1
|
Vitari N, Roy S. Intestinal immunoglobulins under microbial dysbiosis: implications in opioid-induced microbial dysbiosis. Front Microbiol 2025; 16:1580661. [PMID: 40297286 PMCID: PMC12034684 DOI: 10.3389/fmicb.2025.1580661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Intestinal immunoglobulins (Igs) maintain homeostasis between the microbiome and host. IgA facilitates microbial balance through a variety of increasingly well-described mechanisms. However, IgM and IgG have less defined intestinal functions but have the potential to activate clearance mechanisms such as the complement system and receptor-mediated bacterial killing. Very little is known regarding the role of Igs under microbial dysbiosis. In this review, we explore how Igs sculpt the intestinal microbiome and respond to microbial dysbiosis. We discuss how IgM, IgA, IgG, and complement individually maintain harmony with the microbiome and consider how these mechanisms could work in synergy. Finally, we explore using an opioid-induced microbial dysbiosis as a model to elucidate immediate changes in Ig-bacterial interactions.
Collapse
Affiliation(s)
- Nicolas Vitari
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
2
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
3
|
Park HJ, Yu D, Hong ST, Lee J, Park SJ, Park MS, Lee H, Kim M, Cheon YH, Lee SG, Sohn DH, Jun JB, Kim S, Lee SI. Bifidobacterium longum RAPO Attenuates Dermal and Pulmonary Fibrosis in a Mouse Model of Systemic Sclerosis through Macrophage Modulation and Growth of Short-Chain Fatty Acid Producers. Immune Netw 2024; 24:e41. [PMID: 39801739 PMCID: PMC11711128 DOI: 10.4110/in.2024.24.e41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease with an unclear etiology and no effective treatments. Recent research has suggested involvement of the microbiome in SSc pathogenesis. This study aimed to identify specific microbial species associated with SSc and explore their therapeutic potential. Serum Abs against 384 intestinal microbial species revealed a significant depletion in Abs against Bifidobacterium longum in patients with SSc compared to healthy controls. In a bleomycin-induced SSc mouse model, oral administration of B. longum strain RAPO attenuated skin and lung fibrosis, accompanied by reduced infiltration of inflammatory monocytes/macrophages and downregulation of pro-inflammatory cytokines and chemoattractant Ccl2 genes in lymph nodes and fibrotic tissues. B. longum RAPO treatment restored fecal microbial diversity and augmented short-chain fatty acid (SCFA)-producing bacteria in the gut, leading to increased fecal butyrate levels and upregulated SCFA receptor Gpr41 in the mesenteric lymph node. In vitro, B. longum RAPO and its culture supernatant suppressed the expressions of pro-inflammatory cytokine genes in macrophages and inhibited myofibroblast differentiation in fibroblasts. These findings highlight the probiotic potential of B. longum RAPO in preventing tissue fibrosis by modulating macrophage activity and promoting the growth of SCFA-producing bacteria, underscoring the therapeutic potential of microbial modulation in SSc.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Dakyum Yu
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Juyeon Lee
- Research Center, BIFIDO Co, Ltd., Hongcheon 25117, Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co, Ltd., Hongcheon 25117, Korea
| | | | - Hanna Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Seung-Geun Lee
- Division of Rheumatology, Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan 50612, Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Suhee Kim
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea
| |
Collapse
|
4
|
Dias N, Dias M, Ribeiro A, Gomes N, Moraes A, Wesley M, Gonzaga C, Ramos DDAR, Braz S, Dallago B, de Carvalho JL, Hagström L, Nitz N, Hecht M. Network Analysis of Pathogenesis Markers in Murine Chagas Disease Under Antimicrobial Treatment. Microorganisms 2024; 12:2332. [PMID: 39597721 PMCID: PMC11596328 DOI: 10.3390/microorganisms12112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Chagas disease (CD), a disease affecting millions globally, remains shrouded in scientific uncertainty, particularly regarding the role of the intestinal microbiota in disease progression. This study investigates the effects of antibiotic-induced microbiota depletion on parasite burden, immune responses, and clinical outcomes in BALB/c mice infected with either the Trypanosoma cruzi Colombiana or CL Brener strains. Mice were treated with a broad-spectrum antibiotic cocktail before infection, and parasite burden was quantified via qPCR at 30 and 100 days post-infection (dpi). Immune responses were analyzed using flow cytometry and ELISA, while histopathology was conducted on cardiac and intestinal tissues. Antibiotic treatment uncovered strain-specific correlations, with Colombiana infections affecting Bifidobacterium populations and CL Brener infections linked to Lactobacillus. Microbiota depletion initially reduced parasite burden in the heart and intestine, but an increase was observed in the chronic phase, except in the CL Brener-infected gut, where an early burden spike was followed by a decline. Antibiotic-induced bacterial shifts, such as reductions in Bacteroides and Bifidobacterium, promoted a more pro-inflammatory immune profile. These findings highlight the importance of microbiota and strain-specific factors in CD and suggest further research into microbiota manipulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Nayra Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Marina Dias
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Andressa Ribeiro
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nélio Gomes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Aline Moraes
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Moisés Wesley
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Carlito Gonzaga
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Doralina do Amaral Rabello Ramos
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Shélida Braz
- Institute of Exact and Technological Sciences, Federal University of Amazonas, Manaus 69000-000, Brazil;
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Juliana Lott de Carvalho
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Department of Pathology, Faculty of Medicine, University of Brasília, Brasília 70910-900, Brazil; (N.D.); (M.D.); (A.R.); (N.G.); (A.M.); (M.W.); (C.G.); (D.d.A.R.R.); (B.D.); (J.L.d.C.); (L.H.); (N.N.)
| |
Collapse
|
5
|
Li M, Xue Y, Lu H, Bai J, Cui L, Ning Y, Yuan Q, Jia X, Wang S. Relationship between infant gastrointestinal microorganisms and maternal microbiome within 6 months of delivery. Microbiol Spectr 2024; 12:e0360823. [PMID: 39172626 PMCID: PMC11448430 DOI: 10.1128/spectrum.03608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/08/2024] [Indexed: 08/24/2024] Open
Abstract
To investigate the association between the microbiota in mothers and gut microbiota in infants from 0 to 6 months, the microbiotas in infant feces, maternal feces, and breast milk were determined by 16S rRNA gene sequencing. The contribution of each maternal microbiome to the infant was assessed using fast expectation-maximization for microbial source tracking calculations. The levels of short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA) in the feces of infants were also determined using gas chromatography and IDK-sIgA ELISA to gain a more comprehensive understanding of the infant gut microbiome. The results of this study showed that in addition to Firmicutes (E1) and Bifidobacterium (E2), the dominant microorganisms of the intestinal microbiota of infants aged 0-6 months include Proteobacteria, which is different from previous findings. Acetic acid, the most abundant SCFA in the infant gut, was positively correlated with Megasphaera (P < 0.01), whereas sIgA was positively correlated with Bacteroides (P < 0.05) and negatively correlated with Klebsiella and Clostridium_XVIII (P < 0.05). The maternal gut microbiota contributed more to the infant gut microbiota (43.58% ± 11.13%) than the breast milk microbiota, and significant differences were observed in the contribution of the maternal microbiota to the infant gut microbiota based on the delivery mode and feeding practices. In summary, we emphasize the key role of maternal gut health in the establishment and succession of infant gut microbiota.IMPORTANCEThis study aims to delineate the microbial connections between mothers and infants, leveraging the fast expectation-maximization for microbial source tracking methodology to quantify the contribution of maternal microbiota to the constitution of the infant's gut microbiome. Concurrently, it examines the correlations between the infant gut microbiota and two distinctive biomolecules, namely short-chain fatty acids (SCFAs) and secretory immunoglobulin A (sIgA). The findings indicate that the maternal gut microbiota exerts a greater influence on the infant's gut microbial composition than does the microbiota present in breast milk. Infants born via vaginal delivery and receiving mixed feeding display gut microbiota profiles more similar to their mothers'. Notably, the SCFA acetate displays positive associations with beneficial bacteria and inverse relationships with potentially harmful ones within the infant's gut. Meanwhile, sIgA positively correlates with Bacteroides species and negatively with potentially pathogenic bacteria. By delving into the transmission dynamics of maternal-infant microbiota, exploring the impacts of metabolic byproducts within the infant's gut, and scrutinizing how contextual factors such as birthing method and feeding practices affect the correlation between maternal and infant microbiota, this research endeavors to establish practical strategies for optimizing early-life gut health management in infants. Such insights promise to inform targeted interventions that foster healthier microbial development during the critical first 6 months of life.
Collapse
Affiliation(s)
- Menglu Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yuling Xue
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Han Lu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Jinping Bai
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Liru Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
| | - Yibing Ning
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Qingbin Yuan
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
- Junlebao Dairy Group Co., Ltd., Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Santamarina AB, Nehmi Filho V, Freitas JAD, Silva BFRBD, Gusmão AF, Olivieri EHR, Souza ED, Silva SLD, Miranda DAD, Demarque DP, Oliveira EDS, Otoch JP, Pessoa AFM. Nutraceutical composition (yeast β-glucan, prebiotics, minerals, and silymarin) predicts improvement of sleep quality and metabolic parameters: A randomized pilot study. Clin Nutr ESPEN 2024; 63:476-490. [PMID: 39012843 DOI: 10.1016/j.clnesp.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND & AIMS The search for integrative and natural therapies that favor homeostasis to boost sleep and diet quality took place for young adult populations as a non-pharmacological strategy for long-term good quality of life. Thus, the present pilot study aims to investigate the effects of 90-day consumption of a nutraceutical composition on the neuro-immune-endocrine axis, providing better sleep quality and health improvement. METHODS For this, from March 2021 to June 2021, twenty-two Brazilian young adult volunteers (women and men) with BMI between 18.5 and 34.9 kg/m2 were divided into three distinct supplementation groups: NSupple; NSupple plus_S, and NSupple plus. Briefly, the supplement compositions included yeast β-glucan, prebiotics, and minerals in different concentrations associated or not with the herbal medicine silymarin. Neither nutritional nor physical activity interventions were performed during this pilot study period. The anthropometrics measures, questionnaires answer data, and harvest blood for metabolic, inflammatory, and hormonal tests were collected at baseline time (day zero-T0) and day 90 (T90) post-supplementation. RESULTS Our results highlight that the supplementation reduced body mass index (BMI), Waist-to-height ratio (WHtR), waist circumference, AST/ALT ratio, alkaline phosphatase, and HbA1c. Post-supplementation the IL-6 and IL-10 levels and the sleep, humor, and quality of life scores were suggested to improve. Sleep quality improvement seems to predict the reduction of adiposity-related body measures. CONCLUSION In sum, the nutraceutical supplementation might be related to anthropometric, metabolic, and endocrine parameters after 90 days reflecting on perception of humor, sleep, and life quality enhancement. However, it is important to recognize the limitation of the data presented considering that this was a pilot study. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, identifier NCT04810572 registered on 20th February 2021.
