1
|
Zhang S, Xu CL, Wang J, Xiong X, Wang JH. Spike proteins of coronaviruses activate mast cells for degranulation via stimulating Src/PI3K/AKT/Ca 2+ intracellular signaling cascade. J Virol 2025; 99:e0007825. [PMID: 40304504 PMCID: PMC12090780 DOI: 10.1128/jvi.00078-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025] Open
Abstract
Mast cells (MCs) are strategically located at the interface between host and environment. The non-allergic functions of MCs in immunosurveillance against pathogens have been recently underscored. However, the activation of MCs by pathogens may beneficially or detrimentally regulate immune inflammation to combat or promote pathogen invasion. We and others have conclusively demonstrated that MCs serve as a crucial mediator in the induction of hyperinflammation initiated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to substantial tissue damage across multiple organs in murine and nonhuman primate models. Whereas the precise mechanism underlying virus-induced MC activation and degranulation remains largely elusive, our previous findings have indicated that the binding of the Spike proteins to cellular receptors is sufficient to elicit MC activation for rapid degranulation. This study aims to corroborate the ubiquity of coronavirus-induced MC degranulation and elucidate the intracellular signaling pathways that mediate the activation of MCs upon Spike protein binding to the cellular receptors. Our transcriptome analysis revealed MC activation upon the stimulations with a range of Spike/RBD proteins and viral particles of coronavirus. Notably, the interaction between these Spike/RBD proteins and cellular receptors triggered the activation of src kinase, a member of Src Family Kinases (SFKs). This activation, in turn, stimulated the PI3K/AKT signaling pathway, resulting in an accumulation of intracellular calcium ions. These calcium ions subsequently facilitated microtubule-dependent granule transport, ultimately promoting MC degranulation. In summary, this study elucidates the mechanism underlying virus-triggered activation of MCs and has the potential to aid in the development of MC-targeted antiviral therapeutic strategies. IMPORTANCE The activation and degranulation of mast cells (MCs), triggered by a variety of viruses, are intricately linked to viral pathogenesis. However, the precise mechanism underlying virus-induced MC degranulation remains largely unknown. In this study, we demonstrate the ubiquity of coronavirus-induced MC degranulation and investigate the intracellular signaling pathways that mediate this process. We reveal that the binding of Spike proteins and cellular receptors is sufficient to elicit MC activation for rapid degranulation. This binding triggers the activation of src kinase and the downstream PI3K/AKT cellular signaling pathway, resulting in an accumulation of intracellular calcium ions. These calcium ions subsequently facilitate microtubule-dependent granule transport, ultimately promoting MC degranulation. This study elucidates the mechanism underlying virus-triggered activation of MCs and has the potential to aid in the development of MC-targeted antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Shuang Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China
| | - Chu-Lan Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingjing Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoli Xiong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Tsou PS, Ali RA, Lu C, Sule G, Carmona-Rivera C, Lucotti S, Ikari Y, Wu Q, Campbell PL, Gurrea-Rubio M, Maeda K, Fox SE, Brodie WD, Mattichak MN, Foster C, Tambralli A, Yalavarthi S, Amin MA, Kmetova K, Fonseca BM, Chong E, Zuo Y, Maile MD, Imberti L, Caruso A, Caccuri F, Quaresima V, Sottini A, Kuhns DB, Fink D, Castagnoli R, Delmonte OM, Kenney H, Zhang Y, Magliocco M, Su H, Notarangelo L, Zemans RL, Mao-Draayer Y, Matei IR, Salvatore M, Lyden D, Kanthi Y, Kaplan MJ, Knight JS, Fox DA. Soluble CD13 is a potential mediator of neutrophil-induced thrombogenic inflammation in SARS-CoV-2 infection. JCI Insight 2025; 10:e184975. [PMID: 40168094 DOI: 10.1172/jci.insight.184975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
The soluble variant of the ectopeptidase CD13 (sCD13), released from the cell surface by matrix metalloproteinase 14 (MMP14), is a potent pro-inflammatory mediator, displaying chemotactic, angiogenic, and arthritogenic properties through bradykinin receptor B1 (B1R). We revealed a link between sCD13 and amplified neutrophil-mediated inflammatory responses in SARS-CoV-2 infection. sCD13 was markedly elevated in patients with COVID-19 and correlated with disease severity and variants, ethnicity, inflammation markers, and neutrophil extracellular trap formation (NETosis). Neutrophils treated with sCD13 showed heightened NETosis and chemotaxis, which were inhibited by sCD13 receptor blockade. Meanwhile sCD13 did not induce platelet aggregation. Single-cell analysis of COVID-19 lungs revealed coexpression of CD13 and MMP14 by various cell types, and higher CD13 expression compared with controls. Neutrophils with high CD13 mRNA were enriched for genes associated with immaturity, though CD13 protein expression was lower. Histological examination of COVID-19 lungs revealed CD13-positive leukocytes trapped in vessels with fibrin thrombi. Flow cytometry verified the presence of B1R and a second sCD13 receptor, protease-activated receptor 4, on monocytes and neutrophils. These findings identify sCD13 as a potential instigator of COVID-19-associated NETosis, potentiating vascular stress and thromboembolic complications. The potent pro-inflammatory effects of sCD13 may contribute to severe COVID-19, suggesting that sCD13 and its receptors might be therapeutic targets.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Ramadan A Ali
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Chenyang Lu
- Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Serena Lucotti
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Yuzo Ikari
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Qi Wu
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Phillip L Campbell
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Mikel Gurrea-Rubio
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Kohei Maeda
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon E Fox
- Department of Pathology, Louisiana State University, Health Sciences Center, New Orleans, Louisiana, USA
| | - William D Brodie
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan N Mattichak
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Caroline Foster
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Ajay Tambralli
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Srilakshmi Yalavarthi
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - M Asif Amin
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Katarina Kmetova
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Bruna Mazetto Fonseca
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
- School of Medical Science, University of Campinas (UNICAMP), Campinas, Brazil
| | - Emily Chong
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu Zuo
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael D Maile
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, University of Brescia, Brescia, Italy
| | | | - Virginia Quaresima
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Douglas B Kuhns
- Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Danielle Fink
- Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Riccardo Castagnoli
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Ottavia M Delmonte
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Heather Kenney
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Yu Zhang
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Mary Magliocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Helen Su
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Luigi Notarangelo
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Rachel L Zemans
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine; and Program in Cellular and Molecular Biology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yang Mao-Draayer
- Multiple Sclerosis Center of Excellence, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Irina R Matei
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Mirella Salvatore
- Joan and Sanford I. Weill Department of Medicine and Department of Population Health Sciences, Weill Cornell Medical College, New York, New York, USA
| | - David Lyden
- Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
| | - Yogendra Kanthi
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine, and Clinical Autoimmunity Center of Excellence, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Huo C, Li Y, Tang Y, Su R, Xu J, Dong H, Hu Y, Yang H. Vital Role of PINK1/Parkin-Mediated Mitophagy of Pulmonary Epithelial Cells in Severe Pneumonia Induced by IAV and Secondary Staphylococcus aureus Infection. Int J Mol Sci 2025; 26:4162. [PMID: 40362402 PMCID: PMC12071998 DOI: 10.3390/ijms26094162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/21/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Influenza A virus (IAV) infection causes considerable morbidity and mortality worldwide, and the secondary bacterial infection further exacerbates the severity and fatality of the initial viral infection. Mitophagy plays an important role in host resistance to pathogen infection and immune response, while its role on pulmonary epithelial cells with viral and bacterial co-infection remains unclear. The present study reveals that the secondary Staphylococcus aureus infection significantly increased the viral and bacterial loads in human lung epithelial cells (A549) during the initial H1N1 infection. Meanwhile, the secondary S. aureus infection triggered more intense mitophagy in A549 cells by activating the PINK1/Parkin signaling pathway. Notably, mitophagy could contribute to the proliferation of pathogens in A549 cells via the inhibition of cell apoptosis. Furthermore, based on an influenza A viral and secondary bacterial infected mouse model, we showed that activation of mitophagy was conducive to the proliferation of virus and bacteria in the lungs, aggravated the inflammatory damage and severe pneumonia at the same time, and eventually decreased the survival rate. The results elucidated the effect and the related molecular mechanism of mitophagy in pulmonary epithelial cells following IAV and secondary S. aureus infection for the first time, which will provide valuable information for the pathogenesis of virus/bacteria interaction and new ideas for the treatment of severe pneumonia.
Collapse
Affiliation(s)
- Caiyun Huo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (Y.L.); (Y.T.); (R.S.); (H.Y.)
| | - Yuli Li
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (Y.L.); (Y.T.); (R.S.); (H.Y.)
| | - Yuling Tang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (Y.L.); (Y.T.); (R.S.); (H.Y.)
| | - Ruijing Su
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (Y.L.); (Y.T.); (R.S.); (H.Y.)
| | - Jiawei Xu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (Y.L.); (Y.T.); (R.S.); (H.Y.)
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, China;
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (Y.L.); (Y.T.); (R.S.); (H.Y.)
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China (Y.L.); (Y.T.); (R.S.); (H.Y.)
| |
Collapse
|
4
|
Fang X, Mo C, Zheng L, Gao F, Xue F, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOEState Key Laboratory of BiotherapyWest China Second University HospitalSichuan UniversityChengdu610041China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fei Gao
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Fu‐Shan Xue
- Department of Anesthesiology/Critical Care MedicineFuzhou University Affiliated Provincial HospitalSchool of MedicineFuzhou UniversityShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial Key Laboratory of Critical Care MedicineFujian Provincial HospitalFuzhouFujian350001China
| | - Xiaochun Zheng
- Department of AnesthesiologyFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical CenterFujian Provincial Key Laboratory of Emergency MedicineFujian Provincial Key Laboratory of Critical MedicineFujian Provincial Co‐constructed Laboratory of “Belt and Road,”FuzhouFujianChina
| |
Collapse
|
5
|
Xue C, Liu W, Li Y, Yin Y, Tang B, Zhu J, Dong Y, Liu H, Ren H. Mesenchymal stem cells alleviate idiopathic pneumonia syndrome by facilitating M2 polarization via CCL2/CCR2 axis and further inducing formation of regulatory CCR2 + CD4 + T cells. Stem Cell Res Ther 2025; 16:108. [PMID: 40025564 PMCID: PMC11872334 DOI: 10.1186/s13287-025-04232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Our previous study revealed that mesenchymal stem cells (MSCs) can secrete large amounts of the chemokine CCL2 under inflammatory conditions and alleviate idiopathic pneumonia syndrome (IPS) by promoting regulatory CCR2 + CD4 + T-cell formation through the CCL2‒CCR2 axis. Given the abundance of macrophages in lung tissue, how these macrophages are regulated by MSC-based prophylaxis via IPS and their interactions with T cells in lung tissue during allo-HSCT are still not fully understood. METHODS An IPS mouse model was established, and MSC-based prophylaxis was administered. In vitro coculture systems and an IPS model were used to study the interactions among MSCs, macrophages and T cells. RESULTS Prophylactic administration of MSCs induced M2 polarization and alleviated acute graft-versus-host disease (aGVHD) and lung injury in an IPS mouse model. In vitro coculture studies revealed that M2 polarization was induced by MSC-released CCL2 and that these M2 macrophages promoted the formation of regulatory CCR2 + CD4 + T cells. Blocking the CCL2-CCR2 interaction in vitro reversed MSC-induced M2 polarization and abolished the induction of CCR2 + CD4 + T-cell formation. Additionally, in vivo administration of a CCL2 or CCR2 antagonist in the IPS mouse model exacerbated aGVHD and lung injury, accompanied by a reduction in M2 macrophages and reduced formation of regulatory CCR2 + CD4 + T cells in lung tissue. CONCLUSIONS MSCs alleviate IPS by facilitating M2 polarization via the CCL2‒CCR2 axis and further inducing the formation of regulatory CCR2 + CD4 + T cells.
