1
|
Mou D, Wu S, Chen Y, Wang Y, Dai Y, Tang M, Teng X, Bai S, Bai X. Roles of PEG10 in cancer and neurodegenerative disorder (Review). Oncol Rep 2025; 53:60. [PMID: 40183369 PMCID: PMC11976372 DOI: 10.3892/or.2025.8893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Paternally expressed gene 10 (PEG10) is an imprinting gene. In addition to its known roles in placental development, as well as mouse embryonic stem cell and trophoblast stem cell differentiation, PEG10 has recently been shown to have significance in cancers. High expression of PEG10 is observed in various cancer types and is associated with poor prognosis. Of note, disruption of PEG10 expression leads to increased apoptosis, as well as decreased proliferation, invasion and migration of cancer cells. PEG10 is expected to become a target for cancer and neurodegenerative disorder therapy. This article reviewed the latest progress in the role of PEG10 in cancers.
Collapse
Affiliation(s)
- Dachao Mou
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shasha Wu
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanqiong Chen
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yun Wang
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yufang Dai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Min Tang
- Division of Thoracic Tumor Multimodality Treatment and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiu Teng
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shijun Bai
- Department of Agriculture Forestry and Food Engineering, Yibin University, Lingang Economic and Technological Development Zone, Yibin, Sichuan 644000, P.R. China
| | - Xiufeng Bai
- Laboratory of Human Disease and Immunotherapies, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Institute of Inflammation and Immunology (I), Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
2
|
Lenz S, Sivaloganathan A, Goodman SJ, Cytrynbaum C, Rapley J, Canning E, Baribeau D. Psychopharmacology in children with genetic disorders of epigenetic and chromatin regulation. J Neurodev Disord 2025; 17:21. [PMID: 40275179 DOI: 10.1186/s11689-025-09605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
OBJECTIVE Hundreds of rare genetic variants associated with autism or intellectual disability have been identified, and many impact genes known to have a primary epigenetic/chromatin regulatory function. The objective of this study was to examine and compare behavioural profiles and longitudinal psychotropic treatment patterns in children with epigenetic/chromatin variants, other rare variants impacting neurodevelopment, or no known genetic condition. METHODS Using electronic medical records from a pediatric psychopharmacology program for children with autism or intellectual disability, we compared clinical characteristics, longitudinal psychotropic medication profiles and side effects between those with and without a rare genetic variant, and by variant subtype [epigenetic/chromatin regulation or other variant]. RESULTS A total of 331 children attended 2724 unique medical visits between 2019 and 2022, with a mean of 8 follow-up visits over 3.4 years. Nine children (3%) had variants in epigenetic/chromatin regulatory genes (EC), twenty-three children (7%) had other rare genetic variants (OTH), and the rest had no reported variant (NR, n = 299, 90%). Those with a rare genetic variant (EC or OTH) were more likely to have an intellectual disability and had a greater number of co-occurring physical health conditions (p < 0.01). Overall, 66% of psychotropic medications were continued for ≥ 3 visits, while 26% were discontinued. Rates of psychotropic polypharmacy, medication patterns, behavioural challenges, and co-occurring developmental diagnoses were similar between genetic groups. Analyses uncorrected for multiple comparisons suggested those with genetic variants were more likely to experience drowsiness/sedation as a side effect (EC 33%, OTH 35%, NR 16%, p < 0.05); weight gain as a side effect was also higher in the epigenetic/chromatin group (EC 50% vs OTH 11%). CONCLUSION Genetic classification of neurodevelopmental disorders (NDDs) may help anticipate treatment tolerability; additional prescribing considerations may be needed for those with rare variants. Current psychotropic prescribing practices do not differ across rare genetic NDD subgroups.