Collapse
Affiliation(s)
- Aline Boveto Santamarina
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP 03317-000, Brazil; Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Santos, SP 11015-020, Brazil.
| | - Victor Nehmi Filho
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP 03317-000, Brazil
| | - Jéssica Alves de Freitas
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP 03317-000, Brazil
| | - Bruna Fernanda Rio Branco da Silva
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Laboratório Interdisciplinar em Fisiologia e Exercício, Universidade Federal de São Paulo (UNIFESP), Santos, SP 11015-020, Brazil
| | - Arianne Fagotti Gusmão
- International Research Center, A.C. Camargo Cancer Center, São Paulo, SP 01508-010, Brazil
| | | | | | | | - Danielle Araújo de Miranda
- Departamento de Fisiologia, Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, SP 04023062, Brazil
| | - Daniel Pecoraro Demarque
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduarda Dos Santos Oliveira
- Laboratório de Farmacognosia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Pinhata Otoch
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP 03317-000, Brazil; Hospital Universitário da Universidade de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ana Flávia Marçal Pessoa
- Laboratório de Produtos e Derivados Naturais, Laboratório de Investigação Médica-26 (LIM-26), Departamento de Cirurgia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246903, Brazil; Pesquisa e Desenvolvimento Efeom Nutrição S/A, São Paulo, SP 03317-000, Brazil
| |
Collapse
|
7
|
Jannot AS, Girardeau Y, Chaussade S, Cerf-Bensussan N, Malamut G. Increased risk of gastric cancer in relation with pernicious anaemia in patients with primary antibody deficiency: A nationwide case control study. Dig Liver Dis 2024; 56:1760-1765. [PMID: 38853087 DOI: 10.1016/j.dld.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND/AIM We aimed to assess gastrointestinal cancers risks in a large cohort of individuals with primary antibody deficiency (PAD) and their association with risk of autoimmune and inflammatory gastrointestinal diseases. METHODS Investigating a French national database of inpatient admissions between 2010 and 2018, we identified 12,748 patients with PAD and 38,244 control non-exposed individuals. We performed multiple exposed-non-exposed studies using conditional logistic regression. RESULTS In comparison with non-exposed patients, PAD patients had increased risk of in situ gastric carcinoma (Odds Ratio (OR) =10.5 [95 % CI 2.2; 50.5]), malignant gastric tumor (OR=3.2 [95 % CI 2.2; 4.4]) and colorectal cancer (OR=1.2 [95 % CI 1; 1.5]). PAD patients had also increased risk of pernicious anaemia (OR=8 |95 % CI 5.6; 11.5]), Crohn's disease (OR= 4.4 [95 % CI 3.5; 5.6]), ulcerative colitis (OR=2.9 [95 % CI 2.4; 3.6]) and coeliac disease (OR=13.3 [95 % CI 9.1; 19.5]). Within patients with gastric cancer, those with PAD had increased risk of pernicious anaemia (OR=8.4 [95 % CI 1.5; 215]; p = 0.01) but not of H. pylori infection. CONCLUSIONS Risk of gastric cancer is particularly high in PAD patients and notably risk of in situ gastric carcinoma in association with pernicious anaemia. It supports indication of early endoscopic screening in these patients.
Collapse
Affiliation(s)
- Anne-Sophie Jannot
- French National Rare Disease Registry (BNDMR), Greater Paris University Hospitals (AP-HP), Université Paris Cité, Paris, France; Université Paris Cité, HeKA, INRIA Paris, Inserm, Centre de Recherche des Cordeliers- Université Paris Cité, Paris, France
| | - Yannick Girardeau
- Department of Clinical Investigation and Clinical Epidemiology, AP-HP-Centre-Université Paris Cité, Hôpital Européen Georges Pompidou, Paris, France
| | - Stanislas Chaussade
- Department of Gastroenterology, AP-HP. Centre- Université Paris Cité, Hôpital Cochin, Paris, France
| | - Nadine Cerf-Bensussan
- Université de Paris, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Université Paris Cité, Paris, France
| | - Georgia Malamut
- Department of Gastroenterology, AP-HP. Centre- Université Paris Cité, Hôpital Cochin, Paris, France; Université de Paris, INSERM UMR 1163 and Imagine Institute, Laboratory of Intestinal Immunity, Université Paris Cité, Paris, France.
| |
Collapse
|
8
|
Wang P, Yang X, Zhang L, Sha S, Huang J, Peng J, Gu J, Pearson JA, Hu Y, Zhao H, Wong FS, Wang Q, Wen L. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat Commun 2024; 15:4232. [PMID: 38762479 PMCID: PMC11102548 DOI: 10.1038/s41467-024-48611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/02/2024] [Indexed: 05/20/2024] Open
Abstract
Toll-like receptor 9 (TLR9) recognizes bacterial, viral and self DNA and play an important role in immunity and inflammation. However, the role of TLR9 in obesity is less well-studied. Here, we generate B-cell-specific Tlr9-deficient (Tlr9fl/fl/Cd19Cre+/-, KO) B6 mice and model obesity using a high-fat diet. Compared with control mice, B-cell-specific-Tlr9-deficient mice exhibited increased fat tissue inflammation, weight gain, and impaired glucose and insulin tolerance. Furthermore, the frequencies of IL-10-producing-B cells and marginal zone B cells were reduced, and those of follicular and germinal center B cells were increased. This was associated with increased frequencies of IFNγ-producing-T cells and increased follicular helper cells. In addition, gut microbiota from the KO mice induced a pro-inflammatory state leading to immunological and metabolic dysregulation when transferred to germ-free mice. Using 16 S rRNA gene sequencing, we identify altered gut microbial communities including reduced Lachnospiraceae, which may play a role in altered metabolism in KO mice. We identify an important network involving Tlr9, Irf4 and Il-10 interconnecting metabolic homeostasis, with the function of B and T cells, and gut microbiota in obesity.
Collapse
Affiliation(s)
- Pai Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Xin Yang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Luyao Zhang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Sha Sha
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Nephrology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Juan Huang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine and Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Rusconi B, Bard AK, McDonough R, Kindsvogel AM, Wang JD, Udayan S, McDonald KG, Newberry RD, Tarr PI. Intergenerational protective anti-gut commensal immunoglobulin G originates in early life. Proc Natl Acad Sci U S A 2024; 121:e2309994121. [PMID: 38517976 PMCID: PMC10990157 DOI: 10.1073/pnas.2309994121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/16/2024] [Indexed: 03/24/2024] Open
Abstract
Maternal immunoglobulins of the class G (IgGs) protect offspring from enteric infection, but when, where, and how these antibodies are physiologically generated and confer protection remains enigmatic. We found that circulating IgGs in adult mice preferentially bind early-life gut commensal bacteria over their own adult gut commensal bacteria. IgG-secreting plasma cells specific for early-life gut bacteria appear in the intestine soon after weaning, where they remain into adulthood. Manipulating exposure to gut bacteria or plasma cell development before, but not after, weaning reduced IgG-secreting plasma cells targeting early-life gut bacteria throughout life. Further, the development of this anti-gut commensal IgG response coincides with the early-life interval in which goblet cell-associated antigen passages (GAPs) are present in the colon. Offspring of dams "perturbed" by B cell ablation or reduced bacterial exposure in early life were more susceptible to enteric pathogen challenge. In contrast to current concepts, protective maternal IgGs targeted translocating gut commensals in the offspring, not the enteric pathogen. These early-life events affecting anti-commensal IgG production have intergenerational effects for protection of the offspring.
Collapse
Affiliation(s)
- Brigida Rusconi
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Adina K. Bard
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Ryan McDonough
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Angel M. Kindsvogel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Jacqueline D. Wang
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Sreeram Udayan
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Keely G. McDonald
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Rodney D. Newberry
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Phillip I. Tarr
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine in St. Louis, St. Louis, MO63110
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| |
Collapse
|
10
|
Kim S, Chun SH, Cheon YH, Kim M, Kim HO, Lee H, Hong ST, Park SJ, Park MS, Suh YS, Lee SI. Peptoniphilus gorbachii alleviates collagen-induced arthritis in mice by improving intestinal homeostasis and immune regulation. Front Immunol 2024; 14:1286387. [PMID: 38239365 PMCID: PMC10794505 DOI: 10.3389/fimmu.2023.1286387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The intricate connection between gut microbiota and rheumatoid arthritis (RA) pathogenesis has gained prominence, although the specific microbial species contributing to RA development remain largely unknown. Recent studies have sought to comprehensively explore alterations in the human microbiome, focusing on identifying disease-related microbial species through blood analysis. Consequently, this study aimed to identify RA-associated microbial species using a serum microbial array system and to investigate the efficacy and underlying mechanisms of potential microbial species for RA treatment. Methods Serum immunoglobulin M levels against 384 intestinal microbial species were assessed using a microbial microarray in patients with RA and healthy individuals. We investigated the therapeutic potential of the identified microbial candidate regarding arthritis development, immune responses, gut barrier function, and gut microbiome using a collagen-induced arthritis (CIA) mouse model. Results Our findings revealed significant alterations in antibody levels against 36 microbial species in patients with RA compared to healthy individuals. Notably, the antibody levels against Peptoniphilus gorbachii (PG) were decreased in patients with RA and exhibited an inverse correlation with RA disease activity. In vitro experiments demonstrated that PG produced acetate and butyrate, while exhibiting anti-inflammatory properties. In CIA mice, PG administration suppressed arthritis symptoms, reduced the accumulation of inflammatory monocytes in the mesenteric lymph nodes, and downregulated gene expression of pro-inflammatory cytokines in the ileum. Additionally, PG supplementation restored intestinal barrier integrity and partially resolved gut microbial dysbiosis in CIA mice. The fecal microbiota in PG-treated mice corresponded to improved intestinal barrier integrity and reduced inflammatory responses. Conclusion This study highlights the potential of serum-based detection of anti-microbial antibodies to identify microbial targets at the species level for RA treatment. Moreover, our findings suggest that PG, identified through the microbial microarray analysis, holds therapeutic potential for RA by restoring intestinal barrier integrity and suppressing the immunologic response associated with RA.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Yun-Hong Cheon
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| | - Hyun-Ok Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hanna Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Jun Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co, Ltd, Hongcheon, Kangwon, Republic of Korea
| | - Young Sun Suh
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Hospital, Jinju, Republic of Korea
| |
Collapse
|
11
|
Elesela S, Arzola-Martínez L, Rasky A, Ptaschinski C, Hogan SP, Lukacs NW. Mucosal IgA immune complex induces immunomodulatory responses in allergic airway and intestinal T H2 disease. J Allergy Clin Immunol 2023; 152:1607-1618.e1. [PMID: 37604310 DOI: 10.1016/j.jaci.2023.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND IgA is the most abundant immunoglobulin at the mucosal surface and although its role in regulating mucosal immunity is not fully understood, its presence is associated with protection from developing allergic disease. OBJECTIVE We sought to determine the role of IgA immune complexes for therapeutic application to mucosal allergic responses. METHODS Trinitrophenol (TNP)-specific IgA immune complexes were applied, using TNP-coupled ovalbumin (OVA), to airway and gut mucosal surfaces in systemically sensitized allergic animals to regulate allergen challenge responses. Animals were assessed for both pathologic and immune-mediated responses in the lung and gut, respectively, using established mouse models. RESULTS The mucosal application of IgA immune complexes in the lung and gut with TNP-OVA regulated TH2-driven allergic response in the lung and gut, reducing TH2 cytokines and mucus (lung) as well as diarrhea and temperature loss (gut), but increasing IL-10 and the number of regulatory T cells. The IgA-OVA immune complex did not alter peanut-induced anaphylaxis, indicating antigen specificity. Using OVA-specific DO.11-green fluorescent protein IL-4 reporter mouse-derived TH2-skewed cells in a transfer model demonstrated that mucosal IgA immune complex treatment reduced TH2-cell expansion and increased the number of regulatory T cells. To address a potential mechanism of action, TGF-β and IL-10 were induced in bone marrow-derived dendritic cells when they were exposed to IgA immune complex, suggesting a regulatory phenotype induced in dendritic cells that also led to an altered primary T-cell-mediated response in in vitro OVA-specific assays. CONCLUSIONS These studies highlight one possible mechanism of how allergen-specific IgA may provide a regulatory signal to reduce the development of allergic responses in the lung and gut.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Llilian Arzola-Martínez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Andrew Rasky
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Simon P Hogan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich; Mary H. Weiser Food Allergy Center, Ann Arbor, Mich.
