1
|
Lou S, Dai C, Wu Y, Wang L, Jin Y, Shen N, Lv W, Wu M, Xu X, Han J, Fan X. Betulonic acid: A review on its sources, biological activities, and molecular mechanisms. Eur J Pharmacol 2025; 998:177518. [PMID: 40107338 DOI: 10.1016/j.ejphar.2025.177518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Pentacyclic triterpenoids represent a significant class of phytochemicals, categorized into oleanane, ursane, friedelane, and lupane. Among these, betulonic acid stands out as a lupane-type pentacyclic triterpenoid found in numerous plants. Its diverse biological properties, including anti-tumor, anti-viral, anti-inflammatory, anti-bacterial, and hepato-protective effects, have been extensively documented. To further explore the therapeutic potential of betulonic acid and its derivatives, we provide a comprehensive review of their sources, biological activities, and molecular mechanisms. We aim for this synthesis of data to stimulate fresh perspectives on betulonic acid and its potential in drug discovery.
Collapse
Affiliation(s)
- Shengying Lou
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chunyan Dai
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Yuhua Wu
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Lijiang Wang
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuancheng Jin
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Naitao Shen
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wang Lv
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Miaolian Wu
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaojun Xu
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Jichun Han
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Xiangcheng Fan
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Suksamai C, Kaewduangduen W, Phuengmaung P, Sae-Khow K, Charoensappakit A, Udomkarnjananun S, Lotinun S, Kueanjinda P, Leelahavanichkul A. Cyclic GMP-AMP Synthase (cGAS) Deletion Promotes Less Prominent Inflammatory Macrophages and Sepsis Severity in Catheter-Induced Infection and LPS Injection Models. Int J Mol Sci 2025; 26:5069. [PMID: 40507879 PMCID: PMC12154408 DOI: 10.3390/ijms26115069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/13/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025] Open
Abstract
Activation of cGAS, a cytosolic receptor recognizing double-stranded DNA, in macrophages is important in sepsis (a life-threatening condition caused by infection). The responses against sepsis induced by subcutaneous implantation of the Pseudomonas-contaminated catheters in cGAS-deficient (cGAS-/-) mice were lower than in wild-type (WT) mice as indicated by liver enzymes, white blood cell count, cytokines, and M1-polarized macrophages in the spleens. Likewise, a lethal dose of lipopolysaccharide (LPS) induced less severe sepsis severity as determined by mortality, organ injury, cell-free DNA, and serum cytokines. Patterns of the transcriptome of lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages were clearly different between cGAS-/- and WT cells. Gene set enrichment analysis (GSEA; a computational statistical determination of the gene set) indicated more prominent enrichment of oxidative phosphorylation (OXPHOS; the mitochondrial function) and mTORC1 pathways in LPS-activated cGAS-/- macrophages compared with WT. Meanwhile, LPS upregulated cGAS and increased cGAMP (a cGAS inducer) only in WT macrophages along with less severe inflammation in cGAS-/- macrophages, as indicated by supernatant cytokines, pro-inflammatory molecules (nuclear factor kappa B; NF-κB), M1 polarization (IL-1β, CD80, and CD86), and macrophage extracellular traps (METs; web-like structures composed of DNA, histones, and other proteins) through the detection of citrullinated histone 3 (CitH3) in supernatant and immunofluorescent visualization. In conclusion, less prominent pro-inflammatory responses of cGAS-/- macrophages than WT were demonstrated in mice (catheter-induced sepsis and LPS injection model) and in vitro (transcriptomic analysis, macrophage polarization, and METs).
Collapse
Affiliation(s)
- Chatsuree Suksamai
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (P.P.); (K.S.-K.); (A.C.)
| | - Warerat Kaewduangduen
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (P.P.); (K.S.-K.); (A.C.)
| | - Pornpimol Phuengmaung
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (P.P.); (K.S.-K.); (A.C.)
| | - Kritsanawan Sae-Khow
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (P.P.); (K.S.-K.); (A.C.)
| | - Awirut Charoensappakit
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (P.P.); (K.S.-K.); (A.C.)
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand;
| | - Sutada Lotinun
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Patipark Kueanjinda
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (P.P.); (K.S.-K.); (A.C.)
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (W.K.); (P.P.); (K.S.-K.); (A.C.)
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand;
| |
Collapse
|
3
|
Seo SH, Ham DW, Lee JE, Shin EH. Toxoplasma GRA16 attenuates Tau hyperphosphorylation and enhances autophagy in thrombin-treated HT-22 hippocampal neuronal cells. Sci Rep 2025; 15:17412. [PMID: 40389494 PMCID: PMC12089278 DOI: 10.1038/s41598-025-00271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/28/2025] [Indexed: 05/21/2025] Open
Abstract
This study investigated whether Toxoplasma gondii-derived dense granule protein 16 (GRA16) modulates tau protein to attenuate tau hyperphosphorylation and promotes autophagy to facilitate the removal of tau aggregates. HT-22 murine hippocampal neuronal cells were treated with thrombin to induce rapid hyperphosphorylations and tau aggregation. Thrombin increased hyperphosphorylated tau protein levels and activated NF-κB, contributing to tau pathology and neuroinflammation. NF-κB activation increased apolipoprotein E (APOE) expression and decreased forkhead box O3A (FOXO3A) expression, a factor involved in autophagy regulation, consequently limiting the expression of autophagy-related genes directly regulated by FOXO3A. Meanwhile, in GRA16-transfected HT-22 cells treated with thrombin, GRA16 upregulated proteins involved in tau dephosphorylation but downregulated protein involved in tau phosphorylation. Moreover, GRA16 inhibited thrombin-induced NF-κB activation and increased FOXO3A levels, thereby enhancing the expression of autophagy-related genes, including those directly regulated by FOXO3A. GRA16 enhanced intracellular autophagic flux and inhibited tau hyperphosphorylations in thrombin-treated HT-22 cells, as evidenced by increased autophagic fluorescence and significant reductions in phosphorylated tau protein levels and fluorescence intensity. These findings suggest that GRA16 possesses therapeutic potential in tauopathies by enhancing tau dephosphorylation and autophagy-mediated tau clearance, establishing a conceptual foundation for developing new therapeutic approaches targeting tau pathology.
Collapse
Affiliation(s)
- Seung-Hwan Seo
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Won Ham
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Eun Lee
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Korea
| | - Eun-Hee Shin
- Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Korea.
- Department of Tropical Medicine and Parasitology, Seoul National University College of Medicine, Seoul, Korea.
- Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
4
|
Liao Z, Liu X, Li L, Li S, Xing X, Zheng X, Song W, Gui P, Liu Q, Rong G, Shao Y, Zou M, Liao H, Wu X. Mechanism of the Proprietary Chinese Medicine "JiuLiWan" to Treat Ulcerative Colitis Revealed by Network Pharmacology, Molecular Docking, and Experimental Verification In Vitro. ACS OMEGA 2025; 10:19598-19613. [PMID: 40415848 PMCID: PMC12096223 DOI: 10.1021/acsomega.5c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 05/27/2025]
Abstract
JiuLiWan (JLW), as a classic traditional Chinese medicine formula, has been clinically used against ulcerative colitis (UC). However, the exact mechanism of its therapeutic effect remains unclear. This study aims to explore and validate the main components and pharmacological mechanism of JLW in the treatment of UC through network pharmacology, molecular docking, and cell experiments. Network pharmacology analyses indicated a total of 107 main components and 286 core targets of JLW against UC. Pathway enrichment analysis demonstrated the involvement of PI3K-AKT, MAPK, Ras, Rap1, TNF, T cell receptor, HIF-1, C-type lectin receptor, VEGF, and Th17 cell differentiation signal pathways in the efficacy of the formula. The molecular docking results indicated that the prominent components (ailanthone (AIL), butylidenephthalide, honokiol, dehydrocostuslactone, ganoderic acid A, atractylenolide I, neokurarinol, glycyrrhetinic acid, palmatine, tangeretin, and bruceine A) could bind to core targets AKT1, P53, STAT3, c-JUN, and ERK1. Subsequently, AIL was used as a representative compound to conduct cell experiments to verify its role and mechanism in anti-inflammation and immunomodulation. Interestingly, AIL could switch Jurkat T cells into a quiescence state without activating the inflammatory and immune status. However, AIL could significantly decrease the levels of interleukin-2 (IL-2) and interferon-gamma (IFN-γ), as well as the expression of surface activation markers CD69 and CD25, in PMA/ionomycin-activated Jurkat T cells by suppressing the RAF/ERK/STAT3 signaling pathway and increasing the phosphorylation of p53. This study combines network pharmacology prediction with experimental verification in vitro to demonstrate the mechanism of JLW in treating UC and provides an effective, safe, and inexpensive strategy for UC treatment.