Collapse
Affiliation(s)
- Sophia Lenz
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Ajilan Sivaloganathan
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
| | | | - Cheryl Cytrynbaum
- The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jesiqua Rapley
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | | | - Danielle Baribeau
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, ON, M4G 1R8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
4
|
AbdelGhany Morsy SA, Abd El Mottelib LMMA, Assem S, Abd El Aziz MM, Elgeziry AH. Pioglitazone mitigates acetic acid-induced colitis in rats via epigenetic-modulation and antioxidant mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04109-8. [PMID: 40237797 DOI: 10.1007/s00210-025-04109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
Ulcerative colitis (UC) is one of the inflammatory bowel diseases characterized by colonic damage. Epigenetic mechanisms are suggested to play a role in the pathogenesis of UC. Pioglitazone has shown promise for the treatment of UC; however, the role of epigenetic pathways in this effect is unclear. The current study aimed to explore the therapeutic and protective effects of pioglitazone against acetic acid-induced colitis (AA-C) in rats and the role of epigenetic modulation and antioxidant mechanisms in this effect. Forty male albino rats were divided into four groups (n = 10/group): control (normal saline), acetic-acid-induced ulcerative colitis (AA-C) (3 days, 2 ml acetic acid 4%), pioglitazone-treated (AA, followed by 3-week oral pioglitazone 25 mg/kg/day), and pioglitazone-protected groups (3-day oral pioglitazone 25 mg/kg/day before AA, continued with AA, and 3 weeks later). After the experiment, the body weight, colon weight-to-length ratio, and colonic tissue were evaluated. The colonic expression of epigenetic markers (DNA methyltransferase- 1 and methylated E-cadherin), oxidative stress marker (malondialdehyde), antioxidant enzyme (superoxide dismutase), and angiotensin-converting enzyme- 2 (ACE- 2) was evaluated. The pioglitazone-protected and treated groups showed significant inhibition of DNA methyltransferase- 1 and methylated E-cadherin with improvement in colonic tissue macroscopic and microscopic signs of inflammation, improved weight, less oxidative stress, and less ACE- 2 expression. These beneficial actions were more pronounced among the pioglitazone-protected group. Pioglitazone could mitigate AA-C in rats by inhibiting epigenetic DNA methyltransferase- 1 and E-cadherin gene methylation. It also inhibits oxidative stress and prevents the overexpression of ACE- 2.
Collapse
Affiliation(s)
- Suzan Awad AbdelGhany Morsy
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt.
- Pathological Sciences Department, MBBS Program, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia.
| | - Lobna M M A Abd El Mottelib
- Department of Human Anatomy and Embryology, Faculty of Medicine, Alexandria University, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| | - Sara Assem
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| | - M M Abd El Aziz
- Department of Pathology, Faculty of Medicine, Alexandria University, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| | - Anne H Elgeziry
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Dr. Fahmi Abdelmeguid St., Mowassah Campus, Alexandria, 21561, Egypt
| |
Collapse
|
5
|
Mo X, Meng K, Xu B, Li Z, Lan S, Ren Z, Xiang X, Zou P, Chen Z, Lai Z, Ao X, Liu Z, Shang W, Dai B, Luo L, Xu J, Wang Z, Zhang Z. Nat10-mediated N4-acetylcytidine modification enhances Nfatc1 translation to exacerbate osteoclastogenesis in postmenopausal osteoporosis. Proc Natl Acad Sci U S A 2025; 122:e2423991122. [PMID: 40193598 PMCID: PMC12012521 DOI: 10.1073/pnas.2423991122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Increased differentiation or activity of osteoclasts is the key pathogenic factor of postmenopausal osteoporosis (PMOP). N4-acetylcytidine (ac4C) modification, catalyzed by Nat10, is a novel posttranscriptional mRNA modification related to many diseases. However, its impact on regulating osteoclast activation in PMOP remains uncertain. Here, we initially observed that Nat10-mediated ac4C positively correlates with osteoclast differentiation of monocytes and low bone mass in PMOP. The specific knockout of Nat10 in monocytes and remodelin, a Nat10 inhibitor, alleviates ovariectomized (OVX)-induced bone loss by downregulating osteoclast differentiation. Mechanistically, epitranscriptomic analyses reveal that the nuclear factor of activated T cells cytoplasmic 1 (Nfatc1) is the key downstream target of ac4C modification during osteoclast differentiation. Subsequently, translatomic results demonstrate that Nat10-mediated ac4C enhances the translation efficiency (TE) of Nfatc1, thereby inducing Nfatc1 expression and consequent osteoclast maturation. Cumulatively, these findings reveal the promotive role of Nat10 in osteoclast differentiation and PMOP from a novel field of RNA modifications and suggest that Nat10 can be a target of epigenetic therapy for preventing bone loss in PMOP.