| |
Collapse
|
12
|
Kalayci FNC, Ozen S. Possible Role of Dysbiosis of the Gut Microbiome in SLE. Curr Rheumatol Rep 2023; 25:247-258. [PMID: 37737528 DOI: 10.1007/s11926-023-01115-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE OF REVIEW The resident gut microbiota serves as a double-edged sword that aids the host in multiple ways to preserve a healthy equilibrium and serve as early companions and boosters for the gradual evolution of our immune defensive layers; nevertheless, the perturbation of the symbiotic resident intestinal communities has a profound impact on autoimmunity induction, particularly in systemic lupus erythematosus (SLE). Herein, we seek to critically evaluate the microbiome research in SLE with a focus on intestinal dysbiosis. RECENT FINDINGS SLE is a complex and heterogeneous disorder with self-attack due to loss of tolerance, and there is aberrant excessive immune system activation. There is mounting evidence suggesting that intestinal flora disturbances may accelerate the formation and progression of SLE, presumably through a variety of mechanisms, including intestinal barrier dysfunction and leaky gut, molecular mimicry, bystander activation, epitope spreading, gender bias, and biofilms. Gut microbiome plays a critical role in SLE pathogenesis, and additional studies are warranted to properly define the impact of gut microbiome in SLE, which can eventually lead to new and potentially safer management approaches for this debilitating disease.
Collapse
Affiliation(s)
| | - Seza Ozen
- Department of Paediatric Rheumatology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
13
|
Neziraj T, Siewert L, Pössnecker E, Pröbstel AK. Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases. Eur J Immunol 2023; 53:e2250033. [PMID: 37624875 DOI: 10.1002/eji.202250033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-β. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.
Collapse
Affiliation(s)
- Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Lena Siewert
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
14
|
Li Y, Wang J, Wang R, Chang Y, Wang X. Gut bacteria induce IgA expression in pituitary hormone-secreting cells during aging. iScience 2023; 26:107747. [PMID: 37692284 PMCID: PMC10492204 DOI: 10.1016/j.isci.2023.107747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
Pituitary hormone decline is a hallmark of aging. However, the precise gene regulation mechanism during pituitary aging is unclear. Here, we characterized the cell population alteration and global transcriptional change during pituitary aging through single-cell RNA sequencing (scRNA-seq). We found that mRNA-encoding components of protein translational machinery declined the most in the pituitary during aging. Remarkably, Immunoglobulin A (IgA) was found to be expressed in hormone-secreting cells, and the IgA expression level increased dramatically in aged pituitary. Moreover, the pituitary IgA expression was regulated by gut microbiota. The non-hematopoietic origin of the IgA+ cells in the pituitary was further confirmed through bone marrow transplantation. Somatotropes were identified as the most prominent IgA-producing cells through lineage tracing. Thus, pituitary hormone-secreting cells can generate IgA in an age-dependent manner, and such a process is influenced by gut bacteria.
Collapse
Affiliation(s)
- Yehua Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Rui Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Ying Chang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Yan P, Liu J, Huang Y, Li Y, Yu J, Xia J, Liu M, Bai R, Wang N, Guo L, Liu G, Yang X, Zeng J, He B. Lotus leaf extract can attenuate salpingitis in laying hens by inhibiting apoptosis. Poult Sci 2023; 102:102865. [PMID: 37499615 PMCID: PMC10413199 DOI: 10.1016/j.psj.2023.102865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023] Open
Abstract
This study aimed to determine whether the lotus leaf extract (LLE) had the effect of treating salpingitis in laying hens. First, the salpingitis model was established by the method of bacterial infection. Differential genes between salpingitis and healthy laying hens were identified by transcriptome sequencing, and GO and KEGG enrichment analyses were performed. Groups of treatment of antibiotics and LLE were established to verify the feasibility of the lotus leaf extract in treating salpingitis. Furthermore, the active component and pharmacological effects of LLE were identified using the UPLC-Q-TOF-MS and network pharmacology technique. At last, the mechanism of LLE treating salpingitis was further evaluated by DF-1 cells infected with bacteria. The results showed that LLE significantly reduced the levels of TLR4 and IFN-γ (P < 0.05), accelerated the levels of IgA and IgG (P < 0.05), regulated the levels of SOD and MDA (P < 0.05) in laying hens with salpingitis. A total of 1,874 differential genes were obtained according to the transcriptome sequencing. It was revealed a significant role in cell cycle and apoptosis by enrichment analysis. In addition, among the 28 components identified by UPLC-Q-TOF-MS, 20 components acted on 58 genes, including CDK1, BIRC5, and CA2 for treating salpingitis. After bacterial infection, cells were damaged and unable to complete the normal progression of the cell cycle, leading to cell cycle arrest and further apoptosis formation. However, with the intervention of LLE, bacterial infection was resisted. The cells proliferation was extensively restored, and the expression of NO was increased. The addition of LLE significantly decreased cell apoptosis. The G1 phase increased, the S phase and the G2 phase decreased in the model group; after the intervention of LLE, the G1 phase gradually returned to the average level, and G2 and S phases increased. The mRNA expression levels of BIRC5, CDK1, and CA2 were consistent with the predicted results in network pharmacology. At the same time, the mRNA expression levels of Caspase-3 and Caspase-7 were reduced after added with LLE. The mRNA expression levels of TNF-α, TRADD, FADD, Caspase-8, Caspase-10, and Caspase-9 (P < 0.05), which would inhibit death receptor activation and decrease the apoptotic cascade, were upregulated after bacterial infection. However, the results in LLE groups were downregulated (P < 0.05). Meanwhile, the mRNA expression levels of BCL-2 in LLE groups were increased significantly compared with it in model group (P < 0.05). Notably, LLE administration inhibited apoptosis and regulated the cell cycle distribution in the salpingitis induced by bacterial infection. These results indicated that the LLE attenuated bacterial-induced salpingitis by modulating apoptosis and immune function in laying hens.
Collapse
Affiliation(s)
- Pupu Yan
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jiali Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yongxi Huang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Yana Li
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jie Yu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jinjin Xia
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Man Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ruonan Bai
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Ning Wang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Liwei Guo
- School of Animal Science, Yangtze University, Jingzhou 434020, China.
| | - Guoping Liu
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Xiaolin Yang
- School of Animal Science, Yangtze University, Jingzhou 434020, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Bin He
- Animal and Veterinary Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
16
|
Lingasamy P, Modhukur V, Mändar R, Salumets A. Exploring Immunome and Microbiome Interplay in Reproductive Health: Current Knowledge, Challenges, and Novel Diagnostic Tools. Semin Reprod Med 2023; 41:172-189. [PMID: 38262441 PMCID: PMC10846929 DOI: 10.1055/s-0043-1778017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The dynamic interplay between the immunome and microbiome in reproductive health is a complex and rapidly advancing research field, holding tremendously vast possibilities for the development of reproductive medicine. This immunome-microbiome relationship influences the innate and adaptive immune responses, thereby affecting the onset and progression of reproductive disorders. However, the mechanisms governing these interactions remain elusive and require innovative approaches to gather more understanding. This comprehensive review examines the current knowledge on reproductive microbiomes across various parts of female reproductive tract, with special consideration of bidirectional interactions between microbiomes and the immune system. Additionally, it explores innate and adaptive immunity, focusing on immunoglobulin (Ig) A and IgM antibodies, their regulation, self-antigen tolerance mechanisms, and their roles in immune homeostasis. This review also highlights ongoing technological innovations in microbiota research, emphasizing the need for standardized detection and analysis methods. For instance, we evaluate the clinical utility of innovative technologies such as Phage ImmunoPrecipitation Sequencing (PhIP-Seq) and Microbial Flow Cytometry coupled to Next-Generation Sequencing (mFLOW-Seq). Despite ongoing advancements, we emphasize the need for further exploration in this field, as a deeper understanding of immunome-microbiome interactions holds promise for innovative diagnostic and therapeutic strategies for reproductive health, like infertility treatment and management of pregnancy.
Collapse
Affiliation(s)
| | - Vijayachitra Modhukur
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Reet Mändar
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Bourgonje AR, Andreu-Sánchez S, Vogl T, Hu S, Vich Vila A, Gacesa R, Leviatan S, Kurilshikov A, Klompus S, Kalka IN, van Dullemen HM, Weinberger A, Visschedijk MC, Festen EAM, Faber KN, Wijmenga C, Dijkstra G, Segal E, Fu J, Zhernakova A, Weersma RK. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures. Immunity 2023; 56:1393-1409.e6. [PMID: 37164015 DOI: 10.1016/j.immuni.2023.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria; Center for Cancer Research, Medical University of Vienna, Wien, Austria
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris N Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hendrik M van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
18
|
Pantazi AC, Mihai CM, Balasa AL, Chisnoiu T, Lupu A, Frecus CE, Mihai L, Ungureanu A, Kassim MAK, Andrusca A, Nicolae M, Cuzic V, Lupu VV, Cambrea SC. Relationship between Gut Microbiota and Allergies in Children: A Literature Review. Nutrients 2023; 15:nu15112529. [PMID: 37299492 DOI: 10.3390/nu15112529] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The intestinal microbiota is a diverse and complex microecosystem that lives and thrives within the human body. The microbiota stabilizes by the age of three. This microecosystem plays a crucial role in human health, particularly in the early years of life. Dysbiosis has been linked to the development of various allergic diseases with potential long-term implications. Next-generation sequencing methods have established that allergic diseases are associated with dysbiosis. These methods can help to improve the knowledge of the relationship between dysbiosis and allergic diseases. The aim of this review paper is to synthesize the current understanding on the development of the intestinal microbiota in children, the long-term impact on health, and the relationship between dysbiosis and allergic diseases. Furthermore, we examine the connection between the microbiome and specific allergies such as atopic dermatitis, asthma, and food allergies, and which mechanisms could determine the induction of these diseases. Furthermore, we will review how factors such as mode of delivery, antibiotic use, breastfeeding, and the environment influence the development of the intestinal flora, as well as review various interventions for the prevention and treatment of gut microbiota-related allergies.