Collapse
Affiliation(s)
- Zhifang Liao
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Xiao Liu
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Linxuan Li
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
- The Key Laboratory
of Sepsis Translational Medicine, The Second
Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province524003, P.R. of
China
- Interdisciplinary
Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province524003, P.R. of
China
| | - Sikai Li
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Xingxing Xing
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Xiwen Zheng
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Wenyu Song
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Pin Gui
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Qi Liu
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Guanghong Rong
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
| | - Yiming Shao
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
- The Key Laboratory
of Sepsis Translational Medicine, The Second
Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province524003, P.R. of
China
| | - Mingzhi Zou
- The Key Laboratory
of Sepsis Translational Medicine, The Second
Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province524003, P.R. of
China
- Interdisciplinary
Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province524003, P.R. of
China
| | - Hongbo Liao
- Guangdong
Provincial Key Laboratory of Research and Development of Natural Drugs,
School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong Province524023, P.R. of
China
| | - Xin Wu
- Dongguan
Key Laboratory of Characteristic Research and Achievement Transformation
of Integrated Chinese and Western Medicine for Prevention and Treatment
to Common Diseases, The First Dongguan Affiliated
Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province523000, P. R. of
China
- The Key Laboratory
of Sepsis Translational Medicine, The Second
Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province524003, P.R. of
China
| |
Collapse
|
5
|
Dang X, Xue Y, Zhang S, Chen M, Sheng K, Ma J, Gao S, Wang Y. Recent advances in anti-tumor mechanisms and biological applications of vanadium compounds. Biomed Mater 2025; 20:032009. [PMID: 40315899 DOI: 10.1088/1748-605x/add3e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 05/01/2025] [Indexed: 05/04/2025]
Abstract
Vanadium, a transition metal, has emerged as a promising element in the development of therapeutic drugs. While not an essential element for life, vanadium compounds have demonstrated significant potential as anticancer agents. Current evidence suggests that these compounds exert their anti-tumor effects through multiple mechanisms, including DNA damage, cell cycle regulation, induction of apoptosis and autophagy, inhibition of metastasis and invasion, and disruption of mitochondrial function. Furthermore, vanadium compounds have shown efficacy against a wide range of cancers, such as melanoma, breast, colorectal, pancreatic, liver, and central nervous system tumors, as well as oral squamous cell carcinoma. This review aims to comprehensively examine the anti-tumor properties and underlying mechanisms of various vanadium compounds while also providing an overview of their current biological applications.
Collapse
Affiliation(s)
- Xinhao Dang
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Yan Xue
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Siying Zhang
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Menglan Chen
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| | - Jie Ma
- Department of Thoracic Surgery, Anhui Chest Hospital, Hefei, Anhui, People's Republic of China
| | - Shan Gao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Anhui University, Hefei, People's Republic of China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601 Anhui, People's Republic of China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601 Anhui, People's Republic of China
| |
Collapse
|
6
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
7
|
Naeem F, Aqeel M, Zahid MA, Babar MM, Shah FA, Agouni A, Malik SZ. The effects of ondansetron on diabetes and high-fat diet-induced liver disease: a critical role for protein tyrosine phosphatase 1B. Front Pharmacol 2025; 16:1565628. [PMID: 40356976 PMCID: PMC12066537 DOI: 10.3389/fphar.2025.1565628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The escalating prevalence of diabetes and non-alcoholic fatty liver disease (NAFLD) has intensified the search for effective therapeutic interventions. The current study investigates the potential of ondansetron, a Food and Drug Administration (FDA)-approved drug for conditions like nausea and vomiting, as a novel treatment option for these metabolic disorders. Methods A multifaceted approach, encompassing computational analyses, in vitro enzyme inhibition assays, and in vivo experiments in a high-fat diet (HFD)-induced disease model in rats were employed. Results Computational studies, including pharmacophore modeling, molecular docking, and molecular dynamics (MD) simulations, revealed the strong binding affinity of ondansetron to the allosteric site of protein tyrosine phosphatase 1B (PTP1B), a key regulator of insulin and lipid homeostasis. The in vitro enzyme inhibition assay further confirmed ondansetron's ability to directly inhibit PTP1B activity. Animal experiments demonstrated ondansetron's antihyperglycemic effects, reducing blood glucose levels and improving insulin sensitivity in HFD-fed rats. The drug also exhibited hepatoprotective properties, mitigating liver damage and improving tissue architecture. Additionally, ondansetron's anti-inflammatory and antioxidant activities were evident in its ability to reduce pro-inflammatory markers and oxidative stress in the liver. Discussion These therapeutic effects position ondansetron as a promising candidate for further investigation in clinical settings for the treatment of diabetes and NAFLD and, hence, support the use of the drug repurposing approach for addressing the growing burden of metabolic diseases.
Collapse
Affiliation(s)
- Fawad Naeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Maryam Aqeel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Ammar Zahid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Mustafeez Mujtaba Babar
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sohaib Zafar Malik
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
8
|
Zhou X, Xu Q, Hu X, Klenotic PA, Valdivia A, Leshnower BG, Dong N, Narla G, Lin Z. PP2A Attenuates Thoracic Aneurysm and Dissection in Mouse Models of Marfan Syndrome. Hypertension 2025; 82:665-679. [PMID: 39878024 PMCID: PMC11922656 DOI: 10.1161/hypertensionaha.124.23494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS). METHODS Two distinct mouse models of MFS underwent daily oral administration of small-molecule activators of the PP2A compound DT-061 to assess its therapeutic potential. Echocardiography was performed to monitor the growth of the aortic root and ascending aorta. Histological evaluation was performed to assess alterations in the vascular wall. RNA-sequencing, Western blot, and immunostaining were performed to decipher the underlying mechanisms by which DT-061 suppresses AA progression. RESULTS PP2A activity decreased, while mTOR activity increased in both human and mouse aortas with MFS. Concordantly, oral administration of DT-061 increased PP2A activation, reducing aortic expansion in Marfan mice. DT-061 treatment also mitigated medial hypertrophy, elastin breakdown, and extracellular matrix deterioration in the ascending aorta, along with decreased metalloproteinase activities. Mechanistic studies suggest that DT-061 suppresses mTOR signaling and smooth muscle cell dedifferentiation, contributing to its effects on thoracic aortic aneurysm and dissection progression. CONCLUSIONS These studies demonstrate a pathological role of PP2A activity loss in the cause of MFS and implicate that activation of PP2A may serve as a novel therapeutic strategy to limit MFS progression, including aortic aneurysm formation.
Collapse
Affiliation(s)
- Xianming Zhou
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xu
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cardiovascular Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xingjian Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Philip A. Klenotic
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alejandra Valdivia
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley G Leshnower
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zhiyong Lin
- Cardiology Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Huang Q, Hu L, Chen H, Yang B, Sun X, Wang M. A Medicinal Chemistry Perspective on Protein Tyrosine Phosphatase Nonreceptor Type 2 in Tumor Immunology. J Med Chem 2025; 68:3995-4021. [PMID: 39936476 DOI: 10.1021/acs.jmedchem.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
PTPN2 (protein tyrosine phosphatase nonreceptor type 2) is an important member of the protein tyrosine phosphatase (PTP) family. It plays a crucial role in dephosphorylating tyrosine-phosphorylated proteins and modulating critical signaling pathways associated with T-cell receptors, IL-2, IFNγ, and various cytokines. In recent years, the PTPN2's biological role has been clarified, particularly since its association with tumor immunology was gradually revealed in 2017, making it a star target for cancer immunotherapy. The dual inhibitor AC484, which targets both PTPN2 and PTP1B, is currently undergoing phase I clinical trials. This advancement has attracted great interest from researchers to develop new drugs based on its unique structure. This review outlines the structural modification processes of PTPN2-targeted agents, focusing primarily on inhibitors and degraders. Finally, this review endeavors to provide a comprehensive perspective on the evolving field of PTPN2-targeted drug discovery for tumor immunotherapy, offering valuable insights for future drug development.
Collapse
Affiliation(s)
- Qi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Linghao Hu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Haowen Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 Guangdong China
| | - Bingjie Yang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Sun
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- The Institutes of Integrative Medicine of Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | - Mingliang Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 Guangdong China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Nussinov R, Yavuz BR, Jang H. Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge. J Mol Biol 2025:169050. [PMID: 40021049 DOI: 10.1016/j.jmb.2025.169050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Charting future innovations is challenging. Yet, allosteric and orthosteric anticancer drugs are undergoing a revolution and taxing unresolved dilemmas await. Among the imaginative innovations, here we discuss cereblon and thalidomide derivatives as a means of recruiting neosubstrates and their degradation, allosteric heterogeneous bifunctional drugs like PROTACs, drugging phosphatases, inducers of targeted posttranslational protein modifications, antibody-drug conjugates, exploiting membrane interactions to increase local concentration, stabilizing the folded state, and more. These couple with harnessing allosteric cryptic pockets whose discovery offers more options to modulate the affinity of orthosteric, active site inhibitors. Added to these are strategies to counter drug resistance through drug combinations co-targeting pathways to bypass signaling blockades. Here, we discuss on the molecular and cellular levels, such inspiring advances, provide examples of their applications, their mechanisms and rational. We start with an overview on difficult to target proteins and their properties-rarely, if ever-conceptualized before, discuss emerging innovative drugs, and proceed to the increasingly popular allosteric cryptic pockets-their advantages-and critically, issues to be aware of. We follow with drug resistance and in-depth discussion of tumor heterogeneity. Heterogeneity is a hallmark of highly aggressive cancers, the core of drug resistance unresolved challenge. We discuss potential ways to target heterogeneity by predicting it. The increase in experimental and clinical data, computed (cell-type specific) interactomes, capturing transient cryptic pockets, learned drug resistance, workings of regulatory mechanisms, heterogeneity, and resistance-based cell signaling drug combinations, assisted by AI-driven reasoning and recognition, couple with creative allosteric drug discovery, charting future innovations.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, the United States of America; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, the United States of America
| |
Collapse
|
11
|
Shade O, Ryan A, Belsito G, Deiters A. Investigating protein degradability through site-specific ubiquitin ligase recruitment. RSC Chem Biol 2025; 6:240-248. [PMID: 39711601 PMCID: PMC11657224 DOI: 10.1039/d4cb00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024] Open
Abstract
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest via conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders. Two proteins without known small molecule ligands, EGFP and DUSP6, were differentially degraded when modified at different locations on their protein surfaces. Further, the cereblon-mediated degradation of the known PROTAC target ERRα was improved through the recruitment of the E3 ligase to regions different from the known ligand binding site. This new methodology will provide insight into overall protein degradability, even in the absence of a known small molecule ligand and inform the process of new ligand and PROTAC development to achieve optimal protein degradation. Furthermore, this approach represents a new, small molecule-based conditional OFF switch of protein function with complete genetic specificity. Importantly, the protein of interest is only modified with a minimal surface modification (<200 Da) and does not require any protein domain fusions.