Collapse
Affiliation(s)
- Chao Xue
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Jinye Zhu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| |
Collapse
|
6
|
Talkington GM, Kolluru P, Gressett TE, Ismael S, Meenakshi U, Acquarone M, Solch-Ottaiano RJ, White A, Ouvrier B, Paré K, Parker N, Watters A, Siddeeque N, Sullivan B, Ganguli N, Calero-Hernandez V, Hall G, Longo M, Bix GJ. Neurological sequelae of long COVID: a comprehensive review of diagnostic imaging, underlying mechanisms, and potential therapeutics. Front Neurol 2025; 15:1465787. [PMID: 40046430 PMCID: PMC11881597 DOI: 10.3389/fneur.2024.1465787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/18/2024] [Indexed: 03/09/2025] Open
Abstract
One lingering effect of the COVID-19 pandemic created by SARS-CoV-2 is the emergence of Long COVID (LC), characterized by enduring neurological sequelae affecting a significant portion of survivors. This review provides a thorough analysis of these neurological disruptions with respect to cognitive dysfunction, which broadly manifest as chronic insomnia, fatigue, mood dysregulation, and cognitive impairments with respect to cognitive dysfunction. Furthermore, we characterize how diagnostic tools such as PET, MRI, EEG, and ultrasonography provide critical insight into subtle neurological anomalies that may mechanistically explain the Long COVID disease phenotype. In this review, we explore the mechanistic hypotheses of these neurological changes, which describe CNS invasion, neuroinflammation, blood-brain barrier disruption, and gut-brain axis dysregulation, along with the novel vascular disruption hypothesis that highlights endothelial dysfunction and hypoperfusion as a core underlying mechanism. We lastly evaluate the clinical treatment landscape, scrutinizing the efficacy of various therapeutic strategies ranging from antivirals to anti-inflammatory agents in mitigating the multifaceted symptoms of LC.
Collapse
Affiliation(s)
- Grant McGee Talkington
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paresh Kolluru
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Saifudeen Ismael
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Umar Meenakshi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mariana Acquarone
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | - Amanda White
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Blake Ouvrier
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Kristina Paré
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Nicholas Parker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Amanda Watters
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nabeela Siddeeque
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Brooke Sullivan
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | - Nilesh Ganguli
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
| | | | - Gregory Hall
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michele Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Gregory J. Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
7
|
Liu M, Qi F, Wang J, Li F, Lv Q, Deng R, Liang X, Zhou S, Yu P, Xu Y, Zhang Y, Yan Y, Liu M, Li S, Mou G, Bao L. Lcn2 secreted by macrophages through NLRP3 signaling pathway induced severe pneumonia. Protein Cell 2025; 16:148-155. [PMID: 39180285 PMCID: PMC11786722 DOI: 10.1093/procel/pwae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024] Open
Affiliation(s)
- Mingya Liu
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Jue Wang
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Fengdi Li
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Qi Lv
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Ran Deng
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Xujian Liang
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Shasha Zhou
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Pin Yu
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Yanfeng Xu
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
| | - Yaqing Zhang
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Yiwei Yan
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Ming Liu
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Shuyue Li
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Guocui Mou
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
- National Center of Technology Innovation for Animal Model, Beijing 100021, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing 100005, China
| |
Collapse
|
8
|
Gammeri L, Sanfilippo S, Alessandrello C, Gangemi S, Minciullo PL. Mast Cells and Basophils in Major Viral Diseases: What Are the Correlations with SARS-CoV-2, Influenza A Viruses, HIV, and Dengue? Cells 2024; 13:2044. [PMID: 39768136 PMCID: PMC11674676 DOI: 10.3390/cells13242044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The SARS-CoV-2 pandemic has significantly impacted global health and has led the population and the scientific community to live in fear of a future pandemic. Based on viral infectious diseases, innate immunity cells such as mast cells and basophils play a fundamental role in the pathogenesis of viral diseases. Understanding these mechanisms could be essential to better study practical therapeutic approaches not only to COVID-19 but also to other viral infections widely spread worldwide, such as influenza A, HIV, and dengue. In this literature review, we want to study these concepts. Mast cells and basophils intervene as a bridge between innate and acquired immunity and seem to have a role in the damage mechanisms during infection and in the stimulation of humoral and cellular immunity. In some cases, these cells can act as reservoirs and favor the replication and spread of the virus in the body. Understanding these mechanisms can be useful not only in therapeutic but also in diagnostic and prognostic perspectives. The prospects of applying artificial intelligence and machine learning algorithms for the creation of very accurate diagnostic/prognostic tools are interesting.
Collapse
Affiliation(s)
| | | | | | | | - Paola Lucia Minciullo
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (L.G.); (S.S.); (C.A.); (S.G.)
| |
Collapse
|
9
|
Fang X, Gao F, Zheng L, Xue FS, Zhu T, Zheng X. Reduced microRNA-744 expression in mast cell-derived exosomes triggers epithelial cell ferroptosis in acute respiratory distress syndrome. Redox Biol 2024; 77:103387. [PMID: 39378613 PMCID: PMC11493202 DOI: 10.1016/j.redox.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a critical disorder characterized by immune-related damage to epithelial cells; however, its underlying mechanism remains elusive. This study investigated the effects of alterations in microRNA (miRNA) expression in mast cell-derived exosomes on human bronchial epithelial (HBE) cells and ARDS development in cellular and mouse models challenged with lipopolysaccharide. Lipopolysaccharide-treated mast cell-derived exosomes reduced glutathione peroxidase 4 (GPX4) expression and increased long-chain acyl-CoA synthetase 4 (ACSL4), 15-lipoxygenase (ALOX15), and inflammatory mediator levels in HBE cells. miRNA sequencing revealed a reduction in mast cell-derived exosomal miR-744 levels, which was associated with the regulation of ACSL4, ALOX15, and GPX4 expression. This downregulation of exosomal miR-744 expression reduced miR-744 levels and promoted ferroptosis in HBE cells, whereas the experimental upregulation of miR-744 reversed these adverse effects. Down-regulation of miR-744 induced the expression of markers for ferroptosis and inflammation in HBE cells and promoted pulmonary ferroptosis, inflammation, and injury in LPS-stimulated mice. In vivo, treatment with ACSL4, ALOX15, and GPX4 inhibitors mitigated these effects, and experimental miR-744 expression rescued the lipopolysaccharide-induced changes in HBE cells and mouse lungs. Notably, miR-744 levels were reduced in the plasma and exosomes of patients with ARDS. We concluded that decreased mast cell-derived exosomal miR-744 levels trigger epithelial cell ferroptosis, promoting lung inflammation and damage in ARDS. This study provides new mechanistic insights into the development and sustained pulmonary damage associated with ARDS and highlights potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China.
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Fu-Shan Xue
- Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Unit of West China (2018RU012), Chinese Academy of Medical Science, Chengdu, Sichuan, China.
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road,", Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Ji W, Zhu P, Wang Y, Zhang Y, Li Z, Yang H, Chen S, Jin Y, Duan G. The key mechanisms of multi-system responses triggered by central nervous system damage in hand, foot, and mouth disease severity. INFECTIOUS MEDICINE 2024; 3:100124. [PMID: 39314804 PMCID: PMC11417554 DOI: 10.1016/j.imj.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is a prevalent infectious affliction primarily affecting children, with a small portion of cases progressing to neurological complications. Notably, in a subset of severe HFMD cases, neurological manifestations may result in significant sequelae and pose a risk of mortality. We systematically conducted literature retrieval from the databases PubMed (1957-2023), Embase (1957-2023), and Web of Science (1957-2023), in addition to consulting authoritative guidelines. Subsequently, we rigorously selected the most relevant articles within the scope of this review for comprehensive analysis. It is widely recognized that the severity of HFMD is attributed to a multifaceted array of pathophysiological mechanisms. The implication of multi-system dysfunction appears to be perturbances of the human defense system; therefore, it contributes to the severity of HFMD. In this review, we provide an overview and analysis of recent insights into the molecular mechanisms contributing to the severity of HFMD, with a particular focus on cytokine release syndrome, the involvement of the renin-angiotensin system, regional immunity, endothelial dysfunction, catecholamine storm, viral invasion, and the molecular mechanisms of neurological damage. We speculate that the domino effect of diverse physiological systems, initiated by damage to the central nervous system, serve as the primary mechanisms governing the severity of HFMD. Simultaneously, we emphasize the knowledge gaps and research urgently required to delineate a quick roadmap for ongoing and essential studies on HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| |
Collapse
|
11
|
Chen S, Zhu H, Lin L, Lu L, Chen L, Zeng L, Yue W, Kong X, Zhang H. Apelin-13 improves pulmonary epithelial barrier function in a mouse model of LPS-induced acute lung injury by inhibiting Chk1-mediated DNA damage. Biochem Pharmacol 2024; 226:116297. [PMID: 38801925 DOI: 10.1016/j.bcp.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Apelin-13, a type of active peptide, can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the specific mechanism is unclear. Cell cycle checkpoint kinase 1 (Chk1) plays an important role in DNA damage. Here, we investigated the regulatory effect of Apelin on Chk1 in ALI. Chk1-knockout and -overexpression mice were used to explore the role of Chk1 in LPS-induced ALI mice treated with or without Apelin-13. In addition, A549 cells were also treated with LPS to establish a cell model. Chk1 knockdown inhibited the destruction of alveolar structure, the damage of lung epithelial barrier function, and DNA damage in the ALI mouse model. Conversely, Chk1 overexpression had the opposite effect. Furthermore, Apelin-13 reduced Chk1 expression and DNA damage to improve the impaired lung epithelial barrier function in the ALI model. However, the high expression of Chk1 attenuated the protective effect of Apelin-13 on ALI. Notably, Apelin-13 promoted Chk1 degradation through autophagy to regulate DNA damage in LPS-treated A549 cells. In summary, Apelin-13 regulates the expression of Chk1 by promoting autophagy, thereby inhibiting epithelial DNA damage and repairing epithelial barrier function.