Collapse
Affiliation(s)
- Alexandru Cosmin Pantazi
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Corina Elena Frecus
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adina Ungureanu
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| | | | - Antonio Andrusca
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Maria Nicolae
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Viviana Cuzic
- Pediatrics, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
- Pediatrics, County Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Claudia Cambrea
- Infectious Diseases, Faculty of General Medicine, "Ovidius" University, 900470 Constanta, Romania
| |
Collapse
|
19
|
English J, Patrick S, Stewart LD. The potential role of molecular mimicry by the anaerobic microbiome in the aetiology of autoimmune disease. Anaerobe 2023; 80:102721. [PMID: 36940867 DOI: 10.1016/j.anaerobe.2023.102721] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/23/2023]
Abstract
Autoimmune diseases are thought to develop as a consequence of various environmental and genetic factors, each of which contributes to dysfunctional immune responses and/or a breakdown in immunological tolerance towards native structures. Molecular mimicry by microbial components is among the environmental factors thought to promote a breakdown in immune tolerance, particularly through the presence of cross-reactive epitopes shared with the human host. While resident members of the microbiome are essential promoters of human health through immunomodulation, defence against pathogenic colonisation and conversion of dietary fibre into nutritional resources for host tissues, there may be an underappreciated role of these microbes in the aetiology and/or progression of autoimmune disease. An increasing number of molecular mimics are being identified amongst the anaerobic microbiota which structurally resemble endogenous components and, in some cases, for example the human ubiquitin mimic of Bacteroides fragilis and DNA methyltransferase of Roseburia intestinalis, have been associated with promoting antibody profiles characteristic of autoimmune diseases. The persistent exposure of molecular mimics from the microbiota to the human immune system is likely to be involved in autoantibody production that contributes to the pathologies associated with immune-mediated inflammatory disorders. Here-in, examples of molecular mimics that have been identified among resident members of the human microbiome and their ability to induce autoimmune disease through cross-reactive autoantibody production are discussed. Improved awareness of the molecular mimics that exist among human colonisers will help elucidate the mechanisms involved in the breakdown of immune tolerance that ultimately lead to chronic inflammation and downstream disease.
Collapse
Affiliation(s)
- Jamie English
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Sheila Patrick
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK; The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Linda D Stewart
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast. 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
20
|
Spencer J, Bemark M. Human intestinal B cells in inflammatory diseases. Nat Rev Gastroenterol Hepatol 2023; 20:254-265. [PMID: 36849542 DOI: 10.1038/s41575-023-00755-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
The intestinal lumen contains an abundance of bacteria, viruses and fungi alongside ingested material that shape the chronically active intestinal immune system from early life to maintain the integrity of the gut epithelial barrier. In health, the response is intricately balanced to provide active protection against pathogen invasion whilst tolerating food and avoiding inflammation. B cells are central to achieving this protection. Their activation and maturation generates the body's largest plasma cell population that secretes IgA, and the niches they provide support systemic immune cell specialization. For example, the gut supports the development and maturation of a splenic B cell subset - the marginal zone B cells. In addition, cells such as the T follicular helper cells, which are enriched in many autoinflammatory diseases, are intrinsically associated with the germinal centre microenvironment that is more abundant in the gut than in any other tissue in health. In this Review, we discuss intestinal B cells and their role when a loss of homeostasis results in intestinal and systemic inflammatory diseases.
Collapse
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London, Guy's Campus, London, UK.
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
DuPont HL, Jiang ZD, Alexander AS, DuPont AW, Brown EL. Intestinal IgA-Coated Bacteria in Healthy- and Altered-Microbiomes (Dysbiosis) and Predictive Value in Successful Fecal Microbiota Transplantation. Microorganisms 2022; 11:microorganisms11010093. [PMID: 36677385 PMCID: PMC9862469 DOI: 10.3390/microorganisms11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
IgA-coated bacteria in the gut (IgA-biome) provide a homeostatic function in healthy people through inhibition of microbial invaders and by protecting the epithelial monolayer of the gut. The laboratory methods used to detect this group of bacteria require flow cytometry and DNA sequencing (IgA-Seq). With dysbiosis (reduced diversity of the microbiome), the IgA-biome also is impaired. In the presence of enteric infection, oral vaccines, or an intestinal inflammatory disorder, the IgA-biome focuses on the pathogenic bacteria or foreign antigens, while in other chronic diseases associated with dysbiosis, the IgA-biome is reduced in capacity. Fecal microbiota transplantation (FMT), the use of fecal product from well-screened, healthy donors administered to patients with dysbiosis, has been successful in engrafting the intestine with healthy microbiota and metabolites leading to improve health. Through FMT, IgA-coated bacteria have been transferred to recipients retaining their immune coating. The IgA-biome should be evaluated in FMT studies as these mucosal-associated bacteria are more likely to be associated with successful transplantation than free luminal organisms. Studies of the microbiome pre- and post-FMT should employ metagenomic methods that identify bacteria at least at the species level to better identify organisms of interest while allowing comparisons of microbiota data between studies.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
- Kelsey Research Foundation, Houston, TX 77005, USA
- Correspondence: ; Tel.: +1-713-500-9366
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | | | - Andrew W. DuPont
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| |
Collapse
|
22
|
Pott NM, Atschekzei F, Pott CC, Ernst D, Witte T, Sogkas G. Primary antibody deficiency-associated arthritis shares features with spondyloarthritis and enteropathic arthritis. RMD Open 2022; 8:rmdopen-2022-002664. [PMID: 36583733 PMCID: PMC9730402 DOI: 10.1136/rmdopen-2022-002664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The clinical spectrum of primary antibody deficiencies (PADs) and especially common variable immunodeficiency (CVID) includes various autoimmune disorders. We studied the prevalence and the features of articular rheumatic disease in a cohort of patient with PADs. METHODS In this retrospective cohort study, complete clinical data of 268 patients with PADs, mainly consisting of patients with CVID, visiting the immunology outpatient clinic of a German tertiary hospital between 2018 and 2021 were collected. Those included case history, physical examination, laboratory as well as radiological findings. RESULTS Inflammatory arthritis was diagnosed in 16.4% of studied patients and was significantly more common among patients with PAD-associated enteropathy (OR 13.39, p=0.0001), splenomegaly (OR 6.09, p=0.0001) or atopic diseases (OR 3.31, p=0.021). Given HLA-B27 status, the involvement of the axial skeleton and the presence of features, such as anterior uveitis, inflammatory bowel disease, psoriasis and/or dactylitis, 75% of studied patients fulfilled the Assessment of Spondyloarthritis International Society classification criteria. CONCLUSION PAD-associated arthritis frequently shares features with spondyloarthritis (SpA) and enteropathic arthritis. The latter may suggest the interconnected pathomechanisms of inflammatory arthritis in SpA and PADs.
Collapse
Affiliation(s)
- Nina Mee Pott
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Carl Christoph Pott
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Diana Ernst
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Ding M, Chen H, Yu R, Ross RP, Stanton C, Zhang H, Yang B, Chen W. Shared and Non-Shared sIgA-Coated and -Uncoated Bacteria in Intestine of Mother–Infant Pairs. Int J Mol Sci 2022; 23:ijms23179873. [PMID: 36077271 PMCID: PMC9456154 DOI: 10.3390/ijms23179873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
The infant gut microbiota is critical for promoting and maintaining early-life health. The study aimed to analyze the composition of sIgA-coated and sIgA-uncoated bacterial communities at genus level and lactobacilli and bifidobacterial communities at species level in human breast milk (HBM) and infant and maternal feces. Eleven pregnant women were recruited successfully. HBM; infant feces during colostrum, transition, and mature stages; and maternal feces within the mature stage were collected. sIgA-coated and sIgA-uncoated bacteria were separated with magnetic-activated cell sorting. Then, 16S rRNA sequencing, bifidobacterial groEL gene sequencing, and lactobacilli groEL gene sequencing were performed to analyze the bacterial community. PCoA revealed that the compositions of sIgA-coated and sIgA-uncoated bacteria were different among HBM and infant and maternal feces. Higher relative abundance of sIgA-uncoated Bifidobacterium was found in the three lactation stages in infant feces compared to the corresponding HBM, and a higher relative abundance of sIgA-uncoated Faecalibacterium was found in maternal feces compared to HBM and infant feces. For bifidobacterial community, sIgA-coated and sIgA-uncoated B. longum subsp. infantis and B. pseudocatenulatum was dominant in infant feces and maternal feces, respectively. The relative abundance of sIgA-uncoated B. longum subsp. infantis was significantly higher in infant feces compared to that in maternal feces. For the Lactobacillus community, L. paragasseri and L. mucosae were dominant in infant and maternal feces, respectively. HBM and infant and maternal feces showed distinct diversity and composition of both sIgA-coated and sIgA-uncoated bacteria at genus level. Infant and maternal feces showed similar composition of Bifidobacterium at species level. The same Bifidobacterium species could be detected both in sIgA-coated and -uncoated form. This article provided deeper understanding on the microbiota profile in HBM and infant and maternal feces.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renqiang Yu
- Department of Neonatology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214122, China
- Correspondence: (R.Y.); (B.Y.)
| | - Reynolds Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, China
- Correspondence: (R.Y.); (B.Y.)
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| |
Collapse
|
24
|
Trivedi R, Upadhyay TK, Kausar MA, Saeed A, Sharangi AB, Almatroudi A, Alabdallah NM, Saeed M, Aqil F. Nanotechnological interventions of the microbiome as a next-generation antimicrobial therapy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155085. [PMID: 35398124 DOI: 10.1016/j.scitotenv.2022.155085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/22/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
The rise of antimicrobial resistance (AMR) impacts public health due to the diminished potency of existing antibiotics. The microbiome plays an important role in the host's immune system activity and shows the history of exposure to antimicrobials and its manipulation in combating antimicrobial resistance. Advancements in gene technologies, DNA sequencing, and computational biology have emerged as powerful platforms to better understand the relationship between animals and microorganisms (MOs). The past few years have witnessed an increase in the use of nanotechnology, both in industry and in academia, as tools to tackle antimicrobial resistance. New strategies of microbiome manipulation have been developed, such as the use of prebiotics, probiotics, peptides, antibodies, an appropriate diet, phage therapy, and the use of various nanotechnological techniques. Owing to the research outcomes, targeted delivery of antimicrobials with some modifications with nanoparticles can lead to the destruction of resistant microbial cells. In addition, nanoparticles have been studied for their potential antimicrobial effects both in vitro and in vivo. In this review, we highlight key opportunistic areas for applying nanotechnologies with the aim of manipulating the microbiome for the treatment of antimicrobial resistance. Besides providing a detailed review on various nanomaterials, technologies, opportunities, technical needs, and potential approaches for the manipulation of the microbiome to address these challenges, we discuss future challenges and our perspective.
Collapse
Affiliation(s)
- Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India.