Collapse
Affiliation(s)
- Olivia Shade
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Gabriella Belsito
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
12
|
He Q, Wang Z, Wang R, Lu T, Chen Y, Lu S. Modulating the phosphorylation status of target proteins through bifunctional molecules. Drug Discov Today 2025; 30:104307. [PMID: 39900282 DOI: 10.1016/j.drudis.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Phosphorylation is an important form of protein post-translational modification (PTM) in cells. Dysregulation of phosphorylation is closely associated with many diseases. Because the regulation of proteins of interest (POIs) by chemically induced proximity (CIP) strategies has been widely validated, regulating the phosphorylation status of POIs by phosphorylation-regulating bifunctional molecules (PBMs) emerges as an alternative paradigm. PBMs promote the spatial proximity of POIs to kinases/phosphatases, and thus alter the phosphorylation state of POIs. Herein, we describe the history and current status of PBMs, analyze in detail the general design principles and specific applications of PBMs, assess their current advantages, possible challenges and limitations, and propose future directions for PBMs, which will stimulate interest in PBM research.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100 China
| | - Rongrong Wang
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198 China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
13
|
Pang J, Cen C, Tian Y, Cao X, Hao L, Tao X, Cao Z. Targeting Shp2 as a therapeutic strategy for neurodegenerative diseases. Transl Psychiatry 2025; 15:6. [PMID: 39794316 PMCID: PMC11724000 DOI: 10.1038/s41398-024-03222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs. As a member of the tyrosine phosphatase family, the role of Shp2 has been studied in tumors, but the research in the nervous system is still in a sporadic state. It can be phosphorylated by tyrosine kinases and then positively regulate tyrosine kinase-dependent signaling pathways. It could also be used as an adaptor protein to mediate downstream signaling pathways. Most of the existing studies have shown that Shp2 may be a potential molecular "checkpoint" against NDs, but its role in promoting degenerative lesions is difficult to ignore as well, and its two-way effect of both activation and inhibition is very distinctive. Shp2 is closely related to NDs-related pathogenic factors such as oxidative stress, mitochondrial dysfunction, excitatory toxicity, immune inflammation, apoptosis, and autophagy. Its bidirectional effects interfere with these pathogenic factors, making it a core component of the feedback and crosstalk network between multiple signaling pathways. Therefore, this article reviews the molecular mechanism of Shp2 regulation in NDs and its regulatory role in various pathogenic factors, providing evidence for the treatment of NDs by targeting Shp2 and the development of molecular targeted drugs.
Collapse
Affiliation(s)
- Jiao Pang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
- Department of Pathology and pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, PR China
- College of Life Science, Northwest University, Xi'an City, Shaanxi Province, PR China
| | - Changqian Cen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yuan Tian
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Republic of Korea
| | - Xingrui Cao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xueshu Tao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
- Department of Pain Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
14
|
Chen Y, Song S, Wang Y, Wu L, Wu J, Jiang Z, Li X. Topical application of magnolol ameliorates psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism. Bioorg Chem 2025; 154:108059. [PMID: 39693920 DOI: 10.1016/j.bioorg.2024.108059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Psoriasis (PSO) is a common inflammatory skin disease caused by multiple factors. Magnolia officinalis is an important medicinal plant in China, with various values such as ecology, medicine, food, and daily chemicals. However, its diverse application potential has not been fully explored. Magnolol (MGO) is the main active compound of Magnolia officinalis with significant anti-inflammatory effect. To investigate the application potential of MGO in inflammatory skin disease, the effects and underlying mechanisms of topical MGO treating psoriasis were explored in this study. Network pharmacology and molecular docking firstly predicted that topical MGO may treat psoriasis by regulating pyroptosis pathway and acting on caspase-1 (CASP1). In vitro experiments then demonstrated that MGO could inhibit the level of inflammatory cytokines and the key protein expression of NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway in lipopolysaccharide (LPS)-stimulated phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. Meanwhile, MGO could inhibit CuSO4-induced neutrophils migration in Tg (mpx:EGFP) zebrafish by suppressing inflammation and pyroptosis. This study further indicated that topical application of MGO ameliorated imiquimod (IMQ)-induced psoriasis-like dermatitis by reducing the release of inflammatory factors and decreasing the key protein expression of pyroptosis-related NLRP3/Caspase-1 pathway. Metabolomics analysis revealed that topical application of MGO could significantly regulate tryptophan metabolism and affect the level of tryptophan in skin lesions. Tryptophan could also regulate inflammation-related genes and inhibit pyroptosis-related NLRP3/Caspase-1 pathway in LPS-stimulated PMA-differentiated THP-1 cells. In conclusion, this study suggested that topical MGO may ameliorate psoriasis-like dermatitis by inhibiting NLRP3/Caspase-1 pathway and regulating tryptophan metabolism.
Collapse
Affiliation(s)
- Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Shasha Song
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Yongfang Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Lili Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jianbing Wu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zhengmeng Jiang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xinyu Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
15
|
Liu X, He Q, Sun S, Lu X, Chen Y, Lu S, Wang Z. Research progress of SHP-1 agonists as a strategy for tumor therapy. Mol Divers 2024:10.1007/s11030-024-11059-5. [PMID: 39739293 DOI: 10.1007/s11030-024-11059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025]
Abstract
Src homology-2 domain-containing protein tyrosine phosphatase 1 (SHP-1) is a member of protein tyrosine phosphatase (PTP) family, and serves as a crucial negative regulator of various oncogenic signaling pathways. The development of SHP-1 agonists has garnered extensive research attention and is considered as a promising strategy for treating tumors. In this review, we comprehensively analyze the advancements of SHP-1 agonists, focusing on their structures and biological activities. Based on the structure skeletons, we classify these SHP-1 agonists as kinase inhibitors, sorafenib derivatives, obatoclax derivatives, lithocholic acid derivatives and thieno[2,3-b]quinoline derivatives. Additionally, we discuss the potential opportunities and challenges for developing SHP-1 agonists. It is hoped that this review will provide inspiring insights into the discovery of drugs targeting SHP-1.
Collapse
Affiliation(s)
- Xiaoyue Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shuding Sun
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Xun Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yadong Chen
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
16
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
17
|
Zhou Z, Chen T, Zhu Y, Chen L, Li J. Unlocking cell surface enzymes: A review of chemical strategies for detecting enzymatic activity. Anal Chim Acta 2024; 1332:343140. [PMID: 39580158 DOI: 10.1016/j.aca.2024.343140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Cell surface enzymes are important proteins that play essential roles in controlling a wide variety of biological processes, such as cell-cell adhesion, recognition and communication. Dysregulation of enzyme-catalyzed processes is known to contribute to numerous diseases, including cancer, cardiovascular diseases and neurodegenerative disease. From the perspective of drug discovery and development, there is a growing interest in detecting the cell surface enzyme activity, propelled by the arising need for innovative diagnostic and therapeutic approaches to address various health conditions. RESULTS In this review, we focus on advances in chemical strategies for the detection of cell surface enzyme activity. Firstly, this comprehensive review delves into the diverse landscape of cell surface enzymes, detailing their structural features and diverse biological functions. Various enzyme families on the cell surface are examined in depth, elucidating their roles in cellular homeostasis and signaling cascades. Subsequently, various biosensors, including electrochemical biosensors, optical biosensors and dual-mode biosensors, used for detecting the cell surface enzyme activity are described. Exemplars are provided to illustrate the mechanisms, limit of detection and prospective applications of these different biosensors. Furthermore, this review unravels the intricate interplay between cell surface enzymes and cellular physiology, contributing to the development of novel diagnostic and therapeutic strategies for various diseases. In the end, the review provides insights into the ongoing challenges and future prospects associated with the detection of cell surface enzyme activity. SIGNIFICANCE Detecting cell surface enzyme activity holds pivotal significance in biomedical research, offering valuable insights into cellular physiology and disease pathology. Understanding enzyme activity aids in elucidating signaling pathways, drug interactions and disease mechanisms. This knowledge informs the development of diagnostic tools and therapeutic interventions targeting various ailments, from cancer to neurodegenerative disease. Additionally, it contributes to the advancement of drug screening and personalized medicine approaches.
