1
|
Jiang Y, Huang X, Huang R, Deng K, Dai L, Wang B. Prognostic modeling of disulfidptosis gene-associated lncRNAs aids in identifying the tumor microenvironment and guiding the selection of therapy. Discov Oncol 2025; 16:273. [PMID: 40053203 DOI: 10.1007/s12672-025-02033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/03/2025] [Indexed: 03/10/2025] Open
Abstract
INTRODUCTION Gliomas, a type of malignant tumor, are marked by a short survival period and an unfavorable prognosis. Disulfide stress, which arises from an overabundance of intracellular cystine, can initiate disulfidoptosis, an emerging form of cell death. The link between gliomas and disulfidoptosis has not been extensively explored. This study breaks new ground by investigating the correlation between glioma prognosis and lncRNAs associated with disulfidoptosis, with the aim of improving glioma treatment strategies. METHODS We analyzed 10 long non-coding RNAs (lncRNAs) co-expressed with disulfidoptosis genes, retrieved clinical information and gene expression profiles from glioma and normal groups in the TCGA database, and developed a prognostic model for lncRNAs based on this data. The receiver operating characteristic curve (ROC) was used to evaluate and validate the model's reliability. Furthermore, the Kaplan-Meier survival curve was employed to assess the disparity in overall survival (OS) among patients with varying risk scores. We also examined the tumor microenvironment (TME), immune cell infiltration, immune-related functions, tumor mutational burden (TMB), and OncoPredict in samples with differing risk scores. To confirm the expression variations of genes associated with prognostic models in cell lines, quantitative polymerase chain reaction (qPCR) was employed. RESULTS Eleven long non-coding RNAs (lncRNAs) were identified for constructing prognostic models by analyzing lncRNAs associated with disulfidoptosis genes using Cox regression and LASSO regression analyses. The study's findings indicate that these 11 key lncRNAs serve as independent predictors of overall survival (OS) in glioma patients. Moreover, the frequency with which patients of varying risk scores opt for immune checkpoint blockade (ICB) therapy and chemotherapy not only differs but also their responses to these treatments are significantly distinct, suggesting that the risk score could be a predictive factor for treatment response. CONCLUSIONS This research sheds light on the characteristics of disulfidoptosis in glioma, revealing that patterns of disulfidoptosis in patients can be effectively assessed using a risk score. Consequently, the judicious application of this prognostic model can significantly inform clinical treatment strategies and precision medicine for glioma, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Ying Jiang
- Cerebrovascular Diseases Center, Department of Neurosurgery, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xueping Huang
- Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Rong Huang
- Department of Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Kaihan Deng
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Lin Dai
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, 256603, People's Republic of China
| | - Bin Wang
- Department of Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
2
|
Zhou H, Dai J, Li D, Wang L, Ye M, Hu X, LoTurco J, Hu J, Sun W. Efficient gene delivery admitted by small metabolites specifically targeting astrocytes in the mouse brain. Mol Ther 2025; 33:1166-1179. [PMID: 39799395 PMCID: PMC11897751 DOI: 10.1016/j.ymthe.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025] Open
Abstract
The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene delivery approach admitted by small metabolites (gDAM) for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM uses a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells. Using gDAM, we successfully co-deliver the PiggyBac transposon and the CRISPR-Cas9 system to induce long-term overexpression of the oncogene EGFRvIII and knockout of tumor suppressor genes Nf1, Pten, and Trp53 in astrocytes, leading to the development of astrocyte-derived gliomas in immunocompetent mice. Furthermore, gDAM facilitates the delivery of naked DNA to peripheral glioma astrocytes. The overexpression of interferon-β and granulocyte-macrophage colony-stimulating factor in these peripheral glioma astrocytes significantly prolongs the overall survival of mice bearing 73C glioma cells. This approach offers a new perspective on developing gene delivery systems that specifically target astrocytes to meet the varied needs of both research and gene therapy. The innovative strategy behind gDAM is expected to provide fresh inspiration in the quest for DNA delivery to other tissues, such as skeletal muscle and skin.
Collapse
Affiliation(s)
- Haibin Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Jiajing Dai
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Luyao Wang
- Chinese Institute for Brain Research, Beijing 102206, China; College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meng Ye
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiaoling Hu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Joseph LoTurco
- Department of Physiology and Neurobiology, Institute for Systems Genomics, Institute for Brain and Cognitive Science, University of Connecticut, Storrs, CT 06268, USA
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai 200030, China.
| | - Wenzhi Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
3
|
Hsu FT, Chen YT, Chin YC, Chang LC, Chiang SC, Yang LX, Liu HS, Yueh PF, Tu HL, He RY, Jeng LB, Shyu WC, Hu SH, Chiang IT, Liu YC, Chiu YC, Wu GC, Yu CC, Su WP, Huang CC. Harnessing the Power of Sugar-Based Nanoparticles: A Drug-Free Approach to Enhance Immune Checkpoint Inhibition against Glioblastoma and Pancreatic Cancer. ACS NANO 2024; 18:28764-28781. [PMID: 39383310 DOI: 10.1021/acsnano.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Cancer cells have a high demand for sugars and express diverse carbohydrate receptors, offering opportunities to improve delivery with multivalent glycopolymer materials. However, effectively delivering glycopolymers to tumors while inhibiting cancer cell activity, altering cellular metabolism, and reversing tumor-associated macrophage (TAM) polarization to overcome immunosuppression remains a challenging area of research due to the lack of reagents capable of simultaneously achieving these objectives. Here, the glycopolymer-like condensed nanoparticle (∼60 nm) was developed by a one-pot carbonization reaction with a single precursor, promoting multivalent interactions for the galactose-related receptors of the M2 macrophage (TAM) and thereby regulating the STAT3/NF-κB pathways. The subsequently induced M2-to-M1 transition was increased with the condensed level of glycopolymer-like nanoparticles. We found that the activation of the glycopolymer-like condensed galactose (CG) nanoparticles influenced monocarboxylate transporter 4 (MCT-4) function, which caused inhibited lactate efflux (similar to inhibitor effects) from cancer cells. Upon internalization via galactose-related endocytosis, CG NPs induced cellular reactive oxygen species (ROS), leading to dual functionalities of cancer cell death and M2-to-M1 macrophage polarization, thereby reducing the tumor's acidic microenvironment and immunosuppression. Blocking the nanoparticle-MCT-4 interaction with antibodies reduced their toxicity in glioblastoma (GBM) and affected macrophage polarization. In orthotopic GBM and pancreatic cancer models, the nanoparticles remodeled the tumor microenvironment from "cold" to "hot", enhancing the efficacy of anti-PD-L1/anti-PD-1 therapy by promoting macrophage polarization and activating cytotoxic T lymphocytes (CTLs) and dendritic cells (DCs). These findings suggest that glycopolymer-like nanoparticles hold promise as a galactose-elicited adjuvant for precise immunotherapy, particularly in targeting hard-to-treat cancers.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Ying-Tzu Chen
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Yu-Cheng Chin
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Li-Chan Chang
- Institute of Clinical Medicine College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Shu-Chin Chiang
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan, R.O.C
| | - Li-Xing Yang
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Hua-Shan Liu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan, R.O.C
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Po-Fu Yueh
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- Cell Therapy Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
- School of Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Woei-Cheang Shyu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan, R.O.C
- Department of Occupational Therapy, Asia University, Taichung 413, Taiwan, R.O.C
- Translational Medicine Research Center and Department of Neurology, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - I-Tsang Chiang
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
- Medical Administrative Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
| | - Yu-Chang Liu
- Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua 500, Taiwan, R.O.C
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Changhua 505, Taiwan, R.O.C
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung 406, Taiwan, R.O.C
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Yangming Branch, Taipei City Hospital, Taipei 111, Taiwan, R.O.C
- Department of Urology, College of Medicine and Shu-Tien Urological Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
- Department of Exercise and Health Sciences, University of Taipei, Taipei 111, Taiwan, R.O.C
| | - Guan-Chun Wu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - Ching-Ching Yu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 115, Taiwan, R.O.C
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, R.O.C
| | - Wen-Pin Su
- Institute of Clinical Medicine College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan, R.O.C
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan, R.O.C
| |
Collapse
|
4
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
An W, Ren C, Yuan L, Qiu Z, Wang P, Cheng Y, He Z, Han X, Li S, An Y. High expression of SIGLEC7 may promote M2-type macrophage polarization leading to adverse prognosis in glioma patients. Front Immunol 2024; 15:1411072. [PMID: 39211050 PMCID: PMC11357930 DOI: 10.3389/fimmu.2024.1411072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Gliomas are the most common primary intracranial tumors, known for their high invasiveness and destructiveness. Sialic acid-binding immunoglobulin-like lectin 7 (SIGLEC7) is present in various immune cells, especially macrophages, and significantly affects immune homeostasis and cancer cell response. However, research on the role and prognostic impact of SIGLEC7 in glioma patients is currently limited. Methods We utilized transcriptomic data from 702 glioma patients in The Cancer Genome Atlas (TCGA) and 693 glioma patients in the Chinese Glioma Genome Atlas (CGGA), along with clinical samples we collected, to comprehensively investigate the impact of SIGLEC7 on glioma expression patterns, biological functions, and prognostic value. We focused on its role in glioma-related immune responses and immune cell infiltration and analyzed its expression at the single-cell level. Finally, we validated the role of SIGLEC7 in gliomas through tissue and cell experiments. Results SIGLEC7 expression was significantly increased in glioma patients with malignant characteristics. Survival analysis indicated that glioma patients with high SIGLEC7 expression had significantly lower survival rates. Gene function analysis revealed that SIGLEC7 is primarily involved in immune and inflammatory responses and is strongly negatively correlated with tumor-associated immune regulation. Additionally, the expression of most immune checkpoints was positively correlated with SIGLEC7, and immune cell infiltration analysis clearly demonstrated a significant positive correlation between SIGLEC7 expression and M2 macrophage infiltration levels. Single-cell analysis, along with tissue and cell experiments, confirmed that SIGLEC7 enhances macrophage polarization towards the M2 phenotype, thereby promoting glioma invasiveness through the immunosuppressive effects of M2 macrophages. Cox regression analysis and the establishment of survival prediction models indicated that high SIGLEC7 expression is an unfavorable prognostic factor for glioma patients. Discussion High SIGLEC7 expression predicts poor prognosis in glioma patients and is closely associated with M2 macrophages in the tumor environment. In the future, SIGLEC7 may become a promising target for glioma immunotherapy.
