1
|
Carrera Silva EA, Puyssegur J, Errasti AE. Coevolutionary interplay: Helminths-trained immunity and its impact on the rise of inflammatory diseases. eLife 2025; 14:e105393. [PMID: 40231720 PMCID: PMC12002795 DOI: 10.7554/elife.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
The gut biome, a complex ecosystem of micro- and macro-organisms, plays a crucial role in human health. A disruption in this evolutive balance, particularly during early life, can lead to immune dysregulation and inflammatory disorders. 'Biome repletion' has emerged as a potential therapeutic approach, introducing live microbes or helminth-derived products to restore immune balance. While helminth therapy has shown some promise, significant challenges remain in optimizing clinical trials. Factors such as patient genetics, disease status, helminth species, and the optimal timing and dosage of their products or metabolites must be carefully considered to train the immune system effectively. We aim to discuss how helminths and their products induce trained immunity as prospective to treat inflammatory and autoimmune diseases. The molecular repertoire of helminth excretory/secretory products (ESPs), which includes proteins, peptides, lipids, and RNA-carrying extracellular vesicles (EVs), underscores their potential to modulate innate immune cells and hematopoietic stem cell precursors. Mimicking natural delivery mechanisms like synthetic exosomes could revolutionize EV-based therapies and optimizing production and delivery of ESP will be crucial for their translation into clinical applications. By deciphering and harnessing helminth-derived products' diverse modes of action, we can unleash their full therapeutic potential and pave the way for innovative treatments.
Collapse
Affiliation(s)
- Eugenio Antonio Carrera Silva
- EACS and JP Institute of Experimental Medicine, National Scientific and Technical Research Council, National Academy of Medicine (IMEX-CONICET-ANM)Buenos AiresArgentina
| | - Juliana Puyssegur
- EACS and JP Institute of Experimental Medicine, National Scientific and Technical Research Council, National Academy of Medicine (IMEX-CONICET-ANM)Buenos AiresArgentina
| | - Andrea Emilse Errasti
- AEE Institute of Pharmacology, School of Medicine, University of Buenos AiresBuenos AiresArgentina
- National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
2
|
Xing Z, Liu S, He X. Critical and diverse role of alarmin cytokines in parasitic infections. Front Cell Infect Microbiol 2024; 14:1418500. [PMID: 39559705 PMCID: PMC11570582 DOI: 10.3389/fcimb.2024.1418500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Alarmin cytokines including IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) function as danger signals to trigger host immunity in response to tissue injury caused by pathogenic factors such as parasitic infections. Parasitic diseases also provide an excellent context to study their functions and mechanisms. Numerous studies have indicated that alarmin cytokine released by non-immune cells such as epithelial and stromal cells induce the hosts to initiate a type 2 immunity that drives parasite expulsion but also host pathology such as tissue injury and fibrosis. By contrast, alarmin cytokines especially IL-33 derived from immune cells such as dendritic cells may elicit an immuno-suppressive milieu that promotes host tolerance to parasites. Additionally, the role of alarmin cytokines in parasite infections is reported to depend on species of parasites, cellular source of alarmin cytokines, and immune microenvironment, all of which is relevant to the parasitic sites or organs. This narrative review aims to provide information on the crucial and diverse role of alarmin cytokines in parasitic infections involved in different organs including intestine, lung, liver and brain.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| | - Suiyi Liu
- Department of Medical Engineering, Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Xing He
- Department of Tropical Diseases, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Gámez-Belmonte R, Wagner Y, Mahapatro M, Wang R, Erkert L, González-Acera M, Cineus R, Hainbuch S, Patankar JV, Voehringer D, Hegazy AN, Neurath MF, Wirtz S, Becker C. Intestinal epithelial Gasdermin C is induced by IL-4R/STAT6 signaling but is dispensable for gut immune homeostasis. Sci Rep 2024; 14:26522. [PMID: 39489845 PMCID: PMC11532336 DOI: 10.1038/s41598-024-78336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024] Open
Abstract
Gasdermin C is one of the least studied members of the gasdermin family of proteins, known for their critical involvement in pyroptosis and host defense. Furthermore, evidence for the role of Gasdermin C in the intestine is scarce and partly controversial. Here, we tested the functional role of Gasdermin C in intestinal homeostasis, inflammation and tumorigenesis. : We studied Gasdermin C in response to cytokines in intestinal organoids. We evaluated epithelial differentiation, cell death and immune infiltration under steady state conditions in a new mouse line deficient in Gasdermin C. The role of Gasdermin C was analyzed in acute colitis, infection and colitis-associated cancer. Gasdemin C is highly expressed in the intestinal epithelium and strongly induced by the type 2 cytokines IL-4 and IL-13 in a STAT6-dependent manner. Gasdermin C-deficient mice show no changes in tissue architecture and epithelial homeostasis. Epithelial organoids deficient in Gasdermin C develop normally and show no alterations in proliferation or cell death. No changes were found in models of acute colitis, type 2 intestinal infection and colitis-associated cancer. Gasdermin C genes are upregulated by type 2 immunity, yet appear dispensable for the development of intestinal inflammation, infection and colitis-associated cancer.
Collapse
Affiliation(s)
- Reyes Gámez-Belmonte
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yara Wagner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ru Wang
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel González-Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roodline Cineus
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin, Berlin, Germany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Saskia Hainbuch
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Voehringer
- Institute of Immunology, Ludwig-Maximilians-Universität München, 80336, München, Germany
- Department of Infection Biology, University of Erlangen, 91054, Erlangen, Germany
| | - Ahmed N Hegazy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité Universitätsmedizin, Berlin, Germany
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
- The Transregio 241 IBDome Consortium, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- The Transregio 241 IBDome Consortium, Berlin, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- The Transregio 241 IBDome Consortium, Berlin, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- The Transregio 241 IBDome Consortium, Berlin, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
- Department of Medicine 1, University Medical Centre Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
4
|
Noble SL, Vacca F, Hilligan KL, Mules TC, Le Gros G, Inns S. Helminth infection induces a distinct subset of CD101 hi lung tissue-infiltrating eosinophils that are differentially regulated by type 2 cytokines. Immunol Cell Biol 2024; 102:734-746. [PMID: 38924182 DOI: 10.1111/imcb.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Eosinophils play divergent roles in health and disease, contributing to both immunoregulatory and proinflammatory responses. Helminth infection is strongly associated with eosinophilia and the induction of the type 2 cytokines interleukin (IL)-5, IL-4 and IL-13. This study aimed to elucidate the heterogeneity of pulmonary eosinophils in response to helminth infection and the roles of IL-5, IL-4 and IL-13 in driving pulmonary eosinophil responses. Using the murine helminth model Nippostrongylus brasiliensis (Nb), we characterize a subtype of eosinophils, defined by high expression of CD101, that is induced in the lungs of Nb-infected mice and are phenotypically distinct from lung eosinophils that express low levels of CD101. Strikingly, we show that the two eosinophil subtypes have distinct anatomical localization within the lung: CD101low eosinophils are predominantly localized in the lung vasculature, whereas Nb-induced CD101hi eosinophils are predominantly localized in the extravascular lung niche. We show that CD101hi eosinophils are also induced across other models of pulmonary infection and inflammation, including a nonlung-migrating helminth infection, house dust mite-induced allergic inflammation and influenza infection. Furthermore, we demonstrate that the induction of CD101hi tissue eosinophils is independent of IL-5 and IL-4 signaling, but is dependent on intact IL-13 signaling. These results suggest that IL-13 produced during helminth infection and other disease states promotes a pulmonary tissue-infiltrating program in eosinophils defined by high expression of CD101.