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Amit Baran Sharangi
- Department of Plantation Spices Medicinal and Aromatic Crops, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia.
| | - Farrukh Aqil
- UofL Health - Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
25
|
Swidergall M, LeibundGut-Landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol 2022; 15:829-836. [PMID: 35778599 PMCID: PMC9385492 DOI: 10.1038/s41385-022-00536-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The fungal microbiota (mycobiota) is an integral part of the microbial community colonizing the body surfaces and is involved in many key aspects of human physiology, while an imbalance of the fungal communities, termed fungal dysbiosis, has been described in pathologies ranging from infections to inflammatory bowel disease. Commensal organisms, such as the fungus Candida albicans, induce antigen-specific immune responses that maintain immune homeostasis. Adaptive immune mechanisms are vital in this process, while deficiencies in adaptive immunity are linked to fungal infections. We start to understand the mechanisms by which a shift in mycobiota composition, in particular in C. albicans abundance, is linked to immunopathological conditions. This review discusses the mechanisms that ensure continuous immunosurveillance of C. albicans during mucosal colonization, how these protective adaptive immune responses can also promote immunopathology, and highlight therapeutic advances against C. albicans-associated disease.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
26
|
Gorochov G, von Gunten S. Diversification of IgA Antibody Specificities by Mild Chemical Modification? Pharmacology 2022; 107:339-340. [PMID: 35358972 DOI: 10.1159/000524041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Guy Gorochov
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Centre d'Immunologie et des Maladies Infectieuses, Institut National de la santé et de la recherche médicale, Sorbonne Université, Paris, France
| | | |
Collapse
|
27
|
Ho HE, Cunningham-Rundles C. Seeking Relevant Biomarkers in Common Variable Immunodeficiency. Front Immunol 2022; 13:857050. [PMID: 35359997 PMCID: PMC8962738 DOI: 10.3389/fimmu.2022.857050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic form of primary immunodeficiency. More than 50% of patients in some series suffer from autoimmune or inflammatory complications (the "CVID+" phenotype), and these are not adequately addressed by current treatments. Despite major advancements in genetics, the pathogenesis of the CVID+ phenotype has remained unexplained for most patients, necessitating the need for relevant biomarkers in both the clinic and research settings. In the clinics, reduced isotype-switched memory B cells (≤ 0.55% of B cells) and reduced T cells (CD4) can be utilized to identify those with increased complication risks. Additionally, condition-specific markers have also been suggested for lymphoma (normal or elevated IgM) and progressive interstitial lung disease (increased BAFF, normal or elevated IgM). Additional biomarkers have provided insights into disease pathogenesis, demonstrating wider systemic inflammation (increased LBP, sCD14, and sCD25; expanded ILC3), mucosal defects (increased zonulin, I-FABP), and perhaps reduced anti-inflammatory capability (reduced HDL) in CVID. Most recently, efforts have revealed elevated circulating bioactive bacterial DNA levels - marking microbial translocation and potentially linking the causation of multiple inflammatory changes previously observed in CVID. The implementation of high throughput profiling techniques may accelerate the search of relevant biomarker profiles in CVID and lead to better clinical risk stratification, revealing disease insights, and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Hsi-en Ho
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
28
|
Huang RY, Lee CN, Moochhala S. Circulating Antibodies to Skin Bacteria Detected by Serological Lateral Flow Immunoassays Differentially Correlated With Bacterial Abundance. Front Microbiol 2021; 12:709562. [PMID: 34867837 PMCID: PMC8635989 DOI: 10.3389/fmicb.2021.709562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The serological lateral flow immunoassay (LFIA) was used to detect circulating antibodies to skin bacteria. Next-generation sequencing analysis of the skin microbiome revealed a high relative abundance of Cutibacterium acnes but low abundance of Staphylococcus aureus and Corynebacterium aurimucosum on human facial samples. Yet, results from both LFIA and antibody titer quantification in 96-well microplates illustrated antibody titers that were not correspondent, and instead negatively correlated, to their respective abundance with human blood containing higher concentrations of antibodies to both S. aureus and C. aurimucosum than C. acnes. Acne vulgaris develops several unique microbial and cellular features, but its correlation with circulating antibodies to bacteria in the pilosebaceous unit remains unknown. Results here revealed that antibodies to C. acnes and S. aureus were approximately 3-fold higher and 1.5-fold lower, respectively, in acne patients than in healthy subjects. Although the results can be further validated by larger sample sizes, the proof-of-concept study demonstrates a newfound discrepancy between the abundance of skin bacteria and amounts of their corresponding antibodies. And in light of acne-correlated amplified titers of specific anticommensal antibodies, we highlight that profiling these antibodies in the pilosebaceous unit by LFIAs may provide a unique signature for monitoring acne vulgaris.
Collapse
Affiliation(s)
| | - Chuen Neng Lee
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - Shabbir Moochhala
- Department of Surgery, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Ho HE, Radigan L, Bongers G, El-Shamy A, Cunningham-Rundles C. Circulating bioactive bacterial DNA is associated with immune activation and complications in common variable immunodeficiency. JCI Insight 2021; 6:144777. [PMID: 34622805 PMCID: PMC8525635 DOI: 10.1172/jci.insight.144777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) is characterized by profound primary antibody defects and frequent infections, yet autoimmune/inflammatory complications of unclear origin occur in 50% of individuals and lead to increased mortality. Here, we show that circulating bacterial 16S rDNA belonging to gut commensals was significantly increased in CVID serum (P < 0.0001), especially in patients with inflammatory manifestations (P = 0.0007). Levels of serum bacterial DNA were associated with parameters of systemic immune activation, increased serum IFN-γ, and the lowest numbers of isotype-switched memory B cells. Bacterial DNA was bioactive in vitro and induced robust host IFN-γ responses, especially among patients with CVID with inflammatory manifestations. Patients with X-linked agammaglobulinemia (Bruton tyrosine kinase [BTK] deficiency) also had increased circulating bacterial 16S rDNA but did not exhibit prominent immune activation, suggesting that BTK may be a host modifier, dampening immune responses to microbial translocation. These data reveal a mechanism for chronic immune activation in CVID and potential therapeutic strategies to modify the clinical outcomes of this disease.
Collapse
Affiliation(s)
| | | | - Gerold Bongers
- Microbiome Translational Center, Precision Immunology Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
30
|
Bilal M, Achard C, Barbe F, Chevaux E, Ronholm J, Zhao X. Bacillus pumilus and Bacillus subtilis Promote Early Maturation of Cecal Microbiota in Broiler Chickens. Microorganisms 2021; 9:1899. [PMID: 34576794 PMCID: PMC8465073 DOI: 10.3390/microorganisms9091899] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Mature and stable intestinal microbiota in chickens is essential for health and production. Slow development of microbiota in young chickens prolongs the precarious period before reaching mature configuration. Whether probiotics can play a role in the early maturation of intestinal microbiota is unknown. To address this, day-old chicks were assigned into six groups: NC (basal diet), PC (virginiamycin), low (BPL) and high-dose (BPH) of Bacillus pumilus, and low (BSL) and high-dose (BSH) of Bacillus subtilis. Cecal contents at days 7, 14, 28 and 42 were used to analyze the treatment and time effects on the diversity and composition of microbiota. Overall, the alpha diversity was significantly decreased in the NC group between days 7 and 14, while this decline was prevented in the Bacillus subtilis probiotic (BSL and BSH) and even reversed in the BPH group. The beta-diversity showed significant responses of microbial communities to probiotics in first two weeks of life. Analyses of the abundance of microbiota reflected that members of the family Ruminococcaceae (Ruminnococcus, Oscillospira, Faecalibacterium, Butyricicoccus, and Subdoligranulum), which were dominant in mature microbiota, were significantly higher in abundance at day 14 in the probiotic groups. Conversely, the abundance of genera within the family Lachnospiraceae (Ruminococcus, Blautia, and Coprococcus) was dominant in early dynamic microbiota but was significantly lower in the probiotic groups at day 14. The Lactobacillus and Bifidobacterium abundance was higher, while the Enterobacteriaceae abundance was lower in the probiotic groups. In summary, the probiotics efficiently helped the cecal microbiota reach mature configuration earlier in life. These results could be used for the future manipulation of microbiota from the perspective of improving poultry performance.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (M.B.); (J.R.)
| | - Caroline Achard
- Lallemand Animal Nutrition, 31702 Blagnac, France; (C.A.); (F.B.); (E.C.)
| | - Florence Barbe
- Lallemand Animal Nutrition, 31702 Blagnac, France; (C.A.); (F.B.); (E.C.)
| | - Eric Chevaux
- Lallemand Animal Nutrition, 31702 Blagnac, France; (C.A.); (F.B.); (E.C.)
| | - Jennifer Ronholm
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (M.B.); (J.R.)
- Department of Food Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (M.B.); (J.R.)
| |
Collapse
|
31
|
Intestinal immunoregulation: lessons from human mendelian diseases. Mucosal Immunol 2021; 14:1017-1037. [PMID: 33859369 DOI: 10.1038/s41385-021-00398-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
The mechanisms that maintain intestinal homeostasis despite constant exposure of the gut surface to multiple environmental antigens and to billions of microbes have been scrutinized over the past 20 years with the goals to gain basic knowledge, but also to elucidate the pathogenesis of inflammatory bowel diseases (IBD) and to identify therapeutic targets for these severe diseases. Considerable insight has been obtained from studies based on gene inactivation in mice as well as from genome wide screens for genetic variants predisposing to human IBD. These studies are, however, not sufficient to delineate which pathways play key nonredundant role in the human intestinal barrier and to hierarchize their respective contribution. Here, we intend to illustrate how such insight can be derived from the study of human Mendelian diseases, in which severe intestinal pathology results from single gene defects that impair epithelial and or hematopoietic immune cell functions. We suggest that these diseases offer the unique opportunity to study in depth the pathogenic mechanisms leading to perturbation of intestinal homeostasis in humans. Furthermore, molecular dissection of monogenic intestinal diseases highlights key pathways that might be druggable and therapeutically targeted in common forms of IBD.
Collapse
|
32
|
Population-wide diversity and stability of serum antibody epitope repertoires against human microbiota. Nat Med 2021; 27:1442-1450. [PMID: 34282338 DOI: 10.1038/s41591-021-01409-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Serum antibodies can recognize both pathogens and commensal gut microbiota. However, our current understanding of antibody repertoires is largely based on DNA sequencing of the corresponding B-cell receptor genes, and actual bacterial antigen targets remain incompletely characterized. Here we have profiled the serum antibody responses of 997 healthy individuals against 244,000 rationally selected peptide antigens derived from gut microbiota and pathogenic and probiotic bacteria. Leveraging phage immunoprecipitation sequencing (PhIP-Seq) based on phage-displayed synthetic oligo libraries, we detect a wide breadth of individual-specific as well as shared antibody responses against microbiota that associate with age and gender. We also demonstrate that these antibody epitope repertoires are more longitudinally stable than gut microbiome species abundances. Serum samples of more than 200 individuals collected five years apart could be accurately matched and could serve as an immunologic fingerprint. Overall, our results suggest that systemic antibody responses provide a non-redundant layer of information about microbiota beyond gut microbial species composition.