Collapse
Affiliation(s)
- Zhilan Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China; Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Tingting Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Lanlan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
18
|
Zhang Y, Gao Y, Li N, Xu L, Wang Y, Liu H. Polypropylene sulfide methotrexate nanoparticles target the synovial lymphatic system to restore immune tolerance in rheumatoid arthritis. Int J Pharm 2024; 665:124713. [PMID: 39284426 DOI: 10.1016/j.ijpharm.2024.124713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Around 40 % of patients fail to achieve primary clinical outcomes for rheumatoid arthritis (RA). The growth of lymphatic system in the synovial membrane, is a primary response during RA inflammation. It is suggested that a delivery strategy targeting immunosuppressive agents to the synovial lymph nodes and then to the immune cells is beneficial for resolving arthritis. This study introduced a synthetic polypropylene sulfide methotrexate nano-delivery system (PPS-MTX), which was prepared by covalently bonding methotrexate to polypropylene sulfide, with a diameter size range of 36 nm. It enhanced joint accumulation and retention, which can be selectively uptake by antigen-presenting cells in the synovial lymphatic system. The results indicated that PPS-MTX nanoparticles effectively improved arthritis disease progression and restored the immune tolerance microenvironment in the synovial lymphatic system, promoting peripheral tolerance in collagen-induced arthritis mice. Additionally, no systemic toxicity was observed. This study presents a promising targeted strategy for inducing immune tolerance in the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yingxi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Linyi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongzhuo Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
19
|
Shade O, Ryan A, Belsito G, Deiters A. Investigating Protein Degradability through Site-Specific Ubiquitin Ligase Recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623099. [PMID: 39605659 PMCID: PMC11601344 DOI: 10.1101/2024.11.11.623099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
We report targeted protein degradation through the site-specific recruitment of native ubiquitin ligases to a protein of interest via conjugation of E3 ligase ligands. Direct comparison of degradation ability of proteins displaying the corresponding bioconjugation handle at different regions of protein surfaces was explored. We demonstrate the benefit of proximal lysine residues and investigate flexibility in linker length for the design of optimal degraders. Two proteins without known small molecule ligands, EGFP and DUSP6, were differentially degraded when modified at different locations on their protein surfaces. Further, the cereblon-mediated degradation of the known PROTAC target ERRα was improved through the recruitment of the E3 ligase to regions different from the known ligand binding site. This new methodology will provide insight into overall protein degradability, even in the absence of a known small molecule ligand and inform the process of new ligand and PROTAC development to achieve optimal protein degradation. Furthermore, this approach represents a new, small molecule-based conditional OFF switch of protein function with complete genetic specificity. Importantly, the protein of interest is only modified with a minimal surface modification (< 200 Da) and does not require any protein domain fusions.
Collapse
Affiliation(s)
- Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gabriella Belsito
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
20
|
Pan J, Qu J, Fang W, Zhao L, Zheng W, Zhai L, Tan M, Xu Q, Du Q, Lv W, Sun Y. SHP2-Triggered Endothelial Cell Activation Fuels Estradiol-Independent Endometrial Sterile Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403038. [PMID: 39234819 PMCID: PMC11538683 DOI: 10.1002/advs.202403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Sterile inflammation occurs in various chronic diseases due to many nonmicrobe factors. Examples include endometrial hyperplasia (EH), endometriosis, endometrial cancer, and breast cancer, which are all sterile inflammation diseases induced by estrogen imbalances. However, how estrogen-induced sterile inflammation regulates EH remains unclear. Here, a single-cell RNA-Seq is used to show that SHP2 upregulation in endometrial endothelial cells promotes their inflammatory activation and subsequent transendothelial macrophage migration. Independent of the initial estrogen stimulation, IL1β and TNFα from macrophages then create a feedforward loop that enhances endothelial cell activation and IGF1 secretion. This endothelial cell-macrophage interaction sustains sterile endometrial inflammation and facilitates epithelial cell proliferation, even after estradiol withdrawal. The bulk RNA-Seq results and phosphoproteomic analysis show that endothelial SHP2 mechanistically enhances RIPK1 activity by dephosphorylating RIPK1Tyr380. This event activates downstream activator protein 1 (AP-1) and instigates the inflammation response. Furthermore, targeting SHP2 using SHP099 (an allosteric inhibitor) or endothelial-specific SHP2 deletion alleviates endothelial cell activation, macrophage infiltration, and EH progression in mice. Collectively, the findings demonstrate that SHP2 mediates the transition of endothelial activation from estradiol-driven acute inflammation to macrophage-amplified chronic inflammation. Targeting sterile inflammation mediated by endothelial cell activation is a promising strategy for nonhormonal intervention in estrogen-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Lixin Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Linhui Zhai
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Minjia Tan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Qianming Du
- General Clinical Research CenterNanjing First HospitalNanjing Medical UniversityNanjing210006China
- School of Basic Medicine & Clinical PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Lv
- Department of GynecologyTongde Hospital of Zhejiang Province234 Gucui RoadHangzhouZhejiang310012China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| |
Collapse
|
21
|
Houles T, Yoon SO, Roux PP. The expanding landscape of canonical and non-canonical protein phosphorylation. Trends Biochem Sci 2024; 49:986-999. [PMID: 39266329 DOI: 10.1016/j.tibs.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Protein phosphorylation is a crucial regulatory mechanism in cell signaling, acting as a molecular switch that modulates protein function. Catalyzed by protein kinases and reversed by phosphoprotein phosphatases, it is essential in both normal physiological and pathological states. Recent advances have uncovered a vast and intricate landscape of protein phosphorylation that include histidine phosphorylation and more unconventional events, such as pyrophosphorylation and polyphosphorylation. Many questions remain about the true size of the phosphoproteome and, more importantly, its site-specific functional relevance. The involvement of unconventional actors such as pseudokinases and pseudophosphatases adds further complexity to be resolved. This review explores recent discoveries and ongoing challenges, highlighting the need for continued research to fully elucidate the roles and regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Thibault Houles
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Institute of Molecular Genetics of Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France.
| | - Sang-Oh Yoon
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
22
|
Li Z, Guo M, Gu M, Cai Z, Wu Q, Yu J, Tang M, He C, Wang Y, Sun P, You Q, Wang L. Design and Synthesis of 7-Oxabicyclo[2.2.1]heptane-2,3-dicarboxylic Acid Derivatives as PP5 Inhibitors To Reverse Temozolomide Resistance in Glioblastoma Multiforme. J Med Chem 2024; 67:15691-15710. [PMID: 39136241 DOI: 10.1021/acs.jmedchem.4c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The serine/threonine phosphatase family is important in tumor progression and survival. Due to the high conserved catalytic domain, designing selective inhibitors is challenging. Herein, we obtained compound 28a with 38-fold enhanced PP5 selectivity (PP2A/5 IC50 = 33.8/0.9 μM) and improved drug-like properties (favorable stability and safety, F = 82.0%) by rational drug design based on a phase II PP2A/5 dual target inhibitor LB-100. Importantly, we found the spatial conformational restriction of the 28a indole fragment was responsible for the selectivity of PP5. Thus, 28a activated p53 and downregulated cyclin D1 and MGMT, which showed potency in cell cycle arrest and reverse temozolomide (TMZ) resistance in the U87 MG cell line. Furthermore, oral administration of 28a and TMZ was well tolerated to effectively inhibit tumor growth (TGI = 87.7%) in the xenograft model. Collectively, these results implicate 28a could be a drug candidate by reversing TMZ resistance with a selective PP5 inhibition manner.
Collapse
Affiliation(s)
- Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mochen Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongtian Cai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyu Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meilun Tang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Piaoyang Sun
- Shanghai Hengrui Pharmaceutical Co., Ltd., Shanghai 200245, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
23
|
Su J, Xu J, Hu S, Ye H, Xie L, Ouyang S. Advances in small-molecule insulin secretagogues for diabetes treatment. Biomed Pharmacother 2024; 178:117179. [PMID: 39059347 DOI: 10.1016/j.biopha.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes, a metabolic disease caused by abnormally high levels of blood glucose, has a high prevalence rate worldwide and causes a series of complications, including coronary heart disease, stroke, peripheral vascular disease, end-stage renal disease, and retinopathy. Small-molecule compounds have been developed as drugs for the treatment of diabetes because of their oral advantages. Insulin secretagogues are a class of small-molecule drugs used to treat diabetes, and include sulfonylureas, non-sulfonylureas, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase 4 inhibitors, and other novel small-molecule insulin secretagogues. However, many small-molecule compounds cause different side effects, posing huge challenges to drug monotherapy and drug selection. Therefore, the use of different small-molecule drugs must be improved. This article reviews the mechanism, advantages, limitations, and potential risks of small-molecule insulin secretagogues to provide future research directions on small-molecule drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Jingqian Su
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Jingran Xu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hui Ye
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Lian Xie
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
24
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
25
|
Yuan X, Zhu W, Yang Z, He N, Chen F, Han X, Zhou K. Recent Advances in 3D Printing of Smart Scaffolds for Bone Tissue Engineering and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403641. [PMID: 38861754 DOI: 10.1002/adma.202403641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Indexed: 06/13/2024]
Abstract
The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.
Collapse
Affiliation(s)
- Xun Yuan
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Wei Zhu
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Yang
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ning He
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Feng Chen
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Xiaoxiao Han
- National Engineering Research Centre for High Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
26
|
Coronell-Tovar A, Pardo JP, Rodríguez-Romero A, Sosa-Peinado A, Vásquez-Bochm L, Cano-Sánchez P, Álvarez-Añorve LI, González-Andrade M. Protein tyrosine phosphatase 1B (PTP1B) function, structure, and inhibition strategies to develop antidiabetic drugs. FEBS Lett 2024; 598:1811-1838. [PMID: 38724486 DOI: 10.1002/1873-3468.14901] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 08/13/2024]
Abstract
Tyrosine protein phosphatase non-receptor type 1 (PTP1B; also known as protein tyrosine phosphatase 1B) is a member of the protein tyrosine phosphatase (PTP) family and is a soluble enzyme that plays an essential role in different physiological processes, including the regulation of metabolism, specifically in insulin and leptin sensitivity. PTP1B is crucial in the pathogenesis of type 2 diabetes mellitus and obesity. These biological functions have made PTP1B validated as an antidiabetic and anti-obesity, and potentially anticancer, molecular target. Four main approaches aim to inhibit PTP1B: orthosteric, allosteric, bidentate inhibition, and PTPN1 gene silencing. Developing a potent and selective PTP1B inhibitor is still challenging due to the enzyme's ubiquitous expression, subcellular location, and structural properties. This article reviews the main advances in the study of PTP1B since it was first isolated in 1988, as well as recent contextual information related to the PTP family to which this protein belongs. Furthermore, we offer an overview of the role of PTP1B in diabetes and obesity, and the challenges to developing selective, effective, potent, bioavailable, and cell-permeable compounds that can inhibit the enzyme.
