactions. Front Immunol 2025; 16:1527184. [PMID: 40018030 PMCID: PMC11864961 DOI: 10.3389/fimmu.2025.1527184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
The "Old Friends Hypothesis" suggests insufficient exposure to symbionts hinders immune development, contributing to increased immune-related diseases in the Global North. The microbiome is often the focus; helminths, potentially also offering health benefits, lack attention. Infection and effect of helminths are influenced and perhaps determined by micro-organisms. Mechanisms behind parasite-microbiome interactions are poorly understood, despite implications on host health. These interactions are typically studied for single helminth species in laboratory animal models, overlooking helminth diversity. Reviewing research on relationships between helminth and microbial diversity yielded 27 publications; most focused on human or other mammalian hosts, relying on natural exposure rather than experimental helminth inoculation. Only about half investigated host health outcomes. Remaining knowledge gaps warrant considering additional candidate model systems. Given the high helminthiasis burden and species diversity of helminths, we propose seeking models in the Global South, where a considerable proportion of research on diversity aspects of helminth-microbiome interactions took place. Low availability of genomic resources for helminths in the Global South, however, necessitates more integrative helminthological research efforts. Given substantial similarities in immune systems, several fishes are models for human health/disease. More effort could be done to establish this for cichlids, whose representatives in the African Great Lakes provide a well-delineated, closed natural system relevant to human health in view of fish-borne zoonoses and other water-borne parasites. A good baseline exists for these cichlids' genomics, parasitology, and microbiology. We suggest exploring African Great Lake cichlids as model hosts for interactions between microbial diversity, helminth diversity, and host health.
Collapse
Affiliation(s)
- Maarten P. M. Vanhove
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
| | | | - Jorge M. O. Fernandes
- Renewable Marine Resources Department, Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | | | - Michelle Plusquin
- Research Group Environmental Biology, Center for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nikol Kmentová
- Research Group Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Parasite Specialist Group, Diepenbeek, Belgium
- Freshwater Biology, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| |
Collapse
|
4
|
Linnemann L, Antwi-Ekwuruke J, Gnanapragassam V, Bang C, Rühlemann M, Ruland J, Hartmann W, Heepmann L, Dörken S, Yunus SM, Viebrock B, Schlosser A, Lepenies B, Breloer M. The C-type lectin receptor MINCLE interferes with eosinophil function and protective intestinal immunity in Strongyloides ratti-infected mice. Mucosal Immunol 2025; 18:220-231. [PMID: 39581231 DOI: 10.1016/j.mucimm.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Strongyloides ratti is a helminth parasite that displays tissue-migrating and intestinal life stages. Myeloid C-type lectin receptors (CLRs) are pattern recognition receptors that recognize pathogen-derived ligands and initiate immune responses. To date, the role of CLRs in S. ratti infection has not been investigated. Here, we show that S. ratti-derived ligands are recognized by the CLR Macrophage inducible Ca2+-dependent lectin receptor (MINCLE). While MINCLE-deficiency did not affect initiation of a protective anti-S. ratti type 2 immunity, MINCLE-deficient mice had a transient advantage in intestinal immunity. Unravelling the underlying mechanism, we show that next to macrophages, dendritic cells and neutrophils, a fraction of eosinophils express MINCLE and expand during S. ratti infection. MINCLE-deficient eosinophils exhibited a more active phenotype and prolonged expansion in vivo and displayed increased capacity to reduce S. ratti motility and produce reactive oxygen species in vitro, compared to wild-type (WT) eosinophils. Depletion of eosinophils in S. ratti-infected mice after the tissue-migration phase elevated intestinal worm burden in MINCLE-deficient mice to the WT level. Thus, our findings establish a central contribution of eosinophils to parasite ejection from the intestine and suggest that S. ratti-triggered signalling via MINCLE interferes with eosinophil mediated ejection of S. ratti from the intestine.
Collapse
Affiliation(s)
- Lara Linnemann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | | | - Vinayaga Gnanapragassam
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, University Kiel, 24118, Kiel, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, 81675, Munich, Germany; Center for Translational Cancer Research (TranslaTUM), 81675, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Germany
| | - Wiebke Hartmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Lennart Heepmann
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Sara Dörken
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Saleh M Yunus
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Birte Viebrock
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Annette Schlosser
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, 30559, Hanover, Germany; Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559, Hanover, Germany
| | - Minka Breloer
- Section Interface, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany; Department for Biology, University Hamburg, 20148, Hamburg, Germany.
| |
Collapse
|
5
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
6
|
Rooney J, Rivera-de-Torre E, Li R, Mclean K, Price DR, Nisbet AJ, Laustsen AH, Jenkins TP, Hofmann A, Bakshi S, Zarkan A, Cantacessi C. Structural and functional analyses of nematode-derived antimicrobial peptides support the occurrence of direct mechanisms of worm-microbiota interactions. Comput Struct Biotechnol J 2024; 23:1522-1533. [PMID: 38633385 PMCID: PMC11021794 DOI: 10.1016/j.csbj.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The complex relationships between gastrointestinal (GI) nematodes and the host gut microbiota have been implicated in key aspects of helminth disease and infection outcomes. Nevertheless, the direct and indirect mechanisms governing these interactions are, thus far, largely unknown. In this proof-of-concept study, we demonstrate that the excretory-secretory products (ESPs) and extracellular vesicles (EVs) of key GI nematodes contain peptides that, when recombinantly expressed, exert antimicrobial activity in vitro against Bacillus subtilis. In particular, using time-lapse microfluidics microscopy, we demonstrate that exposure of B. subtilis to a recombinant saposin-domain containing peptide from the 'brown stomach worm', Teladorsagia circumcincta, and a metridin-like ShK toxin from the 'barber's pole worm', Haemonchus contortus, results in cell lysis and significantly reduced growth rates. Data from this study support the hypothesis that GI nematodes may modulate the composition of the vertebrate gut microbiota directly via the secretion of antimicrobial peptides, and pave the way for future investigations aimed at deciphering the impact of such changes on the pathophysiology of GI helminth infection and disease.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Ruizhe Li
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Kevin Mclean
- Moredun Research Institute, Penicuik Midlothian, United Kingdom
| | | | | | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Hofmann
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Somenath Bakshi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Ashraf Zarkan
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Chen WX, Yan QX, Zhong RZ, Tang SX, Loor JJ, Tan ZL. A type 2 immune circuit and arachidonic acid metabolism role in anti-nematode infection: evidence from transcriptome and targeted metabolome data in goat. Animal 2024; 18:101338. [PMID: 39405961 DOI: 10.1016/j.animal.2024.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024] Open
Abstract
The gastrointestinal nematode infection poses a covert threat to both humans and domestic animals worldwide, eliciting a type 2 immune response within the small intestine. Intestinal tuft cells detect the nematode and activated group 2 innate lymphoid cells. Tuft cell-derived leukotrienes (one of the metabolites of arachidonic acid) were found to drive rapid anti-helminth immunity, but it is still poorly understood whether the tuft cell-mediated type 2 immune circuit and arachidonic acid metabolism modulate anti-parasitic immunity in the gastric epithelium. This study was designed to evaluate the immunological responses of goats inoculated with or without H. contortus. Results showed that H. contortus infection induced a systemic type 2 immune response, characterised by lymphocyte proliferation and greater eosinophils both in peripheral blood and abomasal mucosa, as well as increased type 2 cytokines IL-4, IL-5, and IL-13. Infection of H. contortus altered the transcriptome of the abomasum epithelium, especially tuft cell-mediated circuit-key genes. The infection also influenced the abomasal microbiota, arachidonic acid metabolism and related lipid metabolites, accompanying with great increases in the secretion of leukotrienes and prostaglandins. These findings demonstrate the role of tuft cells mediated circuit in sensing H. contortus infection and immune activation, reveal the candidate function of arachidonic acid involved in anti-helminth immunity, and suggest novel strategies for the control of parasitic diseases in livestock and humans.
Collapse
Affiliation(s)
- W X Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Q X Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China.
| | - R Z Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, Jilin, PR China
| | - S X Tang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| | - J J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Z L Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan 410125, PR China
| |
Collapse
|
8
|
Partida-Rodríguez O, Brown EM, Woodward SE, Cirstea M, Reynolds LA, Petersen C, Vogt SL, Peña-Díaz J, Thorson L, Arrieta MC, Hernández EG, Rojas-Velázquez L, Moran P, González Rivas E, Serrano-Vázquez A, Pérez-Juárez H, Torres J, Ximénez C, Finlay BB. Fecal microbiota transplantation from protozoa-exposed donors downregulates immune response in a germ-free mouse model, its role in immune response and physiology of the intestine. PLoS One 2024; 19:e0312775. [PMID: 39466773 PMCID: PMC11515975 DOI: 10.1371/journal.pone.0312775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Intestinal parasites are part of the intestinal ecosystem and have been shown to establish close interactions with the intestinal microbiota. However, little is known about the influence of intestinal protozoa on the regulation of the immune response. In this study, we analyzed the regulation of the immune response of germ-free mice transplanted with fecal microbiota (FMT) from individuals with multiple parasitic protozoans (P) and non-parasitized individuals (NP). We determined the production of intestinal cytokines, the lymphocyte populations in both the colon and the spleen, and the genetic expression of markers of intestinal epithelial integrity. We observed a general downregulation of the intestinal immune response in mice receiving FMT-P. We found significantly lower intestinal production of the cytokines IL-6, TNF, IFN-γ, MCP-1, IL-10, and IL-12 in the FMT-P. Furthermore, a significant decrease in the proportion of CD3+, CD4+, and Foxp3+ T regulatory cells (Treg) was observed in both, the colon and spleen with FMT-P in contrast to FMT-NP. We also found that in FMT-P mice there was a significant decrease in tjp1 expression in all three regions of the small intestine; ocln in the ileum; reg3γ in the duodenum and relmβ in both the duodenum and ileum. We also found an increase in colonic mucus layer thickness in mice colonized with FMT-P in contrast with FMT-NP. Finally, our results suggest that gut protozoa, such as Blastocystis hominis, Entamoeba coli, Endolimax nana, Entamoeba histolytica/E. dispar, Iodamoeba bütschlii, and Chilomastix mesnili consortia affect the immunoinflammatory state and induce functional changes in the intestine via the gut microbiota. Likewise, it allows us to establish an FMT model in germ-free mice as a viable alternative to explore the effects that exposure to intestinal parasites could have on the immune response in humans.