Collapse
|
33
|
Sterlin D, Larsen M, Fadlallah J, Parizot C, Vignes M, Autaa G, Dorgham K, Juste C, Lepage P, Aboab J, Vicart S, Maillart E, Gout O, Lubetzki C, Deschamps R, Papeix C, Gorochov G. Perturbed Microbiota/Immune Homeostasis in Multiple Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/4/e997. [PMID: 33975914 PMCID: PMC8114833 DOI: 10.1212/nxi.0000000000000997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Objective Based on animal models and human studies, there is now strong suspicion that host/microbiota mutualism in the context of gut microbial dysbiosis could influence immunity and multiple sclerosis (MS) evolution. Our goal was to seek evidence of deregulated microbiota-induced systemic immune responses in patients with MS. Methods We investigated gut and systemic commensal-specific antibody responses in healthy controls (n = 32), patients with relapsing-remitting MS (n = 30), and individuals with clinically isolated syndromes (CISs) (n = 15). Gut microbiota composition and diversity were compared between controls and patients by analysis of 16S ribosomal ribonucleic acid (rRNA) sequencing. Autologous microbiota and cultivable bacterial strains were used in bacterial flow cytometry assays to quantify autologous serum IgG and secretory IgA responses to microbiota. IgG-bound bacteria were sorted by flow cytometry and identified using 16S rRNA sequencing. Results We show that commensal-specific gut IgA responses are drastically reduced in patients with severe MS, disease severity being correlated with the IgA-coated fecal microbiota fraction (r = −0.647, p < 0.0001). At the same time, IgA-unbound bacteria elicit qualitatively broad and quantitatively increased serum IgG responses in patients with MS and CIS compared with controls (4.1% and 2.5% vs 1.9%, respectively, p < 0.001). Conclusions Gut and systemic microbiota/immune homeostasis are perturbed in MS. Our results argue that defective IgA responses in MS are linked to a breakdown of systemic tolerance to gut microbiota leading to an enhanced triggering of systemic IgG immunity against gut commensals occurring early in MS.
Collapse
Affiliation(s)
- Delphine Sterlin
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Martin Larsen
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Jehane Fadlallah
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Christophe Parizot
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Marina Vignes
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Gaëlle Autaa
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Karim Dorgham
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Catherine Juste
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Patricia Lepage
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Jennifer Aboab
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Savine Vicart
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Elisabeth Maillart
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Gout
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Catherine Lubetzki
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Romain Deschamps
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Papeix
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Guy Gorochov
- From the Sorbonne Université (D.S., M.L., J.F., C.P., M.V., G.A., K.D., G.G.), Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, France; Université Paris-Saclay (C.J., P.L.), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France; Hôpital Ophtalmologique Adolphe de Rothschild (J.A., O.G., R.D.), Département de Neurologie, Paris, France; and Sorbonne Université (S.V., E.M., C.L., C.P.), Département de Neurologie, AP-HP Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
34
|
Wypych TP, Pattaroni C, Perdijk O, Yap C, Trompette A, Anderson D, Creek DJ, Harris NL, Marsland BJ. Microbial metabolism of L-tyrosine protects against allergic airway inflammation. Nat Immunol 2021; 22:279-286. [PMID: 33495652 DOI: 10.1038/s41590-020-00856-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
The constituents of the gut microbiome are determined by the local habitat, which itself is shaped by immunological pressures, such as mucosal IgA. Using a mouse model of restricted antibody repertoire, we identified a role for antibody-microbe interactions in shaping a community of bacteria with an enhanced capacity to metabolize L-tyrosine. This model led to increased concentrations of p-cresol sulfate (PCS), which protected the host against allergic airway inflammation. PCS selectively reduced CCL20 production by airway epithelial cells due to an uncoupling of epidermal growth factor receptor (EGFR) and Toll-like receptor 4 (TLR4) signaling. Together, these data reveal a gut microbe-derived metabolite pathway that acts distally on the airway epithelium to reduce allergic airway responses, such as those underpinning asthma.
Collapse
Affiliation(s)
- Tomasz P Wypych
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Céline Pattaroni
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Olaf Perdijk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Carmen Yap
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Aurélien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Epalinges, Switzerland
| | - Dovile Anderson
- Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Darren J Creek
- Monash Proteomics and Metabolomics Facility, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia
| | - Nicola L Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
35
|
Ding M, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Crosstalk between sIgA-Coated Bacteria in Infant Gut and Early-Life Health. Trends Microbiol 2021; 29:725-735. [PMID: 33602613 DOI: 10.1016/j.tim.2021.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Gut microbiota transmission from mother to offspring has attracted much interest in recent years. The gut microbiota in the infant plays a potentially significant role in modulating and maintaining the development of infant immunity. Secretory immunoglobulin A (sIgA), the major immunoglobulin in the intestine, can target polysaccharides and flagellin on the bacterial surface, resulting in sIgA-coated bacteria. The presentation of specific bacteria coated with sIgA may be a signal of disease and provide novel insights into the relationship between infant microbiota and disease. Here, we review the composition of sIgA-coated bacteria in the adult intestine, human milk, and the infant intestine, as well as the factors that influence the development of gut microbiota in early life. Then, we highlight the diseases that are related to variations in sIgA-coated bacteria in the infant and adult intestine. Furthermore, we discuss the possibility that sIgA-coated bacteria could play a role in mediating both innate and adaptive immune responses. Finally, we propose directions for future research to promote our understanding within this field.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
36
|
Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. mBio 2021; 12:mBio.03226-20. [PMID: 33468699 PMCID: PMC7845648 DOI: 10.1128/mbio.03226-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of “self” cells by the immune system, thereby guiding an appropriate immune response against foreign “nonself” and/or damaged cells. Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent “molecular mimicry” of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic “Trojan horse” that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens.
Collapse
|
37
|
Audemard-Verger A, Pillebout E, Baldolli A, Gouellec NL, Augusto JF, Jourde-Chiche N, Raffray L, Thervet E, Deroux A, Goutte J, Hummel A, Lioger B, Sanges S, Cacoub P, Amoura Z, Moulis G, Maurier F, Lavigne C, Urbanski G, Chanal J, Faguer S, Deriaz S, Feirreira-Maldent N, Diot E, Maillot F, Guillevin L, Terrier B. Impact of aging on phenotype and prognosis in IgA vasculitis. Rheumatology (Oxford) 2021; 60:4245-4251. [PMID: 33410479 DOI: 10.1093/rheumatology/keaa921] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/19/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Immunoglobulin A vasculitis (IgAV) is a small-vessel vasculitis most frequently benign in children while the disease is more severe in adults. We aimed to study the impact of age on presentation and outcome of adult IgAV. METHODS We conducted a nationwide retrospective study including 260 IgAV patients. Patients were divided into four quartiles according to the age at IgAV diagnosis: <36; 36≤age < 52; 52≤age < 63 and ≥63 years. Comparison of presentation and outcome were performed according to age of disease onset. RESULTS Mean age at diagnosis was 50.1 ± 18 years and 63% were male. IgAV diagnosed in the lowest quartile of age was associated with more frequent joint (p< 0.0001) and gastrointestinal involvement (p= 0.001). In contrast, the oldest patients had more severe purpura with necrotic lesions (p= 0.001) and more frequent renal involvement (p< 0.0001), with more frequent hematuria, renal failure, higher urine protein excretion and more frequent tubulointerstitial lesions. Patients were treated similarly in all groups of age, and clinical response and relapse rates were similar between groups. In the 127 treated patients with follow-up data for >6 months, clinical response and relapse rates were similar between the four groups. Median follow-up was of 17.2 months (9.1-38.3 months). Renal failure at the end of follow-up was significantly more frequent in the highest quartile of age (p= 0.02), but the occurrence of end-stage renal disease was similar in all groups. Last, overall and IgAV-related deaths were associated with increase age. CONCLUSION Aging negatively impacts the severity and outcome of IgAV in adults. Younger patients have more frequent joint and gastrointestinal involvement, while old patients display more frequent severe purpura and glomerulonephritis.
Collapse
Affiliation(s)
- Alexandra Audemard-Verger
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France.,University of Tours, Tours, France
| | - Evangéline Pillebout
- Department of Nephrology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Descartes, Paris, France
| | | | - Noémie Le Gouellec
- Department of Internal Medicine and Nephrology, CH de Valenciennes, Valenciennes, France
| | | | - Noémie Jourde-Chiche
- Aix-Marseille Université, C2VN, INSERM, INRAE, Department of Nephrology, AP-HM, Marseille, France
| | - Loic Raffray
- Department of Internal Medicine, CHU de la Réunion, La Réunion, France.,Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, France La Réunion
| | - Eric Thervet
- Department of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Alban Deroux
- Department of Internal Medicine, CHU de Grenoble, Grenoble, France
| | - Julie Goutte
- Department of Internal Medicine, CHU de St Etienne, St Etienne, France
| | - Aurélie Hummel
- Department of Nephrology, Hôpital Necker, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Bertrand Lioger
- Department of Internal Medicine, Hopital de Blois, Blois, France
| | - Sébastien Sanges
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, France, Lille
| | - Patrice Cacoub
- Department of Internal Medicine and Clinical Immunology, Hôpital Pitié-Salpétrière, AP-HP, Paris, France.,Inflammation-Immunopathology-Biotherapy Department (DHU i2B), UMR 7211, UPMC Université Paris 06, Sorbonne Universités, Paris, France
| | - Zahir Amoura
- Department of Internal Medicine, Hôpital Pitié-Salpétrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Moulis
- Department of of Internal Medicine, CHU de Toulouse, Toulouse, France.,Clinical Investigation Center 1436, Toulouse University hospital, Toulouse, France
| | | | | | | | - Johan Chanal
- Department of Dermatology, Hôpital Tarnier, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Stanislas Faguer
- Department of Nephrology and Organ Transplantation, CHU de Toulouse, Toulouse, France
| | - Sophie Deriaz
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
| | | | - Elisabeth Diot
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
| | - Francois Maillot
- Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France.,University of Tours, Tours, France
| | - Loïc Guillevin
- Université Paris Descartes, Paris, France.,Department of Internal Medicine, Hôpital Cochin, Paris, France.,National Referral Center for Systemic and Autoimmune Diseases, Hôpital Cochin, Paris, France
| | - Benjamin Terrier
- Université Paris Descartes, Paris, France.,Department of Internal Medicine, Hôpital Cochin, Paris, France.,National Referral Center for Systemic and Autoimmune Diseases, Hôpital Cochin, Paris, France
| |
Collapse
|
38
|
Raskova Kafkova L, Brokesova D, Krupka M, Stehlikova Z, Dvorak J, Coufal S, Fajstova A, Srutkova D, Stepanova K, Hermanova P, Stepankova R, Uberall I, Skarda J, Novak Z, Vannucci L, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z, Sinkora M, Mestecky J, Raska M. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol 2021; 14:511-522. [PMID: 32973324 PMCID: PMC7946640 DOI: 10.1038/s41385-020-00345-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are colonized by highly diverse commensal microbiota. Coating with secretory IgA (SIgA) promotes the survival of commensal bacteria while it inhibits the invasion by pathogens. Bacterial coating could be mediated by antigen-specific SIgA recognition, polyreactivity, and/or by the SIgA-associated glycans. In contrast to many in vitro studies, only a few reported the effect of SIgA glycans in vivo. Here, we used a germ-free antibody-free newborn piglets model to compare the protective effect of SIgA, SIgA with enzymatically removed N-glycans, Fab, and Fc containing the secretory component (Fc-SC) during oral necrotoxigenic E. coli O55 challenge. SIgA, Fab, and Fc-SC were protective, whereas removal of N-glycans from SIgA reduced SIgA-mediated protection as demonstrated by piglets' intestinal histology, clinical status, and survival. In vitro analyses indicated that deglycosylation of SIgA did not reduce agglutination of E. coli O55. These findings highlight the role of SIgA-associated N-glycans in protection. Further structural studies of SIgA-associated glycans would lead to the identification of those involved in the species-specific inhibition of attachment to corresponding epithelial cells.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Diana Brokesova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michal Krupka
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Stehlikova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepan Coufal
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Fajstova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Srutkova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Renata Stepankova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Ivo Uberall
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jozef Skarda
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zdenek Novak
- grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Luca Vannucci
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.418800.50000 0004 0555 4846Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Sinkora
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jiri Mestecky
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Milan Raska
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
39
|
Bjørgen H, Li Y, Kortner TM, Krogdahl Å, Koppang EO. Anatomy, immunology, digestive physiology and microbiota of the salmonid intestine: Knowns and unknowns under the impact of an expanding industrialized production. FISH & SHELLFISH IMMUNOLOGY 2020; 107:172-186. [PMID: 32979510 DOI: 10.1016/j.fsi.2020.09.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Increased industrialized production of salmonids challenges aspects concerning available feed resources and animal welfare. The immune system plays a key component in this respect. Novel feed ingredients may trigger unwarranted immune responses again affecting the well-being of the fish. Here we review our current knowledge concerning salmon intestinal anatomy, immunity, digestive physiology and microbiota in the context of industrialized feeding regimes. We point out knowledge gaps and indicate promising novel technologies to improve salmonid intestinal health.