Collapse
Affiliation(s)
- Xiaoyi Mo
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Keyu Meng
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Bohan Xu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Zehui Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Shanwei Lan
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhengda Ren
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xin Xiang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Peiqian Zou
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zesen Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Xiang Ao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhongyuan Liu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, NIH, Bethesda, MD20814
| | - Bingyang Dai
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen518000, China
| | - Li Luo
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510080, China
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| |
Collapse
|
6
|
Yadav P, Rajendrasozhan S, Lajimi RH, Patel RR, Heymann D, Prasad NR. Circulating tumor cell markers for early detection and drug resistance assessment through liquid biopsy. Front Oncol 2025; 15:1494723. [PMID: 40260304 PMCID: PMC12009936 DOI: 10.3389/fonc.2025.1494723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Circulating tumor cells (CTCs) are cancerous cells that extravasate from the primary tumor or metastatic foci and travel through the bloodstream to distant organs. CTCs provide crucial insights into cancer metastasis, the evolution of tumor genotypes during treatment, and the development of chemo- and/or radio-resistance during disease progression. The process of Epithelial-to-mesenchymal transition (EMT) plays a key role in CTCs formation, as this process enhances cell's migration properties and is often associated with increased invasiveness thereby leading to chemotherapy resistance. During the EMT process, tumor cells lose epithelial markers like EpCAM and acquire mesenchymal markers such as vimentin driven by transcription factors like Snail and Twist. CTCs are typically identified using specific cell surface markers, which vary depending on the cancer type. Common markers include EpCAM, used for epithelial cancers; CD44 and CD24, which are associated with cancer stem cells; and cytokeratins, such as CK8 and CK18. Other markers like HER2/neu and vimentin can also be used to target CTCs in specific cancer types and stages. Commonly, immune-based isolation techniques are being implemented for the isolation and enrichment of CTCs. This review emphasizes the clinical relevance of CTCs, particularly in understanding drug resistance mechanisms, and underscores the importance of EMT-derived CTCs in multidrug resistance (MDR). Moreover, the review also discusses CTCs-specific surface markers that are crucial for their isolation and enrichment. Ultimately, the EMT-specific markers found in CTCs could provide significant information to halt the disease progression and enable personalized therapies.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Saravanan Rajendrasozhan
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Ramzi Hadj Lajimi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Raja Ramadevi Patel
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medecine Laboratory, Saint-Herblain, France
- Medical School, University of Sheffield, Sheffield, United Kingdom
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
7
|
Henderson J, O'Reilly S. The metabolic drivers of IFN-γ release: glycolysis and acetyl CoA ride in the front seat. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf045. [PMID: 40180335 DOI: 10.1093/jimmun/vkaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/25/2025] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
Interferon gamma (IFN-γ) is a pleotropic cytokine which is a central mediator of the immune response to pathogen infection, while also playing important roles in tumour suppression and the pathogenesis of various autoimmune diseases. Consequently, there is potential utility in the treatment of a number of pathological conditions via being able to modify IFN-γ secretion. T cells and natural killer (NK) cells are the primary IFN-γ sources, with metabolic rewiring prior to their activation and IFN-γ secretion in both a unifying feature. The mechanisms by which metabolic changes, particularly increased glycolysis, drive enhanced IFN-γ production are multi-faceted, but are likely focused on epigenetic changes via increased acetyl CoA levels which fuels histone acetylation. Herein, we discuss the mechanisms by which metabolic changes drive altered IFN-γ synthesis by immune cells.