Collapse
Affiliation(s)
- Oswaldo Partida-Rodríguez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Eric M. Brown
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Sarah E. Woodward
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Mihai Cirstea
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Lisa A. Reynolds
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Microbiology, Faculty of Science, University of Victoria, Victoria, Canada
| | - Charisse Petersen
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Stefanie L. Vogt
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Jorge Peña-Díaz
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Lisa Thorson
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - Marie-Claire Arrieta
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Eric G. Hernández
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Patricia Moran
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Enrique González Rivas
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas y Parasitarias, Instituto Mexicano del Seguro Social (IMSS), Mexico, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Hospital General de Mexico, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - B. B. Finlay
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Taye B, Mekonnen Z, Belanger KD, Davenport ER. Gut-microbiome profiles among Soil-transmitted helminths (STHs) infected Ethiopian children enrolled in the school-based mass deworming program. PLoS Negl Trop Dis 2024; 18:e0012485. [PMID: 39405336 PMCID: PMC11478818 DOI: 10.1371/journal.pntd.0012485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Soil-transmitted helminths (STHs) and mutualistic gut microbes coexist in the gastrointestinal tract. However, limited data exist regarding how STH infections are associated with gut microbiome profiles. METHOD We conducted a cross-sectional analysis of baseline data collected in a longitudinal study to identify and explain differences in microbial communities between STH-infected and non-infected Ethiopian school children. We collected 138 stool samples and analyzed them for STH infection using standard direct wet mount and Kato Katz methods. The gut microbiome profiles were characterized using targeted amplicon sequencing of the 16S rRNA gene from the total DNA extracted from the stools. RESULTS Children infected with Trichuris trichiura showed significantly lower microbial diversity than those who were non-infected (p<0.05). We also observed significant difference in microbiome composition based on Trichuris trichiura infection status (PERMANOVA p< 0.01). A comparison of microbial taxa at the genus level among participants infected with different helminth species showed a significant increase in Agathobacter relative abundance among children infected with Trichuris trichiura compared to non-infected subjects (adjusted p = 0.001). CONCLUSIONS Our results indicate that changes in the gut microbiome composition may vary depending on the species of helminth present. Further studies should investigate how Trichuris trichiura selectively alters microbiome composition compared to other STH species.
Collapse
Affiliation(s)
- Bineyam Taye
- Department of Biology, Colgate University, Hamilton, New York, United States of America
| | - Zeleke Mekonnen
- Institute of Health, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Kenneth D. Belanger
- Department of Biology, Colgate University, Hamilton, New York, United States of America
| | - Emily R. Davenport
- Department of Biology, Huck Institutes of the Life Sciences, Institute for Computational and Data Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
10
|
Yang Y, Azzuolo A, Fodil N, Gros P. Gene: environment interactions in immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 infection. Curr Opin Immunol 2024; 90:102459. [PMID: 39243725 DOI: 10.1016/j.coi.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Despite its devastating human cost, the rapid spread and global establishment of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic had the benefit of providing unique insights into the intricate interplay between genetic, environmental, and socioeconomic factors, which collectively impact susceptibility to infection with SARS-CoV-2. Preceding the implementation of broad vaccination programs and assuming the absence of significant acquired immunity, examining the innate vulnerability to the virus becomes essential. There is indeed considerable heterogeneity observed at both the population and individual levels for various SARS-CoV-2 infection phenotypes, including emergence, progression, and survival from the coronavirus disease 2019 (COVID-19) syndrome. Particularly intriguing is the seemingly milder course of COVID-19 disease reported for the African continent early during the pandemic. This was characterized by significantly lower mortality rates in SARS-CoV-2 patients compared with the European and American continents and globally. We will discuss some of the demographic and socioeconomic factors that may have contributed to these observations. We review the mapped COVID-19 genetic architecture, including the remarkable association of type I interferon as a single protective mechanism and a major determinant of susceptibility. Furthermore, we speculate on potential 'environmental' modulators of penetrance and expressivity of intrinsic vulnerability factors, with a focus on the microbiome and associated metabolomes. Additionally, this review explores the potential immunomodulatory contribution of helminth parasites to the human host immune and inflammatory responses to respiratory viral infections.
Collapse
Affiliation(s)
- Yunxiang Yang
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Alessia Azzuolo
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Nassima Fodil
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada
| | - Philippe Gros
- Department of Biochemistry, McGill Research Center of Complex Traits, and Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Light SH, Nagler CR. Regulation of immune responses to food by commensal microbes. Immunol Rev 2024; 326:203-218. [PMID: 39285525 PMCID: PMC11472335 DOI: 10.1111/imr.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.
Collapse
Affiliation(s)
- Samuel H. Light
- Department of Microbiology, University of Chicago, Chicago IL, 60637
| | - Cathryn R. Nagler
- Department of Pathology, University of Chicago, Chicago IL, 60637
- Department of Biological Sciences Division, Pritzker School of Molecular Engineering, University of Chicago, Chicago IL, 60637
| |
Collapse
|
12
|
Kumar R, Meena AS, Baraiya T, Swarnkar CP, Misra SS, Kumar A. Expression of Toll-like receptors in Haemonchus Contortus resistant sheep: An innate immune parameter for host defense against gastrointestinal nematode infection. Vet Immunol Immunopathol 2024; 275:110813. [PMID: 39142124 DOI: 10.1016/j.vetimm.2024.110813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Innate immune parameters, a first line of defense against invading pathogens like bacteria, parasites, fungi, etc, play a significant role in the prevention and elimination of aetiological agents primarily by recognition of invading pathogen-specific molecules by different pattern recognition receptors. Toll-like receptors (TLRs), a type-I transmembrane glycoprotein, cause innate immune responses mainly by produing inflammatory cytokines, chemokines and interferons. The objective of present study was to determine the role of TLRs in parasite resistance in Malpura sheep. In the current study, transcript variation of TLRs and its downstream signalling molecules namely MyD88, TRIF, IRF-3, TRAF, TGF-β, NFκB, and CD14 were ascertained by real-time PCR in Haemonchus contortus resistant (R) and susceptible (S) Malpura sheep. Results have shown significantly (P<0.05) up-regulated expression of TLR-2, TLR-4, TLR-5, TLR-8 and TLR-10 in July however down-regulated patterns were observed in August and September in R-line sheep compared to S-line sheep. This indicates that at more or less equal parasite load, the TLR genes in R sheep produce more transcripts, but after parasite loads have increased hugely in the S line, they easily surpass the levels seen in the S line. Result suggests that transcriptional activity of the TLR genes was related to parasite load and there were differences between the lines at different infection intensities. Three-point transcript expression observation of the signalling molecules namely TRIF, IRF-3, TRAF, a similar pattern was observed in R sheep compared with S sheep.
Collapse
Affiliation(s)
- Rajiv Kumar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India.
| | - A S Meena
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - Trusha Baraiya
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - C P Swarnkar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - S S Misra
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| | - Arun Kumar
- ICAR-Central Sheep and Wool Research Institute, Avikanagar. Rajasthan 304501, India
| |
Collapse
|
13
|
Grondin JA, Jamal A, Mowna S, Seto T, Khan WI. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024; 13:608. [PMID: 39204209 PMCID: PMC11356857 DOI: 10.3390/pathogens13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal parasites, including helminths and protozoa, account for a significant portion of the global health burden. The gastrointestinal (GI) tract not only serves as the stage for these parasitic infections but also as the residence for millions of microbes. As the intricacies of the GI microbial milieu continue to unfold, it is becoming increasingly apparent that the interactions between host, parasite, and resident microbes help dictate parasite survival and, ultimately, disease outcomes. Across both clinical and experimental models, intestinal parasites have been shown to impact microbial composition and diversity. Reciprocally, microbes can directly influence parasitic survival, colonization and expulsion. The gut microbiota can also indirectly impact parasites through the influence and manipulation of the host. Studying this host-parasite-microbiota axis may help bring about novel therapeutic strategies for intestinal parasitic infection as well as conditions such as inflammatory bowel disease (IBD). In this review, we explore the relationship between intestinal parasites, with a particular focus on common protozoa and helminths, and the gut microbiota, and how these interactions can influence the host defence and intestinal immune response. We will also explore the impact of this tripartite relationship in a clinical setting and its broader implications for human health.
