1
|
Wang Z, Wang X, Zhou L, Shi S, Hua Y, Feng Y. Safety and efficacy of 48-week pegylated interferon- α-2b therapy in patients with hepatitis B virus-related compensated liver cirrhosis: a pilot observational study. Front Med (Lausanne) 2024; 11:1489671. [PMID: 39697201 PMCID: PMC11652151 DOI: 10.3389/fmed.2024.1489671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Background Pegylated interferon-α (PEG-IFN-α) therapy could decrease hepatitis B surface antigen (HBsAg) and improve long-term prognosis of hepatitis B virus (HBV) infection. However, studies on safety and efficacy of PEG-IFN-α for patients with HBV-related cirrhosis are limited. Methods This was a single-center study. Fifty-four patients with HBV-related compensated cirrhosis were enrolled. All patients received subcutaneous injection of PEG-IFN-α-2b 180 μg per week for 48 weeks. The monotherapy of PEG-IFN-α-2b was used for treatment-naïve patients, while addition of PEG-IFN-α-2b to on-going nucleos(t)ide analogs (NAs) was used for NAs-experienced patients. Clinical symptoms, laboratory tests, examination indicators, and adverse events were collected at each observational time point. Results Forty-two patients achieved undetectable serum HBV DNA at 48 weeks post-therapy. HBsAg level was significantly reduced at 48 weeks post-therapy (227.2 IU/mL vs. 1,668 IU/mL; p < 0.001), especially in NAs-experienced patients (161.0 IU/mL vs. 1,207 IU/mL; p = 0.005). Three patients achieved HBsAg loss, and two of them obtained HBsAg seroconversion. There were no significant differences in liver stiffness measurement, thickness and length of spleen, or diameter of portal vein between baseline and 48 weeks post-therapy (p > 0.05). The aminotransferase levels were increased, while white blood cells, neutrophils, and platelets counts were decreased during PEG-IFN-α-2b therapy (p < 0.05), especially in treatment-naïve patients. Three patients discontinued PEG-IFN-α-2b therapy due to severe adverse events. No patients suffered with virological breakthrough or progressed to end-stage liver diseases during observational period. Conclusion A finite course of PEG-IFN-α-2b therapy was well-tolerated, and reduced HBsAg level without accelerating disease progression in patients with HBV-related compensated cirrhosis. Clinical trial registration This trial is a part of ZhuFeng Project (ClinicalTrials.gov, identifier NCT04035837).
Collapse
|
2
|
Li Y, Yang S, Li C, Ma Z, Zhang M, Zou W, Wu Z, Hou H, Wang W, Zhu L. Efficacy of short-term Peg-IFN α-2b treatment in chronic hepatitis B patients with ultra-low HBsAg levels: a retrospective cohort study. Virol J 2024; 21:231. [PMID: 39334422 PMCID: PMC11428405 DOI: 10.1186/s12985-024-02512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE Peginterferon alfa-2b (Peg-IFN α-2b) has demonstrated superior efficacy over nucleos(t)ide analogs (NAs) in the treatment of chronic hepatitis B (CHB), particularly among patients with low levels of hepatitis B surface antigen (HBsAg). This study aims to determine whether patients with ultra-low HBsAg levels (< 200 IU/mL) can achieve significantly higher clinical cure rates with abbreviated courses of Peg-IFN α-2b therapy. METHODS In this retrospective analysis, CHB patients with HBsAg levels below 200 IU/mL were categorized into a Peg-IFN α-2b group and a control group. The Peg-IFN α-2b group received Peg-IFN α-2b for a minimum of 24 weeks, with the possibility of early discontinuation upon achieving HBsAg clearance, and were followed through week 48. The control group remained untreated for hepatitis B virus (HBV), and was observed for 24 weeks. HBsAg clearance rates were compared between groups. Univariate and multivariate logistic regression analyses were employed to identify factors associated with HBsAg clearance . RESULTS By week 24, the HBsAg clearance rate in the Peg-IFN α-2b group was notably 52.1% (38/73), contrasting sharply with the mere 1.3% (1/77) observed in the control group. Within the Peg-IFN α-2b group, a substantial 97.3% (71/73) of patients noted a reduction in HBsAg levels. Besides, the decision to continue or discontinue treatment after the 24-week mark had no significant impact on the HBsAg clearance rate at week 48. Multivariable analysis pinpointed baseline HBsAg levels (OR = 0.984, p = 0.001) and the presence of fatty liver (OR = 5.960, p = 0.033) as independent predictors of HBsAg clearance. CONCLUSION Our findings confirm that a 24-week course of Peg-IFN α-2b yields robust efficacy in CHB patients with ultra-low HBsAg levels. Prolonging treatment beyond the 24-week threshold is deemed unnecessary. Both baseline HBsAg level and the presence of fatty liver emerged as significant predictors for HBsAg clearance.
Collapse
Affiliation(s)
- Yuying Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Siqi Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430062, Hubei, China
| | - Cong Li
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Zhenjie Ma
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Mengmeng Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Wenhang Zou
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Zihao Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Haiyan Hou
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430062, Hubei, China.
| | - Liying Zhu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
3
|
Zai W, Yang M, Jiang K, Guan J, Wang H, Hu K, Huang C, Chen J, Fu W, Zhan C, Yuan Z. Optimized RNA interference therapeutics combined with interleukin-2 mRNA for treating hepatitis B virus infection. Signal Transduct Target Ther 2024; 9:150. [PMID: 38902241 PMCID: PMC11189933 DOI: 10.1038/s41392-024-01871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
This study aimed to develop a pan-genotypic and multifunctional small interfering RNA (siRNA) against hepatitis B virus (HBV) with an efficient delivery system for treating chronic hepatitis B (CHB), and explore combined RNA interference (RNAi) and immune modulatory modalities for better viral control. Twenty synthetic siRNAs targeting consensus motifs distributed across the whole HBV genome were designed and evaluated. The lipid nanoparticle (LNP) formulation was optimized by adopting HO-PEG2000-DMG lipid and modifying the molar ratio of traditional polyethylene glycol (PEG) lipid in LNP prescriptions. The efficacy and safety of this formulation in delivering siHBV (tLNP/siHBV) along with the mouse IL-2 (mIL-2) mRNA (tLNP/siHBVIL2) were evaluated in the rAAV-HBV1.3 mouse model. A siRNA combination (terms "siHBV") with a genotypic coverage of 98.55% was selected, chemically modified, and encapsulated within an optimized LNP (tLNP) of high efficacy and security to fabricate a therapeutic formulation for CHB. The results revealed that tLNP/siHBV significantly reduced the expression of viral antigens and DNA (up to 3log10 reduction; vs PBS) in dose- and time-dependent manners at single-dose or multi-dose frequencies, with satisfactory safety profiles. Further studies showed that tLNP/siHBVIL2 enables additive antigenic and immune control of the virus, via introducing potent HBsAg clearance through RNAi and triggering strong HBV-specific CD4+ and CD8+ T cell responses by expressed mIL-2 protein. By adopting tLNP as nucleic acid nanocarriers, the co-delivery of siHBV and mIL-2 mRNA enables synergistic antigenic and immune control of HBV, thus offering a promising translational therapeutic strategy for treating CHB.
Collapse
Affiliation(s)
- Wenjing Zai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Min Yang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, P. R. China
| | - Kuan Jiang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
- Eye Institute and Department of Ophthamology, Eye and ENT Hospital, Fudan University, Shanghai, P. R. China
| | - Juan Guan
- Pharmacy Department of Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Chao Huang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, P. R. China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, P. R. China.