Collapse
Affiliation(s)
- Siyue Chen
- Department of Children's Respiration disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China; School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, PR China
| | - Huihui Zhu
- Department of Children's Respiration disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Lidan Lin
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, PR China
| | - Liling Lu
- Children's Hospital, Zhejiang University School of Medicine, Zhejiang 310000, PR China
| | - Lin Chen
- Department of Children's Respiration disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China; School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, PR China
| | - Luyao Zeng
- Department of Children's Respiration disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Wei Yue
- Department of Children's Respiration disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China
| | - Xiaoxia Kong
- School of Basic Medical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315302, PR China.
| | - Hailin Zhang
- Department of Children's Respiration disease, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, PR China.
| |
Collapse
|
12
|
Wu ML, Xie C, Li X, Sun J, Zhao J, Wang JH. Mast cell activation triggered by SARS-CoV-2 causes inflammation in brain microvascular endothelial cells and microglia. Front Cell Infect Microbiol 2024; 14:1358873. [PMID: 38638822 PMCID: PMC11024283 DOI: 10.3389/fcimb.2024.1358873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
SARS-CoV-2-induced excessive inflammation in brain leads to damage of blood-brain barrier, hypoxic-ischemic injury, and neuron degeneration. The production of inflammatory cytokines by brain microvascular endothelial cells and microglia is reported to be critically associated with the brain pathology of COVID-19 patients. However, the cellular mechanisms for SARS-CoV-2-inducing activation of brain cells and the subsequent neuroinflammation remain to be fully delineated. Our research, along with others', has recently demonstrated that SARS-CoV-2-induced accumulation and activation of mast cells (MCs) in mouse lung could further induce inflammatory cytokines and consequent lung damages. Intracerebral MCs activation and their cross talk with other brain cells could induce neuroinflammation that play important roles in neurodegenerative diseases including virus-induced neuro-pathophysiology. In this study, we investigated the role of MC activation in SARS-CoV-2-induced neuroinflammation. We found that (1) SARS-CoV-2 infection triggered MC accumulation in the cerebrovascular region of mice; (2) spike/RBD (receptor-binding domain) protein-triggered MC activation induced inflammatory factors in human brain microvascular endothelial cells and microglia; (3) MC activation and degranulation destroyed the tight junction proteins in brain microvascular endothelial cells and induced the activation and proliferation of microglia. These findings reveal a cellular mechanism of SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Meng-Li Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chengzuo Xie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Cao JB, Zhu ST, Huang XS, Wang XY, Wu ML, Li X, Liu FL, Chen L, Zheng YT, Wang JH. Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial inflammation and injury. Virol Sin 2024; 39:309-318. [PMID: 38458399 DOI: 10.1016/j.virs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.
Collapse
Affiliation(s)
- Jian-Bo Cao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Tong Zhu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao-Shan Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xing-Yuan Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Meng-Li Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Feng-Liang Liu
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
14
|
Le M, Khoury L, Lu Y, Prosty C, Cormier M, Cheng MP, Fowler R, Murthy S, Tsang JLY, Ben-Shoshan M, Rahme E, Golchi S, Dendukuri N, Lee TC, Netchiporouk E. COVID-19 Immunologic Antiviral Therapy With Omalizumab (CIAO)-a Randomized Controlled Clinical Trial. Open Forum Infect Dis 2024; 11:ofae102. [PMID: 38560604 PMCID: PMC10977629 DOI: 10.1093/ofid/ofae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Background Omalizumab is an anti-immunoglobulin E monoclonal antibody used to treat moderate to severe chronic idiopathic urticaria, asthma, and nasal polyps. Recent research suggested that omalizumab may enhance the innate antiviral response and have anti-inflammatory properties. Objective We aimed to investigate the efficacy and safety of omalizumab in adults hospitalized for coronavirus disease 2019 (COVID-19) pneumonia. Methods This was a phase II randomized, double blind, placebo-controlled trial comparing omalizumab with placebo (in addition to standard of care) in hospitalized patients with COVID-19. The primary endpoint was the composite of mechanical ventilation and/or death at day 14. Secondary endpoints included all-cause mortality at day 28, time to clinical improvement, and duration of hospitalization. Results Of 41 patients recruited, 40 were randomized (20 received the study drug and 20 placebo). The median age of the patients was 74 years and 55.0% were male. Omalizumab was associated with a 92.6% posterior probability of a reduction in mechanical ventilation and death on day 14 with an adjusted odds ratio of 0.11 (95% credible interval 0.002-2.05). Omalizumab was also associated with a 75.9% posterior probability of reduced all-cause mortality on day 28 with an adjusted odds ratio of 0.49 (95% credible interval, 0.06-3.90). No statistically significant differences were found for the time to clinical improvement and duration of hospitalization. Numerically fewer adverse events were reported in the omalizumab group and there were no drug-related serious adverse events. Conclusions These results suggest that omalizumab could prove protective against death and mechanical ventilation in hospitalized patients with COVID-19. This study could also support the development of a phase III trial program investigating the antiviral and anti-inflammatory effect of omalizumab for severe respiratory viral illnesses requiring hospital admission. ClinicalTrials.gov ID: NCT04720612.
Collapse
Affiliation(s)
- Michelle Le
- Division of Dermatology, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Lauren Khoury
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Yang Lu
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Connor Prosty
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Maxime Cormier
- Division of Respiratory Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Mathew P Cheng
- Divisions of Infectious Diseases & Medical Microbiology, McGill University, McGill's Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Robert Fowler
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Srinivas Murthy
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer L Y Tsang
- Niagara Health Knowledge Institute, Niagara Health, St. Catharines, ON, Canada
| | - Moshe Ben-Shoshan
- Division of Allergy, Immunology and Dermatology, Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Elham Rahme
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Shirin Golchi
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Nandini Dendukuri
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Todd C Lee
- Divisions of Infectious Diseases & Medical Microbiology, McGill University, McGill's Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Elena Netchiporouk
- Division of Dermatology, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
15
|
Theoharides TC, Twahir A, Kempuraj D. Mast cells in the autonomic nervous system and potential role in disorders with dysautonomia and neuroinflammation. Ann Allergy Asthma Immunol 2024; 132:440-454. [PMID: 37951572 DOI: 10.1016/j.anai.2023.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Mast cells (MC) are ubiquitous in the body, and they are critical for not only in allergic diseases but also in immunity and inflammation, including having potential involvement in the pathophysiology of dysautonomias and neuroinflammatory disorders. MC are located perivascularly close to nerve endings and sites such as the carotid bodies, heart, hypothalamus, the pineal gland, and the adrenal gland that would allow them not only to regulate but also to be affected by the autonomic nervous system (ANS). MC are stimulated not only by allergens but also many other triggers including some from the ANS that can affect MC release of neurosensitizing, proinflammatory, and vasoactive mediators. Hence, MC may be able to regulate homeostatic functions that seem to be dysfunctional in many conditions, such as postural orthostatic tachycardia syndrome, autism spectrum disorder, myalgic encephalomyelitis/chronic fatigue syndrome, and Long-COVID syndrome. The evidence indicates that there is a possible association between these conditions and diseases associated with MC activation. There is no effective treatment for any form of these conditions other than minimizing symptoms. Given the many ways MC could be activated and the numerous mediators released, it would be important to develop ways to inhibit stimulation of MC and the release of ANS-relevant mediators.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida; Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts.
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, Florida
| |
Collapse
|
16
|
Huang J, Wang X, Li Q, Zhang P, Jing Z, Zhang J, Su H, Sun X. Effect of Mixed Probiotics on Ovalbumin-Induced Atopic Dermatitis in Juvenile Mice. Int J Microbiol 2024; 2024:7172386. [PMID: 38590774 PMCID: PMC10999295 DOI: 10.1155/2024/7172386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Atopic dermatitis is one of the most common dermatologic problems, especially in children. Given the ability of symbiotic microorganisms in modulating the immune system, probiotics administration has been studied in previous research in the management of atopic dermatitis. However, there are conflicting results between studies. In this study, we aimed to assess the effectiveness of mixed probiotics as a treatment option for atopic dermatitis induced by ovalbumin. BALB/c juvenile mice were classified and divided into the ovalbumin group, mixed probiotic group (ovalbumin + LK), and control group. Except for the control group, all mice were sensitized with ovalbumin to establish a model of atopic dermatitis. The mixed probiotics were given by gavage for 14 days. Mice body weight, skin lesions, skin inflammation, ovalbumin-specific Ig, the number of Treg and CD103+DC, and the expression level of PD-1/PD-L1 were examined. The results showed that mixed probiotics can improve body weight and alleviate skin symptoms. Mixed probiotics reduced serum Th2 inflammatory factors, eosinophils, mast cell degranulation, mast cell count, and the expression of ovalbumin-specific immunoglobulin E/G1 and increased the anti-inflammatory cytokine interleukin-10, Treg cells, CD103+DC cells, and the expression level of PD-1/PD-L1. These findings suggest that mixed probiotics could be a viable treatment option for atopic dermatitis and provide insight into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xingzhi Wang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Qiuhong Li
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Panpan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zenghui Jing
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
17
|
Kim HY, Jeong KM, Kim SH, Choi YJ, Kang HG, Jung H, Min K, Kim HM, Jeong HJ. Modulating effect of Eunkyo-san on expression of inflammatory cytokines and angiotensin-converting enzyme 2 in human mast cells. In Vitro Cell Dev Biol Anim 2024; 60:195-208. [PMID: 38228999 DOI: 10.1007/s11626-024-00847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
Eunkyo-san is widely used in the treatment of severe respiratory infections. Mast cells not only serve as host cells for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but also they also exacerbate Coronavirus disease in 2019 (COVID-19) by causing a cytokine storm. Here we investigated whether Eunkyo-san and its active compound naringenin regulate the expression of inflammatory cytokines and factors connected to viral infection in activated human mast cell line, HMC-1 cells. Eunkyo-san and naringenin significantly reduced levels of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, thymic stromal lymphopoietin, and tumor necrosis factor-α without impacting cytotoxicity. Eunkyo-san and naringenin reduced levels of factors connected to SARS-CoV-2 infection such as angiotensin-converting enzyme 2 (ACE2, SARS-CoV-2 receptor), transmembrane protease/serine subfamily member 2, and tryptase in activated HMC-1 cells. Treatment with Eunkyo-san and naringenin considerably reduced expression levels of ACE2 transcription factor, AP-1 (C-JUN and C-FOS) by blocking phosphatidylinositide-3-kinase and c-Jun NH2-terminal kinases signaling pathways. In addition, Eunkyo-san and naringenin effectively suppressed activation of signal transducer and activator of transcription 3, nuclear translocation of nuclear factor-κB, and activation of caspase-1 in activated HMC-1 cells. Furthermore, Eunkyo-san and naringenin reduced expression of ACE2 mRNA in two activated mast cell lines, RBL-2H3 and IC-2 cells. The overall study findings showed that Eunkyo-san diminished the expression levels of inflammatory cytokines and ACE2, and these findings imply that Eunkyo-san is able to effectively mitigating the cytokine storm brought on by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan, 31499, Republic of Korea
| | - Kyung-Min Jeong
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Seung-Hwan Kim
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Yu-Jin Choi
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499, Republic of Korea
| | - Hanchul Jung
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyunghwon Min
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan, 31499, Republic of Korea.