Collapse
Affiliation(s)
- Jensine A. Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asif Jamal
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sadrina Mowna
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
14
|
Corrêa PS, Fernandes MA, Jimenez CR, Mendes LW, Lima PDMT, Abdalla AL, Louvandini H. Interaction between methanotrophy and gastrointestinal nematodes infection on the rumen microbiome of lambs. FEMS Microbiol Ecol 2024; 100:fiae083. [PMID: 38821514 PMCID: PMC11165275 DOI: 10.1093/femsec/fiae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Complex cross-talk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and real-time quantitative PCR (qPCR). The rumen content was collected from six Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and β-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle, and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's postinfection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Murilo Antonio Fernandes
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Carolina Rodriguez Jimenez
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Lucas William Mendes
- Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Paulo de Mello Tavares Lima
- Department of Animal Science, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, United States
| | - Adibe Luiz Abdalla
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| |
Collapse
|
15
|
Li M, Wang S, Zhong L, Heděnec P, Tan Z, Wang R, Chen X, Zhang Y, Tang B, Zhou H, Qu J. Eimeria infections of plateau pika altered the patterns of temporal alterations in gut bacterial communities. Front Microbiol 2024; 14:1301480. [PMID: 38274745 PMCID: PMC10808676 DOI: 10.3389/fmicb.2023.1301480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Intestinal parasites, such as Eimeria, are common among plateau pika (Ochotona curzoniae). The gut microbiome is an essential driver of the host response to gastrointestinal parasites. However, the effects of intestinal protozoal parasites on the temporal variations in the gut microbiome and behavioral and physiological activities remain unknown. Our study conducted treatments involving experimental feeding of pika with Eimeria oocysts or anticoccidia under laboratory conditions to focus on the parasite-associated alterations in gut bacterial communities, host behavioral activity, physiology, and host-bacteria relationships. The results showed insignificant differences in bacterial community structures among treatments on the basis of Bray-Curtis distance metrics, whereas the patterns of temporal alterations in the bacterial communities were changed by the treatments. Bacterial alpha diversities did not vary with the treatments, and experimental feeding with Eimeria slowed down the decrement rate of alpha diversity. Furthermore, few bacterial members were significantly changed by the treatments-only the genus Ruminococcus and the species Ruminococcus flavefaciens, which were associated with energy metabolism. Experimental feeding with Eimeria modified the temporal variations in the bacterial members, including a lower loss rate of the relative abundance of the dominant families Muribaculaceae and Ruminococcaceae in the group with Eimeria experimental feeding. Moreover, a shifting energy trade-off was suggested by the parasite-induced increments in thyroid hormones (triiodothyronine and tetraiodothyronine) and decrements in exploration behavior in the group with Eimeria feeding. However, we did not detect specific connections between gut bacterial communities and pika behaviors and physiology in terms of energy trade-offs. Further in-depth research is needed to examine the role of Eimeria-modified differences in the gut bacteria of plateau pika.
Collapse
Affiliation(s)
- Maoping Li
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Suqin Wang
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhong
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Petr Heděnec
- Institute for Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Zhaoxian Tan
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Rong Wang
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Xinyang Chen
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingmin Tang
- Grassland Station of Qinghai Province, Xining, China
| | - Huakun Zhou
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Jiapeng Qu
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
16
|
Mu W, Ma P, Wang Y, Li Y, Ding Y, Zou Y, Pu L, Yan Q, Kong H, Guo X, Guo A, Li H, Wang S. Taeniasis impacts human gut microbiome composition and function. THE ISME JOURNAL 2024; 18:wrae213. [PMID: 39441994 PMCID: PMC11536184 DOI: 10.1093/ismejo/wrae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Human taeniasis, caused by Taenia tapeworms, is a global parasitic disease with significant implications for public health and food safety. These tapeworms can grow to considerable sizes and potentially impact the microecology of the host gut. Despite their importance, the effects of Taenia infection on host gut microbiota haven't been thoroughly investigated. In this study, we conducted a cross-sectional analysis of the gut microbiome in patients infected with Taenia asiatica (n = 87) compared to healthy controls (n = 79) in the Dali cohort, China. We also performed a longitudinal assessment of microbial changes following deworming in a subset of patients (n = 24). Our findings reveal a significant shift in gut microbial composition, characterized by increased alpha-diversity and an enrichment of Prevotella-driven enterotypes in infected patients compared to healthy controls. The stability of these microbial features post-deworming varied widely among individuals and was lower in those with lower initial alpha diversity and Prevotella-enterotype before deworming. We observed a significant depletion of Bifidobacterium species in infected individuals, regardless of enterotypes, and these prebiotics did not recover post-deworming. Metabolic network analysis and in vitro experiments suggest that the reduction of Bifidobacterium was linked to metabolic competition for ecological niches or nutrients, particularly stachyose, from other microbes rather than the parasitism itself. Furthermore, our machine learning analysis demonstrated that taxa associated with Bifidobacterium in stachyose metabolism could robustly predict infection but could not predict deworming. This study highlights the substantial impact of taeniasis on the human gut microbiome and overall gut health.
Collapse
Affiliation(s)
- Wenjie Mu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Lanzhou, Gansu 730046, China
| | - Pingping Ma
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Yugui Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Yaqi Li
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Yingying Ding
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Lixia Pu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Qi Yan
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Haoyue Kong
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
| | - Xiaola Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Lanzhou, Gansu 730046, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Lanzhou, Gansu 730046, China
| | - Hailong Li
- Department of Parasitology, College of Basic Medicine, Dali University, Dali, Yunnan 671000, China
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730000, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Lanzhou, Gansu 730046, China
| |
Collapse
|
17
|
Schytz Andersen-Civil AI, Arora P, Zhu L, Myhill LJ, Büdeyri Gökgöz N, Castro-Mejia JL, Leppä MM, Hansen LH, Lessard-Lord J, Salminen JP, Thamsborg SM, Sandris Nielsen D, Desjardins Y, Williams AR. Gut microbiota-mediated polyphenol metabolism is restrained by parasitic whipworm infection and associated with altered immune function in mice. Gut Microbes 2024; 16:2370917. [PMID: 38944838 PMCID: PMC11216105 DOI: 10.1080/19490976.2024.2370917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Polyphenols are phytochemicals commonly found in plant-based diets which have demonstrated immunomodulatory and anti-inflammatory properties. However, the interplay between polyphenols and pathogens at mucosal barrier surfaces has not yet been elucidated in detail. Here, we show that proanthocyanidin (PAC) polyphenols interact with gut parasites to influence immune function and gut microbial-derived metabolites in mice. PAC intake inhibited mastocytosis during infection with the small intestinal roundworm Heligmosomoides polygyrus, and altered the host tissue transcriptome at the site of infection with the large intestinal whipworm Trichuris muris, with a notable enhancement of type-1 inflammatory and interferon-driven gene pathways. In the absence of infection, PAC intake promoted the expansion of Turicibacter within the gut microbiota, increased fecal short chain fatty acids, and enriched phenolic metabolites such as phenyl-γ-valerolactones in the cecum. However, these putatively beneficial effects were reduced in PAC-fed mice infected with T. muris, suggesting concomitant parasite infection can attenuate gut microbial-mediated PAC catabolism. Collectively, our results suggest an inter-relationship between a phytonutrient and infection, whereby PAC may augment parasite-induced inflammation (most prominently with the cecum dwelling T. muris), and infection may abrogate the beneficial effects of health-promoting phytochemicals.
Collapse
Affiliation(s)
| | - Pankaj Arora
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J. Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Milla M. Leppä
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Lars H. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
18
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
19
|
Sun XM, Hao CY, Wu AQ, Luo ZN, El-Ashram S, Alouffi A, Gu Y, Liu S, Huang JJ, Zhu XP. Trichinella spiralis -induced immunomodulation signatures on gut microbiota and metabolic pathways in mice. PLoS Pathog 2024; 20:e1011893. [PMID: 38166140 PMCID: PMC10786400 DOI: 10.1371/journal.ppat.1011893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/12/2024] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
The hygiene hypothesis proposes that decreased exposure to infectious agents in developed countries may contribute to the development of allergic and autoimmune diseases. Trichinella spiralis, a parasitic roundworm, causes trichinellosis, also known as trichinosis, in humans. T. spiralis had many hosts, and almost any mammal could become infected. Adult worms lived in the small intestine, while the larvae lived in muscle cells of the same mammal. T. spiralis was a significant public health threat because it could cause severe illness and even death in humans who eat undercooked or raw meat containing the parasite. The complex interactions between gastrointestinal helminths, gut microbiota, and the host immune system present a challenge for researchers. Two groups of mice were infected with T. spiralis vs uninfected control, and the experiment was conducted over 60 days. The 16S rRNA gene sequences and untargeted LC/MS-based metabolomics of fecal and serum samples, respectively, from different stages of development of the Trichinella spiralis-mouse model, were examined in this study. Gut microbiota alterations and metabolic activity accompanied by parasite-induced immunomodulation were detected. The inflammation parameters of the duodenum (villus/crypt ratio, goblet cell number and size, and histological score) were involved in active inflammation and oxidative metabolite profiles. These profiles included increased biosynthesis of phenylalanine, tyrosine, and tryptophan while decreasing cholesterol metabolism and primary and secondary bile acid biosynthesis. These disrupted metabolisms adapted to infection stress during the enteral and parenteral phases and then return to homeostasis during the encapsulated phase. There was a shift from an abundance of Bacteroides in the parenteral phase to an abundance of probiotic Lactobacillus and Treg-associated-Clostridia in the encapsulated phase. Th2 immune response (IL-4/IL-5/IL-13), lamina propria Treg, and immune hyporesponsiveness metabolic pathways (decreased tropane, piperidine and pyridine alkaloid biosynthesis and biosynthesis of alkaloids derived from ornithine, lysine, and nicotinic acid) were all altered. These findings enhanced our understanding of gut microbiota and metabolic profiles of Trichinella -infected mice, which could be a driving force in parasite-shaping immune system maintenance.