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, P. R. China.
| |
Collapse
|
4
|
Pan T, Ding P, Huang A, Tang B, Song K, Sun G, Wu Y, Yang S, Chen X, Wang D, Zhu X. Reconstitution of double-negative T cells after cord blood transplantation and its predictive value for acute graft-versus-host disease. Chin Med J (Engl) 2024; 137:1207-1217. [PMID: 37620289 PMCID: PMC11101234 DOI: 10.1097/cm9.0000000000002807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND With an increasing number of patients with hematological malignancies being treated with umbilical cord blood transplantation (UCBT), the correlation between immune reconstitution (IR) after UCBT and graft-versus-host disease (GVHD) has been reported successively, but reports on double-negative T (DNT) cell reconstitution and its association with acute GVHD (aGVHD) after UCBT are lacking. METHODS A population-based observational study was conducted among 131 patients with hematological malignancies who underwent single-unit UCBT as their first transplant at the Department of Hematology, the First Affiliated Hospital of USTC, between August 2018 and June 2021. IR differences were compared between the patients with and without aGVHD. RESULTS The absolute number of DNT cells in the healthy Chinese population was 109 (70-157)/μL, accounting for 5.82 (3.98-8.19)% of lymphocytes. DNT cells showed delayed recovery and could not reach their normal levels even one year after transplantation. Importantly, the absolute number and percentage of DNT cells were significantly higher in UCBT patients without aGVHD than in those with aGVHD within one year ( F = 4.684, P = 0.039 and F = 5.583, P = 0.026, respectively). In addition, the number of DNT cells in the first month after transplantation decreased significantly with the degree of aGVHD increased, and faster DNT cell reconstitution in the first month after UCBT was an independent protective factor for aGVHD (HR = 0.46, 95% confidence interval [CI]: 0.23-0.93; P = 0.031). CONCLUSIONS Compared to the number of DNT cells in Chinese healthy people, the reconstitution of DNT cells in adults with hematological malignancies after UCBT was slow. In addition, the faster reconstitution of DNT cells in the early stage after transplantation was associated with a lower incidence of aGVHD.
Collapse
Affiliation(s)
- Tianzhong Pan
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Peng Ding
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Aijie Huang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Baolin Tang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaidi Song
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangyu Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yue Wu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Shiying Yang
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xingchi Chen
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dongyao Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, Anhui, 230001, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
5
|
Yu X, Gao Y, Zhang X, Ji L, Fang M, Li M, Gao Y. Hepatitis B: Model Systems and Therapeutic Approaches. J Immunol Res 2024; 2024:4722047. [PMID: 38745751 PMCID: PMC11093688 DOI: 10.1155/2024/4722047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health issue and ranks among the top causes of liver cirrhosis and hepatocellular carcinoma. Although current antiviral medications, including nucleot(s)ide analogs and interferons, could inhibit the replication of HBV and alleviate the disease, HBV cannot be fully eradicated. The development of cellular and animal models for HBV infection plays an important role in exploring effective anti-HBV medicine. During the past decades, advancements in several cell culture systems, such as HepG2.2.15, HepAD38, HepaRG, hepatocyte-like cells, and primary human hepatocytes, have propelled the research in inhibiting HBV replication and expression and thus enriched our comprehension of the viral life cycle and enhancing antiviral drug evaluation efficacy. Mouse models, in particular, have emerged as the most extensively studied HBV animal models. Additionally, the present landscape of HBV therapeutics research now encompasses a comprehensive assessment of the virus's life cycle, targeting numerous facets and employing a variety of immunomodulatory approaches, including entry inhibitors, strategies aimed at cccDNA, RNA interference technologies, toll-like receptor agonists, and, notably, traditional Chinese medicine (TCM). This review describes the attributes and limitations of existing HBV model systems and surveys novel advancements in HBV treatment modalities, which will offer deeper insights toward discovering potentially efficacious pharmaceutical interventions.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Longshan Ji
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Infectious Diseases of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| |
Collapse
|
6
|
Su R, Zhang T, Wang H, Yan G, Wu R, Zhang X, Gao C, Li X, Wang C. New sights of low dose IL-2: Restoration of immune homeostasis for viral infection. Immunology 2024; 171:324-338. [PMID: 37985960 DOI: 10.1111/imm.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Viral infection poses a significant threat to human health. In addition to the damage caused by viral replication, the immune response it triggers often leads to more serious adverse consequences. After the occurrence of viral infection, in addition to the adverse consequences of infection, chronic infections can also lead to virus-related autoimmune diseases and tumours. At the same time, the immune response triggered by viral infection is complex, and dysregulated immune response may lead to the occurrence of immune pathology and macrophage activation syndrome. In addition, it may cause secondary immune suppression, especially in patients with compromised immune system, which could lead to the occurrence of secondary infections by other pathogens. This can often result in more severe clinical outcomes. Therefore, regarding the treatment of viral infections, restoring the balance of the immune system is crucial in addition to specific antiviral medications. In recent years, scientists have made an interesting finding that low dose IL-2 (ld-IL-2) could potentially have a crucial function in regulating the immune system and reducing the chances of infection, especially viral infection. Ld-IL-2 exerts immune regulatory effects in different types of viral infections by modulating CD4+ T subsets, CD8+ T cells, natural killer cells, and so on. Our review summarised the role of IL-2 or IL-2 complexes in viral infections. Ld-IL-2 may be an effective strategy for enhancing host antiviral immunity and preventing infection from becoming chronic; additionally, the appropriate use of it can help prevent excessive inflammatory response after infection. In the long term, it may reduce the occurrence of infection-related autoimmune diseases and tumours by promoting the restoration of early immune homeostasis. Furthermore, we have also summarised the application of ld-IL-2 in the context of autoimmune diseases combined with viral infections; it may be a safe and effective strategy for restoring immune homeostasis without compromising the antiviral immune response. In conclusion, focusing on the role of ld-IL-2 in viral infections may provide a new perspective for regulating immune responses following viral infections and improving prognosis.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Gaofei Yan
- Second department, Hamony Long Stomatological Hospital, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital/Children's Hospital Boston, Joint Program in Transfusion Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| |
Collapse
|
7
|
Wang Z, Liu N, Yang Y, Tu Z. The novel mechanism facilitating chronic hepatitis B infection: immunometabolism and epigenetic modification reprogramming. Front Immunol 2024; 15:1349867. [PMID: 38288308 PMCID: PMC10822934 DOI: 10.3389/fimmu.2024.1349867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Hepatitis B Virus (HBV) infections pose a global public health challenge. Despite extensive research on this disease, the intricate mechanisms underlying persistent HBV infection require further in-depth elucidation. Recent studies have revealed the pivotal roles of immunometabolism and epigenetic reprogramming in chronic HBV infection. Immunometabolism have identified as the process, which link cell metabolic status with innate immunity functions in response to HBV infection, ultimately contributing to the immune system's inability to resolve Chronic Hepatitis B (CHB). Within hepatocytes, HBV replication leads to a stable viral covalently closed circular DNA (cccDNA) minichromosome located in the nucleus, and epigenetic modifications in cccDNA enable persistence of infection. Additionally, the accumulation or depletion of metabolites not only directly affects the function and homeostasis of immune cells but also serves as a substrate for regulating epigenetic modifications, subsequently influencing the expression of antiviral immune genes and facilitating the occurrence of sustained HBV infection. The interaction between immunometabolism and epigenetic modifications has led to a new research field, known as metabolic epigenomics, which may form a mutually reinforcing relationship with CHB. Herein, we review the recent studies on immunometabolism and epigenetic reprogramming in CHB infection and discuss the potential mechanisms of persistent HBV infection. A deeper understanding of these mechanisms will offer novel insights and targets for intervention strategies against chronic HBV infection, thereby providing new hope for the treatment of related diseases.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Liu
- Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengkun Tu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Andreata F, Moynihan KD, Fumagalli V, Di Lucia P, Pappas DC, Kawashima K, Ni I, Bessette PH, Perucchini C, Bono E, Giustini L, Nguyen HC, Chin SM, Yeung YA, Gibbs CS, Djuretic I, Iannacone M. CD8 cis-targeted IL-2 drives potent antiviral activity against hepatitis B virus. Sci Transl Med 2024; 16:eadi1572. [PMID: 38198572 DOI: 10.1126/scitranslmed.adi1572] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
CD8+ T cells are key antiviral effectors against hepatitis B virus (HBV), yet their number and function can be compromised in chronic infections. Preclinical HBV models displaying CD8+ T cell dysfunction showed that interleukin-2 (IL-2)-based treatment, unlike programmed cell death ligand 1 (PD-L1) checkpoint blockade, could reverse this defect, suggesting its therapeutic potential against HBV. However, IL-2's effectiveness is hindered by its pleiotropic nature, because its receptor is found on various immune cells, including regulatory T (Treg) cells and natural killer (NK) cells, which can counteract antiviral responses or contribute to toxicity, respectively. To address this, we developed a cis-targeted CD8-IL2 fusion protein, aiming to selectively stimulate dysfunctional CD8+ T cells in chronic HBV. In a mouse model, CD8-IL2 boosted the number of HBV-reactive CD8+ T cells in the liver without substantially altering Treg or NK cell counts. These expanded CD8+ T cells exhibited increased interferon-γ and granzyme B production, demonstrating enhanced functionality. CD8-IL2 treatment resulted in substantial antiviral effects, evidenced by marked reductions in viremia and antigenemia and HBV core antigen-positive hepatocytes. In contrast, an untargeted CTRL-IL2 led to predominant NK cell expansion, minimal CD8+ T cell expansion, negligible changes in effector molecules, and minimal antiviral activity. Human CD8-IL2 trials in cynomolgus monkeys mirrored these results, achieving a roughly 20-fold increase in peripheral blood CD8+ T cells without affecting NK or Treg cell numbers. These data support the development of CD8-IL2 as a therapy for chronic HBV infection.