Collapse
Affiliation(s)
- Sophia-Louise Noble
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Medicine, University of Otago, Wellington, New Zealand
- Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, Wellington, New Zealand
- Te Whatu Ora, Capital Coast and Hutt Valley, Wellington, New Zealand
| |
Collapse
|
5
|
Freen-van Heeren JJ, Palomares Cabeza V, Lopez DC, Kivits D, Rensink I, Turksma AW, Ten Brinke A. Assessing Antigen-Specific T Cell Responses Through IFN-γ Enzyme-Linked Immune Absorbent Spot (ELISpot). Methods Mol Biol 2024; 2782:209-226. [PMID: 38622405 DOI: 10.1007/978-1-0716-3754-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
T cells are instrumental in protecting the host against invading pathogens and the development of cancer. To do so, they produce effector molecules such as granzymes, interleukins, interferons, and perforin. For the development and immunomonitoring of therapeutic applications such as cell-based therapies and vaccines, assessing T cell effector function is paramount. This can be achieved through various methods, such as 51Cr release assays, flow cytometry, and enzyme-linked immune absorbent spot (ELISpot) assays. For T cell ELISpots, plates are coated with antibodies directed against the effector molecule of interest (e.g., IFN-g). Subsequently, peripheral blood mononuclear cells (PBMCs) or isolated T cells are cultured on the plate together with stimuli of choice, and the production of effector molecules is visualized via labeled detection antibodies. For clinical studies, ELISpot is currently the gold standard to determine antigen-specific T cell frequencies. In contrast to 51Cr release assays, ELISpot allows for the exact enumeration of responding T cells, and compared to flow cytometry, ELISpot is more cost-effective and high throughput. Here, we optimize and describe, in a step-by-step fashion, how to perform a controlled IFN-γ ELISpot experiment to determine the frequency of responding or antigen-specific T cells in healthy human volunteers. Of note, this protocol can also be employed to assess the frequency of antigen-specific T cells induced in, e.g., vaccination studies or present in cellular products.
Collapse
Affiliation(s)
| | - Virginia Palomares Cabeza
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - David Cobeta Lopez
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Domenique Kivits
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Irma Rensink
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Annelies W Turksma
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands.
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Ma J, Urgard E, Runge S, Classon CH, Mathä L, Stark JM, Cheng L, Álvarez JA, von Zedtwitz S, Baleviciute A, Martinez Hoyer S, Li M, Gernand AM, Osbelt L, Bielecka AA, Lesker TR, Huang HJ, Vrtala S, Boon L, Beyaert R, Adner M, Martinez Gonzalez I, Strowig T, Du J, Nylén S, Rosshart SP, Coquet JM. Laboratory mice with a wild microbiota generate strong allergic immune responses. Sci Immunol 2023; 8:eadf7702. [PMID: 37774008 DOI: 10.1126/sciimmunol.adf7702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Allergic disorders are caused by a combination of hereditary and environmental factors. The hygiene hypothesis postulates that early-life microbial exposures impede the development of subsequent allergic disease. Recently developed "wildling" mice are genetically identical to standard laboratory specific pathogen-free (SPF) mice but are housed under seminatural conditions and have rich microbial exposures from birth. Thus, by comparing conventional SPF mice with wildlings, we can uncouple the impact of lifelong microbial exposures from genetic factors on the allergic immune response. We found that wildlings developed larger populations of antigen-experienced T cells than conventional SPF mice, which included interleukin-10-producing CD4 T cells specific for commensal Lactobacilli strains and allergy-promoting T helper 2 (TH2) cells. In models of airway exposure to house dust mite (HDM), recombinant interleukin-33, or Alternaria alternata, wildlings developed strong allergic inflammation, characterized by eosinophil recruitment, goblet cell metaplasia, and antigen-specific immunoglobulin G1 (IgG1) and IgE responses. Wildlings developed robust de novo TH2 cell responses to incoming allergens, whereas preexisting TH2 cells could also be recruited into the allergic immune response in a cytokine-driven and TCR-independent fashion. Thus, wildling mice, which experience diverse and lifelong microbial exposures, were not protected from developing pathological allergic immune responses. Instead, wildlings mounted robust allergic responses to incoming allergens, shedding new light on the hygiene hypothesis.
Collapse
Affiliation(s)
- Junjie Ma
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Leo Foundation Skin Immunology Research Centre, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Solveig Runge
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Cajsa H Classon
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Laura Mathä
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Liqin Cheng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Javiera A Álvarez
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Silvia von Zedtwitz
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Austeja Baleviciute
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Sergio Martinez Hoyer
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Muzhen Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Anne Marleen Gernand
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Rudi Beyaert
- VIB Centre for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mikael Adner
- Institute of Environmental Medicine and Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Itziar Martinez Gonzalez
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Juan Du
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- Leo Foundation Skin Immunology Research Centre, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Hubbard IC, Thompson JS, Else KJ, Shears RK. Another decade of Trichuris muris research: An update and application of key discoveries. ADVANCES IN PARASITOLOGY 2023; 121:1-63. [PMID: 37474238 DOI: 10.1016/bs.apar.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The mouse whipworm, Trichuris muris, has been used for over 60 years as a tractable model for human trichuriasis, caused by the related whipworm species, T. trichiura. The history of T. muris research, from the discovery of the parasite in 1761 to understanding the lifecycle and outcome of infection with different doses (high versus low dose infection), as well as the immune mechanisms associated with parasite expulsion and chronic infection have been detailed in an earlier review published in 2013. Here, we review recent advances in our understanding of whipworm biology, host-parasite interactions and basic immunology brought about using the T. muris mouse model, focussing on developments from the last decade. In addition to the traditional high/low dose infection models that have formed the mainstay of T. muris research to date, novel models involving trickle (repeated low dose) infection in laboratory mice or infection in wild or semi-wild mice have led to important insights into how immunity develops in situ in a multivariate environment, while the use of novel techniques such as the development of caecal organoids (enabling the study of larval development ex vivo) promise to deliver important insights into host-parasite interactions. In addition, the genome and transcriptome analyses of T. muris and T. trichiura have proven to be invaluable tools, particularly in the context of vaccine development and identification of secreted products including proteins, extracellular vesicles and micro-RNAs, shedding further light on how these parasites communicate with their host and modulate the immune response to promote their own survival.