Collapse
Affiliation(s)
- Xi-Meng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chun-Yue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - An-Qi Wu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ze-Ni Luo
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Saeed El-Ashram
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong province, China
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sha Liu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing-Jing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xin-Ping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Cai R, Zhou C, Tang R, Meng Y, Zeng J, Li Y, Wen X. Current insights on gut microbiome and chronic urticaria: progress in the pathogenesis and opportunities for novel therapeutic approaches. Gut Microbes 2024; 16:2382774. [PMID: 39078229 PMCID: PMC11290762 DOI: 10.1080/19490976.2024.2382774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic urticaria (CU) is a prevalent skin disorder greatly impacting the patients' life quality, in which immune dysregulation mediated by gut microbiome plays a significant role. Several studies have found the gut dysbiosis exists in patients with CU. In addition, infection may also be one of the causes of CU. The primary treatment currently used for CU is the second-generation non-sedating H1-antihistamines (nsAH). However, there are some limitations in current therapies. Based on the latest evidence, this review provides an updated overview of how the gut dysbiosis influences CU development, explores potential therapeutic approaches based on the gut microbiota and summarizes the interaction between gut microbiota and current treatment.
Collapse
Affiliation(s)
- Rui Cai
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruisi Tang
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanling Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Pawłowska M, Mila-Kierzenkowska C, Szczegielniak J, Woźniak A. Oxidative Stress in Parasitic Diseases-Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants (Basel) 2023; 13:38. [PMID: 38247462 PMCID: PMC10812656 DOI: 10.3390/antiox13010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•-) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host's weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300-500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Jan Szczegielniak
- Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| |
Collapse
|
22
|
Yi SW, Lee HG, Kim E, Jung YH, Bok EY, Cho A, Do YJ, So KM, Hur TY, Oh SI. Gut microbiota alteration with growth performance, histopathological lesions, and immune responses in Salmonella Typhimurium-infected weaned piglets. Vet Anim Sci 2023; 22:100324. [PMID: 38125715 PMCID: PMC10730377 DOI: 10.1016/j.vas.2023.100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Salmonella Typhimurium can cause gastroenteritis in weaned piglets, which are particularly vulnerable to dietary changes and dysfunction of their immature organs. The colonization of S. Typhimurium could disrupt the gut microbiota and increase susceptibility to the bacterium. This study aimed to investigate the alterations of gut microbiota in S. Typhimurium-infected weaned piglets. Ten 49-day-old pigs were divided into two groups: S. Typhimurium-inoculated (ST, n = 6) and negative control (NC, n = 4) groups. The body weight and S. Typhimurium fecal shedding were monitored for 14 days after S. Typhimurium inoculation (dpi). The intestinal tissues were collected at 14 dpi; histopathological lesions and cytokine gene expression were evaluated. The gut microbiome composition and short-chain fatty acid concentrations were analyzed in fecal samples collected at 14 dpi. The average daily gain and gut microbiota alpha diversity in ST group tended to be lower than NC group at 14 dpi. Linear discriminant analysis effect size results showed a significant increase in the abundance of two genera and five species, while a significant decrease was observed in the five genera and nine species within the gut microbiota of ST group. Among the significantly less abundant bacteria in the ST group, Lachnospira eligens and Anaerobium acetethylicum produce acetate and butyrate, and may be considered as key S. Typhimurium infection-preventing bacteria. The overall results provide invaluable information about changes in the gut microbiota of S. Typhimurium-infected weaned piglets, which can be used to develop alternative measures to antibiotics and prevent ST bacterial infection.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Han Gyu Lee
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eunju Kim
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Young-Hun Jung
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Ara Cho
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Yoon Jung Do
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Kyoung-Min So
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Tai-Young Hur
- Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration, Wanju, Jeollabuk-do 55365, South Korea
| | - Sang-Ik Oh
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do 54596, South Korea
| |
Collapse
|
23
|
Mules TC, Inns S, Le Gros G. Helminths' therapeutic potential to treat intestinal barrier dysfunction. Allergy 2023; 78:2892-2905. [PMID: 37449458 DOI: 10.1111/all.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The intestinal barrier is a dynamic multi-layered structure which can adapt to environmental changes within the intestinal lumen. It has the complex task of allowing nutrient absorption while limiting entry of harmful microbes and microbial antigens present in the intestinal lumen. Excessive entry of microbial antigens via microbial translocation due to 'intestinal barrier dysfunction' is hypothesised to contribute to the increasing incidence of allergic, autoimmune and metabolic diseases, a concept referred to as the 'epithelial barrier theory'. Helminths reside in the intestinal tract are in intimate contact with the mucosal surfaces and induce a range of local immunological changes which affect the layers of the intestinal barrier. Helminths are proposed to prevent, or even treat, many of the diseases implicated in the epithelial barrier theory. This review will focus on the effect of helminths on intestinal barrier function and explore whether this could explain the proposed health benefits delivered by helminths.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
24
|
Pillay R, Mkhize-Kwitshana ZL, Horsnell WGC, Icke C, Henderson I, Selkirk ME, Berkachy R, Naidoo P, Niehaus AJ, Singh R, Cunningham AF, O'Shea MK. Excretory-secretory products from adult helminth Nippostrongylus brasiliensis have in vitro bactericidal activity. J Med Microbiol 2023; 72. [PMID: 37929930 DOI: 10.1099/jmm.0.001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Introduction. Intestinal helminths and microbiota share the same anatomical niche during infection and are likely to interact either directly or indirectly. Whether intestinal helminths employ bactericidal strategies that influence their microbial environment is not completely understood.Hypothesis. In the present study, the hypothesis that the adult hookworm Nippostrongylus brasiliensis produces molecules that impair bacterial growth in vitro, is tested.Aim. To investigate the in vitro bactericidal activity of Nippostrongylus brasiliensis against commensal and pathogenic bacteria.Methodology. The bactericidal effect of somatic extract and excretory-secretory products of adult Nippostrongylus brasiliensis on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae) bacteria was assessed using growth assays. Minimum inhibitory concentration and minimum bactericidal concentration assays were performed using excretory-secretory products released from the pathogen.Results. Broad-spectrum in vitro bactericidal activity in excretory-secretory products, but not somatic extract of adult Nippostrongylus brasiliensis was detected. The bactericidal activity of excretory-secretory products was concentration-dependent, maintained after heat treatment, and preserved after repeated freezing and thawing.Conclusion. The results of this study demonstrate that helminths such as Nippostrongylus brasiliensis release molecules via their excretory-secretory pathway that have broad-spectrum bactericidal activity. The mechanisms responsible for this bactericidal activity remain to be determined and further studies aimed at isolating and identifying active bactericidal molecules are needed.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Christopher Icke
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ian Henderson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD4072, Australia
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, London, UK
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, London, UK
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Abraham J Niehaus
- Department of Microbiology, Ampath Laboratories, Cape Town, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Matthew K O'Shea
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Lane JM, Brosschot TP, Gatti DM, Gauthier CM, Lawrence KM, Pluzhnikova V, Reynolds LA. Chronic small intestinal helminth infection perturbs bile acid homeostasis and disrupts bile acid signaling in the murine small intestine. FRONTIERS IN PARASITOLOGY 2023; 2:1214136. [PMID: 39816838 PMCID: PMC11731828 DOI: 10.3389/fpara.2023.1214136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2023] [Indexed: 01/18/2025]
Abstract
Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection. We found that murine helminth infection resulted in consistently reduced concentrations of specific taurine-conjugated primary BAs (T-α-MCA and T-CDCA) in the small intestinal luminal contents of mice. BA transporters facilitate the uptake of BAs from the small intestinal lumen, allowing BAs to engage with nuclear BA receptors, and helminth infected mice showed reduced expression of genes encoding basal BA transporters in the small intestine. Finally, we report that there is reduced signaling through the nuclear BA receptor FXR in both the proximal small intestine and ileum of mice during small intestinal helminth infection. Together, our data reveal disruptions to BA homeostasis and signaling in the small intestine during helminth infection. As BAs are known to impact many aspects of mucosal physiology and immunity, examining the functional consequences of BA disruptions during helminth infection will be an important avenue for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
26
|
Wang Y, Guo A, Zou Y, Mu W, Zhang S, Shi Z, Liu Z, Cai X, Zhu XQ, Wang S. Interaction between tissue-dwelling helminth and the gut microbiota drives mucosal immunoregulation. NPJ Biofilms Microbiomes 2023; 9:43. [PMID: 37355675 DOI: 10.1038/s41522-023-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
Tissue-dwelling helminths affect billions of people around the world. They are potent manipulators of the host immune system, prominently by promoting regulatory T cells (Tregs) and are generally associated with a modified host gut microbiome. However, the role of the gut microbiota in the immunomodulatory processes for these non-intestinal parasites is still unclear. In the present study, we used an extra-intestinal cestode helminth model-larval Echinococcus multilocularis to explore the tripartite partnership (host-helminth-bacteria) in the context of regulating colonic Tregs in Balb/c mice. We showed that larval E. multilocularis infection in the peritoneal cavity attenuated colitis in Balb/c mice and induced a significant expansion of colonic Foxp3+ Treg populations. Fecal microbiota depletion and transplantation experiments showed that the gut microbiota contributed to increasing Tregs after the helminth infection. Shotgun metagenomic and metabolic analyses revealed that the gut microbiome structure after infection was significantly shifted with a remarkable increase of Lactobacillus reuteri and that the microbial metabolic capability was reprogrammed to produce more Treg cell regulator-short-chain fatty acids in feces. Furthermore, we also prove that the L. reuteri strain elevated in infected mice was sufficient to promote the colonic Treg frequency and its growth was potentially associated with T cell-dependent immunity in larval E. multilocularis infection. Collectively, these findings indicate that the extraintestinal helminth drives expansions of host colonic Tregs through the gut microbes. This study suggests that the gut microbiome serves as a critical component of anti-inflammation effects even for a therapy based on an extraintestinal helminth.