Collapse
Affiliation(s)
- Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | | | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Keigo Kawashima
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Irene Ni
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | | | - Chiara Perucchini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Henry C Nguyen
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - S Michael Chin
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Yik Andy Yeung
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Craig S Gibbs
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Ivana Djuretic
- Asher Biotherapeutics, South San Francisco, CA 94080, USA
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Vita-Salute San Raffaele University, 20132 Milan, Italy
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
9
|
Wang L, Lin N, Zhang Y, Guo S, Liu C, Lin C, Zeng Y, Wu W, Guo J, Zhu C, Zhan F, Ou Q, Xun Z. A novel TRIM22 gene polymorphism promotes the response to PegIFNα therapy through cytokine-cytokine receptor interaction signaling pathway in chronic hepatitis B. Microbiol Spectr 2023; 11:e0224723. [PMID: 37882560 PMCID: PMC10715138 DOI: 10.1128/spectrum.02247-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Pegylated interferon alfa (PegIFNα) has limited efficacy in the treatment of chronic hepatitis B (CHB). Although many biomarkers related to hepatitis B virus (HBV) have been proposed to stratify patients, the response rate to PegIFNα is still unsatisfactory. Herein, our data suggest that the single-nucleotide polymorphism (SNP) rs10838543 in TRIM22 potentiates a positive clinical response to PegIFNα treatment in patients with hepatitis B e antigen-positive CHB by increasing the levels of IFNL1, CCL3, and CCL5. These observations can help guide treatment decisions for patients with CHB to improve the response rate to PegIFNα.
Collapse
Affiliation(s)
- Long Wang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
| | - Ni Lin
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
| | - Yanfang Zhang
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
| | - Shaoying Guo
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
| | - Can Liu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| | - Caorui Lin
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| | - Wennan Wu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| | - Jianhui Guo
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| | - Chenggong Zhu
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
| | - Fuguo Zhan
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| | - Qishui Ou
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| | - Zhen Xun
- Department of Laboratory Medicine, Fujian Key Laboratory of Laboratory Medicine, Gene Diagnosis Research Center, Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
- The First Clinical College, Fujian Medical University , Fuzhou, Fujian, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University , Fuzhou, Fujian, China
| |
Collapse
|
10
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Ye Y, Fu Y, Lin C, Shen Y, Yu Q, Yao X, Huang Q, Liu C, Zeng Y, Chen T, Wu S, Xun Z, Ou Q. Oncostatin M Induces IFITM1 Expression to Inhibit Hepatitis B Virus Replication Via JAK-STAT Signaling. Cell Mol Gastroenterol Hepatol 2023; 17:219-235. [PMID: 37879404 PMCID: PMC10760422 DOI: 10.1016/j.jcmgh.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Functional cure is achieved by a limited number of patients with chronic hepatitis B (CHB) after nucleotide analogue(s) and interferon treatment. It is urgent to develop therapies that can help a larger proportion of patients achieve functional cure. The present study was designed to explore the anti-hepatitis B virus (HBV) potency of interleukin-6 family cytokines and to characterize the underlying mechanisms of the cytokine displaying the highest anti-HBV potency. METHODS HBV-infected cells were used to screened the anti-HBV potency of interleukin-6 family cytokines. The concentration of oncostatin M (OSM) in patients with chronic HBV infection was examined by enzyme-linked immunosorbent assay. The underlying mechanism of OSM anti-HBV was explored through RNA-seq. C57BL/6 mice injected with rAAV8-1.3HBV were used to explore the suppression effect of OSM on HBV in vivo. RESULTS OSM is the most effective of the interleukin-6 family cytokines for suppression of HBV replication (percentage of average inhibition: hepatitis B surface antigen, 34.44%; hepatitis B e antigen, 32.52%; HBV DNA, 61.57%). Hepatitis B e antigen-positive CHB patients with high OSM levels had lower hepatitis B surface antigen and hepatitis B e antigen than those with low levels. OSM activated JAK-STAT signaling pathway promoting the formation of STAT1-IRF9 transcription factor complex. Following this, OSM increased the expression of various genes with known functions in innate and adaptive immunity, which was higher expression in patients with CHB in immune clearance phase than in immune tolerance phase (data from GEO: GSE65359). Interferon-induced transmembrane protein 1, one of the most differentially expressed genes, was identified as an HBV restriction factor involved in OSM-mediated anti-HBV effect. In vivo, we also found OSM significantly inhibited HBV replication and induced expression of antiviral effector interferon-induced transmembrane protein 1. CONCLUSIONS Our study shows that OSM remodels the immune response against HBV and exerts potent anti-HBV activity, supporting its further development as a potential therapy for treating CHB.
Collapse
Affiliation(s)
- Yuchen Ye
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caorui Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye Shen
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qingqing Yu
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaobao Yao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qunfang Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
12
|
Du J, Song CF, Wang S, Tan YC, Wang J. Establishment and validation of a novel risk model based on CD8T cell marker genes to predict prognosis in thyroid cancer by integrated analysis of single-cell and bulk RNA-sequencing. Medicine (Baltimore) 2023; 102:e35192. [PMID: 37861558 PMCID: PMC10589543 DOI: 10.1097/md.0000000000035192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Papillary thyroid cancer (PTC) is a histological type of thyroid cancer, and CD8T is important for the immune response. The single-cell RNA data were acquired from Gene Expression Omnibus. SingleR package was used for cluster identification, and CellChat was exploited to evaluate the interaction among several cell types. Bulk RNA data obtained from the cancer genome atlas were used for determination of prognosis using Kaplan-Meier and Receiver Operating Characteristic curve. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were applied for assessment of function enrichment. The drug sensitivity was calculated in Gene Set Cancer Analysis. The regulatory network was constructed by STRING and Cytoscape. We identified 23 cell clusters and 10 cell types. Cell communication results showed CD8T cell was vital among all immune cell types. Enrichment analysis found the marker genes of CD8T cell was enriched in some signal pathways related to tumor development. Overall, FAM107B and TUBA4A were considered as hub genes and used to construct a risk model. Most immune checkpoint expressions were upregulated in tumor group. Tumor mutation burden results indicated that prognosis of PTC was not related to the mutation of hub genes. Drug sensitivity analysis showed some drugs could be effectively used for the treatment of PTC, and regulatory network identified some targets for the immunotherapy. A 2-gene model of PTC was developed based on the single-cell RNA and bulk RNA data. Besides, we found CD8T was essential for the immune response in PTC.
