1
|
Qi Y, Sun D, Zhai X, Chen F, Niu J, Zhu H. Macrophages in the premetastatic and metastatic niche: key functions and therapeutic directions. J Transl Med 2025; 23:602. [PMID: 40448239 DOI: 10.1186/s12967-025-06556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Metastasis plays a significant role in the high mortality rates associated with cancer and is usually the endpoint of a series of sequential and dynamic events. A crucial step in metastasis development and progression is the formation of a premetastatic niche (PMN), which provides a conducive microenvironment for the settlement and colonization of disseminated tumor cells at distant metastatic sites. Extensive research has demonstrated the significance of macrophage populations within primary tumors in promoting metastatic progression. Nevertheless, the contribution of macrophages at secondary sites to the regulation of PMN formation is frequently overlooked. This review systematically explores the role of macrophages in priming the PMN to facilitate cancer metastasis. Additionally, we provide a compendium of existing strategies to target macrophages in cancer therapy.
Collapse
Affiliation(s)
- Yana Qi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong Province, 250117, China
| | - Dongmei Sun
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong Province, 250117, China
| | - Xiaoyang Zhai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong Province, 250117, China
| | - Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong Province, 250117, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong Province, 250117, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong Province, 250117, China.
| |
Collapse
|
2
|
Mao Q, Liu J, Yan Y, Wang G, Zhang M, Wang Z, Wen X, Jiang Z, Li H, Li J, Xu M, Zhang R, Yang B. 13-Methylpalmatine alleviates bleomycin-induced pulmonary fibrosis by suppressing the ITGA5/TGF-β/Smad signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156545. [PMID: 40023972 DOI: 10.1016/j.phymed.2025.156545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an irreversible lung disease for which there is a lack of effective and safe therapeutic drugs. 13-Methylpalmatine (13-Me-PLT) is an active compound from Coptis chinensis, and no study has yet been reported on its pharmacological effects in pulmonary fibrotic diseases. The group has previously demonstrated the antimyocardial fibrosis efficacy of 13-Me-PLT but its effect on pulmonary fibrosis and its potential mechanism has not yet been investigated. PURPOSE The present research is designed to clarify the therapeutic potential and mechanism of action of 13-Me-PLT in IPF using a bleomycin (BLM)-induced mouse model of IPF. METHODS In vivo, mice were administrated with BLM to establish the IPF model, and IPF mice were treated with 13-Me-PLT (5, 10, and 20 mg/kg) and pirfenidone (PFD, 300 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/ml)-induced MRC5 cells, which were then treated with 13-Me-PLT (5, 10, 20 μM) and PFD (500 μM). High-throughput transcriptome sequencing, molecular dynamics simulations, molecular docking and Surface plasmon resonance (SPR) were employed to elucidate the underlying mechanisms of 13-Me-PLT in mitigating IPF. RESULT In vivo experiments showed that 13-Me-PLT significantly ameliorated BLM-induced lung fibrosis in mice. In vitro studies, 13-Me-PLT showed good antifibrotic potential by inhibiting fibroblast differentiation. Transcriptomic analysis of mouse lung tissues identified ITGA5 and TGF-β/Smad signaling pathways as key targets for the antifibrotic effects of 13-Me-PLT. Molecular docking and kinetic analyses further supported these findings. Functional studies involving ITGA5 silencing and overexpression confirmed that 13-Me-PLT down-regulated ITGA5 expression and inhibited the activation of the TGF-β/Smad signaling pathway, confirming its mechanism of action. CONCLUSION To our best knowledge, these results provide the first insight that 13-Me-PLT is protective against BLM-induced IPF in mice. Unlike existing antifibrotic drugs, 13-Me-PLT specifically targets the ITGA5/TGF-β/Smad signaling pathway, offering a novel and potentially more effective therapeutic approach. This study not only validates the antifibrotic efficacy of 13-Me-PLT but also elucidates its unique mechanism of action, these findings may provide an opportunity to develop new drugs to treat IPF.
Collapse
Affiliation(s)
- Qin Mao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jiajing Liu
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yu Yan
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gang Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Miao Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xiaowei Wen
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zefeng Jiang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Haijing Li
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Mingyang Xu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Rong Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, PR China.
| |
Collapse
|
3
|
Hergueta-Redondo M, Sánchez-Redondo S, Hurtado B, Santos V, Pérez-Martínez M, Ximénez-Embún P, McDowell SAC, Mazariegos MS, Mata G, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Graña-Castro O, Megias D, Quail D, Quintela-Fandino M, Peinado H. The impact of a high fat diet and platelet activation on pre-metastatic niche formation. Nat Commun 2025; 16:2897. [PMID: 40175356 PMCID: PMC11965330 DOI: 10.1038/s41467-025-57938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 03/07/2025] [Indexed: 04/04/2025] Open
Abstract
There is active crosstalk between tumor cells and the tumor microenvironment during metastatic progression, a process that is significantly affected by obesity, particularly in breast cancer. Here we analyze the impact of a high fat diet (HFD) on metastasis, focusing on the role of platelets in the formation of premetastatic niches (PMNs). We find that a HFD provokes pre-activation of platelets and endothelial cells, promoting the formation of PMNs in the lung. These niches are characterized by increased vascular leakiness, platelet activation and overexpression of fibronectin in both platelets and endothelial cells. A HFD promotes interactions between platelets, tumor cells and endothelial cells within PMNs, enhancing tumor cell homing and metastasis. Importantly, therapeutic interventions like anti-platelet antibody administration or a dietary switch reduce metastatic cell homing and outgrowth. Moreover, blocking fibronectin reduces the interaction of tumor cells with endothelial cells. Importantly, when coagulation parameters prior to neoadjuvant treatment are considered, triple negative breast cancer (TNBC) female patients with reduced Partial Thromboplastin time (aPTT) had a significantly shorter time to relapse. These findings highlight how diet and platelet activation in pre-metastatic niches affect tumor cell homing and metastasis, suggesting potential therapeutic interventions and prognostic markers for TNBC patients.
Collapse
Affiliation(s)
- Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Begoña Hurtado
- Cancer Cell Cycle Group, Preclinical & Translational Research Department, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center (SCC), Lund University, Lund, Sweden
| | - Gadea Mata
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Department of Mathematics and Computer Science, University of La Rioja, La Rioja, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnologicas (CIEMAT), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigacion Sanitaria Fundacion Jiménez Díaz, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA-Nemesio Díez), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, 28925, Alcorcón, Spain
| | - Diego Megias
- Confocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Advanced Optical Microscopy - ISCIII Madrid, Madrid, Spain
| | - Daniela Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
- Medical Oncology, Hospital de Fuenlabrada, Madrid, Spain
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
4
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
5
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
6
|
Messé M, Bernhard C, Foppolo S, Thomas L, Marchand P, Herold-Mende C, Idbaih A, Kessler H, Etienne-Selloum N, Ochoa C, Tambar UK, Elati M, Laquerriere P, Entz-Werle N, Martin S, Reita D, Dontenwill M. Hypoxia-driven heterogeneous expression of α5 integrin in glioblastoma stem cells is linked to HIF-2α. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167471. [PMID: 39154793 DOI: 10.1016/j.bbadis.2024.167471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Despite numerous molecular targeted therapies tested in glioblastoma (GBM), no significant progress in patient survival has been achieved in the last 20 years in the overall population of GBM patients except with TTfield setup associated with the standard of care chemoradiotherapy. Therapy resistance is associated with target expression heterogeneity and plasticity between tumors and in tumor niches. We focused on α5 integrin implicated in aggressive GBM in preclinical and clinical samples. To address the characteristics of α5 integrin heterogeneity we started with patient data indicating that elevated levels of its mRNA are related to hypoxia pathways. We turned on glioma stem cells which are considered at the apex of tumor formation and recurrence but also as they localize in hypoxic niches. We demonstrated that α5 integrin expression is stem cell line dependent and is modulated positively by hypoxia in vitro. Importantly, heterogeneity of expression is conserved in in vivo stem cell-derived mice xenografts. In hypoxic niches, HIF-2α is preferentially implicated in α5 integrin expression which confers migratory capacity to GBM stem cells. Hence combining HIF-2α and α5 integrin inhibitors resulted in proliferation and migration impairment of α5 integrin expressing cells. Stabilization of HIF-2α is however not sufficient to control integrin α5 expression. Our results show that AHR (aryl hydrocarbon receptor) expression is inversely related to HIF-2α and α5 integrin expressions suggesting a functional competition between the two transcription factors. Collectively, data confirm the high heterogeneity of a GBM therapeutic target, its induction in hypoxic niches by HIF-2α and suggest a new way to attack molecularly defined GBM stem cells.