Collapse
Affiliation(s)
- Isabella C Hubbard
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacob S Thompson
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|
8
|
Doolan R, Putananickal N, Tritten L, Bouchery T. How to train your myeloid cells: a way forward for helminth vaccines? Front Immunol 2023; 14:1163364. [PMID: 37325618 PMCID: PMC10266106 DOI: 10.3389/fimmu.2023.1163364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Soil-transmitted helminths affect approximately 1.5 billion people worldwide. However, as no vaccine is currently available for humans, the current strategy for elimination as a public health problem relies on preventive chemotherapy. Despite more than 20 years of intense research effort, the development of human helminth vaccines (HHVs) has not yet come to fruition. Current vaccine development focuses on peptide antigens that trigger strong humoral immunity, with the goal of generating neutralizing antibodies against key parasite molecules. Notably, this approach aims to reduce the pathology of infection, not worm burden, with only partial protection observed in laboratory models. In addition to the typical translational hurdles that vaccines struggle to overcome, HHVs face several challenges (1): helminth infections have been associated with poor vaccine responses in endemic countries, probably due to the strong immunomodulation caused by these parasites, and (2) the target population displays pre-existing type 2 immune responses to helminth products, increasing the likelihood of adverse events such as allergy or anaphylaxis. We argue that such traditional vaccines are unlikely to be successful on their own and that, based on laboratory models, mucosal and cellular-based vaccines could be a way to move forward in the fight against helminth infection. Here, we review the evidence for the role of innate immune cells, specifically the myeloid compartment, in controlling helminth infections. We explore how the parasite may reprogram myeloid cells to avoid killing, notably using excretory/secretory (ES) proteins and extracellular vesicles (EVs). Finally, learning from the field of tuberculosis, we will discuss how anti-helminth innate memory could be harnessed in a mucosal-trained immunity-based vaccine.
Collapse
Affiliation(s)
- Rory Doolan
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Namitha Putananickal
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Lucienne Tritten
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tiffany Bouchery
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
9
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
10
|
Houlder EL, Costain AH, Nambuya I, Brown SL, Koopman JPR, Langenberg MCC, Janse JJ, Hoogerwerf MA, Ridley AJL, Forde-Thomas JE, Colombo SAP, Winkel BMF, Galdon AA, Hoffmann KF, Cook PC, Roestenberg M, Mpairwe H, MacDonald AS. Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis. Nat Commun 2023; 14:1863. [PMID: 37012228 PMCID: PMC10070318 DOI: 10.1038/s41467-023-37502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting over 200 million people in multiple organs, including the lungs. Despite this, there is little understanding of pulmonary immune responses during schistosomiasis. Here, we show type-2 dominated lung immune responses in both patent (egg producing) and pre-patent (larval lung migration) murine Schistosoma mansoni (S. mansoni) infection. Human pre-patent S. mansoni infection pulmonary (sputum) samples revealed a mixed type-1/type-2 inflammatory cytokine profile, whilst a case-control study showed no significant pulmonary cytokine changes in endemic patent infection. However, schistosomiasis induced expansion of pulmonary type-2 conventional dendritic cells (cDC2s) in human and murine hosts, at both infection stages. Further, cDC2s were required for type-2 pulmonary inflammation in murine pre-patent or patent infection. These data elevate our fundamental understanding of pulmonary immune responses during schistosomiasis, which may be important for future vaccine design, as well as for understanding links between schistosomiasis and other lung diseases.
Collapse
Affiliation(s)
- E L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - I Nambuya
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - S L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J P R Koopman
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M C C Langenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - J J Janse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M A Hoogerwerf
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A J L Ridley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - S A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - B M F Winkel
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A A Galdon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - P C Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - H Mpairwe
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Yi XM, Lian H, Li S. Signaling and functions of interleukin-33 in immune regulation and diseases. CELL INSIGHT 2022; 1:100042. [PMID: 37192860 PMCID: PMC10120307 DOI: 10.1016/j.cellin.2022.100042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 05/18/2023]
Abstract
Interleukin-33 (IL-33) which belongs to the interleukin-1 (IL-1) family is an alarmin cytokine with critical roles in tissue homeostasis, pathogenic infection, inflammation, allergy and type 2 immunity. IL-33 transmits signals through its receptor IL-33R (also called ST2) which is expressed on the surface of T helper 2 (Th2) cells and group 2 innate lymphoid cells (ILC2s), thus inducing transcription of Th2-associated cytokine genes and host defense against pathogens. Moreover, the IL-33/IL-33R axis is also involved in development of multiple types of immune-related diseases. In this review, we focus on current progress on IL-33-trigggered signaling events, the important functions of IL-33/IL-33R axis in health and diseases as well as the promising therapeutic implications of these findings.
Collapse
Affiliation(s)
- Xue-Mei Yi
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huan Lian
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, 06536, USA
| | - Shu Li
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
12
|
Yordanova IA, Jürchott K, Steinfelder S, Vogt K, Krüger U, Kühl AA, Sawitzki B, Hartmann S. The Host Peritoneal Cavity Harbors Prominent Memory Th2 and Early Recall Responses to an Intestinal Nematode. Front Immunol 2022; 13:842870. [PMID: 35418979 PMCID: PMC8996181 DOI: 10.3389/fimmu.2022.842870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal parasitic nematodes affect a quarter of the world’s population, typically eliciting prominent effector Th2-driven host immune responses. As not all infected hosts develop protection against reinfection, our current understanding of nematode-induced memory Th2 responses remains limited. Here, we investigated the activation of memory Th2 cells and the mechanisms driving early recall responses to the enteric nematode Heligmosomoides polygyrus in mice. We show that nematode-cured mice harbor memory Th2 cells in lymphoid and non-lymphoid organs with distinct transcriptional profiles, expressing recirculation markers like CCR7 and CD62-L in the mesenteric lymph nodes (mLN), and costimulatory markers like Ox40, as well as tissue homing and activation markers like CCR2, CD69 and CD40L in the gut and peritoneal cavity (PEC). While memory Th2 cells persist systemically in both lymphoid and non-lymphoid tissues following cure of infection, peritoneal memory Th2 cells in particular displayed an initial prominent expansion and strong parasite-specific Th2 responses during early recall responses to a challenge nematode infection. This effect was paralleled by a significant influx of dendritic cells (DC) and eosinophils, both also appearing exclusively in the peritoneal cavity of reinfected mice. In addition, we show that within the peritoneal membrane lined by peritoneal mesothelial cells (PeM), the gene expression levels of cell adhesion markers VCAM-1 and ICAM-1 decrease significantly in response to a secondary infection. Overall, our findings indicate that the host peritoneal cavity in particular harbors prominent memory Th2 cells and appears to respond directly to H. polygyrus by an early recall response via differential regulation of cell adhesion markers, marking the peritoneal cavity an important site for host immune responses to an enteric pathogen.