Collapse
Affiliation(s)
- Jian Du
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Cheng-Fei Song
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Shu Wang
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Yu-Cheng Tan
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| | - Jiang Wang
- General Surgery Department, General Hospital of Fushun Mining Bureau of Liaoning Health Industry Group, Fushun, Liaoning, China
| |
Collapse
|
13
|
Zhang T, Zheng H, Lu D, Guan G, Li D, Zhang J, Liu S, Zhao J, Guo JT, Lu F, Chen X. RNA binding protein TIAR modulates HBV replication by tipping the balance of pgRNA translation. Signal Transduct Target Ther 2023; 8:346. [PMID: 37699883 PMCID: PMC10497612 DOI: 10.1038/s41392-023-01573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 09/14/2023] Open
Abstract
The pregenomic RNA (pgRNA) of hepatitis B virus (HBV) serves not only as a bicistronic message RNA to translate core protein (Cp) and DNA polymerase (Pol), but also as the template for reverse transcriptional replication of viral DNA upon packaging into nucleocapsid. Although it is well known that pgRNA translates much more Cp than Pol, the molecular mechanism underlying the regulation of Cp and Pol translation efficiency from pgRNA remains elusive. In this study, we systematically profiled HBV nucleocapsid- and pgRNA-associated cellular proteins by proteomic analysis and identified TIA-1-related protein (TIAR) as a novel cellular protein that binds pgRNA and promotes HBV DNA replication. Interestingly, loss- and gain-of-function genetic analyses showed that manipulation of TIAR expression did not alter the levels of HBV transcripts nor the secretion of HBsAg and HBeAg in human hepatoma cells supporting HBV replication. However, Ribo-seq and PRM-based mass spectrometry analyses demonstrated that TIAR increased the translation of Pol but decreased the translation of Cp from pgRNA. RNA immunoprecipitation (RIP) and pulldown assays further revealed that TIAR directly binds pgRNA at the 5' stem-loop (ε). Moreover, HBV replication or Cp expression induced the increased expression and redistribution of TIAR from the nucleus to the cytoplasm of hepatocytes. Our results thus imply that TIAR is a novel cellular factor that regulates HBV replication by binding to the 5' ε structure of pgRNA to tip the balance of Cp and Pol translation. Through induction of TIAR translocation from the nucleus to the cytoplasm, Cp indirectly regulates the Pol translation and balances Cp and Pol expression levels in infected hepatocytes to ensure efficient viral replication.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Danjuan Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Deyao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ju-Tao Guo
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, PA, 18902, USA.
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
14
|
Zhou J, He X, Ou Y, Peng S, Li D, Zhou Q, Fu J, Long Y, Tan Y. Role of CXCR5 + CD8 + T cells in human hepatitis B virus infection. J Viral Hepat 2023; 30:638-645. [PMID: 37129474 DOI: 10.1111/jvh.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The replication of HBV in hepatocytes can be effectively inhibited by lifelong antiviral therapy. Because of the long-term presence of HBV reservoirs, the virus rebound frequently occurs once the treatment is stopped, which poses a considerable obstacle to the complete removal of the virus. In terms of gene composition, regulation of B cell action and function, CXCR5+ CD8+ T cells are similar to CXCR5+ CD4+ T follicular helper cells, while these cells are characterized by elevated programmed cell death 1 and cytotoxic-related proteins. CXCR5+ CD8+ T cells are strongly associated with progression in inflammatory and autoimmune diseases. In addition, CXCR5 expression on the surface of CD8+ T cells is mostly an indicator of memory stem cell-like failure in progenitor cells in cancer that are more responsive to immune checkpoint blocking therapy. Furthermore, the phenomena have also been demonstrated in some viral infections, highlighting the duality of the cellular immune response of CXCR5+ CD8+ T cells. This mini-review will focus on the function of CXCR5+ CD8+ T cells in HBV infection and discuss the function of these CD8+ T cells and the potential of associated co-stimulators or cytokines in HBV therapeutic strategies.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiaojing He
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Shuang Peng
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Dan Li
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Qing Zhou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Jingli Fu
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| |
Collapse
|
15
|
Shang QN, Yu XX, Xu ZL, Chen YH, Han TT, Zhang YY, Lv M, Sun YQ, Wang Y, Xu LP, Zhang XH, Zhao XY, Huang XJ. Expanded clinical-grade NK cells exhibit stronger effects than primary NK cells against HCMV infection. Cell Mol Immunol 2023; 20:895-907. [PMID: 37291236 PMCID: PMC10387476 DOI: 10.1038/s41423-023-01046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Cytomegalovirus (CMV) reactivation remains a common complication and leads to high mortality in patients who undergo allogeneic hematopoietic stem cell transplantation (allo-HSCT). Early natural killer (NK) cell reconstitution may protect against the development of human CMV (HCMV) infection post-HSCT. Our previous data showed that ex vivo mbIL21/4-1BBL-expanded NK cells exhibited high cytotoxicity against leukemia cells. Nevertheless, whether expanded NK cells have stronger anti-HCMV function is unknown. Herein, we compared the anti-HCMV functions of ex vivo expanded NK cells and primary NK cells. Expanded NK cells showed higher expression of activating receptors, chemokine receptors and adhesion molecules; stronger cytotoxicity against HCMV-infected fibroblasts; and better inhibition of HCMV propagation in vitro than primary NK cells. In HCMV-infected humanized mice, expanded NK cell infusion resulted in higher NK cell persistence and more effective tissue HCMV elimination than primary NK cell infusion. A clinical cohort of 20 post-HSCT patients who underwent adoptive NK cell infusion had a significantly lower cumulative incidence of HCMV infection (HR = 0.54, 95% CI = 0.32-0.93, p = 0.042) and refractory HCMV infection (HR = 0.34, 95% CI = 0.18-0.65, p = 0.009) than controls and better NK cell reconstitution on day 30 post NK cell infusion. In conclusion, expanded NK cells exhibit stronger effects than primary NK cells against HCMV infection both in vivo and in vitro.
Collapse
Affiliation(s)
- Qian-Nan Shang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xing-Xing Yu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ting-Ting Han
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
16
|
Li T, Wang X, Niu M, Wang M, Zhou J, Wu K, Yi M. Bispecific antibody targeting TGF-β and PD-L1 for synergistic cancer immunotherapy. Front Immunol 2023; 14:1196970. [PMID: 37520520 PMCID: PMC10373067 DOI: 10.3389/fimmu.2023.1196970] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
The PD-1/PD-L1 signaling pathway plays a crucial role in cancer immune evasion, and the use of anti-PD-1/PD-L1 antibodies represents a significant milestone in cancer immunotherapy. However, the low response rate observed in unselected patients and the development of therapeutic resistance remain major obstacles to their clinical application. Accumulating studies showed that overexpressed TGF-β is another immunosuppressive factor apart from traditional immune checkpoints. Actually, the effects of PD-1 and TGF-β pathways are independent and interactive, which work together contributing to the immune evasion of cancer cell. It has been verified that blocking TGF-β and PD-L1 simultaneously could enhance the efficacy of PD-L1 monoclonal antibody and overcome its treatment resistance. Based on the bispecific antibody or fusion protein technology, multiple bispecific and bifunctional antibodies have been developed. In the preclinical and clinical studies, these updated antibodies exhibited potent anti-tumor activity, superior to anti-PD-1/PD-L1 monotherapies. In the review, we summarized the advances of bispecific antibodies targeting TGF-β and PD-L1 in cancer immunotherapy. We believe these next-generation immune checkpoint inhibitors would substantially alter the cancer treatment paradigm, especially in anti-PD-1/PD-L1-resistant patients.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mingli Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Laupèze B, Vassilev V, Badur S. A role for immune modulation in achieving functional cure for chronic hepatitis B among current changes in the landscape of new treatments. Expert Rev Gastroenterol Hepatol 2023; 17:1135-1147. [PMID: 37847193 DOI: 10.1080/17474124.2023.2268503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) is rarely cured using available treatments. Barriers to cure are: 1) persistence of reservoirs of hepatitis B virus (HBV) replication and antigen production (HBV DNA); 2) high burden of viral antigens that promote T cell exhaustion with T cell dysfunction; 3) CHB-induced impairment of immune responses. AREAS COVERED We discuss options for new therapies that could address one or more of the barriers to functional cure, with particular emphasis on the potential role of immunotherapy. EXPERT OPINION/COMMENTARY Ideally, a sterilizing cure for CHB would translate into finite therapies that result in loss of HBV surface antigen and eradication of HBV DNA. Restoration of a functional adaptive immune response, a key facet of successful CHB treatment, remains elusive. Numerous strategies targeting the high viral DNA and antigen burden and aiming to restore the host immune responses will enter clinical development in coming years. Most patients are likely to require combinations of several drugs, personalized according to virologic and disease characteristics, patient preference, accessibility, and affordability. The management of CHB is a global health priority. Expedited drug development requires collaborations between regulatory agencies, scientists, clinicians, and within the industry to facilitate testing of the best drug combinations.