Collapse
Affiliation(s)
- Wenhao An
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Changyuan Ren
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lei Yuan
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhiqiang Qiu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Peishen Wang
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Yanwen Cheng
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Zi He
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Xinye Han
- Department of Research and Development, Beijing Yihua Biotechnology Co., Ltd, Beijing, China
| | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yihua An
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Bauso LV, La Fauci V, Munaò S, Bonfiglio D, Armeli A, Maimone N, Longo C, Calabrese G. Biological Activity of Natural and Synthetic Peptides as Anticancer Agents. Int J Mol Sci 2024; 25:7264. [PMID: 39000371 PMCID: PMC11242495 DOI: 10.3390/ijms25137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Valeria La Fauci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Serena Munaò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Desirèe Bonfiglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Alessandra Armeli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Noemi Maimone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Clelia Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
7
|
Ye Z, Zhong Y, Zhang Z. Pan-cancer multi-omics analysis of PTBP1 reveals it as an inflammatory, progressive and prognostic marker in glioma. Sci Rep 2024; 14:14584. [PMID: 38918441 PMCID: PMC11199703 DOI: 10.1038/s41598-024-64979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
PTBP1 is an oncogene that regulates the splicing of precursor mRNA. However, the relationship between PTBP1 expression and gene methylation, cancer prognosis, and tumor microenvironment remains unclear. The expression profiles of PTBP1 across various cancers were derived from the TCGA, as well as the GTEx and CGGA databases. The CGGA mRNA_325, CGGA mRNA_301, and CGGA mRNA_693 datasets were utilized as validation cohorts. Immune cell infiltration scores were approximated using the TIMER 2.0 tool. Functional enrichment analysis for groups with high and low PTBP1 expression was conducted using Gene Set Enrichment Analysis (GSEA). Methylation data were predominantly sourced from the SMART and Mexpress databases. Linked-omics analysis was employed to perform functional enrichment analysis of genes related to PTBP1 methylation, as well as to conduct protein functional enrichment analysis. Single-cell transcriptome analysis and spatial transcriptome analysis were carried out using Seurat version 4.10. Compared to normal tissues, PTBP1 is significantly overexpressed and hypomethylated in various cancers. It is implicated in prognosis, immune cell infiltration, immune checkpoint expression, genomic variation, tumor neoantigen load, and tumor mutational burden across a spectrum of cancers, with particularly notable effects in low-grade gliomas. In the context of gliomas, PTBP1 expression correlates with WHO grade and IDH1 mutation status. PTBP1 expression and methylation play an important role in a variety of cancers. PTBP1 can be used as a marker of inflammation, progression and prognosis in gliomas.
Collapse
Affiliation(s)
- Zheng Ye
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, 510006, Guangdong, China
- Zhongda Hospital, Southeast University, Nanjing, China
| | - Yan Zhong
- People's Hospital of Dongxihu District, Wuhan, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Wang J, Li X, Wang K, Li K, Gao Y, Xu J, Peng R, Zhang X, Zhang S, Zhou Y, Xu S, Zhang J. CLEC7A regulates M2 macrophages to suppress the immune microenvironment and implies poorer prognosis of glioma. Front Immunol 2024; 15:1361351. [PMID: 38846954 PMCID: PMC11153702 DOI: 10.3389/fimmu.2024.1361351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background Gliomas constitute a category of malignant tumors originating from brain tissue, representing the majority of intracranial malignancies. Previous research has demonstrated the pivotal role of CLEC7A in the progression of various cancers, yet its specific implications within gliomas remain elusive. The primary objective of this study was to investigate the prognostic significance and immune therapeutic potential of CLEC7A in gliomas through the integration of bioinformatics and clinical pathological analyses. Methods This investigation involved examining and validating the relationship between CLEC7A and glioma using samples from Hospital, along with data from TCGA, GEO, GTEx, and CGGA datasets. Subsequently, we explored its prognostic value, biological functions, expression location, and impact on immune cells within gliomas. Finally, we investigated its potential impact on the chemotaxis and polarization of macrophages. Results The expression of CLEC7A is upregulated in gliomas, and its levels escalate with the malignancy of tumors, establishing it as an independent prognostic factor. Functional enrichment analysis revealed a significant correlation between CLEC7A and immune function. Subsequent examination of immune cell differential expression demonstrated a robust association between CLEC7A and M2 macrophages. This conclusion was further substantiated through single-cell analysis, immunofluorescence, and correlation studies. Finally, the knockout of CLEC7A in M2 macrophages resulted in a noteworthy reduction in macrophage chemotaxis and polarization factors. Conclusion CLEC7A expression is intricately linked to the pathology and molecular characteristics of gliomas, establishing its role as an independent prognostic factor for gliomas and influencing macrophage function. It could be a promising target for immunotherapy in gliomas.
Collapse
Affiliation(s)
- Jinchao Wang
- Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaoru Li
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Kai Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Kaiji Li
- Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yalong Gao
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Jianye Xu
- Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Ruilong Peng
- Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Shu Zhang
- Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhou
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Jianning Zhang
- Key Laboratory of Post-Neuro Injury, Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Peres N, Lepski GA, Fogolin CS, Evangelista GCM, Flatow EA, de Oliveira JV, Pinho MP, Bergami-Santos PC, Barbuto JAM. Profiling of Tumor-Infiltrating Immune Cells and Their Impact on Survival in Glioblastoma Patients Undergoing Immunotherapy with Dendritic Cells. Int J Mol Sci 2024; 25:5275. [PMID: 38791312 PMCID: PMC11121326 DOI: 10.3390/ijms25105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastomas (GBM) are the most common primary malignant brain tumors, comprising 2% of all cancers in adults. Their location and cellular and molecular heterogeneity, along with their highly infiltrative nature, make their treatment challenging. Recently, our research group reported promising results from a prospective phase II clinical trial involving allogeneic vaccination with dendritic cells (DCs). To date, six out of the thirty-seven reported cases remain alive without tumor recurrence. In this study, we focused on the characterization of infiltrating immune cells observed at the time of surgical resection. An analytical model employing a neural network-based predictive algorithm was used to ascertain the potential prognostic implications of immunological variables on patients' overall survival. Counterintuitively, immune phenotyping of tumor-associated macrophages (TAMs) has revealed the extracellular marker PD-L1 to be a positive predictor of overall survival. In contrast, the elevated expression of CD86 within this cellular subset emerged as a negative prognostic indicator. Fundamentally, the neural network algorithm outlined here allows a prediction of the responsiveness of patients undergoing dendritic cell vaccination in terms of overall survival based on clinical parameters and the profile of infiltrated TAMs observed at the time of tumor excision.
Collapse
Affiliation(s)
- Nataly Peres
- Department of Psychiatry, Medical School, Universidade de Sao Paulo, Sao Paulo 05403-010, Brazil;
| | - Guilherme A. Lepski
- LIM 26, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
- Department of Neurosurgery, Eberhard-Karls University, 72074 Tuebingen, Germany
| | - Carla S. Fogolin
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Gabriela C. M. Evangelista
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Elizabeth A. Flatow
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jaqueline V. de Oliveira
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Mariana P. Pinho
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
| | - Patricia C. Bergami-Santos
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
| | - José A. M. Barbuto
- Department of Immunology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (C.S.F.); (G.C.M.E.); (E.A.F.); (J.V.d.O.); (M.P.P.); (P.C.B.-S.); (J.A.M.B.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| |
Collapse
|
10
|
Tahmasebi Dehkordi H, Khaledi F, Ghasemi S. Immunological processes of enhancers and suppressors of long non-coding RNAs associated with brain tumors and inflammation. Int Rev Immunol 2024; 43:178-196. [PMID: 37974420 DOI: 10.1080/08830185.2023.2280581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/18/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Immunological processes, such as inflammation, can both cause tumor suppression and cancer progression. Moreover, deregulated levels of long non-coding RNA (lncRNA) expression in the brain may cause inflammation and lead to the growth of tumors. Like other biological processes, the immune system's role in cancer is complicated, varies, and can help or hurt the cancer's maintenance. According to research, inflammation and brain cancer are correlated via several signaling pathways. A variety of lncRNAs have recently been revealed to influence cancer by modulating inflammatory pathways. As a result, lncRNAs have the potential to influence carcinogenesis, tumor formation, or tumor suppression via an increase or decrease in inflammation functions. Although the study and targeting of lncRNAs have made great progress in the treatment of cancer, there are definitely limitations and challenges. Using new technologies like nanocarriers and cell-penetrating peptides (CPPs) to target treatments without hurting healthy body tissues has shown to be very effective. In this review article, we have collected significantly related lncRNAs and their inhibitory or stimulating roles in inflammation and brain cancer for the first time. However, there are limitations, such as side effects and damage to normal tissues. With the advancement of new targeting technologies, these lncRNAs may be candidates for the specific targeting therapy of brain cancers by limiting inflammation or stimulating the immune system against them in the future.
Collapse
Affiliation(s)
- Hossein Tahmasebi Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Khaledi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Thenuwara G, Javed B, Singh B, Tian F. Biosensor-Enhanced Organ-on-a-Chip Models for Investigating Glioblastoma Tumor Microenvironment Dynamics. SENSORS (BASEL, SWITZERLAND) 2024; 24:2865. [PMID: 38732975 PMCID: PMC11086276 DOI: 10.3390/s24092865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma, an aggressive primary brain tumor, poses a significant challenge owing to its dynamic and intricate tumor microenvironment. This review investigates the innovative integration of biosensor-enhanced organ-on-a-chip (OOC) models as a novel strategy for an in-depth exploration of glioblastoma tumor microenvironment dynamics. In recent years, the transformative approach of incorporating biosensors into OOC platforms has enabled real-time monitoring and analysis of cellular behaviors within a controlled microenvironment. Conventional in vitro and in vivo models exhibit inherent limitations in accurately replicating the complex nature of glioblastoma progression. This review addresses the existing research gap by pioneering the integration of biosensor-enhanced OOC models, providing a comprehensive platform for investigating glioblastoma tumor microenvironment dynamics. The applications of this combined approach in studying glioblastoma dynamics are critically scrutinized, emphasizing its potential to bridge the gap between simplistic models and the intricate in vivo conditions. Furthermore, the article discusses the implications of biosensor-enhanced OOC models in elucidating the dynamic features of the tumor microenvironment, encompassing cell migration, proliferation, and interactions. By furnishing real-time insights, these models significantly contribute to unraveling the complex biology of glioblastoma, thereby influencing the development of more accurate diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Bilal Javed
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland; (G.T.); (B.J.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
12
|
Peng Y, Zhan M, Karpus A, Zou Y, Mignani S, Majoral JP, Shi X, Shen M. Brain Delivery of Biomimetic Phosphorus Dendrimer/Antibody Nanocomplexes for Enhanced Glioma Immunotherapy via Immune Modulation of T Cells and Natural Killer Cells. ACS NANO 2024; 18:10142-10155. [PMID: 38526307 DOI: 10.1021/acsnano.3c13088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and β1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yamin Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Andrii Karpus
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Yu Zou
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Serge Mignani
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, 205 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
- Université Toulouse, 118 Route de Narbonne, 31077 CEDEX 4 Toulouse, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
13
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
14
|
Tang X, Wang K, Yang J, Wang Y, Yan Z. A novel immunogenic cell death-related gene risk signature can identify biomarkers of gliomas and predict the immunotherapeutic response. Am J Cancer Res 2024; 14:324-343. [PMID: 38323285 PMCID: PMC10839322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