Collapse
Affiliation(s)
- Ivet A Yordanova
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Karsten Jürchott
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katrin Vogt
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Krüger
- Core Unite Genomics, Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja A Kühl
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, iPATH.Berlin, Core Unit for Immunopathology for Experimental Models, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Vacca F, Le Gros G. Tissue-specific immunity in helminth infections. Mucosal Immunol 2022; 15:1212-1223. [PMID: 35680972 PMCID: PMC9178325 DOI: 10.1038/s41385-022-00531-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
A characteristic feature of host responses to helminth infections is the development of profound systemic and tissue-localised Type 2 immune responses that play critical roles in immunity, tissue repair and tolerance of the parasite at tissue sites. These same Type 2 responses are also seen in the tissue-associated immune-pathologies seen in asthma, atopic dermatitis and many forms of allergies. The recent identification of new subtypes of immune cells and cytokine pathways that influence both immune and non-immune cells and tissues creates the opportunity for reviewing helminth parasite-host responses in the context of tissue specific immunity. This review focuses on the new discoveries of the cells and cytokines involved in tissue specific immune responses to helminths and how these contribute to host immunity against helminth infection and allow the host to accommodate the presence of parasites when they cannot be eliminated.
Collapse
Affiliation(s)
- Francesco Vacca
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Graham Le Gros
- grid.250086.90000 0001 0740 0291Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
14
|
Pionnier N, Furlong-Silva J, Colombo SAP, Marriott AE, Chunda VC, Ndzeshang BL, Sjoberg H, Archer J, Steven A, Wanji S, Taylor MJ, Turner JD. NKp46 + natural killer cells develop an activated/memory-like phenotype and contribute to innate immunity against experimental filarial infection. Front Immunol 2022; 13:969340. [PMID: 36238293 PMCID: PMC9551455 DOI: 10.3389/fimmu.2022.969340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic filariasis and onchocerciasis are major neglected tropical diseases affecting over 90 million people worldwide with painful and profoundly disfiguring pathologies (such as lymphoedema or blindness). Type 2 inflammation is a hallmark of filarial nematode tissue infection and is implicated both in eosinophil dependent immunity and lymphatic or ocular immunopathologies. Type-2 innate lymphoid cells (ILC2) are known to play an important role in the initiation of type 2 inflammation in helminth infection. We therefore tracked comparative IL-12Rβ2+ ILC1, ST2+ ILC2 and NKp46+ natural killer (NK) innate lymphoid cell population expansions during Brugia malayi experimental peritoneal filarial infections using either immunocompetent or immunodeficient mice. In immunocompetent BALB/c animals, NKp46+ NK cells rapidly expanded representing over 90% of the ILC population in the first week of infection, whereas, surprisingly, ST2+ ILC2 failed to expand. NKp46+ NK cell expansions were confirmed in RAG2 deficient mice lacking adaptive immunity. Ablation of the NKp46+ NK cell compartment in RAG2 common gamma chain (gc) mice led to increased susceptibility to chronic adult B. malayi infection. This data was recapitulated using an Onchocerca ochengi male worm peritoneal implant model. When NKp46+ NK cells were depleted in RAG2 deficient mice using anti-NKp46 or asialo GM1 antibody injections over the first five weeks of B. malayi infection, susceptibility to adult B. malayi infection was significantly increased by 2-3 fold with concomitant impairment in eosinophil or neutrophil recruitments. Finally, we demonstrate that in RAG2 deficient mice, drug clearance of a primary adult B. malayi infection followed by challenge infection leads to resistance against early larval B. malayi establishment. This innate resistance is associated with bolstered NK and eosinophils whereby NKp46+ NK cells express markers of memory-like/enhanced activation (increased expression of interferon gamma and Ly6C). Our data promotes a novel functional role for NKp46+ NK cells in immunoprotection against experimental primary and secondary filarial infection which can proceed in the absence of adaptive immune regulation.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Bioscience, John Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Julio Furlong-Silva
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stefano A P Colombo
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amy E Marriott
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Valerine C Chunda
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Bertrand L Ndzeshang
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
15
|
Intestinal helminth infection transforms the CD4 + T cell composition of the skin. Mucosal Immunol 2022; 15:257-267. [PMID: 34931000 PMCID: PMC8866128 DOI: 10.1038/s41385-021-00473-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
Intestinal helminth parasites can alter immune responses to vaccines, other infections, allergens and autoantigens, implying effects on host immune responses in distal barrier tissues. We herein show that the skin of C57BL/6 mice infected with the strictly intestinal nematode Heligmosomoides polygyrus contain higher numbers of CD4+ T cells compared to the skin of uninfected controls. Accumulated CD4+ T cells were H. polygyrus-specific TH2 cells that skewed the skin CD4+ T cell composition towards a higher TH2/TH1 ratio which persisted after worm expulsion. Accumulation of TH2 cells in the skin was associated with increased expression of the skin-homing chemokine receptors CCR4 and CCR10 on CD4+ T cells in the blood and mesenteric lymph nodes draining the infected intestine and was abolished by FTY720 treatment during infection, indicating gut-to-skin trafficking of cells. Remarkably, skin TH2 accumulation was associated with impaired capacity to initiate IFN-γ recall responses and develop skin-resident memory cells to mycobacterial antigens, both during infection and months after deworming therapy. In conclusion, we show that infection by a strictly intestinal helminth has long-term effects on immune cell composition and local immune responses to unrelated antigens in the skin, revealing a novel process for T cell colonisation and worm-mediated immunosuppression in this organ.
Collapse
|
16
|
Evidence of MHC class I and II influencing viral and helminth infection via the microbiome in a non-human primate. PLoS Pathog 2021; 17:e1009675. [PMID: 34748618 PMCID: PMC8601626 DOI: 10.1371/journal.ppat.1009675] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/18/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection. The selective pressure of the major histocompatibility complex (MHC) on microbial communities, and the potential role of this interaction in driving parasite resistance has been largely neglected. Using a natural population of the primate Microcebus griseorufus, we provide correlative evidence of two outstanding findings: that MHCI and MHCII diversity shapes the composition of the gut microbiota; and that select taxa associated with MHC diversity predicted adenovirus and helminth infection status. Our study highlights the importance of incorporating the microbiome when investigating parasite-mediated MHC selection.