Collapse
Affiliation(s)
- Andrea Coronell-Tovar
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Juan P Pardo
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alejandro Sosa-Peinado
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luz Vásquez-Bochm
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Iliana Álvarez-Añorve
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Martin González-Andrade
- Laboratorio de Biosensores y Modelaje molecular, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
27
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
28
|
Read NE, Wilson HM. Recent Developments in the Role of Protein Tyrosine Phosphatase 1B (PTP1B) as a Regulator of Immune Cell Signalling in Health and Disease. Int J Mol Sci 2024; 25:7207. [PMID: 39000313 PMCID: PMC11241678 DOI: 10.3390/ijms25137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a non-receptor tyrosine phosphatase best known for its role in regulating insulin and leptin signalling. Recently, knowledge on the role of PTP1B as a major regulator of multiple signalling pathways involved in cell growth, proliferation, viability and metabolism has expanded, and PTP1B is recognised as a therapeutic target in several human disorders, including diabetes, obesity, cardiovascular diseases and hematopoietic malignancies. The function of PTP1B in the immune system was largely overlooked until it was discovered that PTP1B negatively regulates the Janus kinase-a signal transducer and activator of the transcription (JAK/STAT) signalling pathway, which plays a significant role in modulating immune responses. PTP1B is now known to determine the magnitude of many signalling pathways that drive immune cell activation and function. As such, PTP1B inhibitors are being developed and tested in the context of inflammation and autoimmune diseases. Here, we provide an up-to-date summary of the molecular role of PTP1B in regulating immune cell function and how targeting its expression and/or activity has the potential to change the outcomes of immune-mediated and inflammatory disorders.
Collapse
Affiliation(s)
- Neve E Read
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather M Wilson
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
29
|
Hassan M, Yasir M, Shahzadi S, Chun W, Kloczkowski A. Molecular Role of Protein Phosphatases in Alzheimer's and Other Neurodegenerative Diseases. Biomedicines 2024; 12:1097. [PMID: 38791058 PMCID: PMC11117500 DOI: 10.3390/biomedicines12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is distinguished by the gradual loss of cognitive function, which is associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases (PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1 and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major causing factor of AD through the deregulation of the tau protein. Here, we review recent advances on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A better understanding of this problem may lead to the development of phosphatase-targeted therapies for neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Ilić D, Karaman M, Bogavac M, Mišković J, Rašeta M. Bioactivity Profiling of Daedaleopsis confragosa (Bolton) J. Schröt. 1888: Implications for Its Possible Application in Enhancing Women's Reproductive Health. Pharmaceuticals (Basel) 2024; 17:600. [PMID: 38794170 PMCID: PMC11123820 DOI: 10.3390/ph17050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the bioactivity profile of wood-rotting fungal species Daedaleopsis confragosa (Bolton) J. Schröt. 1888, focusing on its antioxidant, cytotoxic, and genotoxic activities and enzyme modulation properties with respect to its possible application in terms of enhancing women's reproductive health. Two types of extracts, including those based on EtOH extraction (DC) and hydrodistillation (DCHD), were investigated. The results indicate that the radical scavenging capacity against the DPPH radical and reduction potential were stronger in the DC extracts owing to the higher total phenolic content (TPC) and total flavonoid content (TFC) (25.30 ± 1.05 mg GAE/g d.w. and 2.84 ± 0.85 mg QE/g d.w., respectively). The same trend was observed in the protein phosphatase-1 (PP1) activity and in the genotoxic activity against the δ virus since only the DC extract exhibited DNA disintegration regarding a dilution of 1:100. Conversely, the DCHD extract exhibited increased hemolytic and cytotoxic effects (339.39% and IC50 = 27.76 ± 0.89 μg/mL-72 h incubation, respectively), along with greater inhibition of the AChE enzyme (IC50 = 3.11 ± 0.45 mg/mL) and hemolytic activity. These results suggest that terpenoids and steroids may be responsible for the observed activity in DCHD as these compounds could potentially be extracted following the HD procedure. This comprehensive bioactivity profiling offers valuable insights into the potential therapeutic applications of D. confragosa from Serbia and underscores the importance of further investigations for harnessing its pharmacological potential.
Collapse
Affiliation(s)
- Djordje Ilić
- Clinical Centre of Vojvodina, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.I.); (M.B.)
| | - Maja Karaman
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.R.)
| | - Mirjana Bogavac
- Clinical Centre of Vojvodina, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.I.); (M.B.)
| | - Jovana Mišković
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.R.)
| | - Milena Rašeta
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.R.)
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
31
|
Pang J, Kuang TD, Yu XY, Novák P, Long Y, Liu M, Deng WQ, Zhu X, Yin K. N6-methyladenosine in myeloid cells: a novel regulatory factor for inflammation-related diseases. J Physiol Biochem 2024; 80:249-260. [PMID: 38158555 DOI: 10.1007/s13105-023-01002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
N6-methyladenosine (m6A) is one of the most abundant epitranscriptomic modifications on eukaryotic mRNA. Evidence has highlighted that m6A is altered in response to inflammation-related factors and it is closely associated with various inflammation-related diseases. Multiple subpopulations of myeloid cells, such as macrophages, dendritic cells, and granulocytes, are crucial for the regulating of immune process in inflammation-related diseases. Recent studies have revealed that m6A plays an important regulatory role in the functional of multiple myeloid cells. In this review, we comprehensively summarize the function of m6A modification in myeloid cells from the perspective of myeloid cell production, activation, polarization, and migration. Furthermore, we discuss how m6A-mediated myeloid cell function affects the progression of inflammation-related diseases, including autoimmune diseases, chronic metabolic diseases, and malignant tumors. Finally, we discuss the challenges encountered in the study of m6A in myeloid cells, intended to provide a new direction for the study of the pathogenesis of inflammation-related diseases.
Collapse
Affiliation(s)
- Jin Pang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Tong-Dong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Xin-Yuan Yu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Yuan Long
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Min Liu
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Qian Deng
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
Sun H, Yu W, Li H, Hu X, Wang X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024; 16:695. [PMID: 38474823 PMCID: PMC10935369 DOI: 10.3390/nu16050695] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Wenzhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| |
Collapse
|
33
|
Peng Y, Qu R, Xu S, Bi H, Guo D. Regulatory mechanism and therapeutic potentials of naringin against inflammatory disorders. Heliyon 2024; 10:e24619. [PMID: 38317884 PMCID: PMC10839891 DOI: 10.1016/j.heliyon.2024.e24619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Yuan Peng
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Ruyi Qu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Shuqin Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
34
|
Guan X, Wu J, Geng J, Ji D, Wei D, Ling Y, Zhang Y, Jiang G, Pang T, Huang Z. A Novel Hybrid of Telmisartan and Borneol Ameliorates Neuroinflammation and White Matter Injury in Ischemic Stroke Through ATF3/CH25H Axis. Transl Stroke Res 2024; 15:195-218. [PMID: 36577854 DOI: 10.1007/s12975-022-01121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
Cerebral ischemic stroke causes substantial white matter injury, which is further aggravated by neuroinflammation mediated by microglia/astrocytes. Given the anti-neuroinflammatory action of telmisartan and the enhancing blood-brain barrier (BBB) permeability potential of resuscitation-inducing aromatic herbs, 13 hybrids (3a-m) of telmisartan (or its simplified analogues) with resuscitation-inducing aromatic agents were designed, synthesized, and biologically evaluated. Among them, the optimal compound 3a (the ester hybrid of telmisartan and (+)-borneol) potently inhibited neuroinflammation mediated by microglia/astrocytes and ameliorated ischemic stroke. Particularly, 3a significantly conferred protection for white matter integrity after cerebral ischemic stroke via decreasing abnormally dephosphorylated neurofilament protein, upregulating myelin basic protein, and attenuating oligodendrocyte damage. Further RNA-sequencing data revealed that 3a upregulated expression of transcriptional regulator ATF3 to reduce the expression of CH25H, prevented proinflammatory state of lipid-droplet-accumulating microglia/astrocytes to limit excessive inflammation, and eventually protected neighboring oligodendrocytes to prevent white matter injury. Taken with the desirable pharmacokinetics behavior and improved brain distribution, 3a may be a feasible therapeutic agent for ischemic stroke and other neurological disorders with white matter injury.