Collapse
Affiliation(s)
- Mélissa Messé
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Chloé Bernhard
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Sophie Foppolo
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Lionel Thomas
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Patrice Marchand
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Christel Herold-Mende
- Division of Neurosurgical Research, Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ahmed Idbaih
- Sorbonne University, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, F-75013 Paris, France
| | - Horst Kessler
- Institute for Advanced Study, Department Chemie, Technical University Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Nelly Etienne-Selloum
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pharmacy department, Institut de Cancérologie Strasbourg Europe (ICANS), 67200 Strasbourg, France
| | - Charles Ochoa
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, United States
| | - Mohamed Elati
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille F-59000, France
| | - Patrice Laquerriere
- UMR7178 CNRS, Hubert Curien Multidisciplinary Institute, Strasbourg University, 67000 Strasbourg, France
| | - Natacha Entz-Werle
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Pédiatrie Onco-Hématologie-Pédiatrie III, Strasbourg University Hospital, 67091 Strasbourg, France
| | - Sophie Martin
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France
| | - Damien Reita
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France; Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Monique Dontenwill
- UMR7021 CNRS, Tumoral Signaling and Therapeutic Targets, Strasbourg University, Faculty of Pharmacy, Illkirch, France.
| |
Collapse
|
7
|
Qiu R, Deng Y, Lu Y, Liu X, Huang Q, Du Y. ITGB3-enriched extracellular vesicles mediate the formation of osteoclastic pre-metastatic niche to promote lung adenocarcinoma bone metastasis. Mol Carcinog 2024; 63:2190-2204. [PMID: 39136603 DOI: 10.1002/mc.23803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 10/11/2024]
Abstract
The regulatory mechanisms underlying bone metastasis in lung adenocarcinoma (LUAD) are not yet fully understood despite the frequent occurrence of bone involvement. This study aimed to examine the involvement and mechanism of integrin subunit beta 3 (ITGB3) in the process of LUAD bone metastasis. Our findings indicate that ITGB3 facilitates the migration and invasion of LUAD cells in vitro and metastasis to the bone in vivo. Furthermore, ITGB3 stimulates osteoclast production and activation, thereby expediting osteolytic lesion progression. Extracellular vesicles (EVs) isolated from the conditioned medium (CM) of LUAD cells overexpressing ITGB3 determined that ITGB3 facilitates osteoclastogenesis and enhances osteoclast activity by utilizing EVs-mediated transport to RAW264.7 cells. Our in vivo findings demonstrated that ITGB3-EVs augmented the population of osteoclasts, thereby establishing an osteoclastic pre-metastatic niche (PMN) conducive to the colonization and subsequent growth of LUAD cells in the bone. ITGB3 is enriched in serum EVs of patients diagnosed with LUAD bone metastasis, potentially facilitating osteoclast differentiation and activation in vitro. Our research illustrates that ITGB3-EVs derived from LUAD cells facilitate osteoclast differentiation and activation by modulating the phosphorylation level of p38 MAPK. This process ultimately leads to the generation of osteolytic PMN and accelerates the progression of bone metastasis.
Collapse
Affiliation(s)
- Rong Qiu
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Deng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yue Lu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xingyu Liu
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Huang
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhen Du
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Baldassarri I, Tavakol DN, Graney PL, Chramiec AG, Hibshoosh H, Vunjak-Novakovic G. An engineered model of metastatic colonization of human bone marrow reveals breast cancer cell remodeling of the hematopoietic niche. Proc Natl Acad Sci U S A 2024; 121:e2405257121. [PMID: 39374382 PMCID: PMC11494322 DOI: 10.1073/pnas.2405257121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/16/2024] [Indexed: 10/09/2024] Open
Abstract
Incomplete understanding of metastatic disease mechanisms continues to hinder effective treatment of cancer. Despite remarkable advancements toward the identification of druggable targets, treatment options for patients in remission following primary tumor resection remain limited. Bioengineered human tissue models of metastatic sites capable of recreating the physiologically relevant milieu of metastatic colonization may strengthen our grasp of cancer progression and contribute to the development of effective therapeutic strategies. We report the use of an engineered tissue model of human bone marrow (eBM) to identify microenvironmental cues regulating cancer cell proliferation and to investigate how triple-negative breast cancer (TNBC) cell lines influence hematopoiesis. Notably, individual stromal components of the bone marrow niche (osteoblasts, endothelial cells, and mesenchymal stem/stromal cells) were each critical for regulating tumor cell quiescence and proliferation in the three-dimensional eBM niche. We found that hematopoietic stem and progenitor cells (HSPCs) impacted TNBC cell growth and responded to cancer cell presence with a shift of HSPCs (CD34+CD38-) to downstream myeloid lineages (CD11b+CD14+). To account for tumor heterogeneity and show proof-of-concept ability for patient-specific studies, we demonstrate that patient-derived tumor organoids survive and proliferate in the eBM, resulting in distinct shifts in myelopoiesis that are similar to those observed for aggressively metastatic cell lines. We envision that this human tissue model will facilitate studies of niche-specific metastatic progression and individualized responses to treatment.
Collapse
Affiliation(s)
- Ilaria Baldassarri
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Daniel Naveed Tavakol
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Pamela L. Graney
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
| | - Alan G. Chramiec
- Department of Biomedical Engineering, Columbia University, New York, NY10025
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY10032
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY10025
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY10032
- Department of Medicine, Columbia University, New York, NY10032
- College of Dental Medicine, Columbia University, New York, NY10032
| |
Collapse
|
9
|
Makwana P, Modi U, Dhimmar B, Vasita R. Design and development of in-vitro co-culture device for studying cellular crosstalk in varied tissue microenvironment. BIOMATERIALS ADVANCES 2024; 163:213952. [PMID: 38991495 DOI: 10.1016/j.bioadv.2024.213952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/16/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Despite of being in different microenvironment, breast cancer cells influence the bone cells and persuade cancer metastasis from breast to bone. Multiple co-culture approaches have been explored to study paracrine signaling between these cells and to study the progression of cancer. However, lack of native tissue microenvironment remains a major bottleneck in existing co-culture technologies. Therefore, in the present study, a tumorigenic and an osteogenic microenvironment have been sutured together to create a multi-cellular environment and has been appraised to study cancer progression in bone tissue. The PCL-polystyrene and PCL-collagen fibrous scaffolds were characterized for tumorigenic and osteogenic potential induction on MDA-MB-231 and MC3T3-E1 cells respectively. Diffusion ability of crystal violet, glucose, and bovine serum albumin across the membrane were used to access the potential paracrine interaction facilitated by device. While in co-cultured condition, MDA-MB-231 cells showed EMT phenotype along with secretion of TNFα and PTHrP which lower down the expression of osteogenic markers including alkaline phosphatase, RUNX2, Osteocalcin and Osteoprotegerin. The cancer progression in bone microenvironment demonstrated the role and necessity of creating multiple tissue microenvironment and its contribution in studying multicellular disease progression and therapeutics.
Collapse
Affiliation(s)
- Pooja Makwana
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Unnati Modi
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Bindiya Dhimmar
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India
| | - Rajesh Vasita
- Biomaterial and Biomimetic Laboratory, School of Life Sciences, Central University of Gujarat, India; Terasaki Institute of Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Sagheb IS, Coonan TP, Randall RL, Griffin KH, Leach JK. Extracellular matrix production and oxygen diffusion regulate chemotherapeutic response in osteosarcoma spheroids. Cancer Med 2024; 13:e70239. [PMID: 39300969 PMCID: PMC11413413 DOI: 10.1002/cam4.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Osteosarcoma (OS) survival rates and outcome have not improved in 50 years since the advent of modern chemotherapeutics. Thus, there is a critical need for an improved understanding of the tumor microenvironment to identify better therapies. Extracellular matrix (ECM) deposition and hypoxia are known to abrogate the efficacy of various chemical and cell-based therapeutics. Here, we aim to mechanistically investigate the combinatorial effects of hypoxia and matrix deposition with the use of OS spheroids. METHODS We use two murine OS cell lines with differential metastatic potential to form spheroids. We form spheroids of two sizes, use ascorbate-2-phosphate supplementation to enhance ECM deposition, and study cell response under standard (21% O2) and physiologic (5% O2) oxygen tensions. Finally, we examine chemotherapeutic responses to doxorubicin treatment. RESULTS ECM production and oxygen tension are key determinants of spheroid size through cell organization based on nutrient and oxygen distribution. Interestingly, highly metastatic OS is more susceptible to chemotherapeutics compared to less metastatic OS when matrix production increases. Together, these data suggest that dynamic interactions between ECM production and oxygen diffusion may result in distinct chemotherapeutic responses despite inherent tumor aggressiveness. CONCLUSION This work establishes OS spheroids as a valuable tool for early OS tumor formation investigation and holds potential for novel therapeutic target and prognostic indicator discovery.
Collapse
Affiliation(s)
- Isabel S. Sagheb
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Thomas P. Coonan
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - R. Lor Randall
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
| | - Katherine H. Griffin
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
- School of Veterinary MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - J. Kent Leach
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of Orthopaedic SurgeryUC Davis HealthSacramentoCaliforniaUSA
| |
Collapse
|
11
|
Ouyang P, Cheng B, He X, Lou J, Li X, Guo H, Xu F. Navigating the biophysical landscape: how physical cues steer the journey of bone metastatic tumor cells. Trends Cancer 2024; 10:792-808. [PMID: 39127608 DOI: 10.1016/j.trecan.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
Many tumors prefer to metastasize to bone, but the underlying mechanisms remain elusive. The human skeletal system has unique physical properties, that are distinct from other organs, which play a key role in directing the behavior of tumor cells within bone. Understanding the physical journey of tumor cells within bone is crucial. In this review we discuss bone metastasis in the context of how physical cues in the bone vasculature and bone marrow niche regulate the fate of tumor cells. Our objective is to inspire innovative diagnostic and therapeutic approaches for bone metastasis from a mechanobiological perspective.
Collapse
Affiliation(s)
- Pengrong Ouyang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Bo Cheng
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Xi'an International Medical Center Hospital, Xi'an 710061, P.R. China.
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China.
| | - Xiaokang Li
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P.R. China.
| | - Hui Guo
- Department of Medical Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China.
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| |
Collapse
|
12
|
Zuo C, Xia J, Chen L. Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning. Nat Commun 2024; 15:5057. [PMID: 38871687 DOI: 10.1038/s41467-024-49171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Spatially resolved transcriptomics (SRT) has enabled precise dissection of tumor-microenvironment (TME) by analyzing its intracellular molecular networks and intercellular cell-cell communication (CCC). However, lacking computational exploration of complicated relations between cells, genes, and histological regions, severely limits the ability to interpret the complex structure of TME. Here, we introduce stKeep, a heterogeneous graph (HG) learning method that integrates multimodality and gene-gene interactions, in unraveling TME from SRT data. stKeep leverages HG to learn both cell-modules and gene-modules by incorporating features of diverse nodes including genes, cells, and histological regions, allows for identifying finer cell-states within TME and cell-state-specific gene-gene relations, respectively. Furthermore, stKeep employs HG to infer CCC for each cell, while ensuring that learned CCC patterns are comparable across different cell-states through contrastive learning. In various cancer samples, stKeep outperforms other tools in dissecting TME such as detecting bi-potent basal populations, neoplastic myoepithelial cells, and metastatic cells distributed within the tumor or leading-edge regions. Notably, stKeep identifies key transcription factors, ligands, and receptors relevant to disease progression, which are further validated by the functional and survival analysis of independent clinical data, thereby highlighting its clinical prognostic and immunotherapy applications.