Collapse
Affiliation(s)
- Yugui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, China
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Aijiang Guo
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu, 730046, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Yang Zou
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Wenjie Mu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Shengying Zhang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Zhiqi Shi
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Zhongli Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Xuepeng Cai
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, 030801, China.
| | - Shuai Wang
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730000, China.
- Key Laboratory of Veterinary Parasitology of Gansu Province, Gansu, 730046, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
27
|
Kim JY, Oh S, Yoon M, Yong TS. Importance of Balanced Attention Toward Coronavirus Disease 2019 and Neglected Tropical Diseases. Yonsei Med J 2023; 64:351-358. [PMID: 37226561 DOI: 10.3349/ymj.2022.0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has been spreading since 2019, causing a worldwide pandemic. Amid the COVID-19 pandemic, tuberculosis, AIDS, and malaria have adversely affected the quality of life of patients and killed millions of people. In addition, COVID-19 continues to impede the delivery of health services, including those for the control of neglected tropical diseases (NTDs). Furthermore, NTDs have been reported as possible co-pathogens among patients infected with COVID-19. However, studies regarding parasitic co-infection among these patients have been limited. This review aimed to explore and describe the cases and reports of parasitic infections in the backdrop of COVID-19 to provide comprehensive knowledge regarding this aspect. We reviewed seven cases of patients who had parasitic co-infection and tested positive for COVID-19, and summarized the literature on the importance of controlling parasitic diseases. In addition, we identified recommendations for the control of parasitic diseases under possible difficulties, such as declining funding for parasitic diseases in 2020. This review highlights the growing burden of NTDs under COVID-19 that may be caused by the deficiency of healthcare infrastructure and human resources as the main reasons. Clinicians should remain vigilant for possible co-infections with parasites in COVID-19 patients, while policymakers are urged to reinforce a balanced and long-term health strategy that addresses both NTDs and COVID-19.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Singeun Oh
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Moonsoo Yoon
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Tai-Soon Yong
- Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
Rooney J, Cantacessi C, Sotillo J, Cortés A. Gastrointestinal worms and bacteria: From association to intervention. Parasite Immunol 2023; 45:e12955. [PMID: 36300732 DOI: 10.1111/pim.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/28/2022]
Abstract
A plethora of studies, both experimental and epidemiological, have indicated the occurrence of associations between infections by gastrointestinal (GI) helminths and the composition and function of the host gut microbiota. Given the worldwide risk and spread of anthelmintic resistance, particularly for GI parasites of livestock, a better understanding of the mechanisms underpinning the relationships between GI helminths and the gut microbiome, and between the latter and host health, may assist the development of novel microbiome-targeting and other bacteria-based strategies for parasite control. In this article, we review current and prospective methods to manipulate the host gut microbiome, and/or to exploit the immune stimulatory and modulatory properties of gut bacteria (and their products) to counteract the negative impact of GI worm infections; we also discuss the potential applications of these intervention strategies in programmes aimed to aid the fight against helminth diseases of humans and livestock.
Collapse
Affiliation(s)
- James Rooney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Javier Sotillo
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Alba Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, València, Spain
| |
Collapse
|
29
|
Tran NTD, Chaidee A, Surapinit A, Yingklang M, Roytrakul S, Charoenlappanit S, Pinlaor P, Hongsrichan N, Anutrakulchai S, Cha'on U, Pinlaor S. Chronic Strongyloides stercoralis infection increases presence of the Ruminococcus torques group in the gut and alters the microbial proteome. Sci Rep 2023; 13:4216. [PMID: 36918707 PMCID: PMC10012286 DOI: 10.1038/s41598-023-31118-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
We explored the impact of chronic Strongyloides stercoralis infection on the gut microbiome and microbial activity in a longitudinal study. At baseline (time-point T0), 42 fecal samples from matched individuals (21 positive for strongyloidiasis and 21 negative) were subjected to microbiome 16S-rRNA sequencing. Those positive at T0 (untreated then because of COVID19 lockdowns) were retested one year later (T1). Persistent infection in these individuals indicated chronic strongyloidiasis: they were treated with ivermectin and retested four months later (T2). Fecal samples at T1 and T2 were subjected to 16S-rRNA sequencing and LC-MS/MS to determine microbial diversity and proteomes. No significant alteration of indices of gut microbial diversity was found in chronic strongyloidiasis. However, the Ruminococcus torques group was highly over-represented in chronic infection. Metaproteome data revealed enrichment of Ruminococcus torques mucin-degrader enzymes in infection, possibly influencing the ability of the host to expel parasites. Metaproteomics indicated an increase in carbohydrate metabolism and Bacteroidaceae accounted for this change in chronic infection. STITCH interaction networks explored highly expressed microbial proteins before treatment and short-chain fatty acids involved in the synthesis of acetate. In conclusion, our data indicate that chronic S. stercoralis infection increases Ruminococcus torques group and alters the microbial proteome.
Collapse
Affiliation(s)
- Na T D Tran
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Apisit Chaidee
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Achirawit Surapinit
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Sitiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Porntip Pinlaor
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nuttanan Hongsrichan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirirat Anutrakulchai
- Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ubon Cha'on
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Chronic Kidney Disease Prevention in Northeastern Thailand, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
30
|
Senaratna CV, Perera PK, Arulkumaran S, Abeysekara N, Piyumanthi P, Hamilton GS, Nixon GM, Rajakaruna RS, Dharmage SC. Association of helminth infestation with childhood asthma: a nested case-control study. Int J Infect Dis 2023; 128:272-277. [PMID: 36632894 DOI: 10.1016/j.ijid.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES The association between helminthiasis and asthma remains inconclusive but can only be investigated in counties where helminthiasis is transitioning from a high to low burden. We investigated this association using data from a childhood respiratory cohort in Sri Lanka. METHODS A case-control study was nested within a population-based cohort of children aged 6-14 years in Sri Lanka. The stool samples of 190 children with asthma and 190 children without asthma were analyzed to assess the burden of helminth infestation. Logistic regression models were fitted to investigate the association of gastrointestinal helminth species with asthma. RESULTS Helminthiasis in children with and without asthma was 23.3% (n = 44) and 15.3% (n = 23), respectively. Those with asthma were more likely to have helminthiasis (odds ratio 3.7; 95% confidence interval 1.7, 7.7; P = 0.001), particularly with Trichiuris trichura (odds ratio 4.5; 95% confidence interval 1.6, 12.3; P = 0.004). Helminth eggs per gram of feces were not associated with asthma (P >0.05). CONCLUSION Our findings demonstrate a positive association between T. trichura infestation and asthma and point to the need to fully characterize this association to understand the likely immunological mechanism that drives it. This association highlights an important public health intervention in countries where these infestations are still prevalent, affecting 24% of the population worldwide.
Collapse
Affiliation(s)
- Chamara V Senaratna
- Allergy and Lung Health Unit (ALHU), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia; Non-Communicable Disease Research Centre, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| | - Piyumali K Perera
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Nirupama Abeysekara
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka; School of Veterinary Science, University of Queensland, Gatton, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pramodya Piyumanthi
- Non-Communicable Disease Research Centre, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Garun S Hamilton
- School of Clinical Sciences, Monash University, Clayton, Australia; Monash Lung, Sleep, Allergy and Immunology, Monash Health, Clayton, Australia
| | - Gillian M Nixon
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Rupika S Rajakaruna
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit (ALHU), Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Hodžić A, Dheilly NM, Cabezas-Cruz A, Berry D. The helminth holobiont: a multidimensional host-parasite-microbiota interaction. Trends Parasitol 2023; 39:91-100. [PMID: 36503639 DOI: 10.1016/j.pt.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Gastrointestinal helminths have developed multiple mechanisms by which they manipulate the host microbiome to make a favorable environment for their long-term survival. While the impact of helminth infections on vertebrate host immunity and its gut microbiota is relatively well studied, little is known about the structure and functioning of microbial populations supported by metazoan parasites. Here we argue that an integrated understanding of the helminth-associated microbiome and its role in the host disease pathogenesis may facilitate the discovery of specific microbial and/or genetic patterns critical for parasite biology and subsequently pave the way for the development of alternative control strategies against parasites and parasitic disease.
Collapse
Affiliation(s)
- Adnan Hodžić
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Nolwenn M Dheilly
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR VIROLOGIE, Laboratoire de Santé Animale, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, 14 rue Pierre et Marie Curie, 94706 Maisons-Alfort, France
| | - David Berry
- Centre for Microbiology and Environmental Systems Science (CMESS), Department of Microbiology and Ecosystem Science, Division of Microbial Ecology (DoME), University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
32
|
Excretory-secretory products from the brown stomach worm, Teladorsagia circumcincta, exert antimicrobial activity in in vitro growth assays. Parasit Vectors 2022; 15:354. [PMID: 36184586 PMCID: PMC9528173 DOI: 10.1186/s13071-022-05443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays. METHODS Size-exclusion chromatography was applied to the isolation of EVs from whole T. circumcincta ESPs, followed by EV characterisation via nanoparticle tracking analysis and transmission electron microscopy. Proteomic analysis of EVs and EV-depleted ESPs was conducted using liquid chromatography-tandem mass spectrometry, and prediction of putative AMPs was performed using available online tools. The antimicrobial activities of T. circumcincta EVs and of whole and EV-depleted ESPs against Escherichia coli were evaluated using bacterial growth inhibition assays. RESULTS Several molecules with putative antimicrobial activity were identified in both EVs and EV-depleted ESPs from adult T. circumcincta. Whilst exposure of E. coli to whole ESPs resulted in a significant reduction of colony-forming units over 3 h, bacterial growth was not reduced following exposure to worm EVs or EV-depleted ESPs. CONCLUSIONS Our data points towards a bactericidal and/or bacteriostatic function of T. circumcincta ESPs, likely mediated by molecules with antimicrobial activity.