Collapse
Affiliation(s)
- Xin Guan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Jiahui Geng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Dasha Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, People's Republic of China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China
| | - Guojun Jiang
- Department of Pharmacy, Zhejiang Xiaoshan Hospital, Hangzhou, 311201, People's Republic of China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, Institute of Pharmaceutical Sciences, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
35
|
Kvergelidze E, Barbakadze T, Bátor J, Kalandadze I, Mikeladze D. Thyroid hormone T3 induces Fyn modification and modulates palmitoyltransferase gene expression through αvβ3 integrin receptor in PC12 cells during hypoxia. Transl Neurosci 2024; 15:20220347. [PMID: 39118829 PMCID: PMC11306964 DOI: 10.1515/tnsci-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Thyroid hormones (THs) are essential in neuronal and glial cell development and differentiation, synaptogenesis, and myelin sheath formation. In addition to nuclear receptors, TH acts through αvβ3-integrin on the plasma membrane, influencing transcriptional regulation of signaling proteins that, in turn, affect adhesion and survival of nerve cells in various neurologic disorders. TH exhibits protective properties during brain hypoxia; however, precise intracellular mechanisms responsible for the preventive effects of TH remain unclear. In this study, we investigated the impact of TH on integrin αvβ3-dependent downstream systems in normoxic and hypoxic conditions of pheochromocytoma PC12 cells. Our findings reveal that triiodothyronine (T3), acting through αvβ3-integrin, induces activation of the JAK2/STAT5 pathway and suppression of the SHP2 in hypoxic PC12 cells. This activation correlates with the downregulation of the expression palmitoyltransferase-ZDHHC2 and ZDHHC9 genes, leading to a subsequent decrease in palmitoylation and phosphorylation of Fyn tyrosine kinase. We propose that these changes may occur due to STAT5-dependent epigenetic silencing of the palmitoyltransferase gene, which in turn reduces palmitoylation/phosphorylation of Fyn with a subsequent increase in the survival of cells. In summary, our study provides the first evidence demonstrating the involvement of integrin-dependent JAK/STAT pathway, SHP2 suppression, and altered post-translational modification of Fyn in protective effects of T3 during hypoxia.
Collapse
Affiliation(s)
- Elisabed Kvergelidze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
| | - Tamar Barbakadze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - Judit Bátor
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, Pécs, 7624, Hungary
- Janos Szentagothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Irine Kalandadze
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| | - David Mikeladze
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, 0162, Georgia
- Laboratory of Biochemistry, Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, 0160, Georgia
| |
Collapse
|
36
|
Wang Z, Liu Z, Qu J, Sun Y, Zhou W. Role of natural products in tumor therapy from basic research and clinical perspectives. ACTA MATERIA MEDICA 2024; 3. [DOI: 10.15212/amm-2023-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cancer is the leading cause of morbidity and mortality worldwide and is an important barrier to lengthening life expectancy in every country. Natural products are receiving increased attention from researchers globally and increasing numbers of natural products are approved for clinical studies involving cancer in recent years. To gain more insight into natural products that have undergone clinical trials for cancer treatment, a comprehensive search was conducted. The https://clinicaltrials.gov website was searched for relevant clinical trials and natural product information up to December 2022. The search terms included different types of cancers, such as colorectal, lung, breast, gynecologic, kidney, bladder, melanoma, pancreatic, hepatocellular, gastric and haematologic. Then, PubMed and Web of Science were searched for relevant articles up to February 2024. Hence, we listed existing clinical trials about natural products used in the treatment of cancers and discussed the preclinical and clinical studies of some promising natural products and their targets, indications, and underlying mechanisms of action. Our intent was to provide basic information to readers who are interested or majoring in natural products and obtain a deeper understanding of the progress and actions of natural product mechanisms of action.
Collapse
|
37
|
Li YM, He HW, Zhang N. Targeting Protein Phosphatases for the Treatment of Chronic Liver Disease. Curr Drug Targets 2024; 25:171-189. [PMID: 38213163 DOI: 10.2174/0113894501278886231221092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
Collapse
Affiliation(s)
- Yi-Ming Li
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hong-Wei He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Na Zhang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
38
|
Lv Y, Li M, Weng L, Huang H, Mao Y, Yang DA, Wei Q, Zhao M, Wei Q, Rui K, Han X, Fan W, Cai X, Cao P, Cao M. Ginseng-derived nanoparticles reprogram macrophages to regulate arginase-1 release for ameliorating T cell exhaustion in tumor microenvironment. J Exp Clin Cancer Res 2023; 42:322. [PMID: 38012650 PMCID: PMC10683135 DOI: 10.1186/s13046-023-02888-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Lines of evidence indicated that, immune checkpoints (ICs) inhibitors enhanced T cell immune response to exert anti-tumor effects. However, T cell exhaustion has been so far a major obstacle to antitumor immunotherapy in colorectal cancer patients. Our previous studies showed that ginseng-derived nanoparticles (GDNPs) inhibited the growth of various tumors by reprograming tumor-associated macrophages (TAMs) and downregulated the ICs expression on T cells in tumor microenvironment (TME), but the underlying effector mechanisms remained unclear. METHODS The correlation between arginase-1 (ARG1) and T cells was computed based on the colorectal cancer patients in TCGA database. In vitro, we observed that GDNPs reprogrammed TAMs inhibited ARG1 release and ultimately ameliorated T cell exhaustion according to several techniques including WB, PCR, ELISA and flow cytometry. We also used an in vivo MC38 tumor-bearing model and administered GDNPs to assess their anti-tumor effects through multiple indices. The mechanism that GDNPs improved T cell exhaustion was further clarified using the bioinformatics tools and flow cytometry. RESULTS GDNPs reprogramed TAMs via reducing ARG1 production. Moreover, normalized arginine metabolism ameliorated T cell exhaustion through mTOR-T-bet axis, resulting in reduced ICs expression and enhanced CD8+ T cells expansion. CONCLUSIONS By regulating the mTOR-T-bet axis, GDNPs reprogramed macrophages to regulate ARG1 release, which further ameliorated T cell exhaustion in TME. These findings provided new insights into comprehending the mechanisms underlying the mitigation of T cell exhaustion, which may facilitate the development of innovative therapeutic strategies in the field of cancer treatment.
Collapse
Affiliation(s)
- Yan Lv
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengyuan Li
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ling Weng
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haoying Huang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujie Mao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qingyun Wei
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmeng Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qin Wei
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuan Han
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weiwei Fan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu, China.
| | - Meng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Miao J, Dong J, Miao Y, Bai Y, Qu Z, Jassim BA, Huang B, Nguyen Q, Ma Y, Murray AA, Li J, Low PS, Zhang ZY. Discovery of a selective TC-PTP degrader for cancer immunotherapy. Chem Sci 2023; 14:12606-12614. [PMID: 38020389 PMCID: PMC10646932 DOI: 10.1039/d3sc04541b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
T-cell protein tyrosine phosphatase (TC-PTP), encoded by PTPN2, has emerged as a promising target for cancer immunotherapy. TC-PTP deletion in B16 melanoma cells promotes tumor cell antigen presentation, while loss of TC-PTP in T-cells enhances T-cell receptor (TCR) signaling and stimulates cell proliferation and activation. Therefore, there is keen interest in developing TC-PTP inhibitors as novel immunotherapeutic agents. Through rational design and systematic screening, we discovered the first highly potent and selective TC-PTP PROTAC degrader, TP1L, which induces degradation of TC-PTP in multiple cell lines with low nanomolar DC50s and >110-fold selectivity over the closely related PTP1B. TP1L elevates the phosphorylation level of TC-PTP substrates including pSTAT1 and pJAK1, while pJAK2, the substrate of PTP1B, is unaffected by the TC-PTP degrader. TP1L also intensifies interferon gamma (IFN-γ) signaling and increases MHC-I expression. In Jurkat cells, TP1L activates TCR signaling through increased phosphorylation of LCK. Furthermore, in a CAR-T cell and KB tumor cell co-culture model, TP1L enhances CAR-T cell mediated tumor killing efficacy through activation of the CAR-T cells. Thus, we surmise that TP1L not only provides a unique opportunity for in-depth interrogation of TC-PTP biology but also serves as an excellent starting point for the development of novel immunotherapeutic agents targeting TC-PTP.
Collapse
Affiliation(s)
- Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Jiajun Dong
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Zihan Qu
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Brenson A Jassim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Bo Huang
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Quyen Nguyen
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
| | - Yuan Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Allison A Murray
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Jinyue Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
| | - Philip S Low
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Institute for Cancer Research, Purdue University West Lafayette IN 47907 USA
- Institute for Drug Discovery, Purdue University West Lafayette IN 47907 USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University West Lafayette IN 47907 USA
- Department of Chemistry, Purdue University West Lafayette IN 47907 USA
- Institute for Cancer Research, Purdue University West Lafayette IN 47907 USA
- Institute for Drug Discovery, Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
40
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
41
|
Wang S, Liu Y, Sun Q, Zeng B, Liu C, Gong L, Wu H, Chen L, Jin M, Guo J, Gao Z, Huang W. Triple Cross-linked Dynamic Responsive Hydrogel Loaded with Selenium Nanoparticles for Modulating the Inflammatory Microenvironment via PI3K/Akt/NF-κB and MAPK Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303167. [PMID: 37740428 PMCID: PMC10625091 DOI: 10.1002/advs.202303167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/27/2023] [Indexed: 09/24/2023]
Abstract
Modulating the inflammatory microenvironment can inhibit the process of inflammatory diseases (IDs). A tri-cross-linked inflammatory microenvironment-responsive hydrogel with ideal mechanical properties achieves triggerable and sustained drug delivery and regulates the inflammatory microenvironment. Here, this study develops an inflammatory microenvironment-responsive hydrogel (OD-PP@SeNPs) composed of phenylboronic acid grafted polylysine (PP), oxidized dextran (OD), and selenium nanoparticles (SeNPs). The introduction of SeNPs as initiators and nano-fillers into the hydrogel results in extra cross-linking of the polymer network through hydrogen bonding. Based on Schiff base bonds, Phenylboronate ester bonds, and hydrogen bonds, a reactive oxygen species (ROS)/pH dual responsive hydrogel with a triple-network is achieved. The hydrogel has injectable, self-healing, adhesion, outstanding flexibility, suitable swelling capacity, optimal biodegradability, excellent stimuli-responsive active substance release performance, and prominent biocompatibility. Most importantly, the hydrogel with ROS scavenging and pH-regulating ability protects cells from oxidative stress and induces macrophages into M2 polarization to reduce inflammatory cytokines through PI3K/AKT/NF-κB and MAPK pathways, exerting anti-inflammatory effects and reshaping the inflammatory microenvironment, thereby effectively treating typical IDs, including S. aureus infected wound and rheumatoid arthritis in rats. In conclusion, this dynamically responsive injectable hydrogel with a triple-network structure provides an effective strategy to treat IDs, holding great promise in clinical application.