Collapse
|
18
|
Salama II, Sami SM, Salama SI, Abdel-Latif GA, Shaaban FA, Fouad WA, Abdelmohsen AM, Raslan HM. Current and novel modalities for management of chronic hepatitis B infection. World J Hepatol 2023; 15:585-608. [PMID: 37305370 PMCID: PMC10251278 DOI: 10.4254/wjh.v15.i5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over 296 million people are estimated to have chronic hepatitis B viral infection (CHB), and it poses unique challenges for elimination. CHB is the result of hepatitis B virus (HBV)-specific immune tolerance and the presence of covalently closed circular DNA as mini chromosome inside the nucleus and the integrated HBV. Serum hepatitis B core-related antigen is the best surrogate marker for intrahepatic covalently closed circular DNA. Functional HBV "cure" is the durable loss of hepatitis B surface antigen (HBsAg), with or without HBsAg seroconversion and undetectable serum HBV DNA after completing a course of treatment. The currently approved therapies are nucleos(t)ide analogues, interferon-alpha, and pegylated-interferon. With these therapies, functional cure can be achieved in < 10% of CHB patients. Any variation to HBV or the host immune system that disrupts the interaction between them can lead to reactivation of HBV. Novel therapies may allow efficient control of CHB. They include direct acting antivirals and immunomodulators. Reduction of the viral antigen load is a crucial factor for success of immune-based therapies. Immunomodulatory therapy may lead to modulation of the host immune system. It may enhance/restore innate immunity against HBV (as toll-like-receptors and cytosolic retinoic acid inducible gene I agonist). Others may induce adaptive immunity as checkpoint inhibitors, therapeutic HBV vaccines including protein (HBsAg/preS and hepatitis B core antigen), monoclonal or bispecific antibodies and genetically engineered T cells to generate chimeric antigen receptor-T or T-cell receptor-T cells and HBV-specific T cells to restore T cell function to efficiently clear HBV. Combined therapy may successfully overcome immune tolerance and lead to HBV control and cure. Immunotherapeutic approaches carry the risk of overshooting immune responses causing uncontrolled liver damage. The safety of any new curative therapies should be measured in relation to the excellent safety of currently approved nucleos(t)ide analogues. Development of novel antiviral and immune modulatory therapies should be associated with new diagnostic assays used to evaluate the effectiveness or to predict response.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt.
| | - Samia M Sami
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Centre, Giza 12411, Dokki, Egypt
| |
Collapse
|
19
|
Parizad EG, Imani Fooladi AA, Sedighian H, Behzadi E, Amani J, Khosravi A. Immune response induced by recombinant pres2/S-protein and a pres2-S-protein fused with a core 18-27 antigen fragment of hepatitis B virus compared to conventional HBV vaccine. Virus Genes 2023:10.1007/s11262-023-01995-z. [PMID: 37140777 DOI: 10.1007/s11262-023-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
Although comprehensive vaccination is the cornerstone of public health programs to control hepatitis B virus (HBV) infections, 5% of people who receive the existing vaccine do not develop proper immunity against HBV. To overcome this challenge, researchers have tried using various protein fragments encoded by the virus genome to achieve better immunization rates. An important antigenic component of HBsAg called the preS2/S or M protein has also received much attention in this area. The gene sequences of preS2/S and Core18-27 peptide were extracted from the GenBank (NCBI). Final gene synthesis was conducted with pET28. Groups of BALB/c mice were immunized with 10 μg/ml of recombinant proteins and 1 μg/ml CPG7909 adjuvant. Serum levels of IF-γ, TNF-α, IL-2, IL-4, and IL-10 were measured by ELISA assay method on spleen cell cultures on day 45, and IgG1, IgG2a, and total IgG titers obtained from mice serum were quantified on days 14 and 45. Statistical analysis did not show any significant difference between the groups regarding IF-γ level. There were, however, significant differences in terms of IL-2 and IL-4 levels between the groups receiving preS2/S-C18-27 with and without adjuvant and the groups receiving both preS2/S and preS2/S-C18-27 (Plus Recomb-Plus Recomb: the group of mice that received both preS2/S and preS2/S-C18-27 simultaneously). The strongest total antibody production was induced by immunization with both recombinant proteins without CPG adjuvant. The groups that received both preS2/S and preS2/S-C18-27, whether with or without adjuvant, were significantly different from those that received the conventional vaccine considering most abundant interleukins. This difference suggested that higher levels of efficacy can be achieved by the use of multiple virus antigen fragments rather than using a single fragment.
Collapse
Affiliation(s)
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran.
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Elham Behzadi
- Academy of Medical Sciences of the I.R. of Iran, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box 19395-5487, Tehran, Iran
| | - Afra Khosravi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
20
|
Lin N, Wang L, Guo Z, Guo S, Liu C, Lin J, Wu S, Xu S, Guo H, Fang F, Fu Y, Ou Q. miR-548c-3p targets TRIM22 to attenuate the Peg–IFN–α therapeutic efficacy in HBeAg-positive patients with chronic hepatitis B. Antiviral Res 2023; 213:105584. [PMID: 37019306 DOI: 10.1016/j.antiviral.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
Chronic hepatitis B (CHB) patients treated with interferon shows encouraging results. However, its clinical efficacy is limited by significant individual differences in treatment responses. We identified an interferon-inducible effector, TRIM22, as the likely causal target of such differential responses. We found that TRIM22 was highly expressed in interferon-responsive patients and negatively correlated with HBV DNA and HBeAg serum levels. Stable cells overexpressing TRIM22 carried significantly less HBsAg, HBeAg, and HBV DNA, and cells with knocked-down TRIM22 by shRNA displayed higher levels of these markers than controls. Integrated bioinformatics analysis and subsequent experiments revealed that TRIM22 overexpression significantly increased the supernatant levels of IL-1β and IL-8, two important cytokines of NOD2/NF-κB pathway involved in interferon-induced antiviral activities. We identified three candidate microRNAs binding to 3'UTR of TRIM22 at various locations through typical imperfect paring using the TargetScan program. MiR-548c-3p appeared to be highly expressed, while the TRIM22 level was low in the suboptimal response group of CHB patients. The Luciferase reporter assay revealed an interaction between miR-548c-3p and the 3'UTR of TRIM22, leading to a controlled suppression of TRIM22 endogenous expression. This resulted in interferon's substantially weakened therapeutic efficacy, as indicated by the elevation of the serum levels of HBsAg, HBeAg and HBV DNA in miR-548c-3p-transfected HepAD38 cells. Our study demonstrated that a particular miR-548c-3p is the key negative regulator of TRIM22 in CHB patients with a weak response to interferon treatment, providing a novel marker and target in interferon-α therapy evaluation.