Immunogenic cell death (ICD) is a type of cell death that plays a pivotal role in immunity. Recent studies have identified the critical role of ICD in glioma treatment. This study aimed to use ICD-associated differentially expressed genes (ICD-DEGs) to predict survival of glioma patients. We investigated the relationship between clinical prognosis and the date-to-clinical prognosis of 1,721 glioma patients by examining the expression, methylation, and mutation status of ICD-related genes (IRGs) in these patients. Our prediction of survival in glioma patients was based on three risk genes, and we explored the association between these genes and clinical outcomes. Additionally, IRG expression was used to stratify glioma patients. We further examined the relationship among the three subgroups in terms of immune microenvironment heterogeneity and immunotherapy response. In addition, this study also included analyses of histograms and sensitivity to antitumor drugs. The expression of these genes was externally validated by RT-qPCR, Western blot (WB), and immunohistochemistry (IHC) in glioma and normal brain tissue. Our findings reveal that most IRGs are overexpressed in glioma tumor tissues, and this high expression was confirmed through histological validation. We successfully developed predictive models for three prognostic genes associated with ICD. These models not only predict survival in glioma but also correlate with the tumor's immune microenvironment. Finally, using consensus clustering, we identified three ICD-associated subtypes. Notably, patients with the C3 subtype showed high levels of immune cell infiltration, whereas those with the C1 subtype exhibited lower levels of immune cell infiltration. We successfully developed an innovative IRG-based systematic approach for evaluating glioma patients. This stratification in experimental studies opens new avenues for prognosis and assessing immunotherapy responses in glioma patients. Our study demonstrates the effectiveness of this approach in treating glioma, potentially paving the way for more promising and effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Xuewu Tang
- Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)Shenzhen, Guangdong, China
- Department of Hematology and Oncology, Shenzhen Children’s HospitalShenzhen, Guangdong, China
| | - Kan Wang
- Department of Neurosurgery, Harbin Medical UniversityHarbin, Heilongjiang, China
| | - Jinchao Yang
- Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)Shenzhen, Guangdong, China
- Department of Hematology and Oncology, Shenzhen Children’s HospitalShenzhen, Guangdong, China
| | - Yuting Wang
- Department of Hematology and Oncology, Shenzhen Children’s HospitalShenzhen, Guangdong, China
| | - Zhiteng Yan
- Longgang District Maternity and Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Hosseindoost S, Dehpour AR, Dehghan S, Javadi SAH, Arjmand B, Fallah A, Hadjighassem M. Fluoxetine enhances the antitumor effect of olfactory ensheathing cell-thymidine kinase/ganciclovir gene therapy in human glioblastoma multiforme cells through upregulation of Connexin43 levels. Drug Dev Res 2023; 84:1739-1750. [PMID: 37769152 DOI: 10.1002/ddr.22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma, resulting in poor clinical outcomes. Herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) gene therapy is considered a promising strategy for GBM treatment. Since Connexin43 (Cx43) expression is reduced in GBM cells, increasing Cx43 levels could enhance the effectiveness of gene therapy. The present study aims to examine the impact of fluoxetine on HSV-TK/GCV gene therapy in human GBM cells using human olfactory ensheathing cells (OECs) as vectors. The effect of fluoxetine on Cx43 levels was assessed using the western blot technique. GBM-derived astrocytes and OECs-TK were Cocultured, and the effect of fluoxetine on the Antitumor effect of OEC-TK/GCV gene therapy was evaluated using MTT assay and flow cytometry. Our results showed that fluoxetine increased Cx43 levels in OECs and GBM cells and augmented the killing effect of OECs-TK on GBM cells. Western blot data revealed that fluoxetine enhanced the Bax/Bcl2 ratio and the levels of cleaved caspase-3 in the coculture of OECs-TK and GBM cells. Moreover, flow cytometry data indicated that fluoxetine increased the percentage of apoptotic cells in the coculture system. This study suggests that fluoxetine, by upregulating Cx43 levels, could strengthen the Antitumor effect of OEC-TK/GCV gene therapy on GBM cells.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad R Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed A H Javadi
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Neurosurgery Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fallah
- Space Medicine B.V., Rotterdam, the Netherlands
- Systems and Synthetic Biology Group, Mede Bioeconomy Company, Tehran, Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Liu Z, Liang W, Zhu Q, Cheng X, Qian R, Gao Y. PSRC1 Regulated by DNA Methylation Is a Novel Target for LGG Immunotherapy. J Mol Neurosci 2023; 73:516-528. [PMID: 37326762 DOI: 10.1007/s12031-023-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Proline and serine-rich coiled-coil 1 (PSRC1) has been reported to function as an oncogene in several cancers by regulating mitosis, while there are few reports on the role of PSRC1 in lower-grade glioma (LGG). Thus, this study collected 22 samples and 1126 samples from our institution and several databases, respectively, to explore the function of PSRC1 in LGG. First, the analysis of clinical characteristics showed that PSRC1 was always highly expressed in more malignant clinical characteristics of LGG, such as higher WHO grade, recurrence type, and IDH wild type. Second, the prognosis analysis revealed that the high expression of PSRC1 was an independent risk factor contributing to the shorter overall survival of LGG patients. Third, the analysis of DNA methylation showed that the expression of PSRC1 was associated with its 8 DNA methylation sites, overall negatively regulated by its DNA methylation level in LGG. Fourth, the analysis of immune correlation revealed that the expression of PSRC1 was positively correlated with the infiltration of 6 immune cells and the expression of 4 well-known immune checkpoints in LGG, respectively. Finally, co-expression analysis and KEGG analysis showed the 10 genes most related to PSRC1 and the signaling pathways involved by PSRC1 in LGG, respectively, such as MAPK signaling pathway and focal adhesion. In conclusion, this study identified the pathogenic role of PSRC1 in the pathological progression of LGG, expanding the molecular understanding of PSRC1, and provided a biomarker and potential immunotherapeutic target for the treatment of LGG.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Wenjia Liang
- People's Hospital of Henan University, Henan Provincial People's Hospital, , Microbiome Laboratory, Zhengzhou, 450003, Henan Province, China
| | - Qingyun Zhu
- Henan University School of Clinical Medicine, Henan Provincial People's Hospital, Microbiome Laboratory, Zhengzhou, 450003, Henan Province, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Rongjun Qian
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, , Zhengzhou, 450003, Henan Province, China.
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
17
|
Segura-Collar B, Hiller-Vallina S, de Dios O, Caamaño-Moreno M, Mondejar-Ruescas L, Sepulveda-Sanchez JM, Gargini R. Advanced immunotherapies for glioblastoma: tumor neoantigen vaccines in combination with immunomodulators. Acta Neuropathol Commun 2023; 11:79. [PMID: 37165457 PMCID: PMC10171733 DOI: 10.1186/s40478-023-01569-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
Glial-origin brain tumors, including glioblastomas (GBM), have one of the worst prognoses due to their rapid and fatal progression. From an oncological point of view, advances in complete surgical resection fail to eliminate the entire tumor and the remaining cells allow a rapid recurrence, which does not respond to traditional therapeutic treatments. Here, we have reviewed new immunotherapy strategies in association with the knowledge of the immune micro-environment. To understand the best lines for the future, we address the advances in the design of neoantigen vaccines and possible new immune modulators. Recently, the efficacy and availability of vaccine development with different formulations, especially liposome plus mRNA vaccines, has been observed. We believe that the application of new strategies used with mRNA vaccines in combination with personalized medicine (guided by different omic's strategies) could give good results in glioma therapy. In addition, a large part of the possible advances in new immunotherapy strategies focused on GBM may be key improving current therapies of immune checkpoint inhibitors (ICI), given the fact that this type of tumor has been highly refractory to ICI.
Collapse
Affiliation(s)
- Berta Segura-Collar
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Sara Hiller-Vallina
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Olaya de Dios
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Instituto de Salud Carlos III, UFIEC, 28222, Majadahonda, Spain
| | - Marta Caamaño-Moreno
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Lucia Mondejar-Ruescas
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Juan M Sepulveda-Sanchez
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Medical Oncology, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
| | - Ricardo Gargini
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain.
- Medical Oncology, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain.
| |
Collapse
|
18
|
Yeo AT, Shah R, Aliazis K, Pal R, Xu T, Zhang P, Rawal S, Rose CM, Varn FS, Appleman VA, Yoon J, Varma H, Gygi SP, Verhaak RG, Boussiotis VA, Charest A. Driver Mutations Dictate the Immunologic Landscape and Response to Checkpoint Immunotherapy of Glioblastoma. Cancer Immunol Res 2023; 11:629-645. [PMID: 36881002 PMCID: PMC10155040 DOI: 10.1158/2326-6066.cir-22-0655] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/20/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The composition of the tumor immune microenvironment (TIME) is considered a key determinant of patients' response to immunotherapy. The mechanisms underlying TIME formation and development over time are poorly understood. Glioblastoma (GBM) is a lethal primary brain cancer for which there are no curative treatments. GBMs are immunologically heterogeneous and impervious to checkpoint blockade immunotherapies. Utilizing clinically relevant genetic mouse models of GBM, we identified distinct immune landscapes associated with expression of EGFR wild-type and mutant EGFRvIII cancer driver mutations. Over time, accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) was more pronounced in EGFRvIII-driven GBMs and was correlated with resistance to PD-1 and CTLA-4 combination checkpoint blockade immunotherapy. We determined that GBM-secreted CXCL1/2/3 and PMN-MDSC-expressed CXCR2 formed an axis regulating output of PMN-MDSCs from the bone marrow leading to systemic increase in these cells in the spleen and GBM tumor-draining lymph nodes. Pharmacologic targeting of this axis induced a systemic decrease in the numbers of PMN-MDSC, facilitated responses to PD-1 and CTLA-4 combination checkpoint blocking immunotherapy, and prolonged survival in mice bearing EGFRvIII-driven GBM. Our results uncover a relationship between cancer driver mutations, TIME composition, and sensitivity to checkpoint blockade in GBM and support the stratification of patients with GBM for checkpoint blockade therapy based on integrated genotypic and immunologic profiles.
Collapse
Affiliation(s)
- Alan T. Yeo
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, Massachusetts
| | - Rushil Shah
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Konstantinos Aliazis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Rinku Pal
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tuoye Xu
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Piyan Zhang
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shruti Rawal
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Frederick S. Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Vicky A. Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Joon Yoon
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Roel G.W. Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Vassiliki A. Boussiotis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
19
|
de Godoy LL, Chawla S, Brem S, Wang S, O'Rourke DM, Nasrallah MP, Desai A, Loevner LA, Liau LM, Mohan S. Assessment of treatment response to dendritic cell vaccine in patients with glioblastoma using a multiparametric MRI-based prediction model. J Neurooncol 2023; 163:173-183. [PMID: 37129737 DOI: 10.1007/s11060-023-04324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE Autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) is a promising treatment modality for glioblastomas. The purpose of this study was to investigate the potential utility of multiparametric MRI-based prediction model in evaluating treatment response in glioblastoma patients treated with DCVax-L. METHODS Seventeen glioblastoma patients treated with standard-of-care therapy + DCVax-L were included. When tumor progression (TP) was suspected and repeat surgery was being contemplated, we sought to ascertain the number of cases correctly classified as TP + mixed response or pseudoprogression (PsP) from multiparametric MRI-based prediction model using histopathology/mRANO criteria as ground truth. Multiparametric MRI model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI-derived parameters. A comparison of overall survival (OS) was performed between patients treated with standard-of-care therapy + DCVax-L and standard-of-care therapy alone (external controls). Additionally, Kaplan-Meier analyses were performed to compare OS between two groups of patients using PsP, Ki-67, and MGMT promoter methylation status as stratification variables. RESULTS Multiparametric MRI model correctly predicted TP + mixed response in 72.7% of cases (8/11) and PsP in 83.3% (5/6) with an overall concordance rate of 76.5% with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.54; p = 0.026). DCVax-L-treated patients had significantly prolonged OS than those treated with standard-of-care therapy (22.38 ± 12.8 vs. 13.8 ± 9.5 months, p = 0.040). Additionally, glioblastomas with PsP, MGMT promoter methylation status, and Ki-67 values below median had longer OS than their counterparts. CONCLUSION Multiparametric MRI-based prediction model can assess treatment response to DCVax-L in patients with glioblastoma.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumei Wang
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Desai
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laurie A Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Linda M Liau
- Department of Neurosurgery, University of California Los Angeles David Geffen School of Medicine & Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Zeng WJ, Zhang L, Cao H, Li D, Zhang H, Xia Z, Peng R. A novel inflammation-related lncRNAs prognostic signature identifies LINC00346 in promoting proliferation, migration, and immune infiltration of glioma. Front Immunol 2022; 13:810572. [PMID: 36311792 PMCID: PMC9609424 DOI: 10.3389/fimmu.2022.810572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, a total of 13 inflammation-related lncRNAs with a high prognostic value were identified with univariate, multivariate Cox regression analysis, and LASSO analysis. LINC00346, which is one of the 13 lncRNAs identified, was positively associated with type 2 macrophage activation and the malignant degree of glioma. Fluorescence in situ hybridization (FISH) and immunohistochemical staining showed that LINC00346 was highly expressed in high-grade glioma, while type 2 macrophages key transcription factor STAT3 and surface marker CD204 were also highly expressed simultaneously. LINC00346 high-expression gliomas were more sensitive to the anti-PD-1 and anti-CTLA-4 therapy. LINC00346 was also associated with tumor proliferation and tumor migration validated by EdU, cell colony, formation CCK8, and transwell assays. These findings reveal novel biomarkers for predicting glioma prognosis and outline relationships between lncRNAs inflammation, and glioma, as well as possible immune checkpoint targets for glioma.