Collapse
Affiliation(s)
- Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Yanxian Li
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Trond M Kortner
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Åshild Krogdahl
- Nutrition and Health Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Erling Olaf Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
40
|
Pröbstel AK, Zhou X, Baumann R, Wischnewski S, Kutza M, Rojas OL, Sellrie K, Bischof A, Kim K, Ramesh A, Dandekar R, Greenfield AL, Schubert RD, Bisanz JE, Vistnes S, Khaleghi K, Landefeld J, Kirkish G, Liesche-Starnecker F, Ramaglia V, Singh S, Tran EB, Barba P, Zorn K, Oechtering J, Forsberg K, Shiow LR, Henry RG, Graves J, Cree BAC, Hauser SL, Kuhle J, Gelfand JM, Andersen PM, Schlegel J, Turnbaugh PJ, Seeberger PH, Gommerman JL, Wilson MR, Schirmer L, Baranzini SE. Gut microbiota-specific IgA + B cells traffic to the CNS in active multiple sclerosis. Sci Immunol 2020; 5:5/53/eabc7191. [PMID: 33219152 DOI: 10.1126/sciimmunol.abc7191] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023]
Abstract
Changes in gut microbiota composition and a diverse role of B cells have recently been implicated in multiple sclerosis (MS), a central nervous system (CNS) autoimmune disease. Immunoglobulin A (IgA) is a key regulator at the mucosal interface. However, whether gut microbiota shape IgA responses and what role IgA+ cells have in neuroinflammation are unknown. Here, we identify IgA-bound taxa in MS and show that IgA-producing cells specific for MS-associated taxa traffic to the inflamed CNS, resulting in a strong, compartmentalized IgA enrichment in active MS and other neuroinflammatory diseases. Unlike previously characterized polyreactive anti-commensal IgA responses, CNS IgA cross-reacts with surface structures on specific bacterial strains but not with brain tissue. These findings establish gut microbiota-specific IgA+ cells as a systemic mediator in MS and suggest a critical role of mucosal B cells during active neuroinflammation with broad implications for IgA as an informative biomarker and IgA-producing cells as an immune subset to harness for therapeutic interventions.
Collapse
Affiliation(s)
- Anne-Katrin Pröbstel
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Xiaoyuan Zhou
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan Baumann
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sven Wischnewski
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Kutza
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Olga L Rojas
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - Katrin Sellrie
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Antje Bischof
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kicheol Kim
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Akshaya Ramesh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ravi Dandekar
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ariele L Greenfield
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ryan D Schubert
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jordan E Bisanz
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Stephanie Vistnes
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Khashayar Khaleghi
- Department of Immunology, University of Toronto, Toronto, ON M5S 18A, Canada
| | - James Landefeld
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gina Kirkish
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Valeria Ramaglia
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Sneha Singh
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Edwina B Tran
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Patrick Barba
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kelsey Zorn
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Johanna Oechtering
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Karin Forsberg
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Lawrence R Shiow
- Eli and Edythe Broad Center for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer Graves
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruce A C Cree
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, 4031 Basel, Switzerland
| | - Jeffrey M Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, 90185 Umeå, Sweden
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, 81675 Munich, Germany
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.,Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | | | - Michael R Wilson
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lucas Schirmer
- Department of Neurology and Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Sergio E Baranzini
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA. .,Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.,Graduate Program in Bioinformatics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
41
|
Moreno-Sabater A, Autaa G, Sterlin D, Jerbi A, Villette R, Holm JB, Parizot C, Selim S, Senghor Y, Ghillani-Dalbin P, Bachmeyer C, Hennequin C, Gorochov G, Larsen M. Systemic anti-commensal response to fungi analyzed by flow cytometry is related to gut mycobiome ecology. MICROBIOME 2020; 8:159. [PMID: 33190643 PMCID: PMC7667786 DOI: 10.1186/s40168-020-00924-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Interest for the study of gut mycobiota in relation with human health and immune homeostasis has increased in the last years. From this perspective, new tools to study the immune/fungal interface are warranted. Systemic humoral immune responses could reflect the dynamic relationships between gut mycobiota and immunity. Using a novel flow cytometry technology (Fungi-Flow) to determine immunoglobulin (Ig) responses to fungi, we studied the relationships between gut mycobiota and systemic humoral anti-commensal immunity. RESULTS The Fungi-Flow method allows a sensitive and specific measurement of systemic IgG responses against 17 commensal and environmental fungi from the two main divisions; Ascomycota and Basidiomycota. IgG responses exhibited a high inter-individual variability. Anti-commensal IgG responses were contrasted with the relative abundance, alpha-diversity, and intra-genus richness of fungal species in gut mycobiota of twenty healthy donors. Categorization of gut mycobiota composition revealed two differentiated fungal ecosystems. Significant difference of anti-Saccharomyces systemic IgG responses were observed in healthy donors stratified according to the fungal ecosystem colonizing their gut. A positive and significant correlation was observed between the variety of IgG responses against fungal commensals and intestinal alpha-diversity. At the level of intra-genus species richness, intense IgG responses were associated with a low intra-genus richness for known pathobionts, but not commensals. CONCLUSIONS Fungi-Flow allows an easy and reliable measure of personalized humoral responses against commensal fungi. Combining sequencing technology with our novel Fungi-Flow immunological method, we propose that there are at least two defined ecosystems in the human gut mycobiome associated with systemic humoral responses. Fungi-Flow opens new opportunities to improve our knowledge about the impact of mycobiota in humoral anti-commensal immunity and homeostasis. Video Abstract.
Collapse
Affiliation(s)
- Alicia Moreno-Sabater
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | - Gaelle Autaa
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| | - Delphine Sterlin
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Inserm, 75015 Paris, France
| | - Amenie Jerbi
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Remy Villette
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| | - Johanna B. Holm
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Christophe Parizot
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Sameh Selim
- College of Agricultural Sciences AGHYLE Res, Unit. Institut Polytechnique UniLaSalle, 60026 Beauvais, France
| | - Yaye Senghor
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
| | | | | | - Christophe Hennequin
- Service de Parasitologie-Mycologie AP-HP, Hôpital Saint-Antoine, 75012 Paris, France
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Sorbonne Université, Inserm, 75012 Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
- Service d’immunologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Martin Larsen
- Sorbonne Université, Inserm U1135, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| |
Collapse
|
42
|
Ligon MM, Wang C, DeJong EN, Schulz C, Bowdish DME, Mysorekar IU. Single cell and tissue-transcriptomic analysis of murine bladders reveals age- and TNFα-dependent but microbiota-independent tertiary lymphoid tissue formation. Mucosal Immunol 2020; 13:908-918. [PMID: 32366865 PMCID: PMC7572484 DOI: 10.1038/s41385-020-0290-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/02/2020] [Accepted: 03/31/2020] [Indexed: 02/04/2023]
Abstract
Aging has multifaceted effects on the immune system, but how aging affects tissue-specific immunity is not well-defined. Bladder diseases characterized by chronic inflammation are highly prevalent in older women, but mechanisms by which aging promotes these pathologies remain unknown. Tissue transcriptomics of unperturbed, young and aged bladders identified a highly altered immune landscape as a fundamental feature of the aging female bladder. Detailed mapping of immune cells using single cell RNA-sequencing revealed novel subsets of macrophages and dendritic cells and unique changes to the immune repertoire in the aged bladder. B and T cells are highly enriched in aged bladders and spontaneously form organized bladder tertiary lymphoid tissues (bTLTs). Naïve, activated, and germinal center B cells and IgA+ plasma cells are found within bTLT and associated with increased urinary IgA concentrations. bTLTs form with increasing age and their formation is dependent on TNFα. Microbiota are not required to form bTLT, as aged germfree mice also harbor them. Thus, bTLTs require age-dependent TNFα but are independent of the microbiota. Our results indicate that chronic, age-associated inflammation underlies a fundamental alteration to the bladder and establishes a resource for further investigation of the bladder immune system in homeostasis, aging, and disease.
Collapse
Affiliation(s)
- Marianne M. Ligon
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erica N. DeJong
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Christian Schulz
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Dawn M. E. Bowdish
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,To whom correspondence should be addressed: Indira U. Mysorekar, Ph.D., Washington University School of Medicine, Depts. of Obstetrics and Gynecology & Pathology and Immunology, 660 S. Euclid Ave., St. Louis, MO 63110, Phone: 314-747-1329, Fax: 314-747-1350,
| |
Collapse
|
43
|
Gening ML, Pier GB, Nifantiev NE. Broadly protective semi-synthetic glycoconjugate vaccine against pathogens capable of producing poly-β-(1→6)-N-acetyl-d-glucosamine exopolysaccharide. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 35-36:13-21. [PMID: 33388124 DOI: 10.1016/j.ddtec.2020.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Poly-β-(1→6)-N-acetylglucosamine (PNAG) was first discovered as a major component of biofilms formed by Staphylococcus aureus and some other staphylococci but later this exopolysaccharide was also found to be produced by pathogens of various nature. This common antigen is considered as a promising target for construction of a broadly protective vaccine. Extensive studies of PNAG, its de-N-acetylated derivative (dPNAG, containing around 15% of residual N-acetates) and their conjugates with Tetanus Toxoid (TT) revealed the crucial role of de-N-acetylated glucosamine units for the induction of protective immunity. Conjugates of synthetic penta- (5GlcNH2) and nona-β-(1→6)-d-glucosamines (9GlcNH2) were tested in vitro and in different animal models and proved to be effective in passive and active protection against different microbial pathogens. Presently conjugate 5GlcNH2-TT is being produced under GMP conditions and undergoes safety and effectiveness evaluation in humans and economically important animals. Current review summarizes all stages of this long-termed study.