Collapse
|
33
|
Ramos ACS, Oliveira LM, Santos YLDCO, Dantas MCS, Walker CIB, Faria AMC, Bueno LL, Dolabella SS, Fujiwara RT. The role of IgA in gastrointestinal helminthiasis: A systematic review. Immunol Lett 2022; 249:12-22. [PMID: 36002066 DOI: 10.1016/j.imlet.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
Immunoglobulin-A (IgA) is an important mediator of immunity and has been associated with protection against several pathogens, although its role in gastrointestinal infections remains unclear. Then, the aim of this systematic review was to synthesize qualitative evidence in respect of IgA as mediator of protective immunity against gastrointestinal helminths. Following recommended guidelines, we searched for articles published between January 1990 and October 2019 that evaluated IgA levels and their association with gastrointestinal helminth infections. Twenty-five articles were included after screening 1,546 titles and abstracts, as well as reading in full 52 selected articles. Consistent associations between higher IgA levels and lower parasitological parameters were only found in mice, rats, and sheep. However, the role of IgA in other host species remains uncertain, making it difficult to create a consensus. Therefore, it is too soon to claim that IgA is an effective protective factor against gastrointestinal helminths, and further studies are still needed.
Collapse
Affiliation(s)
- Anne C S Ramos
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Luciana M Oliveira
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil; Departamento de Morfologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Yvanna L D C O Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Marlon C S Dantas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Cristiani I B Walker
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Ana M C Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brasil
| | - Lílian L Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brasil
| | - Silvio S Dolabella
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil.
| | - Ricardo T Fujiwara
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil; Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brasil.
| |
Collapse
|
34
|
Robinson MW, Sotillo J. Foodborne trematodes: old foes, new kids on the block and research perspectives for control and understanding host-parasite interactions. Parasitology 2022; 149:1257-1261. [PMID: 35734871 PMCID: PMC11010571 DOI: 10.1017/s0031182022000877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/06/2022]
Abstract
Foodborne trematodes (FBTs) have a worldwide distribution (with particular prevalence in south-east Asia) and are believed to infect almost 75 million people, with millions more living at risk of infection. Although mortality due to trematodiasis is low, these infections cause considerable morbidity and some species are associated with the development of cancer in hyperendemic regions. Despite this, FBTs are often side-lined in terms of research funding and have been dubbed neglected tropical diseases by the World Health Organisation. Thus, the aim of this special issue was to provide an update of our understanding of FBT infections, to shine a light on current work in the field and to highlight some research priorities for the future. With contributions from leading researchers, many from endemic regions, we review the major FBT species. In doing so we revisit some old foes, uncover emerging infections and discover how outbreaks are being dealt with as a result of new approaches to parasite control. We also report advances in our understanding of the interactions of FBTs with their mammalian hosts and uncover new interplay between trematodes and host microbiome components. We hope that this article collection will stimulate discussion and further research on the FBTs and help raise them from their neglected status.
Collapse
Affiliation(s)
- Mark W. Robinson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, Northern Ireland, UK
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
35
|
Castañeda S, Paniz-Mondolfi A, Ramírez JD. Detangling the Crosstalk Between Ascaris, Trichuris and Gut Microbiota: What´s Next? Front Cell Infect Microbiol 2022; 12:852900. [PMID: 35694539 PMCID: PMC9174645 DOI: 10.3389/fcimb.2022.852900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Helminth infections remain a global public health issue, particularly in low- and middle-income countries, where roundworms from theTrichuris and Ascaris genera are most prevalent. These geohelminths not only impact human health but most importantly also affect animal well-being, in particular the swine industry. Host-helminth parasite interactions are complex and at the same time essential to understand the biology, dynamics and pathophysiology of these infections. Within these interactions, the immunomodulatory capacity of these helminths in the host has been extensively studied. Moreover, in recent years a growing interest on how helminths interact with the intestinal microbiota of the host has sparked, highlighting how this relationship plays an essential role in the establishment of initial infection, survival and persistence of the parasite, as well as in the development of chronic infections. Identifying the changes generated by these helminths on the composition and structure of the host intestinal microbiota constitutes a field of great scientific interest, since this can provide essential and actionable information for designing effective control and therapeutic strategies. Helminths like Trichuris and Ascaris are a focus of special importance due to their high prevalence, higher reinfection rates, resistance to anthelmintic therapy and unavailability of vaccines. Therefore, characterizing interactions between these helminths and the host intestinal microbiota represents an important approach to better understand the nature of this dynamic interface and explore novel therapeutic alternatives based on management of host microbiota. Given the extraordinary impact this may have from a biological, clinical, and epidemiological public health standpoint, this review aims to provide a comprehensive overview of current knowledge and future perspectives examining the parasite-microbiota interplay and its impact on host immunity.
Collapse
Affiliation(s)
- Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Juan David Ramírez, ;
| |
Collapse
|
36
|
Pereira de Araújo M, Sato MO, Sato M, Bandara WM KM, Coelho LFL, Souza RLM, Kawai S, Marques MJ. Unbalanced relationships: insights into the interaction between gut microbiota, geohelminths, and schistosomiasis. PeerJ 2022; 10:e13401. [PMID: 35539016 PMCID: PMC9080432 DOI: 10.7717/peerj.13401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/17/2022] [Indexed: 01/14/2023] Open
Abstract
Hosts and their microbiota and parasites have co-evolved in an adaptative relationship since ancient times. The interaction between parasites and intestinal bacteria in terms of the hosts' health is currently a subject of great research interest. Therapeutic interventions can include manipulations of the structure of the intestinal microbiota, which have immunological interactions important for modulating the host's immune system and for reducing inflammation. Most helminths are intestinal parasites; the intestinal environment provides complex interactions with other microorganisms in which internal and external factors can influence the composition of the intestinal microbiota. Moreover, helminths and intestinal microorganisms can modulate the host's immune system either beneficially or harmfully. The immune response can be reduced due to co-infection, and bacteria from the intestinal microbiota can translocate to other organs. In this way, the treatment can be compromised, which, together with drug resistance by the parasites makes healing even more difficult. Thus, this work aimed to understand interactions between the microbiota and parasitic diseases caused by the most important geohelminths and schistosomiasis and the consequences of these associations.
Collapse
Affiliation(s)
- Matheus Pereira de Araújo
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil,Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcello Otake Sato
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Niigata, Japan
| | | | | | | | - Satoru Kawai
- Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Marcos José Marques
- Institute of Biomedical Sciences, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
37
|
Gildner TE, Cepon-Robins TJ, Urlacher SS. Cumulative host energetic costs of soil-transmitted helminth infection. Trends Parasitol 2022; 38:629-641. [DOI: 10.1016/j.pt.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
38
|
Pane S, Putignani L. Cryptosporidium: Still Open Scenarios. Pathogens 2022; 11:pathogens11050515. [PMID: 35631036 PMCID: PMC9143492 DOI: 10.3390/pathogens11050515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidiosis is increasingly identified as a leading cause of childhood diarrhea and malnutrition in both low-income and high-income countries. The strong impact on public health in epidemic scenarios makes it increasingly essential to identify the sources of infection and understand the transmission routes in order to apply the right prevention or treatment protocols. The objective of this literature review was to present an overview of the current state of human cryptosporidiosis, reviewing risk factors, discussing advances in the drug treatment and epidemiology, and emphasizing the need to identify a government system for reporting diagnosed cases, hitherto undervalued.
Collapse
Affiliation(s)
- Stefania Pane
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, 00146 Rome, Italy;
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
39
|
Fu PP, Xiong F, Wu SG, Zou H, Li M, Wang GT, Li WX. Effects of Schyzocotyle acheilognathi (Yamaguti, 1934) infection on the intestinal microbiota, growth and immune reactions of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266766. [PMID: 35413087 PMCID: PMC9004761 DOI: 10.1371/journal.pone.0266766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Our understanding of interactions among intestinal helminths, gut microbiota and host is still in its infancy in fish. In this study, the effects of Schyzocotyle acheilognathi infection on the intestinal microbiota, growth and immune reactions of grass carp were explored under laboratory conditions. 16S rDNA amplification sequencing results showed that S. acheilognathi infection altered the composition of intestinal microbiota only at the genus level, with a significant increase in the relative abundance of Turicibacter and Ruminococcus (P < 0.05) and a significant decrease in the relative abundance of Gordonia, Mycobacterium and Pseudocanthomonas (P < 0.05). Schyzocotyle acheilognathi infection had no significant effect (P > 0.05) on the alpha diversity indices (including Chao1, ACE, Shannon, Simpson index) of intestinal microbiota in grass carp, but PERMANOVA analysis showed that microbial structure significantly (P < 0.01) differed between hindgut and foregut. PICRUST prediction showed that some metabolism-related pathways were significantly changed after S. acheilognathi infection. The relative abundance of Turicibacter was positively correlated with the fresh weight of tapeworm (foregut: r = 0.48, P = 0.044; hindgut: r = 0.63, P = 0.005). There was no significant difference in the body condition of grass carp between the S. acheilognathi infected group and the uninfected group (P > 0.05). Intestinal tissue section with HE staining showed that S. acheilognathi infection severely damaged the intestinal villi, causing serious degeneration, necrosis and shedding of intestinal epithelial cells. The real-time fluorescent quantitative PCR results showed that S. acheilognathi infection upregulated the mRNA expression of the immune-related genes: Gal1−L2, TGF−β1 and IgM.