Collapse
|
17
|
Hayes KS, Grencis RK. Trichuris muris and comorbidities - within a mouse model context. Parasitology 2021; 148:1-9. [PMID: 34078488 PMCID: PMC8660644 DOI: 10.1017/s0031182021000883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023]
Abstract
Trichuris muris is a mouse intestinal parasitic nematode that inhabits the large intestine of its host and induces a strong immune response. The effects of this strong anti-parasite response can be found locally within the intestinal niche and also systemically, having effects on multiple organs. Additionally, the anti-parasite response can have multiple effects on infectious organisms and on microbiota that the host is harbouring. It has been shown that Th1 responses induced by T. muris can affect progression of bowel inflammation, cause colitic-like intestinal inflammation, reduce barrier function and intestinal mucosal responses. In the brain, T. muris can exacerbate stroke outcome and other neurological conditions. In the lung, T. muris can suppress airway inflammation and alter immune responses to other parasites. Additionally, T. muris induced responses can inhibit anti-tumour immunity. Although this parasite maintains a localized niche in the large intestine, its effects can be far-reaching and substantially impact other infections through modulation of bystander immune responses.
Collapse
Affiliation(s)
- Kelly S. Hayes
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Trust Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Garrido-Amaro C, Cardona P, Gassó D, Arias L, Velarde R, Tvarijonativiciute A, Serrano E, Cardona PJ. Protective Effect of Intestinal Helminthiasis Against Tuberculosis Progression Is Abrogated by Intermittent Food Deprivation. Front Immunol 2021; 12:627638. [PMID: 33936040 PMCID: PMC8079633 DOI: 10.3389/fimmu.2021.627638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background Tuberculosis (TB) is still a major challenge for humankind. Because regions with the highest incidence also have a high prevalence of helminthiasis and nutritional scarcity, we wanted to understand the impact of these on TB progression. Methods We have developed an experimental murine model for active TB in C3HeB/FeJ, coinfected with Trichuris muris and Heligmosomoides polygyrus nematodes, and exposed to an environmental mycobacterium (M. manresensis) and intermittent fasting. Cause-effect relationships among these factors were explored with Partial Least Squares Path modelling (PLSPM). Results Previous parasitization had a major anti-inflammatory effect and reduced systemic levels of ADA, haptoglobin, local pulmonary levels of IL-1β, IL-6, TNF-α, CXCL-1, CXCL-5 and IL-10. Oral administration of heat-killed M. manresensis resulted in a similar outcome. Both interventions diminished pulmonary pathology and bacillary load, but intermittent food deprivation reduced this protective effect increasing stress and inflammation. The PLSPM revealed nematodes might have protective effects against TB progression. Conclusions Significantly higher cortisol levels in food-deprivation groups showed it is a stressful condition, which might explain its deleterious effect. This highlights the impact of food security on TB eradication policies and the need to prioritize food supply over deworming activities.
Collapse
Affiliation(s)
- Cristina Garrido-Amaro
- Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Paula Cardona
- Unitat de Tuberculosi Experimental, Institut Germans Trias i Pujol, UAB, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Diana Gassó
- Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament of Animal Science, Agrifood, Forestry and Veterinary Campus, University of Lleida, Lleida, Spain
| | - Lilibeth Arias
- Unitat de Tuberculosi Experimental, Institut Germans Trias i Pujol, UAB, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Roser Velarde
- Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Asta Tvarijonativiciute
- Interdisciplinary Laboratory of Clinical Analysis Interlab-UMU, Regional Campus of International Excellence Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - Emmanuel Serrano
- Wildlife Ecology & Health Group (WE&H) and Servei d’Ecopatologia de Fauna Salvatge (SEFaS), Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Institut Germans Trias i Pujol, UAB, Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
19
|
Intestinal eosinophils: multifaceted roles in tissue homeostasis and disease. Semin Immunopathol 2021; 43:307-317. [PMID: 33772336 DOI: 10.1007/s00281-021-00851-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Intestinal eosinophils are largely considered to be one of the central immune effector cells during helminth infection and disorders such as eosinophilic oesophagitis and food allergies. Given the abundance of these cells present in the gastrointestinal tract at homeostasis, emerging studies now reveal novel roles for eosinophils in the development and regulation of immunity, and during tissue repair. In addition, the identification of distinct eosinophil subsets indicates that we must consider the heterogeneity of these cells and how they differentially participate in mucosal immunity at steady state and during disease. Here, we summarise the literature on intestinal eosinophils, and how they contribute to mucosal homeostasis through immune regulation and interactions with the microbiome. We then explore the divergent roles of eosinophils in the context of eosinophilic gastrointestinal disorders and during helminth infection, whereby we discuss key observations and differences that have emerged from animal models and human studies. Lastly, we consider the possible interactions of eosinophils with the enteric nervous system, and how this represents an exciting area for future research which may inform future therapeutic targets.
Collapse
|
20
|
IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- and IL-9-driven mast cell activation. PLoS Pathog 2020; 16:e1009121. [PMID: 33351862 PMCID: PMC7787685 DOI: 10.1371/journal.ppat.1009121] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/06/2021] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic helminths are sensed by the immune system via tissue-derived alarmins that promote the initiation of the appropriate type 2 immune responses. Here we establish the nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite burdens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and increased mast cell activation. Using gene-deficient mice, we show that application of IL-33 triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, independent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-driven intestinal anti-helminth immunity.
Collapse
|
21
|
Chetty A, Omondi MA, Butters C, Smith KA, Katawa G, Ritter M, Layland L, Horsnell W. Impact of Helminth Infections on Female Reproductive Health and Associated Diseases. Front Immunol 2020; 11:577516. [PMID: 33329545 PMCID: PMC7719634 DOI: 10.3389/fimmu.2020.577516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
A growing body of knowledge exists on the influence of helminth infections on allergies and unrelated infections in the lung and gastrointestinal (GI) mucosa. However, the bystander effects of helminth infections on the female genital mucosa and reproductive health is understudied but important considering the high prevalence of helminth exposure and sexually transmitted infections in low- and middle-income countries (LMICs). In this review, we explore current knowledge about the direct and systemic effects of helminth infections on unrelated diseases. We summarize host disease-controlling immunity of important sexually transmitted infections and introduce the limited knowledge of how helminths infections directly cause pathology to female reproductive tract (FRT), alter susceptibility to sexually transmitted infections and reproduction. We also review work by others on type 2 immunity in the FRT and hypothesize how these insights may guide future work to help understand how helminths alter FRT health.