- Division of Food and Pharmaceutical Engineering, Hoseo University, Asan, 31499, Republic of Korea.
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan, 31499, Republic of Korea.
| |
Collapse
|
18
|
Lai B, Jiang H, Liao T, Gao Y, Zhou X. Bioinformatics and system biology analysis revealed the crosstalk between COVID-19 and osteoarthritis. Immun Inflamm Dis 2023; 11:e1123. [PMID: 38156385 PMCID: PMC10739374 DOI: 10.1002/iid3.1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND The global coronavirus disease 2019 (COVID-19) outbreak has significantly impacted public health. Moreover, there has been an association between the incidence and severity of osteoarthritis (OA) and the onset of COVID-19. However, the optimal diagnosis and treatment strategies for patients with both diseases remain uncertain. Bioinformatics is a novel approach that may help find the common pathology between COVID-19 and OA. METHODS Differentially expressed genes (DEGs) were screened by R package "limma." Functional enrichment analyses were performed to find key biological functions. Protein-protein interaction (PPI) network was constructed by STRING database and then Cytoscape was used to select hub genes. External data sets and OA mouse model validated and identified the hub genes in both mRNA and protein levels. Related transcriptional factors (TF) and microRNAs (miRNAs) were predicted with miRTarBase and JASPR database. Candidate drugs were obtained from Drug Signatures database. The immune infiltration levels of COVID-19 and OA were evaluated by CIBERSORT and scRNA-seq. RESULTS A total of 74 common DEGs were identified between COVID-19 and OA. Receiver operating characteristic curves validated the effective diagnostic values (area under curve > 0.7) of four hub genes (matrix metalloproteinases 9, ATF3, CCL4, and RELA) in both the training and validation data sets of COVID-19 and OA. Quantitative polymerase chain reaction and Western Blot showed significantly higher hub gene expression in OA mice than in healthy controls. A total of 84 miRNAs and 28 TFs were identified to regulate the process of hub gene expression. The top 10 potential drugs were screened including "Simvastatin," "Hydrocortisone," and "Troglitazone" which have been proven by Food and Drug Administration. Correlated with hub gene expression, Macrophage M0 was highly expressed while Natural killer cells and Mast cells were low in both COVID-19 and OA. CONCLUSION Four hub genes, disease-related miRNAs, TFs, drugs, and immune infiltration help to understand the pathogenesis and perform further studies, providing a potential therapy target for COVID-19 and OA.
Collapse
Affiliation(s)
- Bowen Lai
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Heng Jiang
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Taotao Liao
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Yuan Gao
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| | - Xuhui Zhou
- Department of OrthopedicsChangzheng Hospital, Second Military Medical UniversityShanghaiChina
| |
Collapse
|
19
|
Seifert J, Küchler C, Drube S. ATP/IL-33-Co-Sensing by Mast Cells (MCs) Requires Activated c-Kit to Ensure Effective Cytokine Responses. Cells 2023; 12:2696. [PMID: 38067124 PMCID: PMC10705958 DOI: 10.3390/cells12232696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for IL-33 and adenosine-triphosphate (ATP), two alarmins which are released upon necrosis-induced cell damage in peripheral tissues. Besides receptors for alarmins, MCs also express the stem cell factor (SCF) receptor c-Kit, which typically mediates MC differentiation, proliferation and survival. By using bone marrow-derived MCs (BMMCs), ELISA and flow cytometry experiments, as well as p65/RelA and NFAT reporter MCs, we aimed to investigate the influence of SCF on alarmin-induced signaling pathways and the resulting cytokine production and degranulation. We found that the presence of SCF boosted the cytokine production but not degranulation in MCs which simultaneously sense ATP and IL-33 (ATP/IL-33 co-sensing). Therefore, we conclude that SCF maintains the functionality of MCs in peripheral tissues to ensure appropriate MC reactions upon cell damage, induced by pathogens or allergens.
Collapse
Affiliation(s)
- Johanna Seifert
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Claudia Küchler
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| |
Collapse
|
20
|
Mehrani Y, Morovati S, Tieu S, Karimi N, Javadi H, Vanderkamp S, Sarmadi S, Tajik T, Kakish JE, Bridle BW, Karimi K. Vitamin D Influences the Activity of Mast Cells in Allergic Manifestations and Potentiates Their Effector Functions against Pathogens. Cells 2023; 12:2271. [PMID: 37759494 PMCID: PMC10528041 DOI: 10.3390/cells12182271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mast cells (MCs) are abundant at sites exposed to the external environment and pathogens. Local activation of these cells, either directly via pathogen recognition or indirectly via interaction with other activated immune cells and results in the release of pre-stored mediators in MC granules. The release of these pre-stored mediators helps to enhance pathogen clearance. While MCs are well known for their protective role against parasites, there is also significant evidence in the literature demonstrating their ability to respond to viral, bacterial, and fungal infections. Vitamin D is a fat-soluble vitamin and hormone that plays a vital role in regulating calcium and phosphorus metabolism to maintain skeletal homeostasis. Emerging evidence suggests that vitamin D also has immunomodulatory properties on both the innate and adaptive immune systems, making it a critical regulator of immune homeostasis. Vitamin D binds to its receptor, called the vitamin D receptor (VDR), which is present in almost all immune system cells. The literature suggests that a vitamin D deficiency can activate MCs, and vitamin D is necessary for MC stabilization. This manuscript explores the potential of vitamin D to regulate MC activity and combat pathogens, with a focus on its ability to fight viruses.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Sophie Tieu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14174-66191, Iran;
| | - Tahmineh Tajik
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| |
Collapse
|
21
|
Rizvi ZA, Dandotiya J, Sadhu S, Khatri R, Singh J, Singh V, Adhikari N, Sharma K, Das V, Pandey AK, Das B, Medigeshi G, Mani S, Bhatnagar S, Samal S, Pandey AK, Garg PK, Awasthi A. Omicron sub-lineage BA.5 infection results in attenuated pathology in hACE2 transgenic mice. Commun Biol 2023; 6:935. [PMID: 37704701 PMCID: PMC10499788 DOI: 10.1038/s42003-023-05263-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/20/2023] [Indexed: 09/15/2023] Open
Abstract
A recently emerged sub-lineage of Omicron, BA.5, together with BA.4, caused a fifth wave of coronavirus disease (COVID-19) in South Africa and subsequently emerged as a predominant strain globally due to its high transmissibility. The lethality of BA.5 infection has not been studied in an acute hACE2 transgenic (hACE2.Tg) mouse model. Here, we investigated tissue-tropism and immuno-pathology induced by BA.5 infection in hACE2.Tg mice. Our data show that intranasal infection of BA.5 in hACE2.Tg mice resulted in attenuated pulmonary infection and pathology with diminished COVID-19-induced clinical and pathological manifestations. BA.5, similar to Omicron (B.1.1.529), infection led to attenuated production of inflammatory cytokines, anti-viral response and effector T cell response as compared to the ancestral strain of SARS-CoV-2, Wuhan-Hu-1. We show that mice recovered from B.1.1.529 infection showed robust protection against BA.5 infection associated with reduced lung viral load and pathology. Together, our data provide insights as to why BA.5 infection escapes previous SARS-CoV-2 exposure induced-T cell immunity but may result in milder immuno-pathology and alleviated chances of re-infectivity in Omicron-recovered individuals.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| | - Jyotsna Dandotiya
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Srikanth Sadhu
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Janmejay Singh
- Bioassay Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Virendra Singh
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Neeta Adhikari
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Kritika Sharma
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Vinayake Das
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Amit Kumar Pandey
- Centre for Tuberculosis and Bacterial Diseases Research, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Bhabatosh Das
- Centre for Microbiome and Anti-Microbial Resistance, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Guruprasad Medigeshi
- Bioassay Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Shalendra Mani
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Shinjini Bhatnagar
- Centre for Maternal and Child Health, Translational Health Science and Technology NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Centre for Viral Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Anil Kumar Pandey
- Department of Physiology, ESIC Medical College & Hospital, Faridabad, 121001, India
| | - Pramod Kumar Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Amit Awasthi
- Centre for Immuno-biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
- Immunology-Core Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
22
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
23
|
Lee JH, Shin E, Kim HK, Song WJ, Kwon HS, Kim TB, Cho YS. Exacerbation of Chronic Spontaneous Urticaria Following Coronavirus Disease 2019 (COVID-19) Vaccination in Omalizumab-Treated Patients. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2403-2410. [PMID: 37182571 PMCID: PMC10176887 DOI: 10.1016/j.jaip.2023.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The rapid development and rollout of vaccines against coronavirus disease 2019 (COVID-19) has led to more than half of the world's population being vaccinated to date. Real-world data have reported various adverse cutaneous reactions, including delayed-onset urticaria, which was highly ranked as a common manifestation across studies. However, the impact of these novel mRNA or viral vector COVID-19 vaccines on preexisting chronic spontaneous urticaria (CSU) remains largely unknown. OBJECTIVE To investigate the impact of COVID-19 vaccination on the clinical status of patients with relatively stable CSU who are undergoing omalizumab treatment and to identify risk factors for exacerbation. METHODS We conducted a questionnaire-based cross-sectional study in a tertiary hospital. Adult patients with relatively stable CSU under regular omalizumab treatments who had received at least one COVID-19 vaccination were included. RESULTS There were 105 study subjects who received 230 COVID-19 vaccinations between March and December 2021. Fifteen patients (14.3%) experienced aggravation of urticaria at least once after COVID-19 vaccination. The demographics and clinical characteristics of the patients were comparable regardless of the exacerbation of CSU. However, case-level analysis revealed that the presence of urticaria (vs none) before vaccination (odds ratio [OR] = 4.99; 95% CI, 1.57-15.82) and the development of systemic reactogenicity (OR = 4.57; 95% CI, 1.62-12.90) were associated with a higher risk for exacerbation. CONCLUSIONS The novel COVID-19 vaccination induced exacerbation in more than one-tenth of patients with well-controlled CSU. The establishment of a proper management strategy during COVID-19 vaccination is necessary for patients with CSU.