Collapse
Affiliation(s)
- Chunman Zuo
- Institute of Artificial Intelligence, Shanghai Engineering Research Center of Industrial Big Data and Intelligent System, Donghua University, Shanghai, 201620, China.
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130022, China.
| | - Junjie Xia
- Institute of Artificial Intelligence, Shanghai Engineering Research Center of Industrial Big Data and Intelligent System, Donghua University, Shanghai, 201620, China
- Department of Applied Mathematics, Donghua University, Shanghai, 201620, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China.
- West China Biomedical Big Data Center, Med-X center for informatics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Zhang C, Yu Z, Yang S, Liu Y, Song J, Mao J, Li M, Zhao Y. ZNF460-mediated circRPPH1 promotes TNBC progression through ITGA5-induced FAK/PI3K/AKT activation in a ceRNA manner. Mol Cancer 2024; 23:33. [PMID: 38355583 PMCID: PMC10865535 DOI: 10.1186/s12943-024-01944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Circular RNAs are highly stable regulatory RNAs that have been increasingly associated with tumorigenesis and progression. However, the role of many circRNAs in triple-negative breast cancer (TNBC) and the related mechanisms have not been elucidated. METHODS In this study, we screened circRNAs with significant expression differences in the RNA sequencing datasets of TNBC and normal breast tissues and then detected the expression level of circRPPH1 by qRT‒PCR. The biological role of circRPPH1 in TNBC was then verified by in vivo and in vitro experiments. Mechanistically, we verified the regulatory effects between circRPPH1 and ZNF460 and between circRPPH1 and miR-326 by chromatin immunoprecipitation (ChIP), fluorescence in situ hybridization assay, dual luciferase reporter gene assay and RNA pull-down assay. In addition, to determine the expression of associated proteins, we performed immunohistochemistry, immunofluorescence, and western blotting. RESULTS The upregulation of circRPPH1 in TNBC was positively linked with a poor prognosis. Additionally, both in vivo and in vitro, circRPPH1 promoted the biologically malignant behavior of TNBC cells. Additionally, circRPPH1 may function as a molecular sponge for miR-326 to control integrin subunit alpha 5 (ITGA5) expression and activate the focal adhesion kinase (FAK)/PI3K/AKT pathway. CONCLUSION Our research showed that ZNF460 could promote circRPPH1 expression and that the circRPPH1/miR-326/ITGA5 axis could activate the FAK/PI3K/AKT pathway to promote the progression of TNBC. Therefore, circRPPH1 can be used as a therapeutic or diagnostic target for TNBC.
Collapse
Affiliation(s)
- Chuanpeng Zhang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Ziyi Yu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Susu Yang
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yitao Liu
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiangni Song
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Juan Mao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Minghui Li
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Yi Zhao
- Department of General Surgery, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
14
|
Di Mauro P, Croset M, Bouazza L, Clézardin P, Reynaud C. LOX, but not LOXL2, promotes bone metastasis formation and bone destruction in triple-negative breast cancer. J Bone Oncol 2024; 44:100522. [PMID: 38283827 PMCID: PMC10820283 DOI: 10.1016/j.jbo.2024.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
The primary function of the lysyl oxidase (LOX) family, including LOX and its paralogue LOX-like (LOXL)-2, is to catalyze the covalent crosslinking of collagen and elastin in the extracellular matrix. LOX and LOXL2 are also facilitating breast cancer invasion and metastatic spread to visceral organs (lungs, liver) in vivo. Conversely, the contribution of LOX and LOXL2 to breast cancer bone metastasis remains scant. Here, using gene overexpression or silencing strategies, we investigated the role of LOX and LOXL2 on the formation of metastatic osteolytic lesions in animal models of triple negative breast cancer. In vivo, the extent of radiographic metastatic osteolytic lesions in animals injected with LOX-overexpressing [LOX(+)] tumor cells was 3-fold higher than that observed in animals bearing tumors silenced for LOX [LOX(-)]. By contrast, the extent of osteolytic lesions between LOXL2(+) and LOXL2(-) tumor-bearing animals did not differ, and was comparable to that observed with LOX(-) tumor-bearing animals. In situ, TRAP staining of bone tissue sections from the hind limbs of LOX(+) tumor-bearing animals was substantially increased compared to LOX(-), LOXL2(+) and LOXL2(-)-tumor-bearing animals, which was indicative of enhanced active-osteoclast resorption. In vitro, tumor-secreted LOX increased osteoclast differentiation induced by RANKL, whereas LOXL2 seemed to counteract LOX's pro-osteoclastic activity. Furthermore, LOX (but not LOXL2) overexpression in tumor cells induced a robust production of IL-6, the latter being a pro-osteoclastic cytokine. Based on these findings, we propose a model in which LOX and IL-6 secreted from tumor cells act in concert to enhance osteoclast-mediated bone resorption that, in turn, promotes metastatic bone destruction in vivo.
Collapse
Affiliation(s)
- Paola Di Mauro
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| | - Martine Croset
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| | - Lamia Bouazza
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| | - Philippe Clézardin
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Caroline Reynaud
- INSERM, UMR1033, F-69372 Lyon, France
- University of Lyon, F-69622 Villeurbanne, France
| |
Collapse
|
15
|
Liu S, Chen Q, Wang L, Tong M, Sun H, Dong M, Niu W, Wang L. The novel protein complex FAPα/ITGA5 is involved in the bone destruction of apical periodontitis. Int J Biol Macromol 2024; 259:128200. [PMID: 37979759 DOI: 10.1016/j.ijbiomac.2023.128200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
The bacteria that invade the periapical tissue of teeth can directly damage tissue cells such as periapical fibroblasts, leading to an inflammatory response in the periapical tissue and ultimately resulting in bone destruction. We investigated the role of fibroblast activation protein α (FAPα) and integrin α5 (ITGA5) in periapical bone destruction. This study found that FAPα and ITGA5 were highly expressed in human tissues from patients with chronic apical periodontitis. Osteoclast differentiation decreased when FAPα or ITGA5 was silenced and inhibited. The results of protein molecular docking showed that FAPα had good binding affinity to ITGA5, and its free energy was -14.5 kcal/mol. Immunofluorescence staining and co-immunoprecipitation showed that FAPα and ITGA5 formed protein complexes in the inflammatory microenvironment. In conclusion, this study proved that FAPα and ITGA5 participate in the regulation of osteoclast differentiation by forming protein complexes in the inflammatory microenvironment, which then regulates the occurrence and development of chronic apical periodontitis.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - QianYang Chen
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Lili Wang
- Zhong Shan College of Dalian Medical University, No. 28, Aixian Street, Dalian, Liaoning 116085, China
| | - MeiChen Tong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - HaiBo Sun
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Ming Dong
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning 116044, China.
| | - WeiDong Niu
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning 116044, China.
| | - LiNa Wang
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning 116044, China.
| |
Collapse
|
16
|
Wang Y, Sun Y, Li X, Yu X, Zhang K, Liu J, Tian Q, Zhang H, Du X, Wang S. Progress in the treatment of malignant ascites. Crit Rev Oncol Hematol 2024; 194:104237. [PMID: 38128628 DOI: 10.1016/j.critrevonc.2023.104237] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Malignant ascites occurs as a symptom of the terminal stage of cancer, affecting the quality of life through abdominal distension, pain, nausea, anorexia, dyspnea and other symptoms. We describe the current main drug treatments in addition to surgery according to the traditional and new strategies. Traditional treatments were based on anti-tumor chemotherapy and traditional Chinese medicine treatments, as well as diuretics to relieve the patient's symptoms. New treatments mainly involve photothermal therapy, intestinal therapy and targeted immunity. This study emphasizes that both traditional and new therapies have certain advantages and disadvantages, and medication should be adjusted according to different periods of use and different patients. In conclusion, this article reviews the literature to systematically describe the primary treatment modalities for malignant ascites.
Collapse
Affiliation(s)
- Yiqiu Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Afflitiated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Xinyue Li
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiaoli Yu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Keying Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jinglei Liu
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao Du
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shuling Wang
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou, Zhejiang 311121, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
17
|
Mierke CT. Editorial: Cancer cell adhesion, metastasis, and the immune response. Front Cell Dev Biol 2023; 11:1347446. [PMID: 38149047 PMCID: PMC10749920 DOI: 10.3389/fcell.2023.1347446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023] Open
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Systems Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany
| |
Collapse
|
18
|
Buryska S, Patel K, Wuertz B, Gaffney PM, Ondrey F. Potential Roles of Activin in Head and Neck Squamous Cell Carcinoma Progression and Mortality. Anticancer Res 2023; 43:5299-5310. [PMID: 38030164 PMCID: PMC11285815 DOI: 10.21873/anticanres.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND/AIM Activin, a member of the TGF-β super family of cytokines, is involved in head and neck squamous cell carcinoma (HNSCC). This study examined the constituents of the activin axis in order to further elucidate the role of activin A in HNSCC progression. MATERIALS AND METHODS Immunohistochemistry (IHC), reverse transcription polymerase chain reaction (RT-PCR), MTT, and matrigel invasion assays, in addition to analysis of the tumor cancer genome atlas (TCGA), were employed. RESULTS IHC in HNSCC and oral leukoplakia (OPL) lesions demonstrated increased expression of the inhibin subunit βA (INHBA) (p<0.0001), as well as activin receptor type IB (ACVR1B) (p<0.0032) compared to normal mucosa. TCGA analysis revealed increased INHBA expression was associated with lymph node positive tumors (p=0.024), decreased overall survival (p=0.0167), and decreased promoter methylation (p<0.0001). Concomitant up-regulated expression of gene pathways strongly correlated with INHBA expression demonstrated further deleterious effects on survival (p<0.0148). CONCLUSION Activin may be an important component of early carcinogenesis in OPL and HNSCC with unfavorable effects on clinical end-points such as survival.