Collapse
Affiliation(s)
- Alisha Chetty
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Millicent A Omondi
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Claire Butters
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - Katherine Ann Smith
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Gnatoulma Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Laura Layland
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - William Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Ajendra J, Chenery AL, Parkinson JE, Chan BHK, Pearson S, Colombo SAP, Boon L, Grencis RK, Sutherland TE, Allen JE. IL-17A both initiates, via IFNγ suppression, and limits the pulmonary type-2 immune response to nematode infection. Mucosal Immunol 2020; 13:958-968. [PMID: 32636457 PMCID: PMC7567645 DOI: 10.1038/s41385-020-0318-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 02/04/2023]
Abstract
Nippostrongylus brasiliensis is a well-defined model of type-2 immunity but the early lung-migrating phase is dominated by innate IL-17A production. In this study, we confirm previous observations that Il17a-KO mice infected with N. brasiliensis exhibit an impaired type-2 immune response. Transcriptional profiling of the lung on day 2 of N. brasiliensis infection revealed an increased Ifng signature in Il17a-KO mice confirmed by enhanced IFNγ protein production in lung lymphocyte populations. Depletion of early IFNγ rescued type-2 immune responses in the Il17a-KO mice demonstrating that IL-17A-mediated suppression of IFNγ promotes type-2 immunity. Notably, later in infection, once the type-2 response was established, IL-17A limited the magnitude of the type-2 response. IL-17A regulation of type-2 immunity was lung-specific and infection with Trichuris muris revealed that IL-17A promotes a type-2 immune response in the lung even when infection is restricted to the intestine. Together our data reveal IL-17A as a major regulator of pulmonary type-2 immunity such that IL-17A supports early development of a protective type-2 response by suppression of IFNγ but subsequently limits excessive type-2 responses. A failure of this feedback loop may contribute to conditions such as severe asthma, characterised by combined elevation of IL-17 and type-2 cytokines.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Alistair L Chenery
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - James E Parkinson
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Brian H K Chan
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Stella Pearson
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Stefano A P Colombo
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Louis Boon
- Bioceros, Member of Polpharma Biologics, Yalelaan 46, 3584, CM, Utrecht, The Netherlands
| | - Richard K Grencis
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK
| | - Tara E Sutherland
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
23
|
Weatherhead JE, Gazzinelli-Guimaraes P, Knight JM, Fujiwara R, Hotez PJ, Bottazzi ME, Corry DB. Host Immunity and Inflammation to Pulmonary Helminth Infections. Front Immunol 2020; 11:594520. [PMID: 33193446 PMCID: PMC7606285 DOI: 10.3389/fimmu.2020.594520] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
Helminths, including nematodes, cestodes and trematodes, are complex parasitic organisms that infect at least one billion people globally living in extreme poverty. Helminthic infections are associated with severe morbidity particularly in young children who often harbor the highest burden of disease. While each helminth species completes a distinct life cycle within the host, several helminths incite significant lung disease. This impact on the lungs occurs either directly from larval migration and host immune activation or indirectly from a systemic inflammatory immune response. The impact of helminths on the pulmonary immune response involves a sophisticated orchestration and activation of the host innate and adaptive immune cells. The consequences of activating pulmonary host immune responses are variable with several helminthic infections leading to severe, pulmonary compromise while others providing immune tolerance and protection against the development of pulmonary diseases. Further delineation of the convoluted interface between helminth infection and the pulmonary host immune responses is critical to the development of novel therapeutics that are critically needed to prevent the significant global morbidity caused by these parasites.
Collapse
Affiliation(s)
- Jill E. Weatherhead
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - John M. Knight
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
| | - Ricardo Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Peter J. Hotez
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Center for Vaccine Development, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Biology, Baylor University, Waco, TX, United States
- Hagler Institute for Advanced Study at Texas A&M University, College State, TX, United States
| | - Maria Elena Bottazzi
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Center for Vaccine Development, Houston, TX, United States
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - David B. Corry
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Immunology, Allergy, Rheumatology, Baylor College of Medicine, Houston, TX, United States
- Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, Houston, TX, United States
| |
Collapse
|
24
|
Gosens R, Hiemstra PS, Adcock IM, Bracke KR, Dickson RP, Hansbro PM, Krauss-Etschmann S, Smits HH, Stassen FRM, Bartel S. Host-microbe cross-talk in the lung microenvironment: implications for understanding and treating chronic lung disease. Eur Respir J 2020; 56:13993003.02320-2019. [PMID: 32430415 PMCID: PMC7439216 DOI: 10.1183/13993003.02320-2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/20/2020] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are highly prevalent worldwide and will continue to rise in the foreseeable future. Despite intensive efforts over recent decades, the development of novel and effective therapeutic approaches has been slow. However, there is new and increasing evidence that communities of micro-organisms in our body, the human microbiome, are crucially involved in the development and progression of chronic respiratory diseases. Understanding the detailed mechanisms underlying this cross-talk between host and microbiota is critical for development of microbiome- or host-targeted therapeutics and prevention strategies. Here we review and discuss the most recent knowledge on the continuous reciprocal interaction between the host and microbes in health and respiratory disease. Furthermore, we highlight promising developments in microbiome-based therapies and discuss the need to employ more holistic approaches of restoring both the pulmonary niche and the microbial community. The reciprocal interaction between microbes and host in the lung is increasingly recognised as an important determinant of health. The complexity of this cross-talk needs to be taken into account when studying diseases and developing future new therapies.https://bit.ly/2VKYUfT
Collapse
Affiliation(s)
- Reinoud Gosens
- University of Groningen, Dept of Molecular Pharmacology, GRIAC Research Institute, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ken R Bracke
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Robert P Dickson
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care, Ann Arbor, MI, USA
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, Sydney, Australia
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany.,Institute for Experimental Medicine, Christian-Albrechts-Universitaet zu Kiel, Kiel, Germany
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank R M Stassen
- Dept of Medical Microbiology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, Member of the German Center for Lung Research (DZL), Borstel, Germany .,University of Groningen, University Medical Center Groningen, Dept of Pathology and Medical Biology, GRIAC Research Institute, Groningen, The Netherlands
| |
Collapse
|
25
|
Bathish B, Paumann-Page M, Paton LN, Kettle AJ, Winterbourn CC. Peroxidasin mediates bromination of tyrosine residues in the extracellular matrix. J Biol Chem 2020; 295:12697-12705. [PMID: 32675287 DOI: 10.1074/jbc.ra120.014504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Indexed: 01/09/2023] Open
Abstract
Peroxidasin is a heme peroxidase that oxidizes bromide to hypobromous acid (HOBr), a powerful oxidant that promotes the formation of the sulfilimine crosslink in collagen IV in basement membranes. We investigated whether HOBr released by peroxidasin leads to other oxidative modifications of proteins, particularly bromination of tyrosine residues, in peroxidasin-expressing PFHR9 cells. Using stable isotope dilution LC-MS/MS, we detected the formation of 3-bromotyrosine, a specific biomarker of HOBr-mediated protein modification. The level of 3-bromotyrosine in extracellular matrix proteins from normally cultured cells was 1.1 mmol/mol tyrosine and decreased significantly in the presence of the peroxidasin inhibitor, phloroglucinol. A negligible amount of 3-bromotyrosine was detected in peroxidasin-knockout cells. 3-Bromotyrosine formed both during cell growth in culture and in the isolated decellularized extracellular matrix when embedded peroxidasin was supplied with hydrogen peroxide and bromide. The level of 3-bromotyrosine was significantly higher in extracellular matrix than intracellular proteins, although a low amount was detected intracellularly. 3-Bromotyrosine levels increased with higher bromide concentrations and decreased in the presence of physiological concentrations of thiocyanate and urate. However, these peroxidase substrates showed moderate to minimal inhibition of collagen IV crosslinking. Our findings provide evidence that peroxidasin promotes the formation of 3-bromotyrosine in proteins. They show that HOBr produced by peroxidasin is selective for, but not limited to, the crosslinking of collagen IV. Based on our findings, the use of 3-bromotyrosine as a specific biomarker of oxidative damage by HOBr warrants further investigation in clinical conditions linked to high peroxidasin expression.