Collapse
Affiliation(s)
- Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Eunyong Shin
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun-Kyoung Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyouk-Soo Kwon
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Xiong G, Bekiranov S, Zhang A. ProtoCell4P: an explainable prototype-based neural network for patient classification using single-cell RNA-seq. Bioinformatics 2023; 39:btad493. [PMID: 37540223 PMCID: PMC10444962 DOI: 10.1093/bioinformatics/btad493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/09/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
MOTIVATION The rapid advance in single-cell RNA sequencing (scRNA-seq) technology over the past decade has provided a rich resource of gene expression profiles of single cells measured on patients, facilitating the study of many biological questions at the single-cell level. One intriguing research is to study the single cells which play critical roles in the phenotypes of patients, which has the potential to identify those cells and genes driving the disease phenotypes. To this end, deep learning models are expected to well encode the single-cell information and achieve precise prediction of patients' phenotypes using scRNA-seq data. However, we are facing critical challenges in designing deep learning models for classifying patient samples due to (i) the samples collected in the same dataset contain a variable number of cells-some samples might only have hundreds of cells sequenced while others could have thousands of cells, and (ii) the number of samples available is typically small and the expression profile of each cell is noisy and extremely high-dimensional. Moreover, the black-box nature of existing deep learning models makes it difficult for the researchers to interpret the models and extract useful knowledge from them. RESULTS We propose a prototype-based and cell-informed model for patient phenotype classification, termed ProtoCell4P, that can alleviate problems of the sample scarcity and the diverse number of cells by leveraging the cell knowledge with representatives of cells (called prototypes), and precisely classify the patients by adaptively incorporating information from different cells. Moreover, this classification process can be explicitly interpreted by identifying the key cells for decision making and by further summarizing the knowledge of cell types to unravel the biological nature of the classification. Our approach is explainable at the single-cell resolution which can identify the key cells in each patient's classification. The experimental results demonstrate that our proposed method can effectively deal with patient classifications using single-cell data and outperforms the existing approaches. Furthermore, our approach is able to uncover the association between cell types and biological classes of interest from a data-driven perspective. AVAILABILITY AND IMPLEMENTATION https://github.com/Teddy-XiongGZ/ProtoCell4P.
Collapse
Affiliation(s)
- Guangzhi Xiong
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Aidong Zhang
- Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
25
|
Tsilioni I, Theoharides TC. Recombinant SARS-CoV-2 Spike Protein Stimulates Secretion of Chymase, Tryptase, and IL-1β from Human Mast Cells, Augmented by IL-33. Int J Mol Sci 2023; 24:ijms24119487. [PMID: 37298438 DOI: 10.3390/ijms24119487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1β (IL-1β) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1β, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1β and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.
Collapse
Affiliation(s)
- Irene Tsilioni
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Theoharis C Theoharides
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| |
Collapse
|
26
|
Ciuoderis K, Perez L, Alvarez C, Usuga J, Carvajal L, Cardona A, Maya MA, Cloherty G, Hernandez-Ortiz JP, Osorio JE. Urticaria after breakthrough Omicron BA.5.1 severe acute respiratory syndrome coronavirus 2 infection in a triple-vaccinated (Pfizer) patient: a case report. J Med Case Rep 2023; 17:177. [PMID: 37138300 PMCID: PMC10156422 DOI: 10.1186/s13256-023-03904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 continues to threaten public health. The virus is causing breakthrough infections in vaccinated individuals. Also, scarce information is available about cutaneous manifestations after severe acute respiratory syndrome coronavirus 2 infection. CASE PRESENTATION AND FINDINGS A case of a triple-vaccinated (Pfizer) 37-year-old Hispanic American (Colombian) male who developed urticaria after Omicron BA.5.1 severe acute respiratory syndrome coronavirus 2 breakthrough infection is described. Virus isolation and whole genome sequencing along with immune and molecular assays were performed. Dermatological manifestations (skin rash and urticaria) after Omicron BA.5.1 infection were observed. Sequence analysis of the Omicron BA.5.1 isolate also revealed several important mutations. Hemogram analysis revealed leukocytosis and neutrophilia. Serology testing revealed anti-spike immunoglobulin G serum titers but negative detection of immunoglobulin M at 10 days after symptom onset. Anti-nucleocapsid, anti-spike 1 immunoglobulin G, anti-spike trimer, and anti-receptor-binding-domain immunoglobulin G and immunoglobulin E sera were detected at different titers 10 days after symptom onset. Several serum levels of chemokines/cytokines (Interferon-α, interferon-γ, interleukin-12/interleukin-23p40, interleukin-18, interferon gamma-induced protein-10, monocyte chemoattractant protein-1, monokine induced by gamma, macrophage inflammatory protein-1α, chemokine (C-C motif) ligand-5 , tumor necrosis factor-β1, Tumor necrosis factor-α) were detected, but interleukin-2, interleukin-4, interleukin-6, interleukin-8, and interleukin-17A were below the limit of detection. INTERPRETATION AND CONCLUSIONS To our knowledge, this is the first study describing skin effects of a severe acute respiratory syndrome coronavirus 2 Omicron BA.5 variant breakthrough infection in a triple-vaccinated patient in Colombia. Several important mutations were found in the spike glycoprotein of the virus isolated; these mutations are associated with immune evasion and changes in antigenic properties of the virus. Physicians overseeing coronavirus disease 2019 cases should be aware of the potential skin effects of the infection. Pathogenesis of severe acute respiratory syndrome coronavirus 2 infection and its association with proinflammatory cytokines and chemokines may enhance the development of urticaria and other skin manifestations in immunized individuals. However, further studies are needed to better understand the complexity of coronavirus disease in such situations.
Collapse
Affiliation(s)
- Karl Ciuoderis
- Laboratorio Genómico One Health, UW-GHI One Health Colombia, Universidad Nacional de Colombia, Cll 75#79A-51, Bloque M15, 050034, Medellin, Colombia.
| | - Laura Perez
- Laboratorio Genómico One Health, UW-GHI One Health Colombia, Universidad Nacional de Colombia, Cll 75#79A-51, Bloque M15, 050034, Medellin, Colombia
| | - Catalina Alvarez
- Laboratorio Genómico One Health, UW-GHI One Health Colombia, Universidad Nacional de Colombia, Cll 75#79A-51, Bloque M15, 050034, Medellin, Colombia
| | - Jaime Usuga
- Laboratorio Genómico One Health, UW-GHI One Health Colombia, Universidad Nacional de Colombia, Cll 75#79A-51, Bloque M15, 050034, Medellin, Colombia
| | - Leidi Carvajal
- Laboratorio Genómico One Health, UW-GHI One Health Colombia, Universidad Nacional de Colombia, Cll 75#79A-51, Bloque M15, 050034, Medellin, Colombia
| | - Andrés Cardona
- Laboratorio Genómico One Health, UW-GHI One Health Colombia, Universidad Nacional de Colombia, Cll 75#79A-51, Bloque M15, 050034, Medellin, Colombia
| | - Maria A Maya
- Division of Infectious Diseases, San Vicente Fundación Hospital, Medellín, Colombia
| | | | - Juan P Hernandez-Ortiz
- Laboratorio Genómico One Health, UW-GHI One Health Colombia, Universidad Nacional de Colombia, Cll 75#79A-51, Bloque M15, 050034, Medellin, Colombia
| | - Jorge E Osorio
- Global Health Institute, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
27
|
Theoharides TC, Tsilioni I. Humoral Innate Immunity and Acute-Phase Proteins. N Engl J Med 2023; 388:1725. [PMID: 37133604 DOI: 10.1056/nejmc2302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|
28
|
Li M, Du J, Liu W, Li Z, Lv F, Hu C, Dai Y, Zhang X, Zhang Z, Liu G, Pan Q, Yu Y, Wang X, Zhu P, Tan X, Garber PA, Zhou X. Comparative susceptibility of SARS-CoV-2, SARS-CoV, and MERS-CoV across mammals. THE ISME JOURNAL 2023; 17:549-560. [PMID: 36690780 PMCID: PMC9869846 DOI: 10.1038/s41396-023-01368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Exploring wild reservoirs of pathogenic viruses is critical for their long-term control and for predicting future pandemic scenarios. Here, a comparative in vitro infection analysis was first performed on 83 cell cultures derived from 55 mammalian species using pseudotyped viruses bearing S proteins from SARS-CoV-2, SARS-CoV, and MERS-CoV. Cell cultures from Thomas's horseshoe bats, king horseshoe bats, green monkeys, and ferrets were found to be highly susceptible to SARS-CoV-2, SARS-CoV, and MERS-CoV pseudotyped viruses. Moreover, five variants (del69-70, D80Y, S98F, T572I, and Q675H), that beside spike receptor-binding domain can significantly alter the host tropism of SARS-CoV-2. An examination of phylogenetic signals of transduction rates revealed that closely related taxa generally have similar susceptibility to MERS-CoV but not to SARS-CoV and SARS-CoV-2 pseudotyped viruses. Additionally, we discovered that the expression of 95 genes, e.g., PZDK1 and APOBEC3, were commonly associated with the transduction rates of SARS-CoV, MERS-CoV, and SARS-CoV-2 pseudotyped viruses. This study provides basic documentation of the susceptibility, variants, and molecules that underlie the cross-species transmission of these coronaviruses.