Collapse
Affiliation(s)
- Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Qianwen Sun
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Key Laboratory of Natural Medicines of the Changbai MountainMinistry of EducationCollege of PharmacyYanbian UniversityYanjiJilin Province133002China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
- Beijing Key Laboratory of Drug Delivery Technology and Novel FormulationsDepartment of PharmaceuticsInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100050China
| |
Collapse
|
42
|
Zhang XJ, Han XW, Jiang YH, Wang YL, He XL, Liu DH, Huang J, Liu HH, Ye TC, Li SJ, Li ZR, Dong XM, Wu HY, Long WJ, Ni SH, Lu L, Yang ZQ. Impact of inflammation and anti-inflammatory modalities on diabetic cardiomyopathy healing: From fundamental research to therapy. Int Immunopharmacol 2023; 123:110747. [PMID: 37586299 DOI: 10.1016/j.intimp.2023.110747] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a prevalent cardiovascular complication of diabetes mellitus, characterized by high morbidity and mortality rates worldwide. However, treatment options for DCM remain limited. For decades, a substantial body of evidence has suggested that the inflammatory response plays a pivotal role in the development and progression of DCM. Notably, DCM is closely associated with alterations in inflammatory cells, exerting direct effects on major resident cells such as cardiomyocytes, vascular endothelial cells, and fibroblasts. These cellular changes subsequently contribute to the development of DCM. This article comprehensively analyzes cellular, animal, and human studies to summarize the latest insights into the impact of inflammation on DCM. Furthermore, the potential therapeutic effects of current anti-inflammatory drugs in the management of DCM are also taken into consideration. The ultimate goal of this work is to consolidate the existing literature on the inflammatory processes underlying DCM, providing clinicians with the necessary knowledge and tools to adopt a more efficient and evidence-based approach to managing this condition.
Collapse
Affiliation(s)
- Xiao-Jiao Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Wei Han
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yan-Hui Jiang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ya-Le Wang
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China
| | - Xing-Ling He
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Dong-Hua Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jie Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hao-Hui Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Tao-Chun Ye
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Si-Jing Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zi-Ru Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Xiao-Ming Dong
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Hong-Yan Wu
- Shanghai University of Traditional Chinese Medicine, 1200 Cai lun Road, Pudong New District, Shanghai 201203, China; Shenzhen Hospital, Shanghai University of Traditional Chinese Medicine, 16 Xian tong Road, Luo hu District, Shenzhen, Guangdong 518004, China.
| | - Wen-Jie Long
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; University Key Laboratory of Traditional Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangdong Province 510407, China; Guangzhou Key Laboratory for Chinese Medicine Prevention and Treatment of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
43
|
Bourebaba L, Serwotka-Suszczak A, Bourebaba N, Zyzak M, Marycz K. The PTP1B Inhibitor Trodusquemine (MSI-1436) Improves Glucose Uptake in Equine Metabolic Syndrome Affected Liver through Anti-Inflammatory and Antifibrotic Activity. Int J Inflam 2023; 2023:3803056. [PMID: 37808009 PMCID: PMC10560121 DOI: 10.1155/2023/3803056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/12/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Hyperactivation of protein tyrosine phosphatase (PTP1B) has been associated with several metabolic malfunctions ranging from insulin resistance, metaflammation, lipotoxicity, and hyperglycaemia. Liver metabolism failure has been proposed as a core element in underlying endocrine disorders through persistent inflammation and highly fibrotic phenotype. Methods In this study, the outcomes of PTP1B inhibition using trodusquemine (MSI-1436) on key equine metabolic syndrome (EMS)-related alterations including inflammation, fibrosis, and glucose uptake have been analyzed in liver explants collected from EMS-affected horses using various analytical techniques, namely, flow cytometry, RT-qPCR, and Western blot. Results PTP1B inhibition using trodusquemine resulted in decreased proinflammatory cytokines (IL-1β, TNF-α, and IL-6) release from liver and PBMC affected by EMS and regulated expression of major proinflammatory microRNAs such as miR-802 and miR-211. Moreover, MSI-1436 enhanced the anti-inflammatory profile of livers by elevating the expression of IL-10 and IL-4 and activating CD4+CD25+Foxp3+ regulatory T cells in treated PBMC. Similarly, the inhibitor attenuated fibrogenic pathways in the liver by downregulating TGF-β/NOX1/4 axis and associated MMP-2/9 overactivation. Interestingly, PTP1B inhibition ameliorated the expression of TIMP-1 and Smad7, both important antifibrotic mediators. Furthermore, application of MSI-1436 was found to augment the abundance of glycosylated Glut-2, which subsequently expanded the glucose absorption in the EMS liver, probably due to an enhanced Glut-2 stability and half-life onto the plasma cell membranes. Conclusion Taken together, the presented data suggest that the PTP1B inhibition strategy and the use of its specific inhibitor MSI-1436 represents a promising option for the improvement of liver tissue integrity and homeostasis in the course of EMS and adds more insights for ongoing clinical trials for human MetS management.
Collapse
Affiliation(s)
- Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Magdalena Zyzak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, Wrocław 50-375, Poland
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
44
|
Celada SI, Lim CX, Carisey AF, Ochsner SA, Arce Deza CF, Rexie P, Poli De Frias F, Cardenas-Castillo R, Polverino F, Hengstschläger M, Tsoyi K, McKenna NJ, Kheradmand F, Weichhart T, Rosas IO, Van Kaer L, Celada LJ. SHP2 promotes sarcoidosis severity by inhibiting SKP2-targeted ubiquitination of TBET in CD8 + T cells. Sci Transl Med 2023; 15:eade2581. [PMID: 37703351 PMCID: PMC11126869 DOI: 10.1126/scitranslmed.ade2581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Sarcoidosis is an interstitial lung disease (ILD) characterized by interferon-γ (IFN-γ) and T-box expressed in T cells (TBET) dysregulation. Although one-third of patients progress from granulomatous inflammation to severe lung damage, the molecular mechanisms underlying this process remain unclear. Here, we found that pharmacological inhibition of phosphorylated SH2-containing protein tyrosine phosphatase-2 (pSHP2), a facilitator of aberrant IFN-γ abundance, decreased large granuloma formation and macrophage infiltration in the lungs of mice with sarcoidosis-like disease. Positive treatment outcomes were dependent on the effective enhancement of TBET ubiquitination within CD8+ T cells. Mechanistically, we identified a posttranslational modification pathway in which the E3 F-box protein S-phase kinase-associated protein 2 (SKP2) targets TBET for ubiquitination in T cells under normal conditions. However, this pathway was disrupted by aberrant pSHP2 signaling in CD8+ T cells from patients with progressive pulmonary sarcoidosis and end-stage disease. Ex vivo inhibition of pSHP2 in CD8+ T cells from patients with end-stage sarcoidosis enhanced TBET ubiquitination and suppressed IFN-γ and collagen synthesis. Therefore, these studies provided new mechanistic insights into the SHP2-dependent posttranslational regulation of TBET and identified SHP2 inhibition as a potential therapeutic intervention against severe sarcoidosis. Furthermore, these studies also suggest that the small-molecule SHP2 inhibitor SHP099 might be used as a therapeutic measure against human diseases linked to TBET or ubiquitination.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Clarice X. Lim
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alexandre F. Carisey
- William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Cell and Molecular Biology, St. Jude Children’s Hospital, Memphis, TN 38105, USA
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Carlos F. Arce Deza
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Praveen Rexie
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Fernando Poli De Frias
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Mout Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Rafael Cardenas-Castillo
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Polverino
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Markus Hengstschläger
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Konstantin Tsoyi
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey, Houston, TX 77030, USA
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Ivan O. Rosas
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Lindsay J. Celada
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| |
Collapse
|
45
|
Manríquez-Núñez J, Mora O, Villarroya F, Reynoso-Camacho R, Pérez-Ramírez IF, Ramos-Gómez M. Macrophage Activity under Hyperglycemia: A Study of the Effect of Resveratrol and 3H-1,2-Dithiole-3-thione on Potential Polarization. Molecules 2023; 28:5998. [PMID: 37630249 PMCID: PMC10458500 DOI: 10.3390/molecules28165998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Currently, research is focused on bioactive compounds with the potential to promote macrophage polarization with the aim of reducing the development of inflammatory-related diseases. However, the effect of bioactive compounds under oxidative-stress-induced hyperglycemia on macrophage polarization has been scarcely investigated. RAW 264.7 macrophages were incubated under standard (SG) or high glucose (HG) conditions and stimulated with lipopolysaccharide (LPS) (10, 60 and 100 ng/mL) to monitor macrophage polarization after resveratrol (RSV) or 3H-1,2-dithiole-3-thione (D3T) supplementation (2.5, 5, 10 and 20 µM). Under SG and HG conditions without LPS stimulation, RSV significantly decreased macrophage viability at the highest concentration (20 µM), whereas D3T had no or low effect. LPS stimulation at 60 and 100 ng/mL, under SG and HG conditions, increased significantly macrophage viability. Both RSV and D3T significantly decreased NO production in LPS-stimulated macrophages under HG condition, whereas only D3T increased GSH levels at 100 ng/mL and normalized MDA values at 60 ng/mL of LPS under HG condition. Under 60 ng/mL LPS stimulation and HG, mRNA IL-1 and IL-6 were higher. Interestingly, RSV decreased pro-inflammatory interleukins; meanwhile, D3T increased Arg1 and IL-10 relative expression. Overall, our results indicate that hyperglycemia plays a fundamental role in the modulation of macrophage-induced inflammation in response to bioactive compounds.