Collapse
Affiliation(s)
- John Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Steven O'Reilly
- Department of Bioscience, Durham University, Durham, United Kingdom
| |
Collapse
|
8
|
Hu Y, Haessler J, Lundin JI, Darst BF, Whitsel EA, Grove M, Guan W, Xia R, Szeto M, Raffield LM, Ratliff S, Wang Y, Wang X, Fohner AE, Lynch MT, Patel YM, Lani Park S, Xu H, Mitchell BD, Bis JC, Sotoodehnia N, Brody JA, Psaty BM, Peloso GM, Tsai MY, Rich SS, Rotter JI, Smith JA, Kardia SLR, Reiner AP, Lange L, Fornage M, Pankow JS, Graff M, North KE, Kooperberg C, Peters U. Methylome-wide association analyses of lipids and modifying effects of behavioral factors in diverse race and ethnicity participants. Clin Epigenetics 2025; 17:54. [PMID: 40176173 PMCID: PMC11967142 DOI: 10.1186/s13148-025-01859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
Circulating lipid concentrations are clinically associated with cardiometabolic diseases. The phenotypic variance explained by identified genetic variants remains limited, highlighting the importance of searching for additional factors beyond genetic sequence variants. DNA methylation has been linked to lipid concentrations in previous studies, although most of the studies harbored moderate sample sizes and exhibited underrepresentation of non-European ancestry populations. In addition, knowledge of nongenetic factors on lipid profiles is extremely limited. In the Population Architecture Using Genomics and Epidemiology (PAGE) Study, we performed methylome-wide association analysis on 9,561 participants from diverse race and ethnicity backgrounds for HDL-c, LDL-c, TC, and TG levels, and also tested interactions between smoking or alcohol intake and methylation in their association with lipid levels. We identified novel CpG sites at 16 loci (P < 1.18E-7) with successful replication on 3,215 participants. One additional novel locus was identified in the self-reported White participants (P = 4.66E-8). Although no additional CpG sites were identified in the genome-wide interaction analysis, 13 reported CpG sites showed significant heterogeneous association across smoking or alcohol intake strata. By mapping novel and reported CpG sites to genes, we identified enriched pathways directly linked to lipid metabolism as well as ones spanning various biological functions. These findings provide new insights into the regulation of lipid concentrations.
Collapse
Grants
- N01HC95160 NHLBI NIH HHS
- 75N92021D00001, 75N92021D00002, 75N92021D00003, 75N92021D00004, 75N92021D00005, and S10OD028685 NIH HHS
- 75N92020D00001, HHSN268201500003I, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002, N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163, 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1TR001881, DK063491, HL148610, and R01HL105756 NHLBI NIH HHS
- R01 HL087652 NHLBI NIH HHS
- UL1 TR000040 NCATS NIH HHS
- HHSN268201800010I NHLBI NIH HHS
- N01HC85081 NHLBI NIH HHS
- R01 HL103612 NHLBI NIH HHS
- 75N92020D00002 NHLBI NIH HHS
- 75N92021D00002 NHLBI NIH HHS
- HHSN268201500003C NHLBI NIH HHS
- U01HG007397 NHGRI NIH HHS
- HHSN268201800012C NHLBI NIH HHS
- 75N92020D00005 NHLBI NIH HHS
- 75N92021D00005 WHI NIH HHS
- U01HL054457, RC1HL100185, R01HL087660, R01HL119443, R01HL133221 NHLBI NIH HHS
- 75N92022D00001 NIH HHS
- N01HC95163 NHLBI NIH HHS
- U01 HL080295 NHLBI NIH HHS
- UL1 TR001079 NCATS NIH HHS
- DK063491 National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center
- HHSN268201800014I NHLBI NIH HHS
- U01CA164973 NCI NIH HHS
- U01 HL130114 NHLBI NIH HHS
- R01 HL087660 NHLBI NIH HHS
- HHSN268200800007C NHLBI NIH HHS
- S10 OD028685 NIH HHS
- 75N92020D00001 NHLBI NIH HHS
- N01HC95169 NHLBI NIH HHS
- N01HC95164 NHLBI NIH HHS
- UL1 TR000124 NCATS NIH HHS
- N01HC55222 NHLBI NIH HHS
- HHSN268201800014C NHLBI NIH HHS
- N01HC95162 NHLBI NIH HHS
- N01HC85086 NHLBI NIH HHS
- 75N92020D00003 NHLBI NIH HHS
- R01 HL119443 NHLBI NIH HHS
- R01 HL105756 NHLBI NIH HHS
- N01HC95168 NHLBI NIH HHS
- K08 HL116640 NHLBI NIH HHS
- 75N92021D00001 NHLBI NIH HHS
- P30 DK063491 NIDDK NIH HHS
- RC1 HL100185 NHLBI NIH HHS
- HHSN268201200036C NHLBI NIH HHS
- HHSN268201800001C NHLBI NIH HHS
- HHSN268201800013I NIMHD NIH HHS
- UL1TR000124 NCATS NIH HHS
- U01 HL054457 NHLBI NIH HHS
- N01HC95165 NHLBI NIH HHS
- N01HC95159 NHLBI NIH HHS
- HHSN268201800012I NHLBI NIH HHS
- 75N92021D00003 WHI NIH HHS
- N01HC95161 NHLBI NIH HHS
- UL1 TR001420 NCATS NIH HHS
- 75N92020D00004 NHLBI NIH HHS
- HHSN268201800011C NHLBI NIH HHS
- 75N92020D00007 NHLBI NIH HHS
- R01AG023629 NIA NIH HHS
- HHSN268201800013I, HHSN268201800014I, HHSN268201800015I, HHSN268201800010I, HHSN268201800011I, and HHSN268201800012I NIMHD NIH HHS
- HHSN268201500003I NHLBI NIH HHS
- R01HL105756, HHSN268201200036C, HHSN268200800007C, HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, R01AG023629, 75N92021D00006, U01HL080295, U01HL130114, K08HL116640, R01HL087652, R01HL092111, R01HL103612, R01HL111089, R01HL116747 and R01HL120393 NHLBI NIH HHS