Collapse
Affiliation(s)
- Seth Buryska
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| | - Ketan Patel
- North Memorial Health/Blaze Health, Minneapolis, MN, U.S.A
| | - Beverly Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A.;
| | | | - Frank Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
19
|
Yu TY, Zhang G, Chai XX, Ren L, Yin DC, Zhang CY. Recent progress on the effect of extracellular matrix on occurrence and progression of breast cancer. Life Sci 2023; 332:122084. [PMID: 37716504 DOI: 10.1016/j.lfs.2023.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.
Collapse
Affiliation(s)
- Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, Zhejiang, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shanxi, PR China.
| |
Collapse
|
20
|
Wang X, Huang J, You R, Hou D, Liu J, Wu L, Yao M, Yang F, Huang H. Downregulation of ITGA5 inhibits lymphangiogenesis and cell migration and invasion in male laryngeal squamous cell carcinoma. PROTOPLASMA 2023; 260:1569-1580. [PMID: 37338646 DOI: 10.1007/s00709-023-01873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
ITGA5, a fibronectin receptor was highly expressed in laryngeal squamous cell carcinoma (LSCC) samples and was related to poor survival. However, the potential mechanism remains unclear. To elucidate the regulatory role of ITGA5 in LSCC progression, we investigated the effect of ITGA5 expression on lymphangiogenesis, migration, and invasion of LSCC cells in vitro and in vivo using immunohistochemistry, siRNA transfection, qRT-PCR, western blotting, enzyme-linked immunosorbent assay, flow cytometry, transwell co-culture, tube formation, cell migration, and invasion assays, and a subcutaneous graft tumor model. The expression of ITGA5 was higher in the LSCC tissues and linked to lymph node metastasis and T staging. Moreover, ITGA5 expression was significantly positively correlated with VEGF-C expression, and the lymphatic vessel density of patients with high ITGA5 expression was noticeably higher than that of patients with low ITGA5 expression. Additionally, it was found in vitro that downregulation of ITGA5 expression not only inhibited the expression and secretion of VEGF-C, but also suppressed the tube-forming ability of human lymphatic endothelial cells (HLECs) and the migration and invasion ability of LSCC cells, while exogenous VEGF-C supplementation reversed these phenomena. Furthermore, a tumor xenograft assay showed that si-ITGA5 restrained the growth and metastasis of TU212-derived tumors in vivo. Our findings suggested that ITGA5 induces lymphangiogenesis and LSCC cell migration and invasion by enhancing VEGF-C expression and secretion.
Collapse
Affiliation(s)
- Xiaoting Wang
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jun Huang
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ruolan You
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Diyu Hou
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jingru Liu
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Long Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meihong Yao
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fuwen Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, The 900th Hospital of the People's Liberation Army Joint Service Support Force, 156 North Xi-er Huan Road, Fuzhou, 350025, Fujian, China.
| | - Huifang Huang
- Central Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
21
|
Hu M, Kenific CM, Boudreau N, Lyden D. Tumor-derived nanoseeds condition the soil for metastatic organotropism. Semin Cancer Biol 2023; 93:70-82. [PMID: 37178822 PMCID: PMC10362948 DOI: 10.1016/j.semcancer.2023.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and fertile 'soil' for subsequent metastases. Among these 'seeding' factors that initiate pre-metastatic niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. This review focuses on tumor-derived EVs and how they direct organotropism and subsequently modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We also outline the progress made thus far towards clinical applications of tumor EVs.
Collapse
Affiliation(s)
- Mengying Hu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Bakhshinyan D, Suk Y, Kuhlmann L, Adile AA, Ignatchenko V, Custers S, Gwynne WD, Macklin A, Venugopal C, Kislinger T, Singh SK. Dynamic profiling of medulloblastoma surfaceome. Acta Neuropathol Commun 2023; 11:111. [PMID: 37430373 PMCID: PMC10331972 DOI: 10.1186/s40478-023-01609-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Medulloblastoma (MB) is the most common type of malignant pediatric brain cancer. The current standard of care (SOC) involves maximal safe resection and chemoradiotherapy in individuals older than 3 years, often leading to devastating neurocognitive and developmental deficits. Out of the four distinct molecular subgroups, Group 3 and 4 have the poorest patient outcomes due to the aggressive nature of the tumor and propensity to metastasize and recur post therapy. The toxicity of the SOC and lack of response in specific subtypes to the SOC underscores the urgent need for developing and translating novel treatment options including immunotherapies. To identify differentially enriched surface proteins that could be evaluated for potential future immunotherapeutic interventions, we leveraged N-glycocapture surfaceome profiling on Group 3 MB cells from primary tumor, through therapy, to recurrence using our established therapy-adapted patient derived xenograft model. Integrin 𝛼5 (ITGA5) was one of the most differentially enriched targets found at recurrence when compared to engraftment and untreated timepoints. In addition to being enriched at recurrence, shRNA-mediated knockdown and small molecule inhibition of ITGA5 have resulted in marked decrease in proliferation and self-renewal in vitro and demonstrated a survival advantage in vivo. Together, our data highlights the value of dynamic profiling of cells as they evolve through therapy and the identification of ITGA5 as a promising therapeutic target for recurrent Group 3 MB.
Collapse
Affiliation(s)
- David Bakhshinyan
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Michael G DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Laura Kuhlmann
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
| | - Ashley A Adile
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Vladimir Ignatchenko
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Stefan Custers
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew Macklin
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Center, UHN, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sheila K Singh
- McMaster Centre for Discovery in Cancer Research, McMaster University, MDCL 5027, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
23
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Wieder R. Awakening of Dormant Breast Cancer Cells in the Bone Marrow. Cancers (Basel) 2023; 15:cancers15113021. [PMID: 37296983 DOI: 10.3390/cancers15113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Up to 40% of patients with breast cancer (BC) have metastatic cells in the bone marrow (BM) at the initial diagnosis of localized disease. Despite definitive systemic adjuvant therapy, these cells survive in the BM microenvironment, enter a dormant state and recur stochastically for more than 20 years. Once they begin to proliferate, recurrent macrometastases are not curable, and patients generally succumb to their disease. Many potential mechanisms for initiating recurrence have been proposed, but no definitive predictive data have been generated. This manuscript reviews the proposed mechanisms that maintain BC cell dormancy in the BM microenvironment and discusses the data supporting specific mechanisms for recurrence. It addresses the well-described mechanisms of secretory senescence, inflammation, aging, adipogenic BM conversion, autophagy, systemic effects of trauma and surgery, sympathetic signaling, transient angiogenic bursts, hypercoagulable states, osteoclast activation, and epigenetic modifications of dormant cells. This review addresses proposed approaches for either eliminating micrometastases or maintaining a dormant state.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, 185 South Orange Avenue, MSB F671, Newark, NJ 07103, USA
| |
Collapse
|
25
|
Liu F, Wu Q, Dong Z, Liu K. Integrins in cancer: Emerging mechanisms and therapeutic opportunities. Pharmacol Ther 2023:108458. [PMID: 37245545 DOI: 10.1016/j.pharmthera.2023.108458] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Integrins are vital surface adhesion receptors that mediate the interactions between the extracellular matrix (ECM) and cells and are essential for cell migration and the maintenance of tissue homeostasis. Aberrant integrin activation promotes initial tumor formation, growth, and metastasis. Recently, many lines of evidence have indicated that integrins are highly expressed in numerous cancer types and have documented many functions of integrins in tumorigenesis. Thus, integrins have emerged as attractive targets for the development of cancer therapeutics. In this review, we discuss the underlying molecular mechanisms by which integrins contribute to most of the hallmarks of cancer. We focus on recent progress on integrin regulators, binding proteins, and downstream effectors. We highlight the role of integrins in the regulation of tumor metastasis, immune evasion, metabolic reprogramming, and other hallmarks of cancer. In addition, integrin-targeted immunotherapy and other integrin inhibitors that have been used in preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Fangfang Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Qiong Wu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zigang Dong
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Kangdong Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China; Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Tianjian Advanced Biomedical Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
26
|
Van Eyssen SR, Samarkina A, Isbilen O, Zeden MS, Volkan E. FimH and Type 1 Pili Mediated Tumor Cell Cytotoxicity by Uropathogenic Escherichia coli In Vitro. Pathogens 2023; 12:751. [PMID: 37375441 DOI: 10.3390/pathogens12060751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Uropathogenic Escherichia coli express hairlike proteinaceous surface projections, known as chaperone-usher pathway (CUP) pili. Type 1 pili are CUP pili with well-established pathogenic properties. The FimH adhesin subunit of type 1 pili plays a key role in the pathogenesis of urinary tract infections (UTIs) as it mediates the adhesion of the bacteria to urothelial cells of the bladder. In this study, two breast cancer cell lines, MDA-MB-231 and MCF-7, were used to demonstrate the cytotoxic activities of type 1 piliated uropathogenic E. coli UTI89 on breast cancer cells in a type 1 pili and FimH-mediated manner. E. coli were grown in static and shaking conditions to induce or inhibit optimal type 1 pili biogenesis, respectively. Deletion constructs of UTI89 ΔfimH and a complemented strain (UTI89 ΔfimH/pfimH) were further utilized to genetically assess the effect of type 1 pili and FimH on cancer cell viability. After incubation with the different strains, cytotoxicity was measured using trypan blue exclusion assays. UTI89 grown statically caused significant cytotoxicity in both breast cancer cell lines whereas cytotoxicity was reduced when the cells were incubated with bacteria grown under shaking conditions. The incubation of both MDA-MB-231 and MCF-7 with UTI89 Δfim operon or ΔfimH showed a significant reduction in cytotoxicity exerted by the bacterial strains, revealing that type 1 pili expression was necessary for cytotoxicity. Complementing the ΔfimH strain with pfimH reversed the phenotype, leading to a significant increase in cytotoxicity. Incubating type 1 pili expressing bacteria with the competitive FimH inhibitor D-mannose before cancer cell treatment also led to a significant reduction in cytotoxicity on both MDA-MB-231 and MCF-7 cancer cells, compared to vehicle control or D-mannose alone, indicating the requirement for functional FimH for cytotoxicity. Overall, our results reveal that, as opposed to UTI89 lacking type 1 pili, type 1 piliated UTI89 causes significant cancer cell mortality in a FimH-mediated manner, that is decreased with D-mannose.