Collapse
Affiliation(s)
- Wen-Jing Zeng
- Department of Pharmarcy, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing, China
| | - Hui Cao
- Department of Psychiatry, The Second People’s Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Dongjie Li
- Department of Geriatrics, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Changsha Medical University, Changsha, China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Guo X, Zhang Y, Jiao H, Miao X. The prognostic significance of PD-L1 expression in patients with glioblastoma: A meta-analysis. Front Oncol 2022; 12:925560. [PMID: 36313683 PMCID: PMC9596987 DOI: 10.3389/fonc.2022.925560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastoma (GBM) is a malignant brain tumor associated with high morbidity and mortality rates with a poor prognosis. In recent years, studies on prognostic markers such as programmed death ligand 1 (PD-L1) have increased; however, their conclusions remain controversial. Here, relevant literature was reviewed and a meta-analysis was performed to clarify the correlation between PD-L1 expression and overall survival (OS) in GBM. Methods The non-foundational literature on PD-L1 expression associated with OS in GBM up to February 2022 was searched in the PubMed, Metstr, Cochrane, and Web of Science databases. Literature was rigorously screened according to inclusion and exclusion criteria, the total hazard ratio (HR), and corresponding 95% confidence intervals (CIs). Results Calculating the combined HR value and corresponding 95% CI of HR=1.124 (95% CI: 1.047-1.201, P=0.000, I2 (I-squared)=48.8%), it was shown that PD-L1 expression was significantly associated with low OS in GBM patients. Although I2 = 48.8% < 50%, to make the results more credible, in the cutoff values ≥10% subgroup HR=1.37 (95% CI: 1.07-1.67, P=0.000, I2 = 0%), which was also the result found in the first meta-analysis. In contrast, in the cutoff value ≥5% subgroup HR=1.14 (95% CI: 0.98-1.30, P=0.000, I2 = 59.8%) and in the cutoff value median PD-L1 expression levels subgroup HR=1.05 (95% CI: 0.92-1.18, P=0.000, I2 = 0%), indicating that PD-L1 expression was not associated with low OS in GBM. Furthermore, in four studies, we found no significant correlation between PD-L1 expression and the progression-free survival of GBM (HR=1.14, 95% CI:0.40-1.88, P=0.03, I2 = 29.3%). Conclusion PD-L1 expression was significantly associated with low OS in GBM patients; however, this result needs to be interpreted with caution and requires a large, multicenter clinical study in patients with similar baseline data for further evaluation.
Collapse
Affiliation(s)
- Xin Guo
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi’an, China
- Department of Graduate Work, Hanguang Campus of Xi’an Medical University, Xi’an, China
| | - Yuelin Zhang
- Department of Graduate Work, Hanguang Campus of Xi’an Medical University, Xi’an, China
| | - Hengxing Jiao
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi’an, China
- Department of Graduate Work, Hanguang Campus of Xi’an Medical University, Xi’an, China
| | - Xingyu Miao
- Department of Neurosurgery, Shaanxi Provincial People's Hospital, Xi’an, China
| |
Collapse
|
22
|
Hosseindoost S, Mousavi SM, Dehpour AR, Javadi SA, Arjmand B, Fallah A, Hadjighassem M. β2-Adrenergic receptor agonist enhances the bystander effect of HSV-TK/GCV gene therapy in glioblastoma multiforme via upregulation of connexin 43 expression. Mol Ther Oncolytics 2022; 26:76-87. [PMID: 35795095 PMCID: PMC9233183 DOI: 10.1016/j.omto.2022.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most invasive form of primary brain astrocytoma. Gene therapy using the herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) is a new strategy for GBM treatment. As the connexin 43 (Cx43) levels are downregulated in GBM cells, it seems that the upregulation of Cx43 could improve the efficacy of the gene therapy. This study aims to evaluate the effect of clenbuterol hydrochloride (Cln) as a β2-adrenergic receptor agonist on HSV-TK/GCV gene therapy efficacy in human GBM cells using olfactory ensheathing cells (OECs) as vectors. The lentivirus containing the thymidine kinase gene was transduced to OECs and the effective dose of GCV on cells was measured by MTT assay. We found that Cln upregulated Cx43 expression in human GBM cells and OECs and promoted the cytotoxic effect of GCV on the co-culture cells. Western blot results showed that Cln increased the cleaved caspase-3 expression and the Bax/Bcl2 ratio in the co-culture of GBM cells and OEC-TK. Also, the flow cytometry results revealed that Cln increased apoptosis in the co-culture of GBM cells and OEC-TK cells. This study showed that Cln via upregulation of Cx43 expression could enhance the bystander effect of HSVTK-GCV gene therapy in human GBM cells.
Collapse
Affiliation(s)
- Saereh Hosseindoost
- Pain Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Italia St, Tehran, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Italia St, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Amirhossein Javadi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Keshavarz Blvd, Dr. Gharib St, Tehran, Iran
- Neurosurgery Department, Imam Khomeini Hospital Complex, TUMS, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Fallah
- Systems and Synthetic Biology Group, Mede Bioeconomy Company, Tehran, Iran
- Space Medicine B.V., Rotterdam, the Netherlands
| | - Mahmoudreza Hadjighassem
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Italia St, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Keshavarz Blvd, Dr. Gharib St, Tehran, Iran
| |
Collapse
|
23
|
Guo K, Zhao J, Jin Q, Yan H, Shi Y, Zhao Z. CASP6 predicts poor prognosis in glioma and correlates with tumor immune microenvironment. Front Oncol 2022; 12:818283. [PMID: 36119521 PMCID: PMC9479196 DOI: 10.3389/fonc.2022.818283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundGlioma is an aggressive tumor of the central nervous system. Caspase-6 (CASP6) plays a crucial role in cell pyroptosis and is a central protein involved in many cellular signaling pathways. However, the association between CASP6 and prognosis of glioma patients remains unclear.MethodsFour bioinformatic databases were analyzed to identify differentially expressed genes (DEGs) between glioma and healthy tissues. Eighty-one protein-coding pyroptosis-related genes (PRGs) were obtained from the GeneCards database. The pyroptosis-related DEGs (PRDEGs) were extracted from each dataset, and CASP6 was found to be aberrantly expressed in glioma. We then investigated the biological functions of CASP6 and the relationship between CASP6 expression and the tumor microenvironment and immunocyte infiltration. The half maximal inhibitory concentration of temozolomide and the response to immune checkpoint blockade in the high- and low-CASP6 expression groups were estimated using relevant bioinformatic algorithms. Quantitative real-time reverse transcription PCR and western blotting were carried out to confirm the different expression levels of CASP6 between human astrocytes and glioma cell lines (U251 and T98G). We determined the role of CASP6 in the tumorigenesis of glioma by knocking down CASP6 in U251 and T98G cell lines.ResultsWe found that CASP6 was overexpressed in glioma samples and in glioma cell lines. CASP6 expression in patients with glioma correlated negatively with overall survival. In addition, CASP6 expression correlated positively with the degree of glioma progression. Functional analysis indicated that CASP6 was primarily involved in the immune response and antigen processing and presentation. Patients with high CASP6 levels responded more favorably to temozolomide, while patients with low expression of CASP6 had a better response to immunotherapy. Finally, in vitro experiments showed that CASP6 knockdown inhibited glioma proliferation.ConclusionsThe pyroptosis-related gene CASP6 might represent a sensitive prognostic marker for patients with glioma and might predict their response of immunotherapy and temozolomide therapy. Our results might lead to more precise immunotherapeutic strategies for patients with glioma.
Collapse
Affiliation(s)
- Kai Guo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Neurosurgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, China
| | - Jiahui Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qianxu Jin
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongshan Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Zongmao Zhao,
| |
Collapse
|
24
|
Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol 2022; 23:1148-1156. [PMID: 35879449 PMCID: PMC10754321 DOI: 10.1038/s41590-022-01267-2] [Citation(s) in RCA: 424] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Long recognized as an evolutionarily ancient cell type involved in tissue homeostasis and immune defense against pathogens, macrophages are being re-discovered as regulators of several diseases, including cancer. Tumor-associated macrophages (TAMs) represent the most abundant innate immune population in the tumor microenvironment (TME). Macrophages are professional phagocytic cells of the hematopoietic system specializing in the detection, phagocytosis and destruction of bacteria and other harmful micro-organisms, apoptotic cells and metabolic byproducts. In contrast to these healthy macrophage functions, TAMs support cancer cell growth and metastasis and mediate immunosuppressive effects on the adaptive immune cells of the TME. Cancer is one of the most potent insults on macrophage physiology, inducing changes that are intimately linked with disease progression. In this Review, we outline hallmarks of TAMs and discuss the emerging mechanisms that contribute to their pathophysiological adaptations and the vulnerabilities that provide attractive targets for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laura Strauss
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Sanofi /Tidal, Cambridge, MA, USA
| | - Alan Yeo
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Carol Cao
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Alain Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Xu H, Feng Y, Kong W, Wang H, Feng Y, Zhen J, Tian L, Yuan K. High Expression Levels of SIGLEC9 Indicate Poor Outcomes of Glioma and Correlate With Immune Cell Infiltration. Front Oncol 2022; 12:878849. [PMID: 35756603 PMCID: PMC9218569 DOI: 10.3389/fonc.2022.878849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to investigate the diagnostic value and underlying mechanisms of sialic acid-binding Ig-like lectin 9 (SIGLEC9) in gliomas. Patients and Methods The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases were used to analyze the association of SIGLEC9 expression levels with tumor stages and survival probability. Immunohistochemical staining of SIGLEC9 and survival analysis were performed in 177 glioma patients. Furthermore, related mechanisms were discovered about SIGLEC9 in glioma tumorigenesis, and we reveal how SIGLEC9 functions in macrophages through single-cell analysis. Results TCGA and CGGA databases indicated that patients with high SIGLEC9 expression manifested a significantly shorter survival probability than those with low SIGLEC9 expression. SIGLEC9 was upregulated significantly in malignant pathological types, such as grade III, grade IV, mesenchymal subtype, and isocitrate dehydrogenase wild-type gliomas. The immunohistochemical staining of tissue sections from 177 glioma patients showed that high-SIGLEC9-expression patients manifested a significantly shorter survival probability than low-SIGLEC9-expression patients with age ≧60 years, grade IV, glioblastoma multiforme, alpha thalassemia/intellectual disability syndrome X-linked loss, and without radiotherapy or chemotherapy. Furthermore, the SIGLEC9 expression level was positively correlated with myeloid-derived suppressor cell infiltration and neutrophil activation. The SIGLEC9 expression was also positively correlated with major immune checkpoints, such as LAIR1, HAVCR2, CD86, and LGALS9. Through single-cell analysis, we found that the SIGLEC9 gene is related to the ability of macrophages to process antigens and the proliferation of macrophages. Conclusion These findings suggested that SIGLEC9 is a diagnostic marker of poor outcomes in glioma and might serve as a potential immunotherapy target for glioma patients in the future.