Collapse
|
21
|
Wang WX, Jia R, Jin XY, Li X, Zhou SN, Zhang XN, Zhou CB, Wang FS, Fu J. Serum cytokine change profile associated with HBsAg loss during combination therapy with PEG-IFN-α in NAs-suppressed chronic hepatitis B patients. Front Immunol 2023; 14:1121778. [PMID: 36756119 PMCID: PMC9899895 DOI: 10.3389/fimmu.2023.1121778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objective The aim of this study was to explore the profile of cytokine changes during the combination therapy with pegylated interferon alpha (PEG-IFN-α) and its relationship with HBsAg loss in nucleos(t)ide analogs (NAs)-suppressed chronic hepatitis B patients. Methods Seventy-six patients with chronic hepatitis B with HBsAg less than 1,500 IU/ml and HBV DNA negative after receiving ≥ 1-year NAs therapy were enrolled. Eighteen patients continued to take NAs monotherapy (the NAs group), and 58 patients received combination therapy with NAs and PEG-IFN-α (the Add-on group). The levels of IFNG, IL1B, IL1RN, IL2, IL4, IL6, IL10, IL12A, IL17A, CCL2, CCL3, CCL5, CXCL8, CXCL10, TNF, and CSF2 in peripheral blood during treatment were detected. Results At week 48, 0.00% (0/18) in the NAs group and 25.86% (15/58) in the Add-on group achieved HBsAg loss. During 48 weeks of combined treatment, there was a transitory increase in the levels of ALT, IL1RN, IL2, and CCL2. Compared to the NAs group, CXCL8 and CXCL10 in the Add-on group remain higher after rising, yet CCL3 showed a continuously increasing trend. Mild and early increases in IL1B, CCL3, IL17A, IL2, IL4, IL6, and CXCL8 were associated with HBsAg loss or decrease >1 log, while sustained high levels of CCL5 and CXCL10 were associated with poor responses to Add-on therapy at week 48. Conclusions The serum cytokine change profile is closely related to the response to the combination therapy with PEG-IFN-α and NAs, and may help to reveal the mechanism of functional cure and discover new immunological predictors and new therapeutic targets.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Rui Jia
- Department of Gastroenterology, The 985th Hospital of Joint Logistic Support Force of Chinese PLA, Taiyuan, China
| | - Xue-Yuan Jin
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiaoyan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China
| | - Shuang-Nan Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Xiao-Ning Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Chun-Bao Zhou
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| | - Junliang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Peking University 302 Clinical Medical School, National Clinical Research Center for Infectious Diseases, Beijing, China,Medical School of Chinese PLA, Beijing, China,*Correspondence: Junliang Fu, ; Fu-Sheng Wang,
| |
Collapse
|
22
|
Yang J, Lu H, Chen B, Jiang L, Zhang H, Ye P, Jin L. Profiling of Peripheral TRBV and CD4+CD25+ Treg in CHB Patients with HBeAg SC during TDF Treatment. J Immunol Res 2023; 2023:1914036. [PMID: 36660247 PMCID: PMC9845053 DOI: 10.1155/2023/1914036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND It is lacking that markers could predict the prognosis of chronic hepatitis B (CHB) subjects during antiviral treatment, and the related cellular immune mechanism is not fully evaluated. AIM To explore the comprehensive profile of T cell receptor β-chain (TRBV) and CD4+CD25+ regulatory T cell (Treg) in peripheral blood of CHB patients with HBeAg seroconverting (SC) during tenofovir disoproxil fumarate (TDF) treatment. METHODS The frequency of CD4+CD25high+ Treg and number of skewed TRBV in 20 HBeAg positive patients were determined at baseline and following every 12 weeks during 96-week TDF treatment. The relationship among serum alanine aminotransferase (ALT) level, HBV DNA load, Treg frequency, and the number of skewed TRBV, respectively, was analyzed for CHB patients. Receiver operative characteristic curve was applied to analyze their diagnostic value for HBeAg SC. RESULTS The number of skewed TRBV at week 48, Treg frequency at week 72, and ALT level at baseline could predict the HBeAg SC or non-SC in CHB patients during 96-week TDF treatment. Moreover, the positive correlation between ALT or HBV DNA and Treg levels or skewed TRBVs was significant in the SC group, but not in non-SC. CONCLUSIONS The predictive cutoff value of ALT for HBeAg SC was 178 U/L at baseline. Moreover, the ALT, Treg, and TRBV families would be associated with the prognosis and pathogenesis of CHB patients during TDF treatment.
Collapse
Affiliation(s)
- Jiezuan Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou 310003, China
| | - Haifeng Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou 310003, China
| | - Baikun Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
- Department of Microbiology and Immunology, School of Basic Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Lili Jiang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou 310003, China
| | - Hua Zhang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou 310003, China
| | - Ping Ye
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou 310003, China
| | - Linfeng Jin
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China
- National Clinical Research Center for Infectious Diseases, Hangzhou 310003, China
| |
Collapse
|
23
|
Li D, Li G, Li C, Yang C, Lu K. MiR181-5p promotes pathogenic angiogenesis of hepatopulmonary syndrome by negatively regulating Wnt inhibitor Wif1. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1460-1467. [PMID: 37970446 PMCID: PMC10634055 DOI: 10.22038/ijbms.2023.70689.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/03/2023] [Indexed: 11/17/2023]
Abstract
Objectives Hepatopulmonary syndrome is a serious respiratory injury caused by chronic liver disease. Excessive pulmonary capillary angiogenesis is the key pathological event. However, the mechanism of microRNA regulatory pulmonary capillary angiogenesis is still unclear. Materials and Methods The hepatopulmonary syndrome rat model was constructed by Common bile duct ligation (CBDL) surgery. The expression tread of miR181-5p and Wif1 was detected by qRT-PCR and western blot in various tissues and disease processes. Wif1 was predicted as one of the potential target genes of miR181-5p by bioinformatic assay. miR181-5p mimics and inhibitors were used to increase/decrease miR181-5p levels in pulmonary microvascular cells. And Wif-1 specific recombinant lentiviruses were used to up-regulate and down-regulate Wif1 in pulmonary microvascular cells. Then, CCK8, Transwell, and tube formation assay were used for pulmonary microvascular cell proliferation, migration, and tube formation. And Dual-luciferase reporter assay was used to assess that miR181-5p may direct regulate Wif-1 in HPS rats. Results The result showed miR181-5p specifically activates the Wnt signaling pathway by inhibiting Wif1 and then promotes pulmonary microvascular cell proliferation, migration, and tube formation, thereby accelerating the process of HPS. We finally verified Wif1 as a novel and direct target of miR181-5p in HPS. Conclusion Taken together, we revealed an important miR-181-5p/Wif1/Wnt pathway in regulating pathological angiogenesis. It will prove beneficial as a therapeutic strategy for hepatopulmonary syndrome.
Collapse
Affiliation(s)
- Dan Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
- These authors contributed eqully to this work
| | - Guihua Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
- These authors contributed eqully to this work
| | - Caiyi Li
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Congwen Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kaizhi Lu
- Department of Anesthesiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
24
|
Zhao X, Wang W, Nie S, Geng L, Song K, Zhang X, Yao W, Qiang P, Sun G, Wang D, Liu H. Dynamic comparison of early immune reactions and immune cell reconstitution after umbilical cord blood transplantation and peripheral blood stem cell transplantation. Front Immunol 2023; 14:1084901. [PMID: 37114055 PMCID: PMC10126295 DOI: 10.3389/fimmu.2023.1084901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Umbilical cord blood transplantation (UCBT) and peripheral blood stem cell transplantation (PBSCT) are effective allogeneic treatments for patients with malignant and non-malignant refractory hematological diseases. However, the differences in the immune cell reconstitution and the immune reactions during initial stages post-transplantation are not well established between UCBT and PBSCT. Therefore, in this study, we analyzed the differences in the immune reactions during the early stages (days 7-100 post-transplantation) such as pre-engraftment syndrome (PES), engraftment syndrome (ES), and acute graft-versus-host disease (aGVHD) and the immune cell reconstitution between the UCBT and the PBSCT group of patients. We enrolled a cohort of patients that underwent UCBT or PBSCT and healthy controls (n=25 each) and evaluated their peripheral blood mononuclear cell (PBMC) samples and plasma cytokine (IL-10 and GM-CSF) levels using flow cytometry and ELISA, respectively. Our results showed that the incidences of early immune reactions such as PES, ES, and aGVHD were significantly higher in the UCBT group compared to the PBSCT group. Furthermore, in comparison with the PBSCT group, the UCBT group showed higher proportion and numbers of naïve CD4+ T cells, lower proportion and numbers of Tregs, higher proportion of CD8+ T cells with increased activity, and higher proportion of mature CD56dim CD16+ NK cells during the early stages post-transplantation. Moreover, the plasma levels of GM-CSF were significantly higher in the UCBT group compared to the PBSCT group in the third week after transplantation. Overall, our findings demonstrated significant differences in the post-transplantation immune cell reconstitution between the UCBT and the PBSCT group of patients. These characteristics were associated with significant differences between the UCBT and the PBSCT groups regarding the incidences of immune reactions during the early stages post transplantation.
Collapse
Affiliation(s)
- Xuxu Zhao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenya Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shiqin Nie
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Liangquan Geng
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaidi Song
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinyi Zhang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wen Yao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ping Qiang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Guangyu Sun
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| | - Huilan Liu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Transfusion, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- *Correspondence: Dongyao Wang, ; Huilan Liu,
| |
Collapse
|
25
|
Chen X, Liu X, Jiang Y, Xia N, Liu C, Luo W. Abnormally primed CD8 T cells: The Achilles' heel of CHB. Front Immunol 2023; 14:1106700. [PMID: 36936922 PMCID: PMC10014547 DOI: 10.3389/fimmu.2023.1106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a significant public health challenge, and more than 250 million people around world are infected with HBV. The clearance of HBV with virus-specific CD8 T cells is critical for a functional cure. However, naïve HBV-specific CD8 T cells are heavily hindered during the priming process, and this phenomenon is closely related to abnormal cell and signal interactions in the complex immune microenvironment. Here, we briefly summarize the recent progress in understanding the abnormal priming of HBV-specific CD8 T cells and some corresponding immunotherapies to facilitate their functional recovery, which provides a novel perspective for the design and development of immunotherapy for chronic HBV infection (CHB). Finally, we also highlight the balance between viral clearance and pathological liver injury induced by CD8 T-cell activation that should be carefully considered during drug development.