Collapse
Affiliation(s)
- Boushra Bathish
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Martina Paumann-Page
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Louise N Paton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
26
|
Chauché C, Vacca F, Chia SL, Richards J, Gregory WF, Ogunkanbi A, Wear M, McSorley HJ. A Truncated Form of HpARI Stabilizes IL-33, Amplifying Responses to the Cytokine. Front Immunol 2020; 11:1363. [PMID: 32695116 PMCID: PMC7338556 DOI: 10.3389/fimmu.2020.01363] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
The murine intestinal nematode Heligmosomoides polygyrus releases the H. polygyrus Alarmin Release Inhibitor (HpARI) - a protein which binds to IL-33 and to DNA, effectively tethering the cytokine in the nucleus of necrotic cells. Previous work showed that a non-natural truncation consisting of the first 2 domains of HpARI (HpARI_CCP1/2) retains binding to both DNA and IL-33, and inhibited IL-33 release in vivo. Here, we show that the affinity of HpARI_CCP1/2 for IL-33 is significantly lower than that of the full-length protein, and that HpARI_CCP1/2 lacks the ability to prevent interaction of IL-33 with its receptor. When HpARI_CCP1/2 was applied in vivo it potently amplified IL-33-dependent immune responses to Alternaria alternata allergen, Nippostrongylus brasiliensis infection and recombinant IL-33 injection, in direct contrast to the IL-33-suppressive effects of full-length HpARI. Mechanistically, we found that HpARI_CCP1/2 is able to bind to and stabilize IL-33, preventing its degradation and maintaining the cytokine in its active form. This study highlights the importance of IL-33 inactivation, the potential for IL-33 stabilization in vivo, and describes a new tool for IL-33 research.
Collapse
Affiliation(s)
- Caroline Chauché
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Francesco Vacca
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Shin Li Chia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Josh Richards
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - William F Gregory
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Adefunke Ogunkanbi
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Wear
- The Edinburgh Protein Production Facility (EPPF), Wellcome Trust Centre for Cell Biology (WTCCB), University of Edinburgh, Edinburgh, United Kingdom
| | - Henry J McSorley
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
27
|
Colombo SAP, Grencis RK. Immunity to Soil-Transmitted Helminths: Evidence From the Field and Laboratory Models. Front Immunol 2020; 11:1286. [PMID: 32655568 PMCID: PMC7324686 DOI: 10.3389/fimmu.2020.01286] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Infection with soil-transmitted helminths (STH) remains a major burden on global health and agriculture. Our understanding of the immunological mechanisms that govern whether an individual is resistant or susceptible to infection is derived primarily from model infections in rodents. Typically, experimental infections employ an artificially high, single bolus of parasites that leads to rapid expulsion of the primary infection and robust immunity to subsequent challenges. However, immunity in natura is generated slowly, and is only partially effective, with individuals in endemic areas retaining low-level infections throughout their lives. Therefore, there is a gap between traditional model STH systems and observations in the field. Here, we review the immune response to traditional model STH infections in the laboratory. We compare these data to studies of natural infection in humans and rodents in endemic areas, highlighting crucial differences between experimental and natural infection. We then detail the literature to date on the use of "trickle" infections to experimentally model the kinetics of natural infection.
Collapse
Affiliation(s)
- Stefano A. P. Colombo
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Richard K. Grencis
- Division of Infection, Immunity and Respiratory Medicine, Wellcome Trust Centre for Cell Matrix Research, Lydia Becker Institute for Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
Filbey KJ, Mehta PH, Meijlink KJ, Pellefigues C, Schmidt AJ, Le Gros G. The Gastrointestinal Helminth Heligmosomoides bakeri Suppresses Inflammation in a Model of Contact Hypersensitivity. Front Immunol 2020; 11:950. [PMID: 32508831 PMCID: PMC7249854 DOI: 10.3389/fimmu.2020.00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
Helminths regulate host immune responses to ensure their own long-term survival. Numerous studies have demonstrated that these helminth-induced regulatory mechanisms can also limit host inflammatory responses in several disease models. We used the Heligmosomoides bakeri (Hb) infection model (also known as H. polygyrus or H. polygyrus bakeri in the literature) to test whether such immune regulation affects skin inflammatory responses induced by the model contact sensitiser dibutyl phthalate fluorescein isothiocynate (DBP-FITC). Skin lysates from DBP-FITC-sensitized, Hb-infected mice produced less neutrophil specific chemokines and had significantly reduced levels of skin thickening and cellular inflammatory responses in tissue and draining lymph nodes (LNs) compared to uninfected mice. Hb-induced suppression did not appear to be mediated by regulatory T cells, nor was it due to impaired dendritic cell (DC) activity. Mice cleared of infection remained unresponsive to DBP-FITC sensitization indicating that suppression was not via the secretion of Hb-derived short-lived regulatory molecules, although long-term effects on cells cannot be ruled out. Importantly, similar helminth-induced suppression of inflammation was also seen in the draining LN after intradermal injection of the ubiquitous allergen house dust mite (HDM). These findings demonstrate that Hb infection attenuates skin inflammatory responses by suppressing chemokine production and recruitment of innate cells. These findings further contribute to the growing body of evidence that helminth infection can modulate inflammatory and allergic responses via a number of mechanisms with potential to be exploited in therapeutic and preventative strategies in the future.
Collapse
Affiliation(s)
- Kara J Filbey
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Palak H Mehta
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
29
|
Yasuda K, Kuroda E. Role of eosinophils in protective immunity against secondary nematode infections. Immunol Med 2019; 42:148-155. [DOI: 10.1080/25785826.2019.1697135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Koubun Yasuda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
30
|
A Dual Role for Macrophages in Modulating Lung Tissue Damage/Repair during L2 Toxocara canis Infection. Pathogens 2019; 8:pathogens8040280. [PMID: 31810203 PMCID: PMC6963574 DOI: 10.3390/pathogens8040280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Macrophages that are classically activated (M1) through the IFN-γ/STAT1 signaling pathway have a major role in mediating inflammation during microbial and parasitic infections. In some cases, unregulated inflammation induces tissue damage. In helminth infections, alternatively activated macrophages (M2), whose activation occurs mainly via the IL-4/STAT6 pathway, have a major role in mediating protection against excessive inflammation, and has been associated with both tissue repair and parasite clearance. During the lung migratory stage of Toxocara canis, the roles of M1 and M2 macrophages in tissue repair remain unknown. To assess this, we orally infected wild-type (WT) and STAT1 and STAT6-deficient mice (STAT1-/- and STAT6-/-) with L2 T. canis, and evaluated the role of M1 or M2 macrophages in lung pathology. The absence of STAT1 favored an M2 activation pattern with Arg1, FIZZ1, and Ym1 expression, which resulted in parasite resistance and lung tissue repair. In contrast, the absence of STAT6 induced M1 activation and iNOS expression, which helped control parasitic infection but generated increased inflammation and lung pathology. Next, macrophages were depleted by intratracheally inoculating mice with clodronate-loaded liposomes. We found a significant reduction in alveolar macrophages that was associated with higher lung pathology in both WT and STAT1-/- mice; in contrast, STAT6-/- mice receiving clodronate-liposomes displayed less tissue damage, indicating critical roles of both macrophage phenotypes in lung pathology and tissue repair. Therefore, a proper balance between inflammatory and anti-inflammatory responses during T. canis infection is necessary to limit lung pathology and favor lung healing.