Collapse
Affiliation(s)
- Heng Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Feng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Weijia Kong
- Beijing Hospital of Traditional Chinese Medicine Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Hesong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuyin Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Lichun Tian
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Yuan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Tan S, Spear R, Zhao J, Sun X, Wang P. Comprehensive Characterization of a Novel E3-Related Gene Signature With Implications in Prognosis and Immunotherapy of Low-Grade Gliomas. Front Genet 2022; 13:905047. [PMID: 35832194 PMCID: PMC9271851 DOI: 10.3389/fgene.2022.905047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Gliomas, a type of primary brain tumor, have emerged as a threat to global mortality due to their high heterogeneity and mortality. A low-grade glioma (LGG), although less aggressive compared with glioblastoma, still exhibits high recurrence and malignant progression. Ubiquitination is one of the most important posttranslational modifications that contribute to carcinogenesis and cancer recurrence. E3-related genes (E3RGs) play essential roles in the process of ubiquitination. Yet, the biological function and clinical significance of E3RGs in LGGs need further exploration. In this study, differentially expressed genes (DEGs) were screened by three differential expression analyses of LGG samples from The Cancer Genome Atlas (TCGA) database. DEGs with prognostic significance were selected by the univariate Cox regression analysis and log-rank statistical test. The LASSO-COX method was performed to identify an E3-related prognostic signature consisting of seven genes AURKA, PCGF2, MAP3K1, TRIM34, PRKN, TLE3, and TRIM17. The Chinese Glioma Genome Atlas (CGGA) dataset was used as the validation cohort. Kaplan–Meier survival analysis showed that LGG patients in the low-risk group had significantly higher overall survival time than those in the high-risk group in both TCGA and CGGA cohorts. Furthermore, multivariate Cox regression analysis revealed that the E3RG signature could be used as an independent prognostic factor. A nomogram based on the E3RG signature was then established and provided the prediction of the 1-, 3-, and 5-year survival probability of patients with LGGs. Moreover, DEGs were analyzed based on the risk signature, on which function analyses were performed. GO and KEGG analyses uncovered gene enrichment in extracellular matrix–related functions and immune-related biological processes in the high-risk group. GSEA revealed high enrichment in pathways that promote tumorigenesis and progression in the high-risk group. Furthermore, ESTIMATE algorithm analysis showed a significant difference in immune and stroma activity between high- and low-risk groups. Positive correlations between the risk signature and the tumor microenvironment immune cell infiltration and immune checkpoint molecules were also observed, implying that patients with the high-risk score may have better responses to immunotherapy. Overall, our findings might provide potential diagnostic and prognostic markers for LGG patients and offer meaningful insight for individualized treatment.
Collapse
Affiliation(s)
- Shichuan Tan
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
| | - Ryan Spear
- Department of Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Juan Zhao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Xiulian Sun, ; Pin Wang,
| | - Pin Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Xiulian Sun, ; Pin Wang,
| |
Collapse
|
27
|
Lin Z, Wang R, Huang C, He H, Ouyang C, Li H, Zhong Z, Guo J, Chen X, Yang C, Yang X. Identification of an Immune-Related Prognostic Risk Model in Glioblastoma. Front Genet 2022; 13:926122. [PMID: 35783263 PMCID: PMC9247349 DOI: 10.3389/fgene.2022.926122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most common and malignant type of brain tumor. A large number of studies have shown that the immunotherapy of tumors is effective, but the immunotherapy effect of GBM is not poor. Thus, further research on the immune-related hub genes of GBM is extremely important. Methods: The GBM highly correlated gene clusters were screened out by differential expression, mutation analysis, and weighted gene co-expression network analysis (WGCNA). Least absolute shrinkage and selection operator (LASSO) and proportional hazards model (COX) regressions were implemented to construct prognostic risk models. Survival, receiver operating characteristic (ROC) curve, and compound difference analyses of tumor mutation burden were used to further verify the prognostic risk model. Then, we predicted GBM patient responses to immunotherapy using the ESTIMATE algorithm, GSEA, and Tumor Immune Dysfunction and Exclusion (TIDE) algorithm. Results: A total of 834 immune-related differentially expressed genes (DEGs) were identified. The five hub genes (STAT3, SEMA4F, GREM2, MDK, and SREBF1) were identified as the prognostic risk model (PRM) screened out by WGCNA and LASSO analysis of DEGs. In addition, the PRM has a significant positive correlation with immune cell infiltration of the tumor microenvironment (TME) and expression of critical immune checkpoints, indicating that the poor prognosis of patients is due to TIDE. Conclusion: We constructed the PRM composed of five hub genes, which provided a new strategy for developing tumor immunotherapy.
Collapse
|
28
|
Yeo AT, Rawal S, Delcuze B, Christofides A, Atayde A, Strauss L, Balaj L, Rogers VA, Uhlmann EJ, Varma H, Carter BS, Boussiotis VA, Charest A. Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression. Nat Immunol 2022; 23:971-984. [PMID: 35624211 PMCID: PMC9174057 DOI: 10.1038/s41590-022-01215-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 04/18/2022] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is an incurable primary malignant brain cancer hallmarked with a substantial protumorigenic immune component. Knowledge of the GBM immune microenvironment during tumor evolution and standard of care treatments is limited. Using single-cell transcriptomics and flow cytometry, we unveiled large-scale comprehensive longitudinal changes in immune cell composition throughout tumor progression in an epidermal growth factor receptor-driven genetic mouse GBM model. We identified subsets of proinflammatory microglia in developing GBMs and anti-inflammatory macrophages and protumorigenic myeloid-derived suppressors cells in end-stage tumors, an evolution that parallels breakdown of the blood-brain barrier and extensive growth of epidermal growth factor receptor+ GBM cells. A similar relationship was found between microglia and macrophages in patient biopsies of low-grade glioma and GBM. Temozolomide decreased the accumulation of myeloid-derived suppressor cells, whereas concomitant temozolomide irradiation increased intratumoral GranzymeB+ CD8+T cells but also increased CD4+ regulatory T cells. These results provide a comprehensive and unbiased immune cellular landscape and its evolutionary changes during GBM progression.
Collapse
Affiliation(s)
- Alan T Yeo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, MA, USA
| | - Shruti Rawal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bethany Delcuze
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, MA, USA
| | - Anthos Christofides
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Agata Atayde
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laura Strauss
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vaughn A Rogers
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Erik J Uhlmann
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Al Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
29
|
Ji Q, Huang K, Jiang Y, Lei K, Tu Z, Luo H, Zhu X. Comprehensive analysis of the prognostic and role in immune cell infiltration of MSR1 expression in lower-grade gliomas. Cancer Med 2022; 11:2020-2035. [PMID: 35142109 PMCID: PMC9089222 DOI: 10.1002/cam4.4603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The therapeutic effects of conventional treatment on gliomas are not promising. The tumor microenvironment (TME) has a close association with the invasiveness of multiple types of tumors, including low-grade gliomas (LGG). This study aims to validate the prognostic and immune-related role of macrophage scavenger receptor 1 (MSR1) in LGG patients. METHODS Data in this study were obtained from public databases. The differential expression of MSR1 was analyzed in LGG patients with different clinicopathological characteristics. Kaplan-Meier survival analysis, a time-dependent receiver operating characteristic (ROC) curve, and Cox regression analysis were used to assess the prognostic value of MSR1. Differentially expressed genes (DEGs) were screened between the high and low expression groups of MSR1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to annotate the function of these DEGs. Hallmark gene sets were identified based on MSR1 by Gene Set Enrichment Analysis (GSEA). Difference analysis and correlation analysis were used to study the relationship between MSR1 and TME-related scores, tumor-infiltrating immune cells (TIICs), immune-related gene sets, and immune checkpoints (ICPs). The single-cell sequencing data were processed to identify the cell types expressing MSR1. The quantification of TIICs in TME was calculated by single-sample gene set enrichment analysis (ssGSEA). The differential expression of MSR1 in LGG and control brain tissues was verified by experiments. RESULTS There were significant differences in the expression level of MSR1 in different types of tissues and cells. MSR1 has a high prognostic value in LGG patients and can be used as an independent prognostic factor. MSR1 is closely related to TME and may play an important role in the immunotherapy of LGG patients. CONCLUSIONS The result of our study demonstrated that MSR1 is an independent prognostic biomarker in LGG patients and may play an important role in the TME of LGGs.
Collapse
Affiliation(s)
- Qiankun Ji
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Kai Huang
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Yuan Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Kunjian Lei
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Zewei Tu
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Haitao Luo
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| | - Xingen Zhu
- Department of NeurosurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
- Institute of NeuroscienceNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
30
|
Zhou X, Ji Q, Li Q, Wang P, Hu G, Xiao F, Ye M, Lin L, Luo M, Guo Y, Wu W, Huang K, Guo H. HSPA6 is Correlated With the Malignant Progression and Immune Microenvironment of Gliomas. Front Cell Dev Biol 2022; 10:833938. [PMID: 35281087 PMCID: PMC8904718 DOI: 10.3389/fcell.2022.833938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/09/2022] [Indexed: 01/29/2023] Open
Abstract
Gliomas are primary intracranial space lesions with a high mortality rate. Current treatments for glioma are very limited. Recently, immunotargeted therapy of the glioma microenvironment has been developed. Members of the 70 kDa heat shock protein (HSP70) family are involved in the development of many tumors and immunity. HSPA6 protein belongs to the HSP70 family; However, the biological function of this protein in gliomas has yet to be evaluated. In the present study, a range of analyses, involving protein networks, survival, clinical correlation, and function, revealed that the expression of HSPA6 was negatively correlated with clinical prognosis and closely associated with immunity, invasion, and angiogenesis. Quantitative protein analysis confirmed that HSPA6 was expressed at high levels in patients with glioblastoma. Vitro experiments further verified that HSPA6 enhanced the malignant progression of glioma cells by promoting proliferation, invasion and anti-apoptosis. We also found that HSPA6 was closely correlated with genomic variations and tumor microenvironment. Collectively, we demonstrated that HSPA6 may represent a new therapeutic target to improve the prognosis of patients with gliomas.
Collapse
Affiliation(s)
- Xiang Zhou
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Departments of Neurosurgery, The Fifth Affiliated Hospital of Nanchang University, Fuzhou, China
| | - Qiankun Ji
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qin Li
- Departments of General Practice, The Fifth Affiliated Hospital of Nanchang University, Fuzhou, China
| | - Peng Wang
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guowen Hu
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Feng Xiao
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minhua Ye
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Lin
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Luo
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Guo
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weijun Wu
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Huang
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
- *Correspondence: Hua Guo, ; Kai Huang,
| | - Hua Guo
- Departments of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- *Correspondence: Hua Guo, ; Kai Huang,
| |
Collapse
|
31
|
Association of Tim-3/Gal-9 Axis with NLRC4 Inflammasome in Glioma Malignancy: Tim-3/Gal-9 Induce the NLRC4 Inflammasome. Int J Mol Sci 2022; 23:ijms23042028. [PMID: 35216164 PMCID: PMC8878774 DOI: 10.3390/ijms23042028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Tim-3/Gal-9 and the NLRC4 inflammasome contribute to glioma progression. However, the underlying mechanisms involved are unclear. Here, we observed that Tim-3/Gal-9 expression increased with glioma malignancy and found that Tim-3/Gal-9 regulate NLRC4 inflammasome formation and activation. Tim-3/Gal-9 and NLRC4 inflammasome-related molecule expression levels increased with WHO glioma grade, and this association was correlated with low survival. We investigated NLRC4 inflammasome formation by genetically regulating Tim-3 and its ligand Gal-9. Tim-3/Gal-9 regulation was positively correlated with the NLRC4 inflammasome, NLRC4, and caspase-1 expression. Tim-3/Gal-9 did not trigger IL-1β secretion but were strongly positively correlated with caspase-1 activity as they induced programmed cell death in glioma cells. A protein–protein interaction analysis revealed that the FYN-JAK1-ZNF384 pathways are bridges in NLRC4 inflammasome regulation by Tim-3/Gal-9. The present study showed that Tim-3/Gal-9 are associated with poor prognosis in glioma patients and induce NLRC4 inflammasome formation and activation. We proposed that a Tim-3/Gal-9 blockade could be beneficial in glioma therapy as it would reduce the inflammatory microenvironment by downregulating the NLRC4 inflammasome.
Collapse
|
32
|
Wang H, Chao Y, Zhao H, Zhou X, Zhang F, Zhang Z, Li Z, Pan J, Wang J, Chen Q, Liu Z. Smart Nanomedicine to Enable Crossing Blood-Brain Barrier Delivery of Checkpoint Blockade Antibody for Immunotherapy of Glioma. ACS NANO 2022; 16:664-674. [PMID: 34978418 DOI: 10.1021/acsnano.1c08120] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immune checkpoint blockade (ICB) therapy has shown tremendous promises in the treatment of various types of tumors. However, ICB therapy with antibodies appears to be less effective for glioma, partly owing to the existence of the blood-brain barrier (BBB) that impedes the entrance of therapeutics including most proteins to the central nervous system (CNS). Herein, considering the widely existing nicotinic acetylcholine receptors (nAChRs) and choline transporters (ChTs) on the surface of BBB, a choline analogue 2-methacryloyloxyethyl phosphorylcholine (MPC) is employed to fabricate the BBB-crossing copolymer via free-radical polymerization, followed by conjugation with antiprogrammed death-ligand 1 (anti-PD-L1) via a pH-sensitive traceless linker. The obtained nanoparticles exhibit significantly improved BBB-crossing capability owing to the receptor-mediated transportation after intravenous injection in an orthotopic glioma tumor model. Within the acidic glioma microenvironment, anti-PD-L1 would be released from such pH-responsive nanoparticles, further triggering highly effective ICB therapy of glioma to significantly prolong animal survival. This work thus realizes glioma microenvironment responsive BBB-crossing delivery of ICB antibodies, promising for the next generation immunotherapy of glioma.
Collapse
Affiliation(s)
- Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - He Zhao
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Xiuxia Zhou
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Fuyong Zhang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Zheng Zhang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Zhiheng Li
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Jian Pan
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Jian Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu215123, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| |
Collapse
|
33
|
Liu H, Wang J, Luo T, Zhen Z, Liu L, Zheng Y, Zhang C, Hu X. Correlation between ITGB2 expression and clinical characterization of glioma and the prognostic significance of its methylation in low-grade glioma(LGG). Front Endocrinol (Lausanne) 2022; 13:1106120. [PMID: 36714574 PMCID: PMC9880157 DOI: 10.3389/fendo.2022.1106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Glioma is the most common primary tumor in the brain.Integrin beta 2(ITGB2) is a member of the leukocyte integrin family (leukocyte integrin), participating in lymphocyte recycling and homing, cell adhesion, and cell surface-mediated signal transduction. However, few studies on ITGB2 in gliomas have been reported yet.This study first discussed the relationship between ITGB2 expression and clinical characterization of glioma and the prognostic significance of its methylation in low-grade glioma. METHODS We collected Clinical data and transcription of glioma patients from TCGA, CGGA, and Rembrant datasets to analyze the differential expression of ITGB2 mRNA in glioma tissues and normal tissues. The box polts to evaluated the expression patterns of ITGB2 in different molecular subtypes. Receiver operating characteristic curve (ROC) were used to evaluate and verify the reliability of the model. Kaplan-Meier survival curves to evaluated the relationship between the level of ITGB2 mRNA expression and overall survival (OS). Using cox regression analysis to verify the ability of ITGB2 as an independent predictor of OS in glioma patients. We use TIMER to analyze and visualize the association between immune infiltration levels and a range of variables. The methylation of GBMLGG patients were obtained from the TCGA database through the biological portal. RESULTS ITGB2 can be a potential marker for mesenchymal molecular subtype gliomas. COX regression analysis shows that ITGB2 is an independent predictive marker of OS in malignant glioma patients. Biological processes show that ITGB2 has involved glioma immune-related activities, especially closely related to B cells, CD4+Tcells, macrophages, neutrophils, and dendritic cells. ITGB2 is negatively regulated by ITGB2 methylation, resulting in low expression in LGG tissues. Low expression of ITGB2 and high methylation indicate good OS in patients with LGG. The ITGB2 methylation risk score (ITMRS) obtained from the ITGB2 methylation CpG site can better predict the OS of LGG patients. We used univariate and multivariate cox regression analysis of methylationsites, used the R language predict function to obtain the risk score of these ITGB2 methylation sites(ITMRS). DISCUSSION ITGB2 can be used as a potential marker of mesenchymal molecular subtypes of gliomas and as an independent predictive marker of OS in patients with malignant gliomas. The ITMRS we established can be used as an independent prognostic factor for LGG and provide a new idea for the diagnosis and treatment of LGG.
Collapse
Affiliation(s)
- He Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhiming Zhen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Liu
- Department of Digital Medicine, School of Biomedical Engineering and Medical Imaging, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Zheng
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chaobin Zhang
- Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Chaobin Zhang, ; Xiaofei Hu,
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Chaobin Zhang, ; Xiaofei Hu,
| |
Collapse
|
34
|
Rao M, Yang Z, Huang K, Liu W, Chai Y. Correlation of AIF-1 Expression with Immune and Clinical Features in 1270 Glioma Samples. J Mol Neurosci 2021; 72:420-432. [PMID: 34939148 DOI: 10.1007/s12031-021-01948-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/21/2021] [Indexed: 01/15/2023]
Abstract
AIF-1 gene is surrounded by the genes involved in the inflammatory response and located in the major histocompatibility complex (MHC) class III genomic region. It has been found that microglial cells expressed the AIF-1 gene during all stages of mice brain development. However, the role of AIF-1 remains unclear in glioma. A total of 1270 glioma patients from three independent data sets were enrolled in the study. TIMER platform was used for comprehensive molecular characterization of tumor immune infiltrates. Sangerbox was used to analyze AIF-1 RNA sequencing expression data of tumors and normal samples, and to evaluate the association between AIF-1 expression and 29 sub-populations of immune cells. The R language 3.63 was used to identify differentially expressed genes for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Kaplan-Meier survival analysis and univariate/multivariate Cox analysis were used to examine survival distributions. We found that AIF-1 gene was prominently up-regulated, especially in brain glioma including LGG and GBM. A strong correlation was observed between AIF-1 expression and the majority of immune cells, particularly in macrophage, myeloid-derived suppressor cells. Moreover, AIF-1 expression was correlated with immune infiltration level. We found that AIF-1 expression was strongly correlated with the specific immune and prognostic cell markers of monocytes, microglia and macrophages, M1 macrophages, and M2 macrophages after normalization through tumor purity in TCGA-LGG and TCGA-GBM. Higher expression level of AIF-1 was found to be significantly correlated with poor prognosis. GO analysis and KEGG pathways indicated that AIF-1 could affect glioma-related immune activities. Our study suggests that AIF-1 can be treated as a prognostic biomarker for glioma patients. AIF-1 was involved in pro-tumor processes and the regulation of immune status and correlates with poor prognosis.
Collapse
Affiliation(s)
- Minchao Rao
- Department of Oncology, Shangrao People's Hospital, Shangrao, Jiangxi, China
| | - Zihui Yang
- Department of Obstetrics and Gynecology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218, China
| | - Kairong Huang
- Department of Oncology, Shangrao People's Hospital, Shangrao, Jiangxi, China
| | - Wei Liu
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Hebei, 050000, China.
| | - Yi Chai
- Department of Neurosurgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
35
|
Di W, Fan W, Wu F, Shi Z, Wang Z, Yu M, Zhai Y, Chang Y, Pan C, Li G, Kahlert UD, Zhang W. Clinical characterization and immunosuppressive regulation of CD161 (KLRB1) in glioma through 916 samples. Cancer Sci 2021; 113:756-769. [PMID: 34881489 PMCID: PMC8819299 DOI: 10.1111/cas.15236] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background Glioblastoma is a paradigm of cancer‐associated immunosuppression, limiting the effects of immunotherapeutic strategies. Thus, identifying the molecular mechanisms underlying immune surveillance evasion is critical. Recently, the preferential expression of inhibitory natural killer (NK) cell receptor CD161 on glioma‐infiltrating cytotoxic T cells was identified. Focusing on the molecularly annotated, large‐scale clinical samples from different ethnic origins, the data presented here provide evidence of this immune modulator's essential roles in brain tumor biology. Methods Retrospective RNA‐seq data analysis was conducted in a cohort of 313 patients with glioma in the Chinese Glioma Genome Atlas (CGGA) database and 603 patients in The Cancer Genome Atlas (TCGA) database. In addition, single‐cell sequencing data from seven surgical specimens of glioblastoma patients and a model in which patient‐derived glioma stem cells were cocultured with peripheral lymphocytes, were used to analyze the molecular evolution process during gliomagenesis. Results CD161 was enriched in high‐grade gliomas and isocitrate dehydrogenase (IDH)‐wildtype glioma. CD161 acted as a potential biomarker for the mesenchymal subtype of glioma and an independent prognostic factor for the overall survival (OS) of patients with glioma. In addition, CD161 played an essential role in inhibiting the cytotoxicity of T cells in glioma patients. During the process of gliomagenesis, the expression of CD161 on different lymphocytes dynamically evolved. Conclusion The expression of CD161 was closely related to the pathology and molecular pathology of glioma. Meanwhile, CD161 promoted the progression and evolution of gliomas through its unique effect on T cell dysfunction. Thus, CD161 is a promising novel target for immunotherapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Wang Di
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhua Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhongfang Shi
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingchen Yu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas (CGGA), Beijing, China
| | - Ulf Dietrich Kahlert
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Neurosurgical Clinic, Medical Faculty, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany.,German Cancer Consortium, DKTK, Essen/Duesseldorf, Duesseldorf, Germany.,Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas (CGGA), Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
36
|
Li H, Wang G, Wang W, Pan J, Zhou H, Han X, Su L, Ma Z, Hou L, Xue X. A Focal Adhesion-Related Gene Signature Predicts Prognosis in Glioma and Correlates With Radiation Response and Immune Microenvironment. Front Oncol 2021; 11:698278. [PMID: 34631528 PMCID: PMC8493301 DOI: 10.3389/fonc.2021.698278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most frequent brain malignancy presenting very poor prognosis and high recurrence rate. Focal adhesion complexes play pivotal roles in cell migration and act as hubs of several signaling pathways. Methods We used bioinformatic databases (CGGA, TCGA, and GEO) and identified a focal adhesion-related differential gene expression (FADG) signature by uniCox and LASSO regression analysis. We calculated the risk score of every patient using the regression coefficient value and expression of each gene. Survival analysis, receiver operating characteristic curve (ROC), principal component analysis (PCA), and stratified analysis were used to validate the FADG signature. Then, we conducted GSEA to identify the signaling pathways related to the FADG signature. Correlation analysis of risk scores between the immune checkpoint was performed. In addition, the correlation of risk scores and genes related with DNA repair was performed. CIBERSORT and ssGSEA were used to explore the tumor microenvironment (TME). A nomogram that involved our FADG signature was also constructed. Results In total, 1,726 (528 patients diagnosed with WHO II, 591 WHO III, and 603 WHO IV) cases and 23 normal samples were included in our study. We identified 29 prognosis-related genes in the LASSO analysis and constructed an eight FADG signature. The results from the survival analysis, stratified analysis, ROC curve, and univariate and multivariate regression analysis revealed that the prognosis of the high-risk group was significantly worse than the low-risk group. Correlation analysis between risk score and genes that related with DNA repair showed that the risk score was positively related with BRCA1, BRCA2, RAD51, TGFB1, and TP53. Besides, we found that the signature could predict the prognosis of patients who received radiation therapy. SsGSEA indicated that the high-risk score was positively correlated with the ESTIMATE, immune, and stromal scores but negatively correlated with tumor purity. Notably, patients in the high-risk group had a high infiltration of immunocytes. The correlation analysis revealed that the risk score was positively correlated with B7-H3, CTLA4, LAG3, PD-L1, and TIM3 but inversely correlated with PD-1. Conclusion The FADG signature we constructed could provide a sensitive prognostic model for patients with glioma and contribute to improve immunotherapy management guidelines.
Collapse
Affiliation(s)
- Haonan Li
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohui Wang
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Radiation Oncology, PekingUniversity China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Wenyan Wang
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Pan
- The Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Huandi Zhou
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenghui Ma
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Xiao Z, Zhang W, Li G, Li W, Li L, Sun T, He Y, Liu G, Wang L, Han X, Wen H, Liu Y, Chen Y, Wang H, Li J, Fan Y, Zhang J. Multiomics Analysis Reveals the Prognostic Non-tumor Cell Landscape in Glioblastoma Niches. Front Genet 2021; 12:741325. [PMID: 34603399 PMCID: PMC8481948 DOI: 10.3389/fgene.2021.741325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
A comprehensive characterization of non-tumor cells in the niches of primary glioblastoma is not fully established yet. This study aims to present an overview of non-malignant cells in the complex microenvironment of glioblastoma with detailed characterizations of their prognostic effects. We curate 540 gene signatures covering a total of 64 non-tumor cell types. Cell type-specific expression patterns are interrogated by normalized enrichment score across four large gene expression profiling cohorts of glioblastoma with a total number of 967 cases. The glioblastoma multiforms (GBMs) in each cohort are hierarchically clustered into negative or positive immune response classes with significantly different overall survival. Our results show that astrocytes, macrophages, monocytes, NKTs, and MSC are risk factors, while CD8 T cells, CD8 naive T cells, and plasma cells are protective factors. Moreover, we find that the immune system and organogenesis are uniformly enriched in negative immune response clusters, in contrast to the enrichment of nervous system in positive immune response clusters. Mesenchymal differentiation is also observed in the negative immune response clusters. High enrichment status of macrophages in negative immune response clusters is independently validated by analyzing scRNA-seq data from eight high-grade gliomas, revealing that negative immune response samples comprised 46.63 to 55.12% of macrophages, whereas positive immune response samples comprised only 1.70 to 8.12%, with IHC staining of samples from six short-term and six long-term survivors of GBMs confirming the results.
Collapse
Affiliation(s)
- Zixuan Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wendong Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lin Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yufei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guang Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaohan Han
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hao Wen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifan Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haoyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
38
|
Ghouzlani A, Kandoussi S, Tall M, Reddy KP, Rafii S, Badou A. Immune Checkpoint Inhibitors in Human Glioma Microenvironment. Front Immunol 2021; 12:679425. [PMID: 34305910 PMCID: PMC8301219 DOI: 10.3389/fimmu.2021.679425] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults. Despite the fact that they are relatively rare, they cause significant morbidity and mortality. High-grade gliomas or glioblastomas are rapidly progressing tumors with a very poor prognosis. The presence of an intrinsic immune system in the central nervous system is now more accepted. During the last decade, there has been no major progress in glioma therapy. The lack of effective treatment for gliomas can be explained by the strategies that cancer cells use to escape the immune system. This being said, immunotherapy, which involves blockade of immune checkpoint inhibitors, has improved patients' survival in different cancer types. This novel cancer therapy appears to be one of the most promising approaches. In the present study, we will start with a review of the general concept of immune response within the brain and glioma microenvironment. Then, we will try to decipher the role of various immune checkpoint inhibitors within the glioma microenvironment. Finally, we will discuss some promising therapeutic pathways, including immune checkpoint blockade and the body's effective anti-glioma immune response.
Collapse
Affiliation(s)
- Amina Ghouzlani
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mariam Tall
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Konala Priyanka Reddy
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Faculty of Medicine, Medical University of Pleven, Pleven, Bulgaria
| | - Soumaya Rafii
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdallah Badou
- Cellular and Molecular Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| |
Collapse
|
39
|
Zhu G, Zhang Q, Zhang J, Liu F. Targeting Tumor-Associated Antigen: A Promising CAR-T Therapeutic Strategy for Glioblastoma Treatment. Front Pharmacol 2021; 12:661606. [PMID: 34248623 PMCID: PMC8264285 DOI: 10.3389/fphar.2021.661606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/09/2021] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) therapy is a prospective therapeutic strategy for blood cancers tumor, especially leukemia, but it is not effective for solid tumors. Glioblastoma (GBM) is a highly immunosuppressive and deadly malignant tumor with poor responses to immunotherapies. Although CAR-T therapeutic strategies were used for glioma in preclinical trials, the current proliferation activity of CAR-T is not sufficient, and malignant glioma usually recruit immunosuppressive cells to form a tumor microenvironment that hinders CAR-T infiltration, depletes CAR-T, and impairs their efficacy. Moreover, specific environments such as hypoxia and nutritional deficiency can hinder the killing effect of CAR-T, limiting their therapeutic effect. The normal brain lack lymphocytes, but CAR-T usually can recognize specific antigens and regulate the tumor immune microenvironment to increase and decrease pro- and anti-inflammatory factors, respectively. This increases the number of T cells and ultimately enhances anti-tumor effects. CAR-T therapy has become an indispensable modality for glioma due to the specific tumor-associated antigens (TAAs). This review describes the characteristics of CAR-T specific antigen recognition and changing tumor immune microenvironment, as well as ongoing research into CAR-T therapy targeting TAAs in GBM and their potential clinical application.
Collapse
Affiliation(s)
- Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China.,Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China.,Beijing Laboratory of Biomedical Materials, Beijing, China
| |
Collapse
|
40
|
Qiu R, Zhong Y, Li Q, Li Y, Fan H. Metabolic Remodeling in Glioma Immune Microenvironment: Intercellular Interactions Distinct From Peripheral Tumors. Front Cell Dev Biol 2021; 9:693215. [PMID: 34211978 PMCID: PMC8239469 DOI: 10.3389/fcell.2021.693215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/19/2021] [Indexed: 01/29/2023] Open
Abstract
During metabolic reprogramming, glioma cells and their initiating cells efficiently utilized carbohydrates, lipids and amino acids in the hypoxic lesions, which not only ensured sufficient energy for rapid growth and improved the migration to normal brain tissues, but also altered the role of immune cells in tumor microenvironment. Glioma cells secreted interferential metabolites or depriving nutrients to injure the tumor recognition, phagocytosis and lysis of glioma-associated microglia/macrophages (GAMs), cytotoxic T lymphocytes, natural killer cells and dendritic cells, promoted the expansion and infiltration of immunosuppressive regulatory T cells and myeloid-derived suppressor cells, and conferred immune silencing phenotypes on GAMs and dendritic cells. The overexpressed metabolic enzymes also increased the secretion of chemokines to attract neutrophils, regulatory T cells, GAMs, and dendritic cells, while weakening the recruitment of cytotoxic T lymphocytes and natural killer cells, which activated anti-inflammatory and tolerant mechanisms and hindered anti-tumor responses. Therefore, brain-targeted metabolic therapy may improve glioma immunity. This review will clarify the metabolic properties of glioma cells and their interactions with tumor microenvironment immunity, and discuss the application strategies of metabolic therapy in glioma immune silence and escape.
Collapse
Affiliation(s)
- Runze Qiu
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Zhong
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qingquan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingbin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Xia L, Jin P, Tian W, Liang S, Tan L, Li B. Up-regulation of MARVEL domain-containing protein 1 (MARVELD1) accelerated the malignant phenotype of glioma cancer cells via mediating JAK/STAT signaling pathway. ACTA ACUST UNITED AC 2021; 54:e10236. [PMID: 34008750 PMCID: PMC8130134 DOI: 10.1590/1414-431x2020e10236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
This work aimed to research the function of MARVEL domain-containing protein 1 (MARVELD1) in glioma as well as its functioning mode. Bioinformatics analysis was utilized to assess the MARVELD1 expression in glioma tissues and its relationship with grade and prognosis, based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) databases. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays were carried out to determine the impact of MARVELD1 on malignant biological behavior of glioma, such as proliferation, invasion, and migration. qRT-PCR was carried out to test the mRNA level of MARVELD1. Western blot assay was performed to measure the protein expression of MARVELD1 and JAK/STAT pathway-related proteins. MARVELD1 was expressed at high levels in glioma tissues and cell lines. Kaplan-Meier survival analysis revealed that the higher MARVELD1 expression, the shorter the survival time of patients with glioma. Also, the MARVELD1 expression in WHO IV was significantly enhanced compared to that in WHO II and WHO III. Furthermore, the functional analysis of MARVELD1 in vitro revealed that knockdown of MARVELD1 in U251 cells restrained cell proliferation, migration, and invasion, while up-regulation of MARVELD1 in U87 cells presented opposite outcomes. Finally, we found that JAK/STAT signaling pathway mediated the function of MARVELD1 in glioma. MARVELD1 contributed to promoting the malignant progression of glioma, which is the key driver of activation of JAK/STAT signaling pathway in gliomas.
Collapse
Affiliation(s)
- Lingyang Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Peng Jin
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Wei Tian
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Shuang Liang
- Department of X-ray, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Liye Tan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Binxin Li
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
42
|
Xu B, Huo Z, Huang H, Ji W, Bian Z, Jiao J, Sun J, Shao J. The expression and prognostic value of the epidermal growth factor receptor family in glioma. BMC Cancer 2021; 21:451. [PMID: 33892666 PMCID: PMC8063311 DOI: 10.1186/s12885-021-08150-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) family belongs to the transmembrane protein receptor of the tyrosine kinase I subfamily and has 4 members: EGFR/ERBB1, ERBB2, ERBB3, and ERBB4. The EGFR family is closely related to the occurrence and development of a variety of cancers. MATERIALS/METHODS In this study, we used multiple online bioinformatics websites, including ONCOMINE, TCGA, CGGA, TIMER, cBioPortal, GeneMANIA and DAVID, to study the expression profiles, prognostic values and immune infiltration correlations of the EGFR family in glioma. RESULTS We found that EGFR and ERBB2 mRNA expression levels were higher in glioblastoma (GBM, WHO IV) than in other grades (WHO grade II & III), while the ERBB3 and ERBB4 mRNA expression levels were the opposite. EGFR and ERBB2 were notably downregulated in IDH mutant gliomas, while ERBB3 and ERBB4 were upregulated, which was associated with a poor prognosis. In addition, correlation analysis between EGFR family expression levels and immune infiltrating levels in glioma showed that EGFR family expression and immune infiltrating levels were significantly correlated. The PPI network of the EGFR family in glioma and enrichment analysis showed that the EGFR family and its interactors mainly participated in the regulation of cell motility, involving integrin receptors and Rho family GTPases. CONCLUSIONS In summary, the results of this study indicate that the EGFR family members may become potential therapeutic targets and new prognostic markers for glioma.
Collapse
Affiliation(s)
- Bin Xu
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Zhengyuan Huo
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Hui Huang
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Zheng Bian
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jiantong Jiao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China
| | - Jun Sun
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| | - Junfei Shao
- Department of Neurosurgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
43
|
Physiological Imaging Methods for Evaluating Response to Immunotherapies in Glioblastomas. Int J Mol Sci 2021; 22:ijms22083867. [PMID: 33918043 PMCID: PMC8069140 DOI: 10.3390/ijms22083867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor in adults, with a dismal prognosis despite aggressive multi-modal therapy. Immunotherapy is currently being evaluated as an alternate treatment modality for recurrent GBMs in clinical trials. These immunotherapeutic approaches harness the patient's immune response to fight and eliminate tumor cells. Standard MR imaging is not adequate for response assessment to immunotherapy in GBM patients even after using refined response assessment criteria secondary to amplified immune response. Thus, there is an urgent need for the development of effective and alternative neuroimaging techniques for accurate response assessment. To this end, some groups have reported the potential of diffusion and perfusion MR imaging and amino acid-based positron emission tomography techniques in evaluating treatment response to different immunotherapeutic regimens in GBMs. The main goal of these techniques is to provide definitive metrics of treatment response at earlier time points for making informed decisions on future therapeutic interventions. This review provides an overview of available immunotherapeutic approaches used to treat GBMs. It discusses the limitations of conventional imaging and potential utilities of physiologic imaging techniques in the response assessment to immunotherapies. It also describes challenges associated with these imaging methods and potential solutions to avoid them.
Collapse
|
44
|
Abstract
Peptide and dendritic cell vaccines activate the immune system against tumor antigens to combat brain tumors. Vaccines stimulate a systemic immune response by inducing both antitumor T cells as well as humoral immunity through antibody production to cross the blood-brain barrier and combat brain tumors. Recent trials investigating vaccines against peptides (ie, epithelial growth factor receptor variant III, survivin, heat shock proteins, or personalized tumor antigens) and dendritic cells pulsed with known peptides, messenger RNA or unknown tumor lysate targets demonstrate the potential for therapeutic cancer vaccines to become an important therapy for brain tumor treatment.
Collapse
Affiliation(s)
- Justin Lee
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA
| | - Benjamin R Uy
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA
| | - Linda M Liau
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, 300 Stein Plaza Driveway Suite 420 Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Deng D, Mo Y, Xue L, Shao N, Cao J. Long non-coding RNA SUMO1P3 promotes tumour progression by regulating cell proliferation and invasion in glioma. Exp Ther Med 2021; 21:491. [PMID: 33791000 PMCID: PMC8005699 DOI: 10.3892/etm.2021.9922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas account for 50% of primary brain tumours in the central nervous system. Small ubiquitin-like modifier 1 pseudogene 3 (SUMO1P3), a newly identified long non-coding RNA (lncRNA), serves an oncogenic role in various types of cancer. The aim of the present study was to investigate the effect of SUMO1P3 on glioma progression. The results demonstrated that SUMO1P3 expression was upregulated in glioma tissues and cell lines. Furthermore, SUMO1P3 was associated with a poor overall survival of patients with glioma. The results of the in vitro cell proliferation and flow cytometry assays demonstrated that SUMO1P3-knockdown suppressed cell proliferation and cell cycle. The results of the wound healing and Transwell assays demonstrated that SUMO1P3-knockdown significantly repressed cell migration and invasion. In addition, SUMO1P3 promoted glioma by regulating the expression levels of β-catenin, cyclin-D1, N-cadherin and E-cadherin. Overall, the results of the present study suggested that SUMO1P3 may act as an oncogene by regulating cell proliferation, cell cycle, cell migration and invasion in glioma, and may represent a novel diagnostic biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Danni Deng
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China.,Clinical Medical Research Center, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Yi Mo
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Lian Xue
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China.,Clinical Medical Research Center, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Naiyuan Shao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Jie Cao
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
46
|
Kanvinde PP, Malla AP, Connolly NP, Szulzewsky F, Anastasiadis P, Ames HM, Kim AJ, Winkles JA, Holland EC, Woodworth GF. Leveraging the replication-competent avian-like sarcoma virus/tumor virus receptor-A system for modeling human gliomas. Glia 2021; 69:2059-2076. [PMID: 33638562 PMCID: PMC8591561 DOI: 10.1002/glia.23984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.
Collapse
Affiliation(s)
- Pranjali P Kanvinde
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adarsha P Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Heather M Ames
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
Li X, Sun L, Wang X, Wang N, Xu K, Jiang X, Xu S. A Five Immune-Related lncRNA Signature as a Prognostic Target for Glioblastoma. Front Mol Biosci 2021; 8:632837. [PMID: 33665208 PMCID: PMC7921698 DOI: 10.3389/fmolb.2021.632837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 01/18/2023] Open
Abstract
Background: A variety of regulatory approaches including immune modulation have been explored as approaches to either eradicate antitumor response or induce suppressive mechanism in the glioblastoma microenvironment. Thus, the study of immune-related long noncoding RNA (lncRNA) signature is of great value in the diagnosis, treatment, and prognosis of glioblastoma. Methods: Glioblastoma samples with lncRNA sequencing and corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) database. Immune-lncRNAs co-expression networks were built to identify immune-related lncRNAs via Pearson correlation. Based on the median risk score acquired in the training set, we divided the samples into high- and low-risk groups and demonstrate the survival prediction ability of the immune-related lncRNA signature. Both principal component analysis (PCA) and gene set enrichment analysis (GSEA) were used for immune state analysis. Results: A cohort of 151 glioblastoma samples and 730 immune-related genes were acquired in this study. A five immune-related lncRNA signature (AC046143.1, AC021054.1, AC080112.1, MIR222HG, and PRKCQ-AS1) was identified. Compared with patients in the high-risk group, patients in the low-risk group showed a longer overall survival (OS) in the training, validation, and entire TCGA set (p = 1.931e-05, p = 1.706e-02, and p = 3.397e-06, respectively). Additionally, the survival prediction ability of this lncRNA signature was independent of known clinical factors and molecular features. The area under the ROC curve (AUC) and stratified analyses were further performed to verify its optimal survival predictive potency. Of note, the high-and low-risk groups exhibited significantly distinct immune state according to the PCA and GSEA analyses. Conclusions: Our study proposes that a five immune-related lncRNA signature can be utilized as a latent indicator of prognosis and potential therapeutic approach for glioblastoma.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Li Sun
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Nan Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Kanghong Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
48
|
Saito T, Muragaki Y, Maruyama T, Abe K, Komori T, Amano K, Eguchi S, Nitta M, Tsuzuki S, Fukui A, Kawamata T. Mucosal thickening of the maxillary sinus is frequently associated with diffuse glioma patients and correlates with poor survival prognosis of GBM patients: comparative analysis to meningioma patients. Neurosurg Rev 2021; 44:3249-3258. [PMID: 33537891 DOI: 10.1007/s10143-021-01490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/06/2021] [Accepted: 01/26/2021] [Indexed: 11/24/2022]
Abstract
Glioma patients were frequently associated with mucosal thickening of the maxillary sinus (MTMS), which reflects mucosal inflammation. We suspected that MTMS is associated with impaired mucosal immune response and correlated with dysfunction in the anti-tumor immune response in diffuse glioma patients. Therefore, the aim of this study was to determine whether the occurrence of diffuse glioma is correlated with MTMS compared to meningioma and control groups. Furthermore, we investigated whether MTMS is associated with overall survival (OS) in glioblastoma (GBM) patients. This study included 343 patients with newly diagnosed diffuse gliomas and 218 patients with meningioma treated at our institution between 2015 and 2018. As control, 201 patients with headache who did not have an intracranial organic lesion were included. Using three-axis MR images, we evaluated the incidence of MTMS in all patients. Additionally, we investigated the relationship between MTMS and OS. The incidence of MTMS in patients with diffuse glioma was significantly higher than that in the meningioma (p < .0001) and control groups (p < .0001). In 128 patients with GBM, MTMS status correlated significantly with OS (p = .0064). We revealed that the incidence of MTMS is significantly associated with patients with diffuse glioma. This suggests that MTMS is indirectly involved in the occurrence of diffuse gliomas. Furthermore, the presence of MTMS correlated significantly with shorter OS in GBM patients, indicating that MTMS is involved in suppression of anti-tumor immune response. Preoperative recognition of MTMS might be useful for improving the clinical management of GBM patients.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan. .,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.,Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kayoko Abe
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kosaku Amano
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Seiichiro Eguchi
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
49
|
BATF2 prevents glioblastoma multiforme progression by inhibiting recruitment of myeloid-derived suppressor cells. Oncogene 2021; 40:1516-1530. [PMID: 33452462 PMCID: PMC7906906 DOI: 10.1038/s41388-020-01627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
The basic leucine zipper ATF-like transcription factor 2 (BATF2) has been implicated in inflammatory responses and anti-tumour effects. Little, however, is known regarding its extracellular role in maintaining a non-supportive cancer microenvironment. Here, we show that BATF2 inhibits glioma growth and myeloid-derived suppressor cells (MDSCs) recruitment. Interestingly, extracellular vesicles (EVs) from BATF2-overexpressing glioma cell lines (BATF2-EVs) inhibited MDSCs chemotaxis in vitro. Moreover, BATF2 inhibited intracellular SDF-1α and contributes to decreased SDF-1α in EVs. In addition, BATF2 downregulation-induced MDSCs recruitment were reversed by blocking SDF-1α/CXCR4 signalling upon AMD3100 treatment. Specifically, detection of EVs in 24 pairs of gliomas and healthy donors at different stages revealed that the abundance of BATF2-positive EVs in plasma (BATF2+ plEVs) can distinguish stage III-IV glioma from stage I-II glioma and healthy donors. Taken together, our study identified novel regulatory functions of BATF2 in regulating MDSCs recruitment, providing a prognostic value in terms of the number of BATF2+ plEVs in glioma stage.
Collapse
|
50
|
Mei J, Cai Y, Xu R, Yang X, Zhou W, Wang H, Liu C. Characterization of the Clinical Significance of PD-1/PD-Ls Expression and Methylation in Patients With Low-Grade Glioma. Technol Cancer Res Treat 2021; 20:15330338211011970. [PMID: 33955303 PMCID: PMC8111557 DOI: 10.1177/15330338211011970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/23/2021] [Accepted: 03/30/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Immune checkpoints play crucial roles in the immune escape of cancer cells. However, the exact prognostic values of expression and methylation of programmed-death 1 (PD-1), programmed-death-ligand 1 (PD-L1) and PD-L2 in low-grade glioma (LGG) have not been well-defined yet. METHODS A total 514 LGG samples from the Cancer Genome Atlas (TCGA) dataset containing gene expression, DNA methylation, and survival data were enrolled in our study. Besides, a total of 137 primary LGG samples from the Chinese Glioma Genome Atlas (CGGA) database were also extracted for the survival analysis of the prognostic values of PD-1/PD-Ls expression. RESULTS PD-1/PD-Ls had distinct co-expression patterns in LGG tissues. The expression and methylation level of PD-1/PD-Ls seemed to be various in different LGG subtypes. Besides, overexpression and hypo-methylation of PD-1/PD-Ls were associated with worse prognosis. In addition, PD-1/PD-Ls expression was positively associated with TIICs infiltration, while their methylation was negatively associated with TIICs infiltration. Moreover, PD-1/PD-Ls and their positively correlated gene mainly participated in immune response related biological processes. CONCLUSION To conclude, overexpression and hypo-methylation of PD-1/PD-Ls predicted unfavorable prognosis in LGG patients, suggesting those patients may benefit from PD1/PD-Ls checkpoint inhibitors treatment.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Rui Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuejing Yang
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Weijian Zhou
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Huiyu Wang
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Chaoying Liu
- Department of Oncology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|