- R01 HL133221 NHLBI NIH HHS
- 75N92021D00006 NHLBI NIH HHS
- R01HG010297 NHGRI NIH HHS
- N01HC85082 NHLBI NIH HHS
- N01HC95167 NHLBI NIH HHS
- N01HC85083 NHLBI NIH HHS
- HHSN268201800015I NHLBI NIH HHS
- 75N92020D00006 NHLBI NIH HHS
- N01HC85079 NHLBI NIH HHS
- N01HC95166 NHLBI NIH HHS
- R01 AG023629 NIA NIH HHS
- UL1 TR001881 NCATS NIH HHS
- HHSN268201800011I NHLBI NIH HHS
- N01HC85080 NHLBI NIH HHS
- R01 HG010297 NHGRI NIH HHS
- U01 CA164973 NCI NIH HHS
- 75N92021D00004 WHI NIH HHS
- R01 HL111089 NHLBI NIH HHS
- R01 HL116747 NHLBI NIH HHS
- R01 HL092111 NHLBI NIH HHS
- National Institutes of Health
- National Human Genome Research Institute
- National Institute on Minority Health and Health Disparities
- National Heart, Lung, and Blood Institute
- National Institute on Aging
- National Center for Advancing Translational Sciences
- National Cancer Institute
Collapse
Affiliation(s)
- Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jessica I Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Burcu F Darst
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Megan Grove
- School of Public Health, Human Genetics Center, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Weihua Guan
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Rui Xia
- McGovern Medical School, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mindy Szeto
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Scott Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yuxuan Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Xuzhi Wang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alison E Fohner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Megan T Lynch
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yesha M Patel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - S Lani Park
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Gina M Peloso
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alex P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Leslie Lange
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Myriam Fornage
- School of Public Health, Human Genetics Center, University of Texas Health Sciences Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mariaelisa Graff
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
9
|
Wu Z, Dai Z, Feng Z, Qiu Y, Zhu Z, Xu L. Genome-wide methylation association study in monozygotic twins discordant for curve severity of adolescent idiopathic scoliosis. Spine J 2025; 25:785-796. [PMID: 39515527 DOI: 10.1016/j.spinee.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND CONTEXT Emerging evidence suggests that abnormal DNA methylation patterns may play a role in the progression of adolescent idiopathic scoliosis (AIS). However, the mechanisms underlying the influence of DNA methylation on curve severity remain largely unknown. PURPOSE To characterize the DNA methylation profiles associated with the curve severity of AIS. STUDY DESIGN Retrospective study with prospectively collected clinical data and blood samples. METHODS A total of 7 AIS monozygotic twin pairs discordant for curve severity were included. Genome-wide methylation profile from blood samples were quantified by Illumina Infinium MethylationEPIC BeadChip (850K chip). Cell type composition of the samples was estimated by RefbaseEWAS method. Differentially methylated CpG sites were identified through comparison between patients with low and high Cobb angle. We also performed a gene-based collapsing analysis using mCSEA by aggregating the CpG sites based on promoter region. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using clusterProfiler package. RESULTS Genome-wide DNA methylation analysis identified multiple differentially methylated positions across the genome. Gene-based collapsing analysis identified 212 differentially methylated genes (FDR adjusted p<.05), most of which (186/212) were hypermethylated in the group with high Cobb angle. Some of the identified genes were well-documented in AIS literature, such as TBX1, PAX3 and LBX1. Functional enrichment analysis revealed that the differentially methylated genes (DMGs) were involved in pattern specification process, skeletal development, muscle function, neurotransmission and several signaling pathways (cAMP, Wnt and prolactin). CONCLUSIONS The study represents the largest systematic epigenomic analyses of monozygotic twins discordant for curve severity and supports the important role of altered DNA methylation in AIS. CLINICAL SIGNIFICANCE The identified CpG sites provide insight into novel biomarkers predicting curve progression of AIS. Furthermore, the differentially methylated genes and enriched pathways may serve as interventional therapy target for AIS patients.