Collapse
Affiliation(s)
- Shelly Roselyn Van Eyssen
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Anastasia Samarkina
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Ovgu Isbilen
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| | - Merve Suzan Zeden
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Microbiology, School of Biological and Chemical Sciences, University of Galway, H91TK33 Galway, Ireland
| | - Ender Volkan
- Biotechnology Research Center, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258 Nicosia, Turkey
| |
Collapse
|
27
|
Qi C, Lei L, Hu J, Ou S. Establishment and validation of a novel integrin-based prognostic gene signature that sub-classifies gliomas and effectively predicts immunosuppressive microenvironment. Cell Cycle 2023; 22:1259-1283. [PMID: 37096960 PMCID: PMC10193886 DOI: 10.1080/15384101.2023.2205204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
The integrin family members play a key role in cancer immunomodulation and prognosis. We comprehensively analyzed the expression patterns and clinical significance of integrin family-related genes in gliomas. A total of 2293 gliomas from the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and Gliovis platform were enrolled for analyses. Twenty-six integrin coding genes showed different expression patterns between glioma and normal brain tissues. We screened an integrin family-related gene signature (ITGA5, ITGA9, ITGAE, ITGB7 and ITGB8) that showed independent prognostic value and sub-classified gliomas into different prognostic and molecular clusters, further composed an integrin-based risk score model associated with glioma malignant clinical features, overall survival (OS), and immune microenvironment alterations. Besides, glioma patients with high-risk scores showed chemotherapeutic resistance and more immune cells infiltration as well as high immune checkpoints expression. Concurrently, we also revealed that high-risk score group presented resistance to T cell-mediated cancer killing process and lower rates of response to immune checkpoint blockade (ICB) treatment. In conclusion, our study identified a valuable integrin gene signature that predicted gliomas OS effectively, and sub-classified them into different phenotypes and accompanied with immunological changes, possibly acted as a biomarker for ICB treatment.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
- Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
28
|
Huang Y, Wang H, Yue X, Li X. Bone serves as a transfer station for secondary dissemination of breast cancer. Bone Res 2023; 11:21. [PMID: 37085486 PMCID: PMC10121690 DOI: 10.1038/s41413-023-00260-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
Metastasis is responsible for the majority of deaths among breast cancer patients. Although parallel polyclonal seeding has been shown to contribute to organ-specific metastasis, in the past decade, horizontal cross-metastatic seeding (metastasis-to-metastasis spreading) has also been demonstrated as a pattern of distant metastasis to multiple sites. Bone, as the most frequent first destination of breast cancer metastasis, has been demonstrated to facilitate the secondary dissemination of breast cancer cells. In this review, we summarize the clinical and experimental evidence that bone is a transfer station for the secondary dissemination of breast cancer. We also discuss the regulatory mechanisms of the bone microenvironment in secondary seeding of breast cancer, focusing on stemness regulation, quiescence-proliferation equilibrium regulation, epigenetic reprogramming and immune escape of cancer cells. Furthermore, we highlight future research perspectives and strategies for preventing secondary dissemination from bone.
Collapse
Affiliation(s)
- Yufan Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Hongli Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaomin Yue
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiaoqing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
29
|
Mao L, Wang L, Xu J, Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov 2023; 9:119. [PMID: 37037822 PMCID: PMC10086008 DOI: 10.1038/s41420-023-01417-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Integrins have been the research focus of cell-extracellular matrix adhesion (ECM) and cytokine receptor signal transduction. They are involved in the regulation of bone metabolism of bone precursor cells, mesenchymal stem cells (MSCs), osteoblasts (OBs), osteoclasts (OCs), and osteocytes. Recent studies expanded and updated the role of integrin in bone metabolism, and a large number of novel cytokines were found to activate bone metabolism pathways through interaction with integrin receptors. Integrins act as transducers that mediate the regulation of bone-related cells by mechanical stress, fluid shear stress (FSS), microgravity, hypergravity, extracellular pressure, and a variety of physical factors. Integrins mediate bone metastasis of breast, prostate, and lung cancer by promoting cancer cell adhesion, migration, and survival. Integrin-mediated targeted therapy showed promising prospects in bone metabolic diseases. This review emphasizes the latest research results of integrins in bone metabolism and bone metastasis and provides a vision for treatment strategies.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, WA, 6009, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China.
| |
Collapse
|
30
|
Wu Z, Wu Y, Liu Z, Song Y, Ge L, Du T, Liu Y, Liu L, Liu C, Ma L. L1CAM deployed perivascular tumor niche promotes vessel wall invasion of tumor thrombus and metastasis of renal cell carcinoma. Cell Death Discov 2023; 9:112. [PMID: 37015905 PMCID: PMC10073121 DOI: 10.1038/s41420-023-01410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/06/2023] Open
Abstract
The survival of tumor cells in the bloodstream, and vasculature adhesion at metastatic sites are crucial for tumor metastasis. Perivascular invasion aids tumor cell self-renewal, survival, and formation of metastases by facilitating readily available oxygen, nutrients, and endothelial-derived paracrine factors. Renal cell carcinoma (RCC) is among the most prevalent tumors of the urinary system, and the formation of venous tumor thrombus (VTT) is a characteristic feature of RCC. We observed high expression of L1CAM in the VTT with vessel wall invasion. L1CAM promotes the adhesion, migration, and invasion ability of RCC and enhances metastasis by interacting with ITGA5, which elicits activation of signaling downstream of integrin α5β1. L1CAM promotes ADAM17 transcription to facilitate transmembrane ectodomain cleavage and release of soluble L1CAM. In response to soluble L1CAM, vascular endothelial cells release several cytokines and chemokines. Endothelial-derived CXCL5 and its receptor CXCR2 promote the migration and intravasation of RCC toward endothelial cells suggesting that crosstalk between endothelial cells and tumor cells has a direct guiding role in driving the metastatic spread of RCC. LICAM plays a crucial role in the invasive ability of RCC, and regulation of L1CAM expression may contribute therapeutically to preventing RCC progression.
Collapse
Affiliation(s)
- Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Zhuo Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yimeng Song
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Liyuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Tan Du
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yunchong Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Li Liu
- School of Nursing, Beijing University of Chinese Medicine, Beijing, 100191, P.R. China
| | - Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China.
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P.R. China.
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing, 100191, P.R. China.
| |
Collapse
|
31
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Yao S, Zhao L, Chen S, Wang H, Gao Y, Shao NY, Dai M, Cai H. Cervical cancer immune infiltration microenvironment identification, construction of immune scores, assisting patient prognosis and immunotherapy. Front Immunol 2023; 14:1135657. [PMID: 36969161 PMCID: PMC10037308 DOI: 10.3389/fimmu.2023.1135657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThe immune microenvironment is of great significance in cervical cancer. However, there is still a lack of systematic research on the immune infiltration environment of cervical cancer.MethodsWe obtained cervical cancer transcriptome data and clinical information from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, evaluated the immune microenvironment of cervical cancer, determined immune subsets, constructed an immune cell infiltration scoring system, screened key immune-related genes, and performed single-cell data analysis and cell function analysis of key genes.ResultsWe combined the TCGA and GEO data sets and obtained three different immune cell populations. We obtained two gene clusters, extracted 119 differential genes, and established an immune cell infiltration (ICI) scoring system. Finally, three key genes, IL1B, CST7, and ITGA5, were identified, and single-cell sequencing data were mined to distribute these key genes in different cell types. By up-regulating CST7 and down-regulating IL1B and ITGA5, cervical cancer cells’ proliferation ability and invasion ability were successfully reduced.ConclusionWe conducted a comprehensive assessment of the state of the tumor immune microenvironment in cervical cancer, constructed the ICI scoring system, and identified the ICI scoring system as a potential indicator of susceptibility to immunotherapy for cervical cancer, identifying key genes suggesting that IL1B, CST7, and ITGA5 play an essential role in cervical cancer.
Collapse
Affiliation(s)
- Shijie Yao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Liyang Zhao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, Macau SAR, China
| | - Siming Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Ning-Yi Shao
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau, Macau SAR, China
- Ministry of Education (MoE) Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau, Macau SAR, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| | - Mengyuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
- *Correspondence: Hongbing Cai, ; Mengyuan Dai, ; Ning-Yi Shao,
| |
Collapse
|
33
|
Al-Thamiree Mezban S, Fox SW. Genistein and coumestrol reduce MCF-7 breast cancer cell viability and inhibit markers of preferential metastasis, bone matrix attachment and tumor-induced osteoclastogenesis. Arch Biochem Biophys 2023; 740:109583. [PMID: 36967033 DOI: 10.1016/j.abb.2023.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The propensity of breast cancer to preferentially metastasize to the skeleton is well known. Once established in bone metastatic breast cancers have a poor prognosis due to their ability to promote extensive bone loss which augments tumor burden. Unfortunately, current anti-resorptive therapies for skeletal metastasis are typically prescribed after secondary tumors have formed and are palliative in nature. One group of compounds with the potential to reduce both tumor burden and osteolysis are phytoestrogens (PE), but the mechanisms mediating a beneficial effect are unclear. Therefore, the current study examined the effect of genistein and coumestrol alone or in combination on breast cancer cell number, expression of mediators of preferential skeletal metastasis, bone matrix attachment and tumor-induced osteoclast formation. Results showed that genistein and coumestrol significantly reduced viable cell number in an estrogen receptor dependent manner (p < 0.05), whereas combinations of PE had no effect. In addition, genistein and coumestrol significantly reduced expression of genes driving epithelial to mesenchymal transition (snail), bone attachment (CXCR4 and integrin αV) and osteolysis (PTHrP and TNF-α). In keeping with this genistein and coumestrol significantly suppressed attachment of breast cancer cells to bone matrix and inhibited tumor and RANKL-induced osteoclast formation. Our data suggests that phytoestrogens not only decrease breast cancer cell viability but also antagonize essential tumor bone interactions that establish and drive the progression of skeletal metastasis.