Collapse
|
31
|
Long SR, Lanter BB, Pazos MA, Mou H, Barrios J, Su CW, Wang ZQ, Walker WA, Hurley BP, Shi HN. Intestinal helminth infection enhances bacteria-induced recruitment of neutrophils to the airspace. Sci Rep 2019; 9:15703. [PMID: 31673002 PMCID: PMC6823376 DOI: 10.1038/s41598-019-51991-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Intestinal helminth infections elicit Th2-type immunity, which influences host immune responses to additional threats, such as allergens, metabolic disease, and other pathogens. Th2 immunity involves a shift of the CD4+ T-cell population from type-0 to type-2 (Th2) with increased abundance of interleukin (IL)-4 and IL-13. This study sought to investigate if existing gut-restricted intestinal helminth infections impact bacterial-induced acute airway neutrophil recruitment. C57BL/6 mice were divided into four groups: uninfected; helminth-Heligmosomoides polygyrus infected; Pseudomonas aeruginosa infected; and coinfected. Mice infected with H. polygyrus were incubated for 2 weeks, followed by P. aeruginosa intranasal inoculation. Bronchial alveolar lavage, blood, and lung samples were analyzed. Interestingly, infection with gut-restricted helminths resulted in immunological and structural changes in the lung. These changes include increased lung CD4+ T cells, increased Th2 cytokine expression, and airway goblet cell hyperplasia. Furthermore, coinfected mice exhibited significantly more airspace neutrophil infiltration at 6 hours following P. aeruginosa infection and exhibited an improved rate of survival compared with bacterial infected alone. These results suggest that chronic helminth infection of the intestines can influence and enhance acute airway neutrophil responses to P. aeruginosa infection.
Collapse
Affiliation(s)
- Shao Rong Long
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - Bernard B Lanter
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael A Pazos
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Juliana Barrios
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Chien-Wen Su
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Zhong Quan Wang
- Department of Parasitology, Medical College of Zhengzhou University, Zhengzhou, Henan, China
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bryan P Hurley
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Hai Ning Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
32
|
Benedetto A, Bambade T, Au C, Tullet JM, Monkhouse J, Dang H, Cetnar K, Chan B, Cabreiro F, Gems D. New label-free automated survival assays reveal unexpected stress resistance patterns during C. elegans aging. Aging Cell 2019; 18:e12998. [PMID: 31309734 PMCID: PMC6718543 DOI: 10.1111/acel.12998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022] Open
Abstract
Caenorhabditis elegans is an excellent model for high‐throughput experimental approaches but lacks an automated means to pinpoint time of death during survival assays over a short time frame, that is, easy to implement, highly scalable, robust, and versatile. Here, we describe an automated, label‐free, high‐throughput method using death‐associated fluorescence to monitor nematode population survival (dubbed LFASS for label‐free automated survival scoring), which we apply to severe stress and infection resistance assays. We demonstrate its use to define correlations between age, longevity, and severe stress resistance, and its applicability to parasitic nematodes. The use of LFASS to assess the effects of aging on susceptibility to severe stress revealed an unexpected increase in stress resistance with advancing age, which was largely autophagy‐dependent. Correlation analysis further revealed that while severe thermal stress resistance positively correlates with lifespan, severe oxidative stress resistance does not. This supports the view that temperature‐sensitive protein‐handling processes more than redox homeostasis underpin aging in C. elegans. That the ages of peak resistance to infection, severe oxidative stress, heat shock, and milder stressors differ markedly suggests that stress resistance and health span do not show a simple correspondence in C. elegans.
Collapse
Affiliation(s)
- Alexandre Benedetto
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Timothée Bambade
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Catherine Au
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Jennifer M.A. Tullet
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- School of Biosciences University of Kent Canterbury UK
| | - Jennifer Monkhouse
- Division of Biomedical and Life Sciences Lancaster University Lancaster UK
| | - Hairuo Dang
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Kalina Cetnar
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| | - Brian Chan
- Division of Infection, Immunity & Respiratory Medicine University of Manchester Manchester UK
| | - Filipe Cabreiro
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
- MRC London Institute of Medical Sciences, Imperial College London London UK
| | - David Gems
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing University College London London UK
| |
Collapse
|
33
|
Gazzinelli-Guimaraes PH, de Queiroz Prado R, Ricciardi A, Bonne-Année S, Sciurba J, Karmele EP, Fujiwara RT, Nutman TB. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J Clin Invest 2019; 129:3686-3701. [PMID: 31380805 DOI: 10.1172/jci127963] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
This study investigates the relationship between helminth infection and allergic sensitization by assessing the influence of preexisting allergy on the outcome of helminth infections, rather than the more traditional approach in which the helminth infection precedes the onset of allergy. Here we used a murine model of house dust mite-induced (HDM-induced) allergic inflammation followed by Ascaris infection to demonstrate that allergic sensitization drives an eosinophil-rich pulmonary type 2 immune response (Th2 cells, M2 macrophages, type 2 innate lymphoid cells, IL-33, IL-4, IL-13, and mucus) that directly hinders larval development and reduces markedly the parasite burden in the lungs. This effect is dependent on the presence of eosinophils, as eosinophil-deficient mice were unable to limit parasite development or numbers. In vivo administration of neutralizing antibodies against CD4 prior to HDM sensitization significantly reduced eosinophils in the lungs, resulting in the reversal of the HDM-induced Ascaris larval killing. Our data suggest that HDM allergic sensitization drives a response that mimics a primary Ascaris infection, such that CD4+ Th2-mediated eosinophil-dependent helminth larval killing in the lung tissue occurs. This study provides insight into the mechanisms underlying tissue-specific responses that drive a protective response against the early stages of the helminths prior to their establishing long-lasting infections in the host.
Collapse
Affiliation(s)
- Pedro H Gazzinelli-Guimaraes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rafael de Queiroz Prado
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Alessandra Ricciardi
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Sandra Bonne-Année
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Joshua Sciurba
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Erik P Karmele
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, USA
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|