Collapse
Affiliation(s)
- Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Lv
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yichen Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxiao Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yu
- School of Life Sciences, University of Science and Technology of China, Anhui, China
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xu Tan
- Beijing Advanced Center for Structural Biology, Beijing Frontier Innovation Center, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, USA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
29
|
Petracek LS, Broussard CA, Swope RL, Rowe PC. A Case Study of Successful Application of the Principles of ME/CFS Care to an Individual with Long COVID. Healthcare (Basel) 2023; 11:healthcare11060865. [PMID: 36981522 PMCID: PMC10048325 DOI: 10.3390/healthcare11060865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Persistent fatigue is one of the most common symptoms of post-COVID conditions, also termed long COVID. At the extreme end of the severity spectrum, some individuals with long COVID also meet the criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), raising the possibility that symptom management approaches for ME/CFS may benefit some long COVID patients. We describe the long-term outcomes of a 19-year-old male who developed profound impairment consistent with ME/CFS after a SARS-CoV-2 infection early in the pandemic. We evaluated and treated him using our clinic’s approach to ME/CFS. This included a history and physical examination that ascertained joint hypermobility, pathological reflexes, physical therapy maneuvers to look for a range of motion restrictions in the limbs and spine, orthostatic testing, and screening laboratory studies. He was found to have profound postural tachycardia syndrome, several ranges of motion restrictions, and mast cell activation syndrome. He was treated according to our clinic’s guidelines for managing ME/CFS, which included manual physical therapy maneuvers and both non-pharmacologic measures and medications directed at postural tachycardia syndrome and mast cell activation. He experienced significant improvement in his symptoms over 30 months. His case emphasizes how the application of the principles of treating ME/CFS has the potential to provide a direction for treating long COVID.
Collapse
Affiliation(s)
| | | | | | - Peter C. Rowe
- Correspondence: ; Tel.: +1-410-955-9229; Fax: +1-410-614-1178
| |
Collapse
|
30
|
Niculae CM, Hristea A, Moroti R. Mechanisms of COVID-19 Associated Pulmonary Thrombosis: A Narrative Review. Biomedicines 2023; 11:929. [PMID: 36979908 PMCID: PMC10045826 DOI: 10.3390/biomedicines11030929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
COVID-19, the infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is frequently associated with pulmonary thrombotic events, especially in hospitalized patients. Severe SARS-CoV-2 infection is characterized by a proinflammatory state and an associated disbalance in hemostasis. Immune pathology analysis supports the inflammatory nature of pulmonary arterial thrombi composed of white blood cells, especially neutrophils, CD3+ and CD20+ lymphocytes, fibrin, red blood cells, and platelets. Immune cells, cytokines, chemokines, and the complement system are key drivers of immunothrombosis, as they induce the damage of endothelial cells and initiate proinflammatory and procoagulant positive feedback loops. Neutrophil extracellular traps induced by COVID-19-associated "cytokine storm", platelets, red blood cells, and coagulation pathways close the inflammation-endotheliopathy-thrombosis axis, contributing to SARS-CoV-2-associated pulmonary thrombotic events. The hypothesis of immunothrombosis is also supported by the minor role of venous thromboembolism with chest CT imaging data showing peripheral blood clots associated with inflammatory lesions and the high incidence of thrombotic events despite routine thromboprophylaxis. Understanding the complex mechanisms behind COVID-19-induced pulmonary thrombosis will lead to future combination therapies for hospitalized patients with severe disease that would target the crossroads of inflammatory and coagulation pathways.
Collapse
Affiliation(s)
- Cristian-Mihail Niculae
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Adriana Hristea
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| | - Ruxandra Moroti
- Infectious Diseases Department, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 37 Dionisie Lupu Street, 020021 Bucharest, Romania; (A.H.); (R.M.)
- National Institute for Infectious Diseases “Prof. Dr. Matei Bals”, 1 Calistrat Grozovici Street, 021105 Bucharest, Romania
| |
Collapse
|
31
|
Raj S, Unsworth LD. Targeting active sites of inflammation using inherent properties of tissue-resident mast cells. Acta Biomater 2023; 159:21-37. [PMID: 36657696 DOI: 10.1016/j.actbio.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Mast cells play a pivotal role in initiating and directing host's immune response. They reside in tissues that primarily interface with the external environment. Activated mast cells respond to environmental cues throughout acute and chronic inflammation through releasing immune mediators via rapid degranulation, or long-term de novo expression. Mast cell activation results in the rapid release of a variety of unique enzymes and reactive oxygen species. Furthermore, the increased density of mast cell unique receptors like mas related G protein-coupled receptor X2 also characterizes the inflamed tissues. The presence of these molecules (either released mediators or surface receptors) are particular to the sites of active inflammation, and are a result of mast cell activation. Herein, the molecular design principles for capitalizing on these novel mast cell properties is discussed with the goal of manipulating localized inflammation. STATEMENT OF SIGNIFICANCE: Mast cells are immune regulating cells that play a crucial role in both innate and adaptive immune responses. The activation of mast cells causes the release of multiple unique profiles of biomolecules, which are specific to both tissue and disease. These unique characteristics are tightly regulated and afford a localized stimulus for targeting inflammatory diseases. Herein, these important mast cell attributes are discussed in the frame of highlighting strategies for the design of bioresponsive functional materials to target regions of inflammations.
Collapse
Affiliation(s)
- Shammy Raj
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, Donadeo Innovation Centre for Engineering, 9211-116 Street NW, University of Alberta, Edmonton, AB, T6G1H9, Canada.
| |
Collapse
|
32
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
33
|
Kim HY, Kang HG, Kim HM, Jeong HJ. Expression of SARS-CoV-2 receptor angiotensin-converting enzyme 2 by activating protein-1 in human mast cells. Cell Immunol 2023; 386:104705. [PMID: 36898276 PMCID: PMC9985914 DOI: 10.1016/j.cellimm.2023.104705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection activates mast cells and induces a cytokine storm, leading to severe Coronavirus disease in 2019 (COVID-19). SARS-CoV-2 employs angiotensin-converting enzyme 2 (ACE2) for cell entry. In the present study, the expression of ACE2 and its mechanism in activated mast cells were studied utilizing the human mast cell line, HMC-1 cells and it was elucidated whether dexamethasone used as a treatment for COVID-19 could regulate ACE2 expression. Here we documented for the first time that levels of ACE2 were increased by stimulation of phorbol 12-myristate 13-acetate and A23187 (PMACI) in HMC-1 cells. Increased levels of ACE2 were significantly diminished by treatment with Wortmannin, SP600125, SB203580, PD98059, or SR11302. The expression of ACE2 was most significantly reduced by the activating protein (AP)-1 inhibitor SR11302. PMACI stimulation enhanced the expression of the transcription factor AP-1 for ACE2. In addition, levels of transmembrane protease/serine subfamily member 2 (TMPRSS2) and tryptase were increased in PMACI-stimulated HMC-1 cells. However, dexamethasone significantly lowered levels of ACE2, TMPRSS2, and tryptase generated by PMACI. Treatment with dexamethasone also reduced activation of signaling molecules linked to ACE2 expression. According to these findings, levels of ACE2 were up-regulated through activation of AP-1 in mast cells, suggesting that suppressing ACE2 levels in mast cells would be a therapeutic approach to lessen the harm caused by COVID-19.
Collapse
Affiliation(s)
- Hee-Yun Kim
- Biochip Research Center, Hoseo University, Asan 31499, Republic of Korea
| | - Ho-Geun Kang
- Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea.
| | - Hyun-Ja Jeong
- Biochip Research Center, Hoseo University, Asan 31499, Republic of Korea; Department of Bio-Convergence System, Graduate School, Hoseo University, Asan 31499, Republic of Korea.
| |
Collapse
|
34
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
35
|
Bellavite P, Ferraresi A, Isidoro C. Immune Response and Molecular Mechanisms of Cardiovascular Adverse Effects of Spike Proteins from SARS-CoV-2 and mRNA Vaccines. Biomedicines 2023; 11:451. [PMID: 36830987 PMCID: PMC9953067 DOI: 10.3390/biomedicines11020451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus responsible for the COVID-19 disease) uses the Spike proteins of its envelope for infecting target cells expressing on the membrane the angiotensin converting enzyme 2 (ACE2) enzyme that acts as a receptor. To control the pandemic, genetically engineered vaccines have been designed for inducing neutralizing antibodies against the Spike proteins. These vaccines do not act like traditional protein-based vaccines, as they deliver the message in the form of mRNA or DNA to host cells that then produce and expose the Spike protein on the membrane (from which it can be shed in soluble form) to alert the immune system. Mass vaccination has brought to light various adverse effects associated with these genetically based vaccines, mainly affecting the circulatory and cardiovascular system. ACE2 is present as membrane-bound on several cell types, including the mucosa of the upper respiratory and of the gastrointestinal tracts, the endothelium, the platelets, and in soluble form in the plasma. The ACE2 enzyme converts the vasoconstrictor angiotensin II into peptides with vasodilator properties. Here we review the pathways for immunization and the molecular mechanisms through which the Spike protein, either from SARS-CoV-2 or encoded by the mRNA-based vaccines, interferes with the Renin-Angiotensin-System governed by ACE2, thus altering the homeostasis of the circulation and of the cardiovascular system. Understanding the molecular interactions of the Spike protein with ACE2 and the consequent impact on cardiovascular system homeostasis will direct the diagnosis and therapy of the vaccine-related adverse effects and provide information for development of a personalized vaccination that considers pathophysiological conditions predisposing to such adverse events.
Collapse
Affiliation(s)
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
36
|
Arish M, Qian W, Narasimhan H, Sun J. COVID-19 immunopathology: From acute diseases to chronic sequelae. J Med Virol 2023; 95:e28122. [PMID: 36056655 PMCID: PMC9537925 DOI: 10.1002/jmv.28122] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/17/2023]
Abstract
The clinical manifestation of coronavirus disease 2019 (COVID-19) mainly targets the lung as a primary affected organ, which is also a critical site of immune cell activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, recent reports also suggest the involvement of extrapulmonary tissues in COVID-19 pathology. The interplay of both innate and adaptive immune responses is key to COVID-19 management. As a result, a robust innate immune response provides the first line of defense, concomitantly, adaptive immunity neutralizes the infection and builds memory for long-term protection. However, dysregulated immunity, both innate and adaptive, can skew towards immunopathology both in acute and chronic cases. Here we have summarized some of the recent findings that provide critical insight into the immunopathology caused by SARS-CoV-2, in acute and post-acute cases. Finally, we further discuss some of the immunomodulatory drugs in preclinical and clinical trials for dampening the immunopathology caused by COVID-19.