Collapse
Affiliation(s)
- Marina L Gening
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA.
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
44
|
FitzPatrick RD, Kennedy MHE, Lawrence KM, Gauthier CM, Moeller BE, Robinson AN, Reynolds LA. Littermate-Controlled Experiments Reveal Eosinophils Are Not Essential for Maintaining Steady-State IgA and Demonstrate the Influence of Rearing Conditions on Antibody Phenotypes in Eosinophil-Deficient Mice. Front Immunol 2020; 11:557960. [PMID: 33178185 PMCID: PMC7593696 DOI: 10.3389/fimmu.2020.557960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
Conflicting data has emerged regarding a role for eosinophils in IgA production, with some reports that eosinophils support both secretory and circulating IgA levels during homeostasis. Previous studies have compared antibody levels between wildtype and eosinophil-deficient mice, but these mice were obtained from different commercial vendors and/or were not littermates. Thus, the possibility remains that extrinsic environmental factors, rather than an intrinsic lack of eosinophils, are responsible for the reports of reduced IgA in eosinophil-deficient mice. Here we used wild-type and eosinophil-deficient (ΔdblGATA) mice that were purchased from a single vendor, subsequently bred in-house and either co-housed as adults, co-reared from birth or raised as littermates. We found no differences in the levels of secretory IgA or in the numbers of small intestinal IgA-producing plasma cells between wild-type and ΔdblGATA mice, demonstrating that under controlled steady-state conditions eosinophils are not essential for the maintenance of secretory IgA in the intestinal tract. While we found that levels of IgM and IgE were significantly elevated in the serum of ΔdblGATA mice compared to co-reared or co-housed wild-type mice, no significant differences in these or other circulating antibody isotypes were identified between genotypes in littermate-controlled experiments. Our results demonstrate that eosinophils are not required to maintain secretory or circulating IgA production and the absence of eosinophils does not impact circulating IgG1, IgG2b, IgM, or IgE levels during homeostasis. These findings emphasize the importance of optimally controlling rearing and housing conditions throughout life between mice of different genotypes.
Collapse
Affiliation(s)
- Rachael D FitzPatrick
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Mia H E Kennedy
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Katherine M Lawrence
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Courtney M Gauthier
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Brandon E Moeller
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Andrew N Robinson
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lisa A Reynolds
- Reynolds Laboratory, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
45
|
Huus KE, Rodriguez-Pozo A, Kapel N, Nestoret A, Habib A, Dede M, Manges A, Collard JM, Sansonetti PJ, Vonaesch P, Finlay BB. Immunoglobulin recognition of fecal bacteria in stunted and non-stunted children: findings from the Afribiota study. MICROBIOME 2020; 8:113. [PMID: 32718353 PMCID: PMC7385872 DOI: 10.1186/s40168-020-00890-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/05/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Child undernutrition is a global health issue that is associated with poor sanitation and an altered intestinal microbiota. Immunoglobulin (Ig) A mediates host-microbial homeostasis in the intestine, and acutely undernourished children have been shown to have altered IgA recognition of the fecal microbiota. We sought to determine whether chronic undernutrition (stunting) or intestinal inflammation were associated with antibody recognition of the microbiota using two geographically distinct populations from the Afribiota project. Fecal bacteria from 200 children between 2 and 5 years old in Antananarivo, Madagascar, and Bangui, Central African Republic (CAR), were sorted into IgA-positive (IgA+) and IgA-negative (IgA-) populations by flow cytometry and subsequently characterized by 16S rRNA gene sequencing to determine IgA-bacterial targeting. We additionally measured IgG+ fecal bacteria by flow cytometry in a subset of 75 children. RESULTS Stunted children (height-for-age z-score ≤ -2) had a greater proportion of IgA+ bacteria in the fecal microbiota compared to non-stunted controls. This trend was consistent in both countries, despite the higher overall IgA-targeting of the microbiota in Madagascar, but lost significance in each country individually. Two of the most highly IgA-recognized bacteria regardless of nutritional status were Campylobacter (in CAR) and Haemophilus (in both countries), both of which were previously shown to be more abundant in stunted children; however, there was no association between IgA-targeting of these bacteria and either stunting or inflammatory markers. IgG-bound intestinal bacteria were rare in both stunted and non-stunted children, similar to levels observed in healthy populations. CONCLUSIONS Undernourished children carry a high load of intestinal pathogens and pathobionts. Our data suggest that stunted children have a greater proportion of IgA-recognized fecal bacteria. We moreover identify two putative pathobionts, Haemophilus and Campylobacter, that are broadly targeted by intestinal IgA. This study furthers our understanding of host-microbiota interactions in undernutrition and identifies immune-recognized microbes for future study.
Collapse
Affiliation(s)
- Kelsey E. Huus
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
| | | | - Nathalie Kapel
- Laboratoire de coprologie fonctionnelle, APHP.SU, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Alison Nestoret
- Laboratoire de coprologie fonctionnelle, APHP.SU, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Azimdine Habib
- Unité des Helminthiases, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Michel Dede
- Laboratoire d’Analyse médicale, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Amee Manges
- School of Population and Public Health, University of British Columbia, Vancouver, BC Canada
| | - Jean-Marc Collard
- Unité de Bactériologie Expérimentale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Current address: Center for Microbes, Development and Health, Institut Pasteur de Shanghai, Shanghai, China
| | - Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Current address: Human and Animal Health Unit, Swiss Tropical and Public Health Institute & University of Basel, Basel, Switzerland
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC Canada
| | | |
Collapse
|
46
|
Casali P, Shen T, Xu Y, Qiu Z, Chupp DP, Im J, Xu Z, Zan H. Estrogen Reverses HDAC Inhibitor-Mediated Repression of Aicda and Class-Switching in Antibody and Autoantibody Responses by Downregulation of miR-26a. Front Immunol 2020; 11:491. [PMID: 32265934 PMCID: PMC7105609 DOI: 10.3389/fimmu.2020.00491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/03/2020] [Indexed: 12/24/2022] Open
Abstract
Estrogen contributes to females' strong antibody response to microbial vaccines and proneness to autoimmunity, particularly antibody-mediated systemic autoimmunity, in females. We have hypothesized that this is due to estrogen-mediated potentiation of class switch DNA recombination (CSR) and somatic hypermutation (SHM). As we have shown, estrogen boosts AID expression, which is critical for both CSR and SHM, through upregulation of HoxC4, which together with NF-κB critically mediates Aicda (AID gene) promoter activation. We contend here that additional regulation of Aicda expression by estrogen occurs through epigenetic mechanisms. As we have shown, histone deacetylase inhibitors (HDIs) short-chain fatty acid (SCFA) butyrate and propionate as well as the pharmacologic HDI valproic acid upregulate miRNAs that silence AID expression, thereby modulating specific antibody responses in C57BL/6 mice and autoantibody responses in lupus-prone MRL/Faslpr/lpr mice. Here, using constitutive knockout Esr1-/- mice and B cells as well as conditional knockout Aicdacre/creEsr1flox/flox mice and B cells, we showed that the HDI-mediated downregulation of Aicda expression as well as the maturation of antibody and autoantibody responses is reversed by estrogen and enhanced by deletion of ERα or E2 inhibition. Estrogen's reversion of HDI-mediated inhibition of Aicda and CSR in antibody and autoantibody responses occurred through downregulation of B cell miR-26a, which, as we showed, targets Aicda mRNA 3'UTR. miR-26a was significantly upregulated by HDIs. Accordingly, enforced expression of miR-26a reduced Aicda expression and CSR, while miR-26a-sponges (competitive inhibitors of miR-26a) increased Aicda expression and CSR. Thus, our findings show that estrogen reverses the HDI-mediated downregulation of AID expression and CSR through selective modulation of miR-26a. They also provide mechanistic insights into the immunomodulatory activity of this hormone and a proof-of-principle for using combined ER inhibitor-HDI as a potential therapeutic approach.
Collapse
Affiliation(s)
- Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | | | | | | | | | | | | | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
47
|
Abstract
Necrotizing enterocolitis (NEC) is a poorly defined disease that primarily affects preterm infants. There has not been much progress in the prevention or treatment of NEC since it became recognized as a common problem in preterm infants. Reasons for this lack of progress include the likelihood that different diseases are being put under the same moniker of "NEC," similar to using "diabetes" for the different diseases it represents. In order to make progress, better delineation of the phenotypes that present as NEC will be necessary to clearly establish their pathophysiology, find specific and sensitive biomarkers, and establish preventative regimens. In this review, we summarize some of the entities that are being called NEC, discuss the pathophysiology of the most classic form of NEC, and provide an overview of how we might proceed in the future to make progress in this field.
Collapse
Affiliation(s)
- Josef Neu
- University of Florida, Gainesville, USA.
| |
Collapse
|
48
|
Hoces D, Arnoldini M, Diard M, Loverdo C, Slack E. Growing, evolving and sticking in a flowing environment: understanding IgA interactions with bacteria in the gut. Immunology 2020; 159:52-62. [PMID: 31777063 PMCID: PMC6904610 DOI: 10.1111/imm.13156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Immunology research in the last 50 years has made huge progress in understanding the mechanisms of anti-bacterial defense of deep, normally sterile, tissues such as blood, spleen and peripheral lymph nodes. In the intestine, with its dense commensal microbiota, it seems rare that this knowledge can be simply translated. Here we put forward the idea that perhaps it is not always the theory of immunology that is lacking to explain mucosal immunity, but rather that we have overlooked crucial parts of the mucosal immunological language required for its translation: namely intestinal and bacterial physiology. We will try to explain this in the context of intestinal secretory antibodies (mainly secretory IgA), which have been described to prevent, to alter, to not affect, or to promote colonization of the intestine and gut-draining lymphoid tissues, and where effector mechanisms have remained elusive. In fact, these apparently contradictory outcomes can be generated by combining the basic premises of bacterial agglutination with an understanding of bacterial growth (i.e. secretory IgA-driven enchained growth), fluid handling and bacterial competition in the gut lumen.
Collapse
Affiliation(s)
- Daniel Hoces
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | - Markus Arnoldini
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| | | | - Claude Loverdo
- Laboratoire Jean PerrinSorbonne Université/CNRSParisFrance
| | - Emma Slack
- Department of Health Sciences and TechnologyInstitute of Food, Nutrition and HealthETH ZürichZürichSwitzerland
| |
Collapse
|
49
|
Rollenske T, Macpherson AJ. Anti-commensal Ig-from enormous diversity to clear function. Mucosal Immunol 2020; 13:1-2. [PMID: 31719642 DOI: 10.1038/s41385-019-0223-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Tim Rollenske
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Andrew J Macpherson
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland.
| |
Collapse
|