Collapse
Affiliation(s)
- Pei P. Fu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, P. R. China
| | - Fan Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Shan G. Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Gui T. Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Wen X. Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
40
|
Andersen-Civil AIS, Myhill LJ, Büdeyri Gökgöz N, Engström MT, Mejer H, Zhu L, Zeller WE, Salminen JP, Krych L, Lauridsen C, Nielsen DS, Thamsborg SM, Williams AR. Dietary proanthocyanidins promote localized antioxidant responses in porcine pulmonary and gastrointestinal tissues during Ascaris suum-induced type 2 inflammation. FASEB J 2022; 36:e22256. [PMID: 35333423 DOI: 10.1096/fj.202101603rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Proanthocyanidins (PAC) are dietary polyphenols with putative anti-inflammatory and immunomodulatory effects. However, whether dietary PAC can regulate type-2 immune function and inflammation at mucosal surfaces remains unclear. Here, we investigated if diets supplemented with purified PAC modulated pulmonary and intestinal mucosal immune responses during infection with the helminth parasite Ascaris suum in pigs. A. suum infection induced a type-2 biased immune response in lung and intestinal tissues, characterized by pulmonary granulocytosis, increased Th2/Th1 T cell ratios in tracheal-bronchial lymph nodes, intestinal eosinophilia, and modulation of genes involved in mucosal barrier function and immunity. Whilst PAC had only minor effects on pulmonary immune responses, RNA-sequencing of intestinal tissues revealed that dietary PAC significantly enhanced transcriptional responses related to immune function and antioxidant responses in the gut of both naïve and A. suum-infected animals. A. suum infection and dietary PAC induced distinct changes in gut microbiota composition, primarily in the jejunum and colon, respectively. Notably, PAC consumption substantially increased the abundance of Limosilactobacillus reuteri. In vitro experiments with porcine macrophages and intestinal epithelial cells supported a role for both PAC polymers and PAC-derived microbial metabolites in regulating oxidative stress responses in host tissues. Thus, dietary PAC may have distinct beneficial effects on intestinal health during infection with mucosal pathogens, while having a limited activity to modulate naturally-induced type-2 pulmonary inflammation. Our results shed further light on the mechanisms underlying the health-promoting properties of PAC-rich foods, and may aid in the design of novel dietary supplements to regulate mucosal inflammatory responses in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Marica T Engström
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Wayne E Zeller
- USDA-ARS, U.S. Dairy Forage Research Center, Madison, Wisconsin, USA
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
41
|
Wen Y, Xu H, Han J, Jin R, Chen H. How Does Epstein–Barr Virus Interact With Other Microbiomes in EBV-Driven Cancers? Front Cell Infect Microbiol 2022; 12:852066. [PMID: 35281433 PMCID: PMC8904896 DOI: 10.3389/fcimb.2022.852066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal microbiome refers to a large spectrum of microorganisms which mainly consists of viruses and bacteria, as well as some other components such as protozoa and fungi. Epstein–Barr virus (EBV) is considered as a common component of the human commensal microbiome due to its spread worldwide in about 95% of the adult population. As the first oncogenic virus recognized in human, numerous studies have reported the involvement of other components of the commensal microbiome in the increasing incidence of EBV-driven cancers. Additionally, recent advances have also defined the involvement of host–microbiota interactions in the regulation of the host immune system in EBV-driven cancers as well as other circumstances. The regulation of the host immune system by the commensal microbiome coinfects with EBV could be the implications for how we understand the persistence and reactivation of EBV, as well as the progression of EBV-associated cancers, since majority of the EBV persist as asymptomatic carrier. In this review, we attempt to summarize the possible mechanisms for EBV latency, reactivation, and EBV-driven tumorigenesis, as well as casting light on the role of other components of the microbiome in EBV infection and reactivation. Besides, whether novel microbiome targeting strategies could be applied for curing of EBV-driven cancer is discussed as well.
Collapse
Affiliation(s)
| | | | | | - Runming Jin
- *Correspondence: Hongbo Chen, ; Runming Jin,
| | - Hongbo Chen
- *Correspondence: Hongbo Chen, ; Runming Jin,
| |
Collapse
|
42
|
Wirusanti NI, Baldridge MT, Harris VC. Microbiota regulation of viral infections through interferon signaling. Trends Microbiol 2022; 30:778-792. [PMID: 35135717 PMCID: PMC9344482 DOI: 10.1016/j.tim.2022.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022]
Abstract
The interferon (IFN) response is the major early innate immune response against invading viral pathogens and is even capable of mediating sterilizing antiviral immunity without the support of the adaptive immune system. Cumulative evidence suggests that the gut microbiota can modulate IFN responses, indirectly determining virological outcomes. This review outlines our current knowledge of the interactions between the gut microbiota and IFN responses and dissects the different mechanisms by which the gut microbiota may alter IFN expression to diverse viral infections. This knowledge offers a basis for translating experimental evidence from animal studies into the human context and identifies avenues for leveraging the gut microbiota–IFN–virus axis to improve control of viral infections and performance of viral vaccines.
Collapse
|
43
|
Ball D, Athanasiadou S. Conference report: the importance of the gut microbiome and nutrition on health. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2021; 2:e4. [PMID: 39296319 PMCID: PMC11406383 DOI: 10.1017/gmb.2021.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 09/21/2024]
Abstract
The Nutrition Society Spring Conference (28-29 March 2021) focussed on the gut microbiome and health that was divided across three separate but inter-related areas from the impact of nutrition on the gut microbiome, the cause and effect of nutrition and health on the gut microbiome to the interaction between pathogens and gut microbiota. The program was supported by two plenary lectures, the first discussed the computational methods commonly employed to examine gut microbiota and the concluding lecture presented the interaction between gut microbiome, nutrition and health in older populations.
Collapse
Affiliation(s)
- Derek Ball
- Institute of Education in Healthcare and Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
44
|
Chen Y, Zhang M, Ding X, Yang Y, Chen Y, Zhang Q, Fan Y, Dai Y, Wang J. Mining Anti-Inflammation Molecules From Nippostrongylus brasiliensis-Derived Products Through the Metabolomics Approach. Front Cell Infect Microbiol 2021; 11:781132. [PMID: 34858883 PMCID: PMC8632049 DOI: 10.3389/fcimb.2021.781132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023] Open
Abstract
Hookworm is one type of soil-transmitted helminth, which could exert an anti-inflammatory effect in human or animal host, which provides a beneficial possibility for the discovery of inflammatory-related disease interventions. The identification of hookworm-derived anti-inflammatory molecules is urgently needed for future translational research. The emergence of metabolomics has become a powerful approach to comprehensively characterize metabolic alterations in recent times. Herein, excretory and secretory products (ESPs) were collected from cultured adult worm, while small intestinal contents were obtained from Nippostrongylus brasiliensis (N. brasiliensis, Nb)-infected mice. Through ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) platform, metabolomics analysis was used to explore the identification of anti-inflammatory molecules. Out of 45 differential metabolites that were discovered from ESPs, 10 of them showed potential anti-inflammatory properties, which could be subclassed into amino acids, furanocoumarins, linear diarylheptanoids, gamma butyrolactones, and alpha-keto acids. In terms of intestinal contents that were derived from N. brasiliensis-infected mice, 14 out of 301 differential metabolites were discovered to demonstrate anti-inflammatory effects, with possible subclassification into amino acids, benzylisoquinolines, quaternary ammonium salts, pyrimidines, pregnane steroids, purines, biphenyls, and glycerophosphocholines. Furthermore, nine of the differential metabolites appeared both in ESPs and infected intestinal contents, wherein four were proven to show anti-inflammation properties, namely, L-glutamine, glutamine (Gln), pyruvate, and alanine-Gln (Ala-Gln). In summary, we have provided a method for the identification and analysis of parasite-derived molecules with potential anti-inflammatory properties in the present study. This array of anti-inflammatory metabolites could provide clues for future evaluation and translational study of these anti-inflammatory molecules.
Collapse
Affiliation(s)
- Yuying Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Mingming Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Ding
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yougui Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yujia Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yinwen Fan
- Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| | - Yang Dai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Key Laboratory of Jiangsu Province on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Junhong Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Cardiology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture Ili & Jiangsu Joint Institute of Health, Ili, China
| |
Collapse
|
45
|
The yin and yang of human soil-transmitted helminth infections. Int J Parasitol 2021; 51:1243-1253. [PMID: 34774540 PMCID: PMC9145206 DOI: 10.1016/j.ijpara.2021.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The major soil-transmitted helminths that infect humans are the roundworms, whipworms and hookworms. Soil-transmitted helminth infections rank among the most important neglected tropical diseases in terms of morbidity, and almost one billion people are still infected with at least one species. While anthelmintic drugs are available, they do not offer long term protection against reinfection, precipitating the need for vaccines that provide long-term immunologic defense. Vaccine discovery and development is in advanced clinical development for hookworm infection, with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory properties of these helminths, creating a barrier to the induction of meaningful long-term protective immunity. While challenging for vaccinologists, this phenomenon presents unique opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental soil-transmitted helminth challenge models, when coupled with findings from animal models, show that at least some soil-transmitted helminth-derived molecules can protect against the onset of autoimmune, allergic and metabolic disorders, and several natural products with the desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-transmitted helminth infections reflect both the urgency for effective vaccines and the potential for new immunoregulatory molecules from parasite products.