Collapse
Affiliation(s)
- Mohd Arish
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
37
|
Lian X, Zhang W, He-Yang J, Zhou X. Human milk oligosaccharide disialyllacto-n-tetraose protects human intestinal epithelium integrity and permeability against mast cell chymase-induced disruption by stabilizing ZO-1/FAK/P38 pathway of intestinal epithelial cell. Immunopharmacol Immunotoxicol 2022:1-10. [PMID: 36537314 DOI: 10.1080/08923973.2022.2160730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Inflammatory bowel disease (IBD) is a chronic gut disease with intestinal-epithelium disruption. Mast cell (MC) has been discussed in IBD studies, but its subset MCTC (chymase/tryptase) and MC-chymase have not been well-explored extensively. Human-milk-oligosaccharide-Disialyllacto-N-Tetraose (DSLNT) was reported as an effective strategy to protect infants against IBD with unclear mechanism. OBJECTIVE This study was to examine the distribution of chymase-positive mast cells in the intestinal-epithelium-tissue of IBD infants, to explore the MC-chymase function on intestinal-epithelium, and to investigate the influences of DSLNT against MC-chymase-induced disruptions. MATERIALS AND METHODS The intestinal-biopsies (surgical-waste) of the infants with IBD or with intestinal-atresia (non-IBD) were paraffin-embedded for immunohistochemistry. In-situ intestinal-tissue model and in-vitro human-intestinal-epithelial-cell (Caco-2) model were established with or without the treatments of MC-chymase (50mU/mL), DSLNT (600 µM) and DSLNT + MC-chymase respectively. The tissue morphology analysis, cell proliferation assay, cell-gap-closure assessment, fluorescence-immunocytochemistry, western blot, trans-epithelial-electrical-resistance, cell-cycle and statistical analysis were applied. RESULTS There was an increased number of MCTC subset around the inflamed intestinal area in-vivo; MC-chymase caused intestinal-epithelial-barrier damage in-situ, decreased trans-epithelial-electrical-resistance of caco-2 cell monolayer in-vitro; while DSLNT protected epithelium against MC-chymase induced disruptions. MC-chymase reduced cell-viability, proliferation and migration, altered cell-cycle, down-regulated ZO-1, FAK, and P38 expressions, while DSLNT protected cells by impairing MC-chymase-induced interruptions. DSLNT can rescue ZO-1, FAK and P38 expressions and restore epithelial-cell integrity and cell cycle. CONCLUSIONS Chymase-positive MCs are involved in IBD progress. MC-chymase disrupts intracellular ZO-1/FAK/P38 signal pathway and cell-cell/cell-matrix contacts, while DSLNT protects intestinal-epithelium against MC-chymase to maintain the intestinal epithelium integrity.
Collapse
Affiliation(s)
- Xuejiao Lian
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Wenting Zhang
- The School of Pharmacy, Changzhou University, Jiangsu, China.,Department of Pharmacy, Changzhou Children's Hospital, Changzhou, China
| | - Jingqiu He-Yang
- The School of Pharmacy, Changzhou University, Jiangsu, China
| | - Xiaoying Zhou
- The School of Pharmacy, Changzhou University, Jiangsu, China
| |
Collapse
|
38
|
Karami H, Karimi Z, Karami N. SARS-CoV-2 in brief: from virus to prevention. Osong Public Health Res Perspect 2022; 13:394-406. [PMID: 36617546 DOI: 10.24171/j.phrp.2022.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ahighly transmissible virus with a likely animal origin, has posed major and unprecedentedchallenges to millions of lives across the affected nations of the world. This outbreak firstoccurred in China, and despite massive regional and global attempts shortly thereafter, itspread to other countries and caused millions of deaths worldwide. This review presents keyinformation about the characteristics of SARS-CoV-2 and its associated disease (namely,coronavirus disease 2019) and briefly discusses the origin of the virus. Herein, we also brieflysummarize the strategies used against viral spread and transmission.
Collapse
Affiliation(s)
- Hassan Karami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Karimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Karami
- Department of Nursing, School of Nursing, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
39
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Krysko O, Bourne JH, Kondakova E, Galova EA, Whitworth K, Newby ML, Bachert C, Hill H, Crispin M, Stamataki Z, Cunningham AF, Pugh M, Khan AO, Rayes J, Vedunova M, Krysko DV, Brill A. Severity of SARS-CoV-2 infection is associated with high numbers of alveolar mast cells and their degranulation. Front Immunol 2022; 13:968981. [PMID: 36225927 PMCID: PMC9548604 DOI: 10.3389/fimmu.2022.968981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background The systemic inflammatory response post-SARS-CoV-2 infection increases pro-inflammatory cytokine production, multi-organ damage, and mortality rates. Mast cells (MC) modulate thrombo-inflammatory disease progression (e.g., deep vein thrombosis) and the inflammatory response post-infection. Objective To enhance our understanding of the contribution of MC and their proteases in SARS-CoV-2 infection and the pathogenesis of the disease, which might help to identify novel therapeutic targets. Methods MC proteases chymase (CMA1), carboxypeptidase A3 (CPA3), and tryptase beta 2 (TPSB2), as well as cytokine levels, were measured in the serum of 60 patients with SARS-CoV-2 infection (30 moderate and 30 severe; severity of the disease assessed by chest CT) and 17 healthy controls by ELISA. MC number and degranulation were quantified by immunofluorescent staining for tryptase in lung autopsies of patients deceased from either SARS-CoV-2 infection or unrelated reasons (control). Immortalized human FcεR1+c-Kit+ LUVA MC were infected with SARS-CoV-2, or treated with its viral proteins, to assess direct MC activation by flow cytometry. Results The levels of all three proteases were increased in the serum of patients with COVID-19, and strongly correlated with clinical severity. The density of degranulated MC in COVID-19 lung autopsies was increased compared to control lungs. The total number of released granules and the number of granules per each MC were elevated and positively correlated with von Willebrand factor levels in the lung. SARS-CoV-2 or its viral proteins spike and nucleocapsid did not induce activation or degranulation of LUVA MC in vitro. Conclusion In this study, we demonstrate that SARS-CoV-2 is strongly associated with activation of MC, which likely occurs indirectly, driven by the inflammatory response. The results suggest that plasma MC protease levels could predict the disease course, and that severe COVID-19 patients might benefit from including MC-stabilizing drugs in the treatment scheme.
Collapse
Affiliation(s)
- Olga Krysko
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Elena Kondakova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Elena A. Galova
- University Clinic of Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Katharine Whitworth
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maddy L. Newby
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Claus Bachert
- Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Harriet Hill
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Zania Stamataki
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Adam F. Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Matthew Pugh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, Department of Basic and Medical Genetics, National Research Lobachevsky State University of Nizhniy Novgorod, Nizhniy Novgorod, Russia
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Ghent University and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
41
|
Soler E, de Mendoza A, Cuello VI, Silva-Vetri MG, Núñez ZH, Ortega RG, Rizvi SA, Sanchez-Gonzalez M, Ferrer G. Intranasal Xylitol for the Treatment of COVID-19 in the Outpatient Setting: A Pilot Study. Cureus 2022; 14:e27182. [PMID: 36039203 PMCID: PMC9395150 DOI: 10.7759/cureus.27182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 11/05/2022] Open
|
42
|
Wang YN, Zhang YF, Peng XF, Ge HH, Wang G, Ding H, Li Y, Li S, Zhang LY, Zhang JT, Li H, Zhang XA, Liu W. Mast Cell-Derived Proteases Induce Endothelial Permeability and Vascular Damage in Severe Fever with Thrombocytopenia Syndrome. Microbiol Spectr 2022; 10:e0129422. [PMID: 35612327 PMCID: PMC9241724 DOI: 10.1128/spectrum.01294-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever acquired by tick bites. Whether mast cells (MCs), the body's first line of defense against pathogens, might influence immunity or pathogenesis during SFTS virus (SFTSV) infection remained unknown. Here, we found that SFTSV can cause MC infection and degranulation, resulting in the release of the vasoactive mediators, chymase, and tryptase, which can directly act on endothelial cells, break the tight junctions of endothelial cells and threaten the integrity of the microvascular barrier, leading to microvascular hyperpermeability in human microvascular endothelial cells. Local activation of MCs (degranulation) and MC-specific proteases-facilitated endothelial damage were observed in mouse models. When MC-specific proteases were injected subcutaneously into the back skin of mice, signs of capillary leakage were observed in a dose-dependent manner. MC-specific proteases, chymase, and tryptase were tested in the serum collected at the acute phase of SFTS patients, with the higher level significantly correlated with fatal outcomes. By performing receiver operator characteristic curve (ROC) analysis, chymase was determined as a biomarker with the area under the curve value of 0.830 (95% CI = 0.745 to 0.915) for predicting fatal outcomes in SFTS. Our findings highlight the importance of MCs in SFTSV-induced disease progression and outcome. An emerging role for MCs in the clinical prognosis and blocking MC activation as a potential drug target during SFTSV infection was proposed. IMPORTANCE We revealed a pathogenic role for MCs in response to SFTSV infection. The study also identifies potential biomarkers that could differentiate patients at risk of a fatal outcome for SFTS, as well as novel therapeutic targets for the clinical management of SFTS. These findings might shed light on an emerging role for MCs as a potential drug target during infection of other viral hemorrhagic fever diseases with similar host pathology as SFTS.
Collapse
Affiliation(s)
- Yu-Na Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Yun-Fa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Xue-Fang Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Hong-Han Ge
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Heng Ding
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Yue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Shuang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Ling-Yu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Jing-Tao Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, Hebei, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
43
|
Ferrari D, Rubini M, Burns JS. The Potential of Purinergic Signaling to Thwart Viruses Including SARS-CoV-2. Front Immunol 2022; 13:904419. [PMID: 35784277 PMCID: PMC9248768 DOI: 10.3389/fimmu.2022.904419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
A long-shared evolutionary history is congruent with the multiple roles played by purinergic signaling in viral infection, replication and host responses that can assist or hinder viral functions. An overview of the involvement of purinergic signaling among a range of viruses is compared and contrasted with what is currently understood for SARS-CoV-2. In particular, we focus on the inflammatory and antiviral responses of infected cells mediated by purinergic receptor activation. Although there is considerable variation in a patient's response to SARS-CoV-2 infection, a principle immediate concern in Coronavirus disease (COVID-19) is the possibility of an aberrant inflammatory activation causing diffuse lung oedema and respiratory failure. We discuss the most promising potential interventions modulating purinergic signaling that may attenuate the more serious repercussions of SARS-CoV-2 infection and aspects of their implementation.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Michele Rubini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Jorge S. Burns
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Jedrzejak AP, Urbaniak EK, Wasko JA, Ziojla N, Borowiak M. Diabetes and SARS-CoV-2-Is There a Mutual Connection? Front Cell Dev Biol 2022; 10:913305. [PMID: 35769263 PMCID: PMC9234398 DOI: 10.3389/fcell.2022.913305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, a newly emerged virus described for the first time in late 2019, affects multiple organs in humans, including the pancreas. Here, we present the bilateral link between the pathophysiology of diabetes and COVID-19, with diabetes being COVID-19 comorbidity, and a complication of SARS-CoV-2 infection. Analysis of clinical data indicates that patients with chronic conditions like diabetes are at increased risk of severe COVID-19, hospitalization, ICU admission, and death compared to the healthy subjects. Further, we show that SARS-CoV-2 infection might be also associated with the development of new-onset diabetes and diabetic ketoacidosis. We then discuss the options for studying SARS-CoV-2 infection in pancreatic settings, including the use of human pluripotent stem cell-derived pancreatic organoids. Further, we review the presence of SARS-CoV-2 receptors in different pancreatic cell types and the infection efficiency based on pancreatic sections from COVID-19 patients and primary human islet in vitro studies. Finally, we discuss the impact of SARS-CoV-2 infection on human pancreatic cell homeostasis, focusing on β-cells.