Collapse
Affiliation(s)
- Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Ruan T, Ling Y, Wu C, Niu Y, Liu G, Xu C, Lv Z, Yuan Y, Zhou X, Wang Q, Xu S. Abnormal epigenetic modification of lysosome and lipid regulating genes in Alzheimer's disease. J Alzheimers Dis 2025; 104:1185-1200. [PMID: 40151896 DOI: 10.1177/13872877251322955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
BackgroundAbnormal lipid metabolism has been identified as a potential pathogenic mechanism of Alzheimer's disease (AD), which might be epigenetically regulated. Lysosomes are critical organelles for lipid metabolism. However, the epigenetic modifications of lysosome and lipid regulating genes remain unclear in AD patients.ObjectiveExplore the role of abnormal epigenetic modifications, especially methylation of lysosome and lipid metabolism-related genes in AD.MethodsMethylation beadchip and MALDI-TOF mass spectrometry were used to detect genome-wide DNA methylation levels and validate key gene methylation, respectively. Clinical data were collected from all participants. Associations between clinical biochemical characteristics and altered DNA methylation in AD patients were analyzed, and a risk factor model of AD was established.Results41 differentially methylated positions (DMPs) corresponding to 33 genes were identified in AD patients, with 18 hypermethylated and 23 hypomethylated positions. Significant alterations were observed in lipid regulating genes (CTNNB1, DGKQ, SLC27A1) and lysosomal transmembrane gene (TMEM175). Clinical analysis revealed that TP, ALB, IB, ADA, ALP, HCY, GLU, TC, BUN, HDL-C, LDL-C, and APOA1 levels were significantly higher in AD patients, whereas A/G and DB levels were lower. TMEM175 hypermethylation was further verified and found to correlate with TC, HDL-C, LDL-C, APOA1, IB, and HCY. The AUC of the AD risk model, which integrated clinical lipid markers and TMEM175 methylation, reached 0.9519 (p < 0.0001).ConclusionsAbnormal epigenetic regulation of lysosomal gene and lipid dyshomeostasis were high-risk factors in AD. Methylation modifications of lysosome and lipid regulating genes might be key processes in AD pathogenesis.
Collapse
Affiliation(s)
- Tingting Ruan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yunxiang Ling
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Huzhou Third Municipal Hospital, the Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Can Wu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Jinhua Maternal and Child Health Care Hospital, Jinhua, Zhejiang, China
| | - Yanfang Niu
- Department of Neurology, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guili Liu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chunshuang Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yalan Yuan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinkai Zhou
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qinwen Wang
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Neurology, the Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
11
|
Mukherjee A, Abraham S, Singh A, Balaji S, Mukunthan KS. From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies. Mol Biotechnol 2025; 67:1269-1289. [PMID: 38565775 PMCID: PMC11928429 DOI: 10.1007/s12033-024-01133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research.
Collapse
Affiliation(s)
- Arnab Mukherjee
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Suzanna Abraham
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Akshita Singh
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - K S Mukunthan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
12
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
13
|
Jinesh S, Özüpek B, Aditi P. Premature aging and metabolic diseases: the impact of telomere attrition. FRONTIERS IN AGING 2025; 6:1541127. [PMID: 40231186 PMCID: PMC11995884 DOI: 10.3389/fragi.2025.1541127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Driven by genetic and environmental factors, aging is a physiological process responsible for age-related degenerative changes in the body, cognitive decline, and impaired overall wellbeing. Notably, premature aging as well as the emergence of progeroid syndromes have posed concerns regarding chronic health conditions and comorbidities in the aging