Collapse
|
46
|
Popple SJ, Burrows K, Mortha A, Osborne LC. Remote regulation of type 2 immunity by intestinal parasites. Semin Immunol 2021; 53:101530. [PMID: 34802872 DOI: 10.1016/j.smim.2021.101530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.
Collapse
Affiliation(s)
- S J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - A Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - L C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
47
|
Small Intestinal Levels of the Branched Short-Chain Fatty Acid Isovalerate Are Elevated during Infection with Heligmosomoides polygyrus and Can Promote Helminth Fecundity. Infect Immun 2021; 89:e0022521. [PMID: 34460289 DOI: 10.1128/iai.00225-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heligmosomoides polygyrus is a helminth which naturally infects mice and is widely used as a laboratory model of chronic small intestinal helminth infection. While it is known that infection with H. polygyrus alters the composition of the host's bacterial microbiota, the functional implications of this alteration are unclear. We investigated the impact of H. polygyrus infection on short-chain fatty acid (SCFA) levels in the mouse intestine and sera. We found that helminth infection resulted in significantly upregulated levels of the branched SCFA isovaleric acid, exclusively in the proximal small intestine, which is the site of H. polygyrus colonization. We next set out to test the hypothesis that elevating local levels of isovaleric acid was a strategy used by H. polygyrus to promote its own fitness within the mammalian host. To test this, we supplemented the drinking water of mice with isovalerate during H. polygyrus infection and examined whether this affected helminth fecundity or chronicity. We did not find that isovaleric acid supplementation affected helminth chronicity; however, we found that it did promote helminth fecundity, as measured by helminth egg output in the feces of mice. Through antibiotic treatment of helminth-infected mice, we found that the bacterial microbiota was required in order to support elevated levels of isovaleric acid in the proximal small intestine during helminth infection. Overall, our data reveal that during H. polygyrus infection there is a microbiota-dependent localized increase in the production of isovaleric acid in the proximal small intestine and that this supports helminth fecundity in the murine host.
Collapse
|
48
|
Ademe M, Girma F. The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental? Infect Drug Resist 2021; 14:4421-4426. [PMID: 34737582 PMCID: PMC8558425 DOI: 10.2147/idr.s335447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Immunologically, chronic worm infections prevent themselves from strong immune responses by skewing the host response towards a T helper 2 (Th2) type. The regulatory response initiated by helminth infections is supposed to temper responses to non-helminth antigens including viral infections which will, in turn, alter the clinical outcomes of infections. In view of this, recent reports highlighted the possible negative associations of severe COVID-19 and helminth co-infections in helminth-endemic regions. As the pathology of COVID-19 is primarily mediated by an excessive immune response and subsequent cytokine storm, which contributes to the poor prognosis of COVID-19, helminth-driven immune modulation will hypothetically contribute to the less severe outcomes of COVID-19. Nevertheless, emerging reports also stated that COVID-19 and helminth co-infections may have more hidden outcomes than predictable ones. Herein, the current knowledge on the interaction of COVID-19 and helminth co-infections will be discussed.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Friehiwot Girma
- Department of Pediatrics and Child Health Nursing, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
49
|
Corrêa PS, Mendes LW, Lemos LN, Sampaio ACK, Issakowicz J, McManus CM, Tsai SM, Faciola AP, Abdalla AL, Louvandini H. The effect of Haemonchus contortus and Trichostrongylus colubriforms infection on the ruminal microbiome of lambs. Exp Parasitol 2021; 231:108175. [PMID: 34740587 DOI: 10.1016/j.exppara.2021.108175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 09/14/2021] [Accepted: 10/31/2021] [Indexed: 12/16/2022]
Abstract
We evaluated Haemonchus contortus (HC) and Trichostrongylus colubriformis (TC) infection on the ruminal microbial community of Santa Ines lambs to better understand the pathophysiology of parasite infections and the interactions among gastrointestinal nematodes and gut resident microbiota. In this study, 18 six months of age lambs were maintained for 34 days in individual pens divided into three treatments that included animals infected with HC and TC, and control (infection-free). Haematological, ruminal parameter and microbial nitrogen absorbed by pune derivatives, as well as enteric methane emission (CH4), were analysed, and the rumen microbial taxonomic and functional profile assessed by shotgun metagenomics. The analysis showed that total protein, albumin, urea, and butyrate level were lower in animals infected by both parasites, while HC infection also decreased the haemoglobin level. Both infected groups (TC and HC) increased the enteric methane emission (CH4). TC and HC infections increased the diversity and richness of functional microbial genes. Most alterations in the rumen microbiome composition of infected groups are associated with the suppression of microbes involved in microbial homeostasis maintenance and expansion of the archaeal community in the infected animals. Infection led to an increased abundance of nitrogen, amino acid, protein, and energy metabolism genes. Overall, TC and HC infection increased the enteric methane emission, negatively affected taxon's responsible for maintenance de rumen homeostasis and modulated some important genes related to protein and energy metabolism.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, Piracicaba, SP, 13400-970, Brazil; University of Florida, Department of Animal Sciences, United States of America, Gainesville, FL, 32611, USA.
| | - Lucas William Mendes
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Laboratory of Molecular Cell Biology, Piracicaba, SP, 13400-970, Brazil
| | - Leandro Nascimento Lemos
- Department of Bioinformatics, National Laboratory of Scientific Computing, Petrópolis, RJ, 25651-076, Brazil
| | - Ana Claudia Koki Sampaio
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, Piracicaba, SP, 13400-970, Brazil
| | - Juliano Issakowicz
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, Piracicaba, SP, 13400-970, Brazil
| | | | - Siu Mui Tsai
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Laboratory of Molecular Cell Biology, Piracicaba, SP, 13400-970, Brazil
| | - Antonio Pinheiro Faciola
- University of Florida, Department of Animal Sciences, United States of America, Gainesville, FL, 32611, USA
| | - Adibe Luiz Abdalla
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, Piracicaba, SP, 13400-970, Brazil
| | - Helder Louvandini
- University of São Paulo, Centre for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, Piracicaba, SP, 13400-970, Brazil; University of Florida, Department of Animal Sciences, United States of America, Gainesville, FL, 32611, USA
| |
Collapse
|
50
|
Naidoo P, Ghazi T, Chuturgoon AA, Naidoo RN, Ramsuran V, Mpaka-Mbatha MN, Bhengu KN, Nembe N, Duma Z, Pillay R, Singh R, Mkhize-Kwitshana ZL. SARS-CoV-2 and helminth co-infections, and environmental pollution exposure: An epidemiological and immunological perspective. ENVIRONMENT INTERNATIONAL 2021; 156:106695. [PMID: 34171587 PMCID: PMC8205275 DOI: 10.1016/j.envint.2021.106695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 05/17/2023]
Abstract
Soil-transmitted helminths infect billions of people globally, particularly those residing in low- and middle-income regions with poor environmental sanitation and high levels of air and water pollution. Helminths display potent immunomodulatory activity by activating T helper type 2 (Th2) anti-inflammatory and Th3 regulatory immune responses. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that causes Coronavirus disease 2019 (COVID-19), can exacerbate Th1/Th17 pro-inflammatory cytokine production in humans, leading to a cytokine storm. Air pollutants (particulate matter, oxygen radicals, hydrocarbons and volatile organic compounds) and water pollutants (metals and organic chemicals) can also intensify Th1/Th17 immune response and could exacerbate SARS-CoV-2 related respiratory distress and failure. The present review focused on the epidemiology of SARS-CoV-2, helminths and fine particulate matter 2.5 µm or less in diameter (PM2.5) air pollution exposure in helminth endemic regions, the possible immunomodulatory activity of helminths against SARS-CoV-2 hyper-inflammatory immune response, and whether air and water pollutants can further exacerbate SARS-CoV-2 related cytokine storm and in the process hinder helminths immunomodulatory functionality. Helminth Th2/Th3 immune response is associated with reductions in lung inflammation and damage, and decreased expression levels of angiotensin-converting enzyme 2 (ACE2) receptors (SARS-CoV-2 uses the ACE2 receptors to infect cells and associated with extensive lung damage). However, air pollutants are associated with overexpression of ACE2 receptors in the epithelial cell surface of the respiratory tract and exhaustion of Th2 immune response. Helminth-induced immunosuppression activity reduces vaccination efficacy, and diminishes vital Th1 cytokine production immune responses that are crucial for combating early stage infections. This could be reversed by continuous air pollution exposure which is known to intensify Th1 pro-inflammatory cytokine production to a point where the immunosuppressive activities of helminths could be hindered. Again, suppressed activities of helminths can also be disadvantageous against SARS-CoV-2 inflammatory response. This "yin and yang" approach seems complex and requires more understanding. Further studies are warranted in a cohort of SARS-CoV-2 infected individuals residing in helminths and air pollution endemic regions to offer more insights, and to impact mass periodic deworming programmes and environmental health policies.
Collapse
Affiliation(s)
- Pragalathan Naidoo
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa.
| | - Terisha Ghazi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Anil A Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Rajen N Naidoo
- Discipline of Occupational and Environmental Health, School of Nursing and Public Health, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Miranda N Mpaka-Mbatha
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Khethiwe N Bhengu
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Nomzamo Nembe
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Zamathombeni Duma
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Roxanne Pillay
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa; Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa; Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Howard College, University of KwaZulu-Natal, Glenwood, Durban 4041, South Africa
| | - Zilungile L Mkhize-Kwitshana
- Department of Biological Sciences, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Westville, Durban 3629, South Africa; Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|