Collapse
Affiliation(s)
- Xiaoqing Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yichao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- The Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, Fujian, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| | - Wenxin Luo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, Xiamen, Fujian, China
- *Correspondence: Wenxin Luo, ; Chao Liu,
| |
Collapse
|
26
|
Wang D, Sun Z, Zhu X, Zheng X, Zhou Y, Lu Y, Yan P, Wang H, Liu H, Jin J, Zhu H, Sun R, Wang Y, Fu B, Tian Z, Wei H. GARP-mediated active TGF-β1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT. Blood 2022; 140:2788-2804. [PMID: 35981475 PMCID: PMC10653097 DOI: 10.1182/blood.2022015474] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 01/05/2023] Open
Abstract
Relapse is a leading cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia (AML). However, the underlying mechanisms remain poorly understood. Natural killer (NK) cells play a crucial role in tumor surveillance and cancer immunotherapy, and NK cell dysfunction has been observed in various tumors. Here, we performed ex vivo experiments to systematically characterize the mechanisms underlying the dysfunction of bone marrow-derived NK (BMNK) cells isolated from AML patients experiencing early relapse after allo-HSCT. We demonstrated that higher levels of active transforming growth factor β1 (TGF-β1) were associated with impaired effector function of BMNK cells in these AML patients. TGF-β1 activation was induced by the overexpression of glycoprotein A repetitions predominant on the surface of CD4+ T cells. Active TGF-β1 significantly suppressed mTORC1 activity, mitochondrial oxidative phosphorylation, the proliferation, and cytotoxicity of BMNK cells. Furthermore, pretreatment with the clinical stage TGF-β1 pathway inhibitor, galunisertib, significantly restored mTORC1 activity, mitochondrial homeostasis, and cytotoxicity. Importantly, the blockade of the TGF-β1 signaling improved the antitumor activity of NK cells in a leukemia xenograft mouse model. Thus, our findings reveal a mechanism explaining BMNK cell dysfunction and suggest that targeted inhibition of TGF-β1 signaling may represent a potential therapeutic intervention to improve outcomes in AML patients undergoing allo-HSCT or NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Dongyao Wang
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Zimin Sun
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyu Zhu
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaohu Zheng
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yonggang Zhou
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yichen Lu
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Peidong Yan
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Huiru Wang
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Huilan Liu
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Jing Jin
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Huaiping Zhu
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Sun
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Binqing Fu
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Haiming Wei
- Division of Life Sciences and Medicine, Department of Hematology, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Immunology, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
27
|
Zheng JR, Wang ZL, Feng B. Hepatitis B functional cure and immune response. Front Immunol 2022; 13:1075916. [PMID: 36466821 PMCID: PMC9714500 DOI: 10.3389/fimmu.2022.1075916] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus, which damage to hepatocytes is not direct, but through the immune system. HBV specific CD4+ T cells can induce HBV specific B cells and CD8+ T cells. HBV specific B cells produce antibodies to control HBV infection, while HBV specific CD8+ T cells destroy infected hepatocytes. One of the reasons for the chronicity of HBV infection is that it cannot effectively activate adoptive immunity and the function of virus specific immune cells is exhausted. Among them, virus antigens (including HBV surface antigen, e antigen, core antigen, etc.) can inhibit the function of immune cells and induce immune tolerance. Long term nucleos(t)ide analogues (NAs) treatment and inactive HBsAg carriers with low HBsAg level may "wake up" immune cells with abnormal function due to the decrease of viral antigen level in blood and liver, and the specific immune function of HBV will recover to a certain extent, thus becoming the "dominant population" for functional cure. In turn, the functional cure will further promote the recovery of HBV specific immune function, which is also the theoretical basis for complete cure of hepatitis B. In the future, the complete cure of chronic HBV infection must be the combination of three drugs: inhibiting virus replication, reducing surface antigen levels and specific immune regulation, among which specific immunotherapy is indispensable. Here we review the relationship, mechanism and clinical significance between the cure of hepatitis B and immune system.
Collapse
Affiliation(s)
| | | | - Bo Feng
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Peking University Hepatology Institute, Beijing, China
| |
Collapse
|
28
|
Qi W, Wang Y, Huang G, Wang K. Interleukin-2 promotes pegylated interferon alpha for hepatitis B surface antigen loss: A retrospective pragmatic clinical study at the Fourth Affiliated Hospital of Zhejiang University Medical College. Health Sci Rep 2022; 5:e932. [PMID: 36381411 PMCID: PMC9662690 DOI: 10.1002/hsr2.932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims Interleukin-2 (IL-2) can be used as an adjuvant therapy when pegylated interferon alpha (Peg-IFN-α) does not effectively promote hepatitis B surface antigen (HBsAg) loss, but the relevant timing, kinetic patterns, and prognostic associations of this intervention are unclear. Methods A total of 115 patients with chronic hepatitis B (CHB) treated at our institution between October 2018 and March 2021 were included in this retrospective analysis. They were divided into two kinetic patterns by using K-medoids cluster analysis. Profile and prognostic associations were statistically analyzed between the two patterns. Results After baseline standardization, before the intervention, the relative HBsAg level showed a continuously increasing trend, but after the intervention, it showed a continuously decreasing trend. Based on the relative change in the HBsAg level, two kinetic patterns, namely, a fluctuation platform pattern and a stepwise growth pattern, were identified by using K-medoids cluster analysis for all 115 patients before IL-2 intervention. Profile analysis showed that there were statistically significant differences between the two patterns before IL-2 intervention (p < 0.05), but their profiles showed the same trend after 2 weeks of IL-2 intervention. Prognostic association analysis showed that CD8+ T cells, alanine transaminase (ALT), age, natural killer (NK) cells, neutrophils, and course of treatment before IL-2 intervention were the six main indicators affecting the relative decrease in the HBsAg level. Conclusion For CHB patients who have received continuous Peg-IFN-α treatment, IL-2 intervention should be given as early as possible when the HBsAg level has not decreased for four consecutive weeks or a fluctuation platform pattern is observed. After the intervention, a downward relative change in the HBsAg level can be maintained over 4 weeks. CD8+ T cells, ALT, NK cells, and neutrophils are baseline indicators closely related to the prognosis of this intervention.
Collapse
Affiliation(s)
- Wencai Qi
- School of Mathematics and StatisticsSouthwest UniversityChongqingPeople's Republic of China
| | - Yuming Wang
- Institute for Infectious Diseases, Southwest HospitalArmy Medical UniversityChongqingPeople's Republic of China
- Public Health Hospital of Southwest UniversityChongqingPeople's Republic of China
| | - Guangyu Huang
- Department of Infectious DiseasesThe Fourth Affiliated Hospital Zhejiang University School of MedicineYiwuZhejiangPeople's Republic of China
| | - Kaifa Wang
- School of Mathematics and StatisticsSouthwest UniversityChongqingPeople's Republic of China
| |
Collapse
|
29
|
Wang H, Liu H, Zhou L, Wang D, Wang S, Liu Q, Wu Y, Tu M, Sun Z, Zheng X, Fu B, Wang B, Wei H. Cytomegalovirus-specific neutralizing antibodies effectively prevent uncontrolled infection after allogeneic hematopoietic stem cell transplantation. iScience 2022; 25:105065. [PMID: 36147955 PMCID: PMC9485910 DOI: 10.1016/j.isci.2022.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Cytomegalovirus (CMV) infection remains one of the most frequent and life-threatening infectious complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Herein, we comprehensively compared the immune cells of patients with uncontrolled and controlled CMV infection post-allo-HSCT and found that B-cells were extraordinarily insufficient because of impaired B-cells reconstitution in the uncontrolled infection group. Furthermore, in the controlled infection group, reconstructed B-cells showed signatures of mature B-cells, high expression of CXCR4 and IFITM1, and enrichment of CMV-associated B-cell receptors, which were lacking in the uncontrolled infection group. Consistently, sera from the uncontrolled infection group failed to inhibit CMV infection via neutralizing virus in vitro because of its lower content of anti-CMV-specific immunoglobulin G (IgG) than the controlled infection group. Overall, these results highlighted the contribution of B cells and anti-CMV-specific neutralizing IgGs to the restraint of CMV infection post-allo-HSCT, suggesting their potential as a supplementary treatment to improve outcomes.