Collapse
|
34
|
TOR1B: a predictor of bone metastasis in breast cancer patients. Sci Rep 2023; 13:1495. [PMID: 36707670 PMCID: PMC9883392 DOI: 10.1038/s41598-023-28140-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Recent therapeutic advances in breast cancer (BC) have improved survival outcomes; however, the prognosis for patients with bone metastasis (BM) remains poor. Hence, novel clinical biomarkers are needed to accurately predict BC BM as well as to promote personalized medicine. Here, we discovered a novel biomarker, TOR1B, for BM in BC patients via analysis of BC gene expression data and clinical information downloaded from open public databases. In cancer cells, we found high expression levels of TOR1B in the nucleus and endoplasmic reticulum. Regarding gene expression, the level of TOR1B was significantly upregulated in BC patients with BM (p < 0.05), and the result was externally validated. In addition, gene expression clearly demonstrated two distinct types of prognoses in ER- and PR-positive patients. In multivariate regression, the gene could be an independent predictor of BM in BC patients, i.e., a low expression level of TOR1B was associated with delayed metastasis to bone in BC patients (HR, 0.28; 95% CI 0.094-0.84). Conclusively, TOR1B might be a useful biomarker for predicting BM; specifically, patients with ER- and PR-positive subtypes would benefit from the clinical use of this promising prognostic biomarker.
Collapse
|
35
|
Sanmukh SG, Dos Santos NJ, Nascimento Barquilha C, De Carvalho M, Pintor Dos Reis P, Delella FK, Carvalho HF, Latek D, Fehér T, Felisbino SL. Bacterial RNA virus MS2 exposure increases the expression of cancer progression genes in the LNCaP prostate cancer cell line. Oncol Lett 2023; 25:86. [PMID: 36760518 PMCID: PMC9878357 DOI: 10.3892/ol.2023.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/02/2022] [Indexed: 01/19/2023] Open
Abstract
Bacteriophages effectively counteract diverse bacterial infections, and their ability to treat most types of cancer has been explored using phage engineering or phage-virus hybrid platforms. In the present study, it was demonstrated that the bacteriophage MS2 can affect the expression of genes associated with the proliferation and survival of LNCaP prostate epithelial cells. LNCaP cells were exposed to bacteriophage MS2 at a concentration of 1×107 plaque forming units/ml for 24-48 h. After exposure, various cellular parameters, including cell viability, morphology, and changes in gene expression, were examined. MS2 affected cell viability adversely, reducing viability by 25% in the first 4 h of treatment; however, cell viability recovered within 24-48 h. Similarly, the AKT, androgen receptor, integrin α5, integrin β1, MAPK1, MAPK3, STAT3, and peroxisome proliferator-activated receptor-γ coactivator 1α genes, which are involved in various normal cellular processes and tumor progression, were significantly upregulated, whereas the expression levels of HSP90, ITGB5, ITGB3, HSP27, ITGAV, and PI3K genes were unchanged. Therefore, based on viability and gene expression changes, bacteriophage MS2 severely impaired LNCaP cells by reducing anchorage-dependent survival and androgen signaling. A caveolin-mediated endocytosis mechanism for MS2-mediated signaling in prostate cancer cells was proposed based on reports involving bacteriophages T4, M13, and MS2, and their interactions with LNCaP and PC3 cell lines.
Collapse
Affiliation(s)
- Swapnil Ganesh Sanmukh
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Synthetic and Systems Biology Unit, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary,Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Nilton José Dos Santos
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Caroline Nascimento Barquilha
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Márcio De Carvalho
- Department of Surgery and Orthopedics, Faculty of Medicine, Sao Paulo State University, Botucatu, São Paulo 18618-687, Brazil
| | - Patricia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, Sao Paulo State University, Botucatu, São Paulo 18618-687, Brazil
| | - Flávia Karina Delella
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Tamás Fehér
- Synthetic and Systems Biology Unit, Biological Research Center, Eötvös Loránd Research Network, 6726 Szeged, Hungary
| | - Sérgio Luis Felisbino
- Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, Botucatu, São Paulo 18618-689, Brazil,Correspondence to: Professor Sérgio Luis Felisbino, Laboratory of Extracellular Matrix Biology, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Sao Paulo State University, 250 Antônio Celso Wagner Zanin, Botucatu, São Paulo 18618-689, Brazil, E-mail:
| |
Collapse
|
36
|
Jayaraman H, Anandhapadman A, Ghone NV. In Vitro and In Vivo Comparative Analysis of Differentially Expressed Genes and Signaling Pathways in Breast Cancer Cells on Interaction with Mesenchymal Stem Cells. Appl Biochem Biotechnol 2023; 195:401-431. [PMID: 36087230 DOI: 10.1007/s12010-022-04119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The interaction of breast cancer cells (BCC) with mesenchymal stem cells (MSC) plays a vital role in influencing the gene expression in breast cancer cells and thereby its uncontrolled proliferation, metastasis, and drug resistance. The extent of MSC governing the BCC or the extent of BCC influencing the MSC is a complex process, and the interaction strongly depends upon conditions such as the presence or absence of other cell types and in vivo tumor microenvironment or simple in vitro conditions. Hence, understanding this interaction through gene expression profiling may provide key insights about potential genes which can be targeted for breast cancer treatment. In the current study, in vitro microarray dataset and in vivo RNA-seq dataset of BCC on interaction with the MSC were downloaded from NCBI GEO database and analyzed for differentially expressed genes (DEGs), gene ontology (GO) term enrichment, and Reactome pathway analysis. To target the genes which have similar effect on both in vitro and in vivo, a comparative analysis was performed, 24 genes were commonly upregulated in both in vitro and in vivo datasets, while no common downregulated genes were observed. Out of which, 16 significant genes based upon fold change (logFC > 2) are identified for manipulating the interactions between MSC and BCC. Among them, 6 of the identified genes (FSTL1, LOX, SERPINE1, INHBA, FN1, and VEGFA) have already been reported to be upregulated in BCC on interaction with MSC by various studies. Further experiments need to be conducted to understand the role of remaining 10 identified genes (EFEMP1, IGFBP3, EDIL3, IFITM1, IGFBP4, ITGA5, SLC3A2, HRH1, PPP1R15A, and NNMT) in MSC-BCC interaction. In addition to the reported significant genes and its associated pathways, the expression of long non-coding RNA identified in this study may increase our understanding about the way MSC interacts with BCC and accelerate MSC-based treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No. 1, Sriperumbudur Taluk, 602117, Kancheepuram, Tamil Nadu, India
| | - Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No. 1, Sriperumbudur Taluk, 602117, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, 603110, Tamil Nadu, India.
| |
Collapse
|
37
|
Integrative network analysis reveals subtype-specific long non-coding RNA regulatory mechanisms in head and neck squamous cell carcinoma. Comput Struct Biotechnol J 2022; 21:535-549. [PMID: 36659932 PMCID: PMC9816915 DOI: 10.1016/j.csbj.2022.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) is one of most common malignancies with high mortality worldwide. Importantly, the molecular heterogeneity of HNSC complicates the clinical diagnosis and treatment, leading to poor overall survival outcomes. To dissect the complex heterogeneity, recent studies have reported multiple molecular subtyping systems. For instance, HNSC can be subdivided to four distinct molecular subtypes: atypical, basal, classical, and mesenchymal, of which the mesenchymal subtype is characterized by upregulated epithelial-mesenchymal transition (EMT) and associated with poorer survival outcomes. Despite a wealth of studies into the complex molecular heterogeneity, the regulatory mechanism specific to this aggressive subtype remain largely unclear. Herein, we developed a network-based bioinformatics framework that integrates lncRNA and mRNA expression profiles to elucidate the subtype-specific regulatory mechanisms. Applying the framework to HNSC, we identified a clinically relevant lncRNA LNCOG as a key master regulator mediating EMT underlying the mesenchymal subtype. Five genes with strong prognostic values, namely ANXA5, ITGA5, CCBE1, P4HA2, and EPHX3, were predicted to be the putative targets of LNCOG and subsequently validated in other independent datasets. By integrative analysis of the miRNA expression profiles, we found that LNCOG may act as a ceRNA to sponge miR-148a-3p thereby upregulating ITGA5 to promote HNSC progression. Furthermore, our drug sensitivity analysis demonstrated that the five putative targets of LNCOG were also predictive of the sensitivities of multiple FDA-approved drugs. In summary, our bioinformatics framework facilitates the dissection of cancer subtype-specific lncRNA regulatory mechanisms, providing potential novel biomarkers for more optimized treatment of HNSC.