Collapse
Affiliation(s)
- Anna P. Jedrzejak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Edyta K. Urbaniak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Jadwiga A. Wasko
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Natalia Ziojla
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Malgorzata Borowiak
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
- Center for Cell and Gene Therapy, Stem Cell and Regenerative Medicine Center, Baylor College of Medicine, Texas Children’s Hospital, Methodist Hospital, Houston, TX, United States
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
45
|
Wu ML, Liu FL, Sun J, Li X, Qin JR, Yan QH, Jin X, Chen XW, Zheng YT, Zhao JC, Wang JH. Combinational benefit of antihistamines and remdesivir for reducing SARS-CoV-2 replication and alleviating inflammation-induced lung injury in mice. Zool Res 2022; 43:457-468. [PMID: 35503561 PMCID: PMC9113965 DOI: 10.24272/j.issn.2095-8137.2021.469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
COVID-19 is an immune-mediated inflammatory disease caused by SARS-CoV-2 infection, the combination of anti-inflammatory and antiviral therapy is predicted to provide clinical benefits. We recently demonstrated that mast cells (MCs) are an essential mediator of SARS-CoV-2-initiated hyperinflammation. We also showed that spike protein-induced MC degranulation initiates alveolar epithelial inflammation for barrier disruption and suggested an off-label use of antihistamines as MC stabilizers to block degranulation and consequently suppress inflammation and prevent lung injury. In this study, we emphasized the essential role of MCs in SARS-CoV-2-induced lung lesions in vivo, and demonstrated the benefits of co-administration of antihistamines and antiviral drug remdesivir in SARS-CoV-2-infected mice. Specifically, SARS-CoV-2 spike protein-induced MC degranulation resulted in alveolar-capillary injury, while pretreatment of pulmonary microvascular endothelial cells with antihistamines prevented adhesion junction disruption; predictably, the combination of antiviral drug remdesivir with the antihistamine loratadine, a histamine receptor 1 (HR1) antagonist, dampened viral replication and inflammation, thereby greatly reducing lung injury. Our findings emphasize the crucial role of MCs in SARS-CoV-2-induced inflammation and lung injury and provide a feasible combination antiviral and anti-inflammatory therapy for COVID-19 treatment.
Collapse
Affiliation(s)
- Meng-Li Wu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jian-Ru Qin
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qi-Hong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Xia Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin-Wen Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Jin-Cun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China. E-mail:
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
- University of Chinese Academy of Sciences, Beijing 100049, China. E-mail:
| |
Collapse
|
46
|
Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, Fan J, Song L, Tong Y, Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther 2022; 7:146. [PMID: 35504917 PMCID: PMC9062866 DOI: 10.1038/s41392-022-00996-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.
Collapse
Affiliation(s)
- Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Han Wang
- Laboratory for Clinical Immunology, Harbin Children's Hospital, Harbin, China
| | - Lili Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zehan Pang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qingkun Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Tianqi Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China. .,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
47
|
Becker S, Reddehase MJ, Lemmermann NA. Mast Cells Meet Cytomegalovirus: A New Example of Protective Mast Cell Involvement in an Infectious Disease. Cells 2022; 11:cells11091402. [PMID: 35563708 PMCID: PMC9101682 DOI: 10.3390/cells11091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cytomegaloviruses (CMVs) belong to the β-subfamily of herpesviruses. Their host-to-host transmission involves the airways. As primary infection of an immunocompetent host causes only mild feverish symptoms, human CMV (hCMV) is usually not considered in routine differential diagnostics of common airway infections. Medical relevance results from unrestricted tissue infection in an immunocompromised host. One risk group of concern are patients who receive hematopoietic cell transplantation (HCT) for immune reconstitution following hematoablative therapy of hematopoietic malignancies. In HCT patients, interstitial pneumonia is a frequent cause of death from hCMV strains that have developed resistance against antiviral drugs. Prevention of CMV pneumonia requires efficient reconstitution of antiviral CD8 T cells that infiltrate lung tissue. A role for mast cells (MC) in the immune control of lung infection by a CMV was discovered only recently in a mouse model. MC were shown to be susceptible for productive infection and to secrete the chemokine CCL-5, which recruits antiviral CD8 T cells to the lungs and thereby improves the immune control of pulmonary infection. Here, we review recent data on the mechanism of MC-CMV interaction, a field of science that is new for CMV virologists as well as for immunologists who have specialized in MC.
Collapse
|
48
|
Theoharides TC, Guerra L, Patel K. Successful Treatment of a Patient With Severe COVID-19 Using an Integrated Approach Addressing Mast Cells and Their Mediators. Int J Infect Dis 2022; 118:164-166. [PMID: 35227867 PMCID: PMC8881225 DOI: 10.1016/j.ijid.2022.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Institute of Neuro-Immune Medicine, Nova Southeastern University, Tampa FL, USA.
| | - Lucy Guerra
- Department of Medicine, University of South Florida Morsani College of Medicine, Tampa General Hospital, Tampa, FL, USA
| | - Kapilkumar Patel
- Center for Advanced Lung Disease and Lung Transplant Program, Division of Pulmonary and Critical Care Medicine, University of South Florida, Morsani College of Medicine, Tampa General Hospital, Center, Tampa, FL, USA
| |
Collapse
|
49
|
Song ST, Wu ML, Zhang HJ, Su X, Wang JH. Mast Cell Activation Triggered by Retrovirus Promotes Acute Viral Infection. Front Microbiol 2022; 13:798660. [PMID: 35197951 PMCID: PMC8859150 DOI: 10.3389/fmicb.2022.798660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/17/2022] [Indexed: 11/05/2022] Open
Abstract
Mast cells (MCs) are strategically located at the host-environment interface and their non-allergic roles in the immune-surveillance of pathogens have recently gained more attention. However, MC-caused detrimental regulation of immune inflammations can promote viral invasion. Currently, the role of MCs in retroviral infection remains elusive. We have recently proved that human gut MCs could capture and transfer HIV-1 to CD4+ T cells for promoting viral spread; MC-released histamine augments HIV-1-induced functional polarization of dendritic cells to cause immunosuppression via stimulating the differentiation of regulatory T cells. In this study, we used a murine model of MuLV/Friend virus infection to address MC role in acute retroviral infection in vivo. The acute infection of MuLV/Friend virus could be established in C57BL/6 wild type mice, but viral acquisition showed low efficiency in C57BL/6-Kit W - sh/W - sh (Sash) mice which lack MCs. In mechanism, we found that MuLV/Friend virus triggered MC activation for degranulation; MC degranulation subsequently activated the granulocyte-like myeloid derived suppressive cells (G-MDSCs) to inhibit CD8+ T cells- and NK cells-mediated antiviral immune responses. The reconstruction of MCs in Sash mice promoted acute retroviral infection by regulating G-MDSCs functions and antiviral immune responses. Importantly, the administration of MC stabilizers to block cell degranulation elevated antiviral immune response and consequently suppressed retrovirus infection. This study uncovers a specific role of MCs in acute retroviral infection and elucidates the underlying immune-mechanisms. Targeting MCs may provide a novel approach for controlling acute infection by retroviruses.
Collapse
Affiliation(s)
- Shu-Ting Song
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Meng-Li Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,College of Life Science, Henan Normal University, Xinxiang, China
| | - Hai-Jiao Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,*Correspondence: Xiao Su,
| | - Jian-Hua Wang
- University of Chinese Academy of Sciences, Beijing, China,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China,Jian-Hua Wang,
| |
Collapse
|
50
|
Budnevsky AV, Avdeev SN, Kosanovic D, Shishkina VV, Filin AA, Esaulenko DI, Ovsyannikov ES, Samoylenko TV, Redkin AN, Suvorova OA, Perveeva IM. Role of mast cells in the pathogenesis of severe lung damage in COVID-19 patients. Respir Res 2022; 23:371. [PMID: 36544127 PMCID: PMC9769495 DOI: 10.1186/s12931-022-02284-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is still insufficient knowledge with regard to the potential involvement of mast cells (MCs) and their mediators in the pathology of coronavirus disease-2019 (COVID-19). Therefore, our study aimed to investigate the role of MCs, their activation and protease profiles in the pathogenesis of early and late lung damage in COVID-19 patients. METHODS Formalin-fixed and paraffin embedded lung specimens from 30 patients who died from COVID-19 and 9 controls were used for histological detection of MCs and their proteases (tryptase, chymase) followed by morphometric quantification. RESULTS Our results demonstrated increased numbers of MCs at early stage and further augmentation of MCs number during the late stage of alveolar damage in COVID-19 patients, as compared to the control group. Importantly, the percentage of degranulated (activated) MCs was higher during both stages of alveolar lesions in comparison to the controls. While there was no prominent alteration in the profile of tryptase-positive MCs, our data revealed a significant elevation in the number of chymase-positive MCs in the lungs of COVID-19 patients, compared to the controls. CONCLUSIONS MCs are characterized by dysregulated accumulation and increased activation in the lungs of patients suffering from COVID-19. However, future profound studies are needed for precise analysis of the role of these immune cells in the context of novel coronavirus disease.
Collapse
Affiliation(s)
- Andrey V. Budnevsky
- grid.445088.50000 0004 0620 3837Department of Faculty Therapy, Burdenko Voronezh State Medical University, 10 Studencheskaya Str., Voronezh, Russia 394036
| | - Sergey N. Avdeev
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Djuro Kosanovic
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Victoria V. Shishkina
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Andrey A. Filin
- Budgetary Health Care Institution of the Voronezh Region “Voronezh Regional Pathoanatomical Bureau”, Moskovsky Prospect, 151, Voronezh, Russia 394036
| | - Dmitry I. Esaulenko
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Evgeniy S. Ovsyannikov
- grid.445088.50000 0004 0620 3837Department of Faculty Therapy, Burdenko Voronezh State Medical University, 10 Studencheskaya Str., Voronezh, Russia 394036
| | - Tatiana V. Samoylenko
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Alexander N. Redkin
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Olga A. Suvorova
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Inna M. Perveeva
- Department of Pulmonology, Voronezh Regional Clinical Hospital, № 1, Moskovsky Prospect, 151, Voronezh, Russia 394036
| |
Collapse
|