Collapse
Affiliation(s)
- Huiru Wang
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.,Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Huilan Liu
- Department of Transfusion, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.,Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Li Zhou
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China.,Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Dongyao Wang
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China.,Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shushu Wang
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China.,Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Qian Liu
- Organ Transplant Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Yun Wu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Meijuan Tu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xiaohu Zheng
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Binqing Fu
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China
| | - Baolong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haiming Wei
- Institute of Immunology, University of Science and Technology of China, Hefei 230027, China.,Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
30
|
Wang D, Fu B, Wei H. Advances in Immunotherapy for Hepatitis B. Pathogens 2022; 11:1116. [PMID: 36297173 PMCID: PMC9612046 DOI: 10.3390/pathogens11101116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2023] Open
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus with the potential to cause chronic infection, and it is one of the common causes of liver disease worldwide. Chronic HBV infection leads to liver cirrhosis and, ultimately, hepatocellular carcinoma (HCC). The persistence of covalently closed circular DNA (cccDNA) and the impaired immune response in patients with chronic hepatitis B (CHB) has been studied over the past few decades. Despite advances in the etiology of HBV and the development of potent virus-suppressing regimens, a cure for HBV has not been found. Both the innate and adaptive branches of immunity contribute to viral eradication. However, immune exhaustion and evasion have been demonstrated during CHB infection, although our understanding of the mechanism is still evolving. Recently, the successful use of an antiviral drug for hepatitis C has greatly encouraged the search for a cure for hepatitis B, which likely requires an approach focused on improving the antiviral immune response. In this review, we discuss our current knowledge of the immunopathogenic mechanisms and immunobiology of HBV infection. In addition, we touch upon why the existing therapeutic approaches may not achieve the goal of a functional cure. We also propose how combinations of new drugs, and especially novel immunotherapies, contribute to HBV clearance.
Collapse
Affiliation(s)
- Dongyao Wang
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
- Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei 230001, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu 233030, China
| | - Binqing Fu
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| | - Haiming Wei
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
31
|
Wang A, Fang M, Jiang H, Wang D, Zhang X, Tang B, Zhu X, Hu W, Liu X. Palbociclib promotes the antitumor activity of Venetoclax plus Azacitidine against acute myeloid leukemia. Biomed Pharmacother 2022; 153:113527. [DOI: 10.1016/j.biopha.2022.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022] Open
|
32
|
Zhang JQ, Zhang SX, Wang J, Qiao J, Qiu MT, Wu XY, Chen JW, Gao C, Li XF. Low-dose IL-2 therapy limits the reduction in absolute numbers of peripheral lymphocytes in systemic lupus erythematosus patients with infection. Curr Med Res Opin 2022; 38:1037-1044. [PMID: 35414310 DOI: 10.1080/03007995.2022.2065145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder characterized by disturbed cellular and humoral immune responses. Dysregulations of immune system and immunosuppressive medications predispose SLE patients to infection. This study aims to investigate the alterations and absolute concentrations of lymphocyte subpopulations in SLE patients with different infection and their responses of low-dose IL-2 therapy. METHODS A total of 333 patients with SLE without recent infection, 162 patients suffering infection, and age and sex-matched 132 healthy controls (HCs) were recruited. Of them, 54 SLE patients (including 41 non-infected group and 13 infected group) received a 5-day course of low-dose IL-2 administration at a dose of 0.5 million IU per day. Lymphocyte subpopulations were analyzed by flow cytometry. RESULTS Patients with SLE had lower levels of lymphocyte subpopulations in peripheral blood such as T, B, NK, CD4 + T, CD8+ T, Th1, Th2, Th17, and Treg cells, and the reduction in these cells was more obvious in patients with infection (p <.05 to p <.01). Low-dose IL-2 effectively expanded T (p <.001), B (p <.001), CD4 + T (p <.01), CD8 + T (p <.001), Th1 (p <.01), Th17 (p <.1), and Treg cells (p <.01) of SLE patients, these cells were comparable to that of HCs after the IL-2 treatment. CONCLUSIONS Patients with SLE had insufficiency of circulating lymphocyte subsets. This phenomenon was more obverse in those accompanying infection, suggesting the low concentration of lymphocytes may be used as indicators of high infection risk in SLE patients. Low-dose IL-2 induced expansion of Treg cells and NK cells, which may contribute to the restoration of immune homeostasis in SLE patients.
Collapse
Affiliation(s)
- Jia-Qian Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Jun Qiao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Meng-Ting Qiu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Xiao-Yan Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| | - Jun-Wen Chen
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Key laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Shanxi, China
| |
Collapse
|
33
|
Pan H, Pan J, Li P, Wu J. Immunologic Gene Sets Reveal Features of the Tumor Immune Microenvironment and Predict Prognosis and Immunotherapy Response: A Pan-Cancer Analysis. Front Immunol 2022; 13:858246. [PMID: 35493519 PMCID: PMC9046667 DOI: 10.3389/fimmu.2022.858246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
In the treatment of cancer, anti-programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) immunotherapy has achieved unprecedented clinical success. However, the significant response to these therapies is limited to a small number of patients. This study aimed to predict immunotherapy response and prognosis using immunologic gene sets (IGSs). The enrichment scores of 4,872 IGSs in 348 patients with metastatic urothelial cancer treated with anti-PD-L1 therapy were computed using gene set variation analysis (GSVA). An IGS-based classification (IGSC) was constructed using a nonnegative matrix factorization (NMF) approach. An IGS-based risk prediction model (RPM) was developed using the least absolute shrinkage and selection operator (LASSO) method. The IMvigor210 cohort was divided into three distinct subtypes, among which subtype 2 had the best prognosis and the highest immunotherapy response rate. Subtype 2 also had significantly higher PD-L1 expression, a higher proportion of the immune-inflamed phenotype, and a higher tumor mutational burden (TMB). An RPM was constructed using four gene sets, and it could effectively predict prognosis and immunotherapy response in patients receiving anti-PD-L1 immunotherapy. Pan-cancer analyses also demonstrated that the RPM was capable of accurate risk stratification across multiple cancer types, and RPM score was significantly associated with TMB, microsatellite instability (MSI), CD8+ T-cell infiltration, and the expression of cytokines interferon-γ (IFN-γ), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α), which are key predictors of immunotherapy response. The IGSC strengthens our understanding of the diverse biological processes in tumor immune microenvironment, and the RPM can be a promising biomarker for predicting the prognosis and response in cancer immunotherapy.
Collapse
Affiliation(s)
- Hongda Pan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Pan
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pei Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jianghong Wu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Jianghong Wu,
| |
Collapse
|
34
|
Chen X, Wang D, Zhu X. Application of double-negative T cells in haematological malignancies: recent progress and future directions. Biomark Res 2022; 10:11. [PMID: 35287737 PMCID: PMC8919567 DOI: 10.1186/s40364-022-00360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Haematologic malignancies account for a large proportion of cancers worldwide. The high occurrence and mortality of haematologic malignancies create a heavy social burden. Allogeneic haematopoietic stem cell transplantation is widely used in the treatment of haematologic malignancies. However, graft-versus-host disease and relapse after allogeneic haematopoietic stem cell transplantation are inevitable. An emerging treatment method, adoptive cellular therapy, has been effectively used in the treatment of haematologic malignancies. T cells, natural killer (NK) cells and tumour-infiltrating lymphocytes (TILs) all have great potential in therapeutic applications, and chimeric antigen receptor T (CAR-T) cell therapy especially has potential, but cytokine release syndrome and off-target effects are common. Efficient anticancer measures are urgently needed. In recent years, double-negative T cells (CD3+CD4-CD8-) have been found to have great potential in preventing allograft/xenograft rejection and inhibiting graft-versus-host disease. They also have substantial ability to kill various cell lines derived from haematologic malignancies in an MHC-unrestricted manner. In addition, healthy donor expanded double-negative T cells retain their antitumour abilities and ability to inhibit graft-versus-host disease after cryopreservation under good manufacturing practice (GMP) conditions, indicating that double-negative T cells may be able to be used as an off-the-shelf product. In this review, we shed light on the potential therapeutic ability of double-negative T cells in treating haematologic malignancies. We hope to exploit these cells as a novel therapy for haematologic malignancies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Dongyao Wang
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Xiaoyu Zhu
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China.
| |
Collapse
|