Collapse
Affiliation(s)
- Josué Manríquez-Núñez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Ofelia Mora
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of the University of Barcelona, 08007 Barcelona, Spain
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Iza Fernanda Pérez-Ramírez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| | - Minerva Ramos-Gómez
- Departamento de Investigación y Posgrado de Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario S/N, Cerro de las Campanas, Querétaro 76010, Mexico
| |
Collapse
|
46
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
47
|
Li S, Luo Z, Su S, Wen L, Xian G, Zhao J, Xu X, Xu D, Zeng Q. Targeted inhibition of PTPN22 is a novel approach to alleviate osteogenic responses in aortic valve interstitial cells and aortic valve lesions in mice. BMC Med 2023; 21:252. [PMID: 37443055 PMCID: PMC10347738 DOI: 10.1186/s12916-023-02888-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the most prevalent valvular disease and has high morbidity and mortality. CAVD is characterized by complex pathophysiological processes, including inflammation-induced osteoblastic differentiation in aortic valve interstitial cells (AVICs). Novel anti-CAVD agents are urgently needed. Protein tyrosine phosphatase nonreceptor type 22 (PTPN22), an intracellular nonreceptor-like protein tyrosine phosphatase, is involved in several chronic inflammatory diseases, including rheumatoid arthritis and diabetes. However, it is unclear whether PTPN22 is involved in the pathogenesis of CAVD. METHODS We obtained the aortic valve tissue from human and cultured AVICs from aortic valve. We established CAVD mice model by wire injury. Transcriptome sequencing, western bolt, qPCR, and immunofluorescence were performed to elucidate the molecular mechanisms. RESULTS Here, we determined that PTPN22 expression was upregulated in calcific aortic valve tissue, AVICs treated with osteogenic medium, and a mouse model of CAVD. In vitro, overexpression of PTPN22 induced osteogenic responses, whereas siRNA-mediated PTPN22 knockdown abolished osteogenic responses and mitochondrial stress in the presence of osteogenic medium. In vivo, PTPN22 ablation ameliorated aortic valve lesions in a wire injury-induced CAVD mouse model, validating the pathogenic role of PTPN22 in CAVD. Additionally, we discovered a novel compound, 13-hydroxypiericidin A 10-O-α-D-glucose (1 → 6)-β-D-glucoside (S18), in a marine-derived Streptomyces strain that bound to PTPN22 with high affinity and acted as a novel inhibitor. Incubation with S18 suppressed osteogenic responses and mitochondrial stress in human AVICs induced by osteogenic medium. In mice with aortic valve injury, S18 administration markedly alleviated aortic valve lesions. CONCLUSION PTPN22 plays an essential role in the progression of CAVD, and inhibition of PTPN22 with S18 is a novel option for the further development of potent anti-CAVD drugs. Therapeutic inhibition of PTPN22 retards aortic valve calcification through modulating mitochondrial dysfunction in AVICs.
Collapse
Affiliation(s)
- Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University, Göttingen, Germany
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
48
|
Bae S, Hyun CG. The Effects of 2 '-Hydroxy-3,6 '-Dimethoxychalcone on Melanogenesis and Inflammation. Int J Mol Sci 2023; 24:10393. [PMID: 37373541 DOI: 10.3390/ijms241210393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, we demonstrated that 2'-hydroxy-3,6'-dimethoxychalcone (3,6'-DMC) alleviated α-MSH-induced melanogenesis and lipopolysaccharides (LPS)-induced inflammation in mouse B16F10 and RAW 264.7 cells. In vitro analysis results showed that the melanin content and intracellular tyrosinase activity were significantly decreased by 3,6'-DMC, without cytotoxicity, via decreases in tyrosinase and the tyrosinase-related protein 1 (TRP-1) and TRP-2 melanogenic proteins, as well as the downregulation of microphthalmia-associated transcription factor (MITF) expression through the upregulation of the phosphorylation of extracellular-signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase-3β (GSK-3β)/catenin, and downregulation of the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and protein kinase A (PKA). Furthermore, we investigated the effect of 3,6'-DMC on macrophage RAW264.7 cells with LPS stimulation. 3,6'-DMC significantly inhibited LPS-stimulated nitric oxide production. 3,6'-DMC also suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 on the protein level. In addition, 3,6'-DMC decreased the production of the tumor necrosis factor-α and interleukin-6. Successively, our mechanistic studies revealed that 3,6'-DMC also suppressed the LPS-induced phosphorylation of the inhibitor of IκBα, p38MAPK, ERK, and JNK. The Western blot assay results showed that 3,6'-DMC suppresses LPS-induced p65 translocation from cytosol to the nucleus. Finally, the topical applicability of 3,6'-DMC was tested through primary skin irritation, and it was found that 3,6'-DMC, at 5 and 10 μM concentrations, did not cause any adverse effects. Therefore, 3,6'-DMC may provide a potential candidate for preventing and treating melanogenic and inflammatory skin diseases.
Collapse
Affiliation(s)
- Sungmin Bae
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
49
|
Marycz K, Bourebaba N, Serwotka-Suszczak A, Mularczyk M, Galuppo L, Bourebaba L. In Vitro Generated Equine Hepatic-Like Progenitor Cells as a Novel Potent Cell Pool for Equine Metabolic Syndrome (EMS) Treatment. Stem Cell Rev Rep 2023; 19:1124-1134. [PMID: 36658383 PMCID: PMC10185601 DOI: 10.1007/s12015-023-10507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Equine metabolic syndrome (EMS) is recognized as one of the leading cause of health threatening in veterinary medicine worldwide. Recently, PTP1B inhibition has been proposed as an interesting strategy for liver insulin resistance reversion in both equines and humans, however as being a multifactorial disease, proper management of EMS horses further necessities additional interventional approaches aiming at repairing and restoring liver functions. In this study, we hypothesized that in vitro induction of Eq_ASCs hepatogenic differentiation will generate a specialized liver progenitor-like cell population exhibiting similar phenotypic characteristics and regenerative potential as native hepatic progenitor cells. Our obtained data demonstrated that Eq_ASCs-derived liver progenitor cells (Eq_HPCs) displayed typical flattened polygonal morphology with packed fragmented mitochondrial net, lowered mesenchymal CD105 and CD90 surface markers expression, and significant high expression levels of specific hepatic lineage genes including PECAM-1, ALB, AFP and HNF4A. therewith, generated Eq_HPCs exhibited potentiated stemness and pluripotency markers expression (NANOG, SOX-2 and OCT-4). Hence, in vitro generation of hepatic progenitor-like cells retaining high differentiation capacity represents a promising new approach for the establishment of cell-based targeted therapies for the restoration of proper liver functions in EMS affected horses.
Collapse
Affiliation(s)
- Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland.
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95516, USA.
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Larry Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95516, USA
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
| |
Collapse
|
50
|
Wang Y, Bian J, Yao M, Du L, Xu Y, Chang H, Cong H, Wei Y, Xu W, Wang H, Zhang X, Geng X, Yin L. Targeting chemoattractant chemokine (C-C motif) ligand 2 derived from astrocytes is a promising therapeutic approach in the treatment of neuromyelitis optica spectrum disorders. Front Immunol 2023; 14:1144532. [PMID: 37056770 PMCID: PMC10086366 DOI: 10.3389/fimmu.2023.1144532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Aquaporin-4 immunoglobulin G (AQP4-IgG)-induced astrocytes injury is a key mechanism in the pathogenesis of neuromyelitis spectrum disorder (NMOSD), and although CCL2 is involved, its specific role has not been reported. We aimed to further investigate the role and potential mechanisms of CCL2 in AQP4-IgG-induced astrocyte injury. Methods First, we evaluated CCL2 levels in paired samples of subject patients by automated microfluidic platform, Ella®. Second, we knock down astrocyte's CCL2 gene in vitro and in vivo to define the function of CCL2 in AQP4-IgG-induced astrocyte injury. Third, astrocyte injury and brain injury in live mice were assessed by immunofluorescence staining and 7.0T MRI, respectively. Western blotting and high-content screening were conducted to clarify the activation of inflammatory signaling pathways, and changes in CCL2 mRNA and cytokine/chemokines were measured by qPCR technique and flow cytometry, respectively. Results There were greatly higher CSF-CCL2 levels in NMOSD patients than that in other non-inflammatory neurological diseases (OND) groups. Blocking astrocyte CCL2 gene expression can efficiently mitigate AQP4-IgG-induced damage in vitro and in vivo. Interestingly, prevention of CCL2 expression could decrease other inflammatory cytokines released, including IL-6 and IL-1β. Our data suggest that CCL2 involves in the initiation and plays a pivotal role in AQP4-IgG-damaged astrocytes. Discussion Our results indicate that CCL2 may serve as a promising candidate target for inflammatory disorder therapy, including NMOSD.
Collapse
Affiliation(s)
- Yupeng Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Bian
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengyuan Yao
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Li Du
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yun Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoxiao Chang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hengri Cong
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuzhen Wei
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wangshu Xu
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huabing Wang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinghu Zhang
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China
| | - Linlin Yin
- Department of Neuroinfection and Neuroimmunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|