Collapse
Key Words
- AUC, area under the curve
- BH, Benjamini-Hochberg
- CI, confidence interval
- CTRP, The Cancer Therapeutics Response Portal
- Competitive endogenous RNA
- DEG, differentially expressed gene
- DEX, dexamethasone
- DFS, disease-free survival
- EMT, epithelial-mesenchymal transition
- FPKM, fragments per kilobase million
- GEO, Gene Expression Omnibus
- GO, Gene Ontology
- GSEA, gene set enrichment analysis
- HNSC, head and neck squamous cell carcinoma
- HR, hazard ratio
- Head and neck cancer
- ICGC, The International Cancer Genome Consortium
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LASSO, least absolute shrinkage and selection operator
- Long non-coding RNAs
- Network inference
- OS, overall survival
- ROC, receiver operating characteristic curve
- Subtype-specific
- TCGA, The Cancer Genome Atlas
- TPM, transcripts per million
- UCSC, the University of California Santa Cruz
- ceRNA, the competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
|
38
|
Wang T, Yang J, Mao J, Zhu L, Luo X, Cheng C, Zhang L. ITGA5 inhibition in pancreatic stellate cells re-educates the in vitro tumor-stromal crosstalk. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:39. [PMID: 36469173 DOI: 10.1007/s12032-022-01902-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022]
Abstract
The interaction between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) promotes aggressive progression of pancreatic cancer, and disrupting the tumor-stromal crosstalk is a promising therapeutic strategy. Integrin α5 (ITGA5) is specifically overexpressed in pancreatic cancer stroma and activated PSCs. ITGA5 acts as a mediator in PCCs-PSCs interaction, but its role in regulating biological behaviors of PSCs and PCCs is still not quite clear. In this study, ITGA5 in PSCs was inhibited using its specific inhibitor AV3 peptide or siRNA knockdown technique. Pancreatic cancer SW1990 cells conditioned medium (SW1990-CM) and an indirect co-culture system were used to mimic the environment of the in vitro tumor-stromal crosstalk. Our results showed that ITGA5 inhibition impaired the proliferation and migration of PSCs, but enhanced autophagy. After co-culture with PSCs, SW1990 cells gained some cancer stem cells (CSCs)-like characteristics, such as increased drug resistance, migration and invasion ability, but PSCs with ITGA5 knockdown were incapable of producing these effects. The present results suggested that ITGA5 was involved in the development of the malignant biological behaviors of PSCs and PCCs, and ITGA5 inhibition in PSCs might benefit the treatment of pancreatic cancer by re-educating PCCs-PSCs interaction.
Collapse
Affiliation(s)
- Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Jian Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Juanli Mao
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Lizhi Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xiu Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Lu Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
39
|
Mou J, Huang M, Wang F, Xu X, Xie H, Lu H, Li M, Li Y, Kong W, Chen J, Xiao Y, Chen Y, Wang C, Ren J. HMGN5 Escorts Oncogenic STAT3 Signaling by Regulating the Chromatin Landscape in Breast Cancer Tumorigenesis. Mol Cancer Res 2022; 20:1724-1738. [PMID: 36066963 DOI: 10.1158/1541-7786.mcr-22-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 08/30/2022] [Indexed: 01/15/2023]
Abstract
Cancer progression is highly dependent on the ability of cancer cell tumor formation, in which epigenetic modulation plays an essential role. However, the epigenetic factors promoting breast tumor formation are less known. Screened from three-dimensional (3D)-sphere tumor formation model, HMGN5 that regulates chromatin structures became the candidate therapeutic target in breast cancer, though its role is obscure. HMGN5 is highly expressed in 3D-spheres of breast cancer cells and clinical tumors, also an unfavorable prognostic marker in patients. Furthermore, HMGN5 controls tumor formation and metastasis of breast cancer cells in vitro and in vivo. Mechanistically, HMGN5 is governed by active STAT3 transcriptionally and further escorts STAT3 to shape the oncogenic chromatin landscape and transcriptional program. More importantly, interference of HMGN5 by nanovehicle-packaged siRNA effectively inhibits tumor growth in breast cancer cell-derived xenograft mice model. IMPLICATIONS Our findings reveal a novel feed-forward circuit between HMGN5 and STAT3 in promoting breast cancer tumorigenesis and suggest HMGN5 as a novel epigenetic therapeutic target in STAT3-hyperactive breast cancer.
Collapse
Affiliation(s)
- Jiahui Mou
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meijun Huang
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Feifei Wang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoding Xu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanqi Xie
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China
| | - Henglei Lu
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyang Li
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China.,Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Li
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiwen Kong
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jing Chen
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Xiao
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaochen Wang
- ZJU-UoE Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, Zhejiang, China.,Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Chen JR, Zhao JT, Xie ZZ. Integrin-mediated cancer progression as a specific target in clinical therapy. Biomed Pharmacother 2022; 155:113745. [DOI: 10.1016/j.biopha.2022.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/15/2022] Open
|
41
|
Lu DY, Lu TR, Yarla NS, Xu B. Drug Sensitivity Testing for Cancer Therapy, Key Areas. Rev Recent Clin Trials 2022; 17:291-299. [PMID: 35986532 DOI: 10.2174/1574887117666220819094528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 01/15/2023]
Abstract
AIMS Cancer is a high-mortality disease (9.6 million deaths in 2018 worldwide). Given various anticancer drugs, drug selection plays a key role in patient survival in clinical trials. METHODS Drug Sensitivity Testing (DST), one of the leading drug selective systems, was widely practiced for therapeutic promotion in the clinic. Notably, DSTs assist in drug selection that benefits drug responses against cancer from 20-22% to 30-35% over the past two decades. The relationship between drug resistance in vitro and drug treatment benefits was associated with different tumor origins and subtypes. Medical theory and underlying DST mechanisms remain poorly understood until now. The study of the clinical scenario, sustainability and financial support for mechanism and technical promotions is indispensable. RESULTS Despite the great technical advance, therapeutic prediction and drug selection by DST needs to be miniature, versatility and cost-effective in the clinic. Multi-parameters and automation of DST should be a future trend. Advanced biomedical knowledge and clinical approaches to translating oncologic profiles into drug selection were the main focuses of DST developments. With a great technical stride, the clinical architecture of the DST platform was entering higher levels (drug response testing at any stage of cancer patients and miniaturization of tumor samples). DISCUSSION The cancer biology and pharmacology for drug selection mutually benefit the clinic. New proposals to reveal more therapeutic information and drug response prediction at genetic, molecular and omics levels should be estimated overall. CONCLUSION By upholding this goal of non-invasive, versatility and automation, DST could save the life of several thousand annually worldwide. In this article, new insights into DST novelty and development are highlighted.
Collapse
Affiliation(s)
- Da-Yong Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, PRC, China
| | - Ting-Ren Lu
- College of Science, Shanghai University, Shanghai 200444, PRC, China
| | | | - Bin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| |
Collapse
|
42
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
43
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
44
|
Vissers TACM, Piek L, Patuleia SIS, Duinmeijer AJ, Bakker MF, van der Wall E, van Diest PJ, van Gils CH, Moelans CB. Elevated miR-29c-5p Expression in Nipple Aspirate Fluid Is Associated with Extremely High Mammographic Breast Density. Cancers (Basel) 2022; 14:cancers14153805. [PMID: 35954468 PMCID: PMC9367509 DOI: 10.3390/cancers14153805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary High mammographic density is a known risk factor for breast cancer. However, the underlying mechanisms of high mammographic density development and breast cancer are unknown. MicroRNAs are potential biomarkers indicative of carcinogenesis and can be assessed in nipple aspirate fluid. We used nipple aspirate fluid from women with very low and extremely high mammographic density to examine differences in expression of multiple miRNAs between both extremes in the spectrum of mammographic density. We found that hsa-miR-29c-5p was upregulated in an extremely high mammographic density context and potential targets were identified that might provide clues of the relationship between high mammographic density and breast cancer risk. Understanding the relationship between high mammographic density and breast cancer is of great value for early breast cancer diagnosis and treatment. With our research we provide new insight into this relationship and further research could determine the effects of dysregulated hsa-miR-29c-5p on the identified candidate targets. Abstract High mammographic density (MD) is associated with an increased risk of breast cancer, however the underlying mechanisms are largely unknown. This research aimed to identify microRNAs (miRNAs) that play a role in the development of extremely dense breast tissue. In the discovery phase, 754 human mature miRNAs were profiled in 21 extremely high MD- and 20 very low MD-derived nipple aspirate fluid (NAF) samples from healthy women. In the validation phase, candidate miRNAs were assessed in a cohort of 89 extremely high MD and 81 very low MD NAF samples from healthy women. Independent predictors of either extremely high MD or miRNA expression were identified by logistic regression and linear regression analysis, respectively. mRNA targets and pathways were identified through miRTarBase, TargetScan, and PANTHER pathway analysis. Statistical analysis identified four differentially expressed miRNAs during the discovery phase. During the validation, linear regression (p = 0.029; fold change = 2.10) and logistic regression (p = 0.048; odds ratio = 1.38) showed that hsa-miR-29c-5p was upregulated in extremely high MD-derived NAF. Identified candidate mRNA targets of hsa-miR-29c-5p are CFLAR, DNMT3A, and PTEN. Further validation and exploration of targets and downstream pathways of has-miR-29c-5p will provide better insight into the processes involved in the development of high MD and in the associated increased risk of breast cancer.
Collapse
Affiliation(s)
- Tessa A. C. M. Vissers
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Leonie Piek
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Susana I. S. Patuleia
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Department of Medical Oncology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Aafke J. Duinmeijer
- Department of Medical Oncology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Marije F. Bakker
- Department of Epidemiology of the Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Carla H. van Gils
- Department of Epidemiology of the Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-887-556-882
| |
Collapse
|
45
|
Prominin 1 Significantly Correlated with Bone Metastasis of Breast Cancer and Influenced the Patient’s Prognosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4123622. [PMID: 36193308 PMCID: PMC9526600 DOI: 10.1155/2022/4123622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/07/2022] [Indexed: 02/08/2023]
Abstract
Background This study is aimed at identifying the important biomarkers associated with bone metastasis (BM) in breast cancer (BRCA). Methods The GSE175692 dataset was used to detect significant differential expressed genes (DEGs) between BRCA samples with or without BM, and DEG-related pathways were then explored. Further, we constructed the protein-protein interaction (PPI) network on GEGs and filtered 5 vital nodes. We then performed the Cox regression, Kaplan-Meier analysis, nomogram, and ROC curve to filter the most significant prognosis genes. The GSE14020 and GSE124647 datasets were used to verify the expression and prognostic value of hub genes, respectively. Finally, the gene set enrichment analysis (GSEA) was performed to reveal the potential mechanism. Results Totally, 74 DEGs were detected, which mainly correlated with infectious disease, signaling molecules, and interaction. The 5 important DEGs were then filtered, and the Cox regression further showed that 2 genes, including prominin 1 (PROM1) and C-C motif chemokine ligand 2 (CCL2), were related to the prognosis of BRCA metastasis patients. Especially, PROM1 presented a better prognostic performance on the survival probability of patients than CCL2. Verification analysis further confirmed the abnormal expression and significant prognostic influence of PROM1. Finally, GSEA revealed that PROM1 was negatively related to IGF1 and mTOR pathways in BRCA metastasis. Conclusion PROM1 was an important biomarker associated with BRCA bone metastasis and affected the prognosis of metastatic BRCA patients. It may play a vital role in metastatic BRCA by negatively regulating IGF1 and mTOR pathways.
Collapse
|
46
|
Ghauri MA, Raza A, Hayat U, Atif N, Iqbal HMN, Bilal M. Mechanistic insights expatiating the biological role and regulatory implications of estrogen and HER2 in breast cancer metastasis. Biochim Biophys Acta Gen Subj 2022; 1866:130113. [PMID: 35202768 DOI: 10.1016/j.bbagen.2022.130113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Breast cancer (BCa) has become the leading cause of death in women worldwide. Irrespective of advancement in cancer treatments, e.g., surgery, radiation, chemotherapy, hormonal therapy, immunotherapy, and targeted therapy, recurrence leading to metastasis poses the greatest threat in BCa management. BCa receptors estrogen (ER), progesterone (PR), and human epidermal growth factor receptor-2 (HER2) hold significant reputations as prognostic and predictive biomarkers in therapeutic decision-making. Under normal physiological conditions, these receptors modulate critical biological functions, e.g., cell migration, proliferation, and apoptosis events, etc. However, aberrant expression causes deviations, triggering signaling course to adapt permanent switching "ON" mode. The later events induce rapid and unrestrained proliferation leading to cancer. As conventional ways of cancer management ultimately lead to resistance; therefore, recently targeted therapies have been extensively studied to conquer resistance. Targeting various small molecules in downstream signaling has become an area of interest in scientific society. The severity of cancer converts many folds soon after it takes on a migratory approach that eventually commences metastasis. Cancer migration comprises protrusion of cytoplasm at the leading edge of the migration forward-facing, establishing adhesions with the basic cell-matrix, disassembly of the adhesions at the back end of the cell, and actin-myosin fiber contractions to pull the bulk of the cytoplasm forward. On the other hand, metastatic progression comprises a cascade of events, including invasion, migration, and establishment of tumor microenvironment. The progression of BCa from early stage to metastatic development causes remarkable heterogeneity. Interference at any explicit level could hamper the process, and it has thus become an area of interest for scientists. Metastasis is the ultimate cause of spreading tumor cells to invade distant organs. Recently small molecule inhibitors of protein tyrosine kinases, which can cross the blood-brain barrier, have become a center point of research for investigators in developing novel treatment strategies against BCa management.
Collapse
Affiliation(s)
- Mohsin Ahmad Ghauri
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Uzma Hayat
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Naveel Atif
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, PR China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
47
|
Gu Y, Bui T, Muller WJ. Exploiting Mouse Models to Recapitulate Clinical Tumor Dormancy and Recurrence in Breast Cancer. Endocrinology 2022; 163:6585026. [PMID: 35560214 DOI: 10.1210/endocr/bqac055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/19/2022]
Abstract
Breast cancer recurrence and metastasis from activated dormant tumors remain the leading causes in disease morbidity. Estrogen receptor positive breast cancer that accounts for nearly 80% of all cases face a life-long risk of relapse after initial treatment. The biology of dormant tumors and dormant cancer cells that give rise to recurrent disease and metastasis remain to be understood for us to overcome the clinical challenges that they bring. The selection and optimization of pre-clinical models to recapitulate dormancy and recurrence in patients is critical for studying the underlying cellular and environmental factors. Here, we provide a brief review of studies that utilize mouse models to dissect the mechanisms of dormancy and therapeutic strategies to avert recurrence. This review specifically accentuates the versatility and benefits of immunocompetent transgenic mouse models that can be manipulated to recapitulate primary dormancy, metastatic dormancy, and post-therapy dormancy.
Collapse
Affiliation(s)
- Yu Gu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Tung Bui
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - William J Muller
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
- Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
48
|
Li XQ, Zhang R, Lu H, Yue XM, Huang YF. Extracellular Vesicle-Packaged CDH11 and ITGA5 Induce the Premetastatic Niche for Bone Colonization of Breast Cancer Cells. Cancer Res 2022; 82:1560-1574. [PMID: 35149589 DOI: 10.1158/0008-5472.can-21-1331] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/26/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Although most breast cancer metastases in bone cause osteolytic lesions, the osteogenic niche has commonly been described as an initiator of early-stage bone colonization of disseminated cancer cells. Tumor cell-derived extracellular vesicles (EV) have been shown to determine the organotropism of cancer cells by transferring their cargo, such as nucleic acids and proteins, to resident cells at future metastatic sites and preparing a favorable premetastatic niche. Runt-related transcription factor 2 (RUNX2) and its regulated genes have been shown to facilitate the acquisition of osteomimetic features and to enhance the bone metastatic potential of breast cancer cells. In this study, we present in vivo and in vitro evidence to clarify the role of EVs released by breast cancer cells with high RUNX2 expression in the education of osteoblasts to form an osteogenic premetastatic niche. Furthermore, different extracellular vesicular proteins were identified that mediate events subsequent to the specific recognition of tumor-derived EVs by osteoblasts via cadherin 11 (CDH11) and the induction of the osteogenic premetastatic niche by integrin α5 (ITGA5). CDH11high/ITGA5high EVs were demonstrated to be responsible for the formation of a premetastatic niche that facilitates RUNX2 high-expressing breast cancer cell colonization in bone, revealing a potential EV-based premetastatic niche blockage strategy. SIGNIFICANCE This study provides mechanistic insights into the generation of an osteogenic premetastatic niche by breast cancer-derived EVs and identifies potential EV-derived diagnostic biomarkers and targets for breast cancer bone metastasis.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Hong Lu
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Xiao-Min Yue
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Yu-Fan Huang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
49
|
Li S, Zhang N, Liu S, Zhang H, Liu J, Qi Y, Zhang Q, Li X. ITGA5 Is a Novel Oncogenic Biomarker and Correlates With Tumor Immune Microenvironment in Gliomas. Front Oncol 2022; 12:844144. [PMID: 35371978 PMCID: PMC8971292 DOI: 10.3389/fonc.2022.844144] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most aggressive primary intracranial malignancies with poor overall survival. ITGA5 is one member of the integrin adhesion molecule family and is implicated in cancer metastasis and oncogenesis. However, few studies have explored the association between tumor immune microenvironment and ITGA5 expression level in gliomas. Firstly, we analyzed 3,047 glioma patient samples collected from the TCGA, the CGGA, and the GEO databases, proving that high ITGA5 expression positively related to aggressive clinicopathological features and poor survival in glioma patients. Then, based on the ITGA5 level, immunological characteristics and genomic alteration were explored through multiple algorithms. We observed that ITGA5 was involved in pivotal oncological pathways, immune-related processes, and distinct typical genomic alterations in gliomas. Notably, ITGA5 was found to engage in remolding glioma immune infiltration and immune microenvironment, manifested by higher immune cell infiltration when ITGA5 is highly expressed. We also demonstrated a strong correlation between ITGA5 and immune checkpoint molecules that may be beneficial from immune checkpoint blockade strategies. In addition, ITGA5 was found to be a robust and sensitive indicator for plenty of chemotherapy drugs through drug sensitivity prediction. Altogether, our comprehensive analyses deciphered the prognostic, immunological, and therapeutic value of ITGA5 in glioma, thus improving individual and precise therapy for combating gliomas.
Collapse
Affiliation(s)
- Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Zhang
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiajing Liu
- Department of Neurology, Affiliated People’s Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yiwei Qi
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
50
|
Bergonzini C, Kroese K, Zweemer AJM, Danen EHJ. Targeting Integrins for Cancer Therapy - Disappointments and Opportunities. Front Cell Dev Biol 2022; 10:863850. [PMID: 35356286 PMCID: PMC8959606 DOI: 10.3389/fcell.2022.863850] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
Abstract
Integrins mediate adhesive interactions between cells and their environment, including neighboring cells and extracellular matrix (ECM). These heterodimeric transmembrane receptors bind extracellular ligands with their globular head domains and connect to the cytoskeleton through multi-protein interactions at their cytoplasmic tails. Integrin containing cell–matrix adhesions are dynamic force-responsive protein complexes that allow bidirectional mechanical coupling of cells with their environment. This allows cells to sense and modulate tissue mechanics and regulates intracellular signaling impacting on cell faith, survival, proliferation, and differentiation programs. Dysregulation of these functions has been extensively reported in cancer and associated with tumor growth, invasion, angiogenesis, metastasis, and therapy resistance. This central role in multiple hallmarks of cancer and their localization on the cell surface makes integrins attractive targets for cancer therapy. However, despite a wealth of highly encouraging preclinical data, targeting integrin adhesion complexes in clinical trials has thus far failed to meet expectations. Contributing factors to therapeutic failure are 1) variable integrin expression, 2) redundancy in integrin function, 3) distinct roles of integrins at various disease stages, and 4) sequestering of therapeutics by integrin-containing tumor-derived extracellular vesicles. Despite disappointing clinical results, new promising approaches are being investigated that highlight the potential of integrins as targets or prognostic biomarkers. Improvement of therapeutic delivery at the tumor site via integrin binding ligands is emerging as another successful approach that may enhance both efficacy and safety of conventional therapeutics. In this review we provide an overview of recent encouraging preclinical findings, we discuss the apparent disagreement between preclinical and clinical results, and we consider new opportunities to exploit the potential of integrin adhesion complexes as targets for cancer therapy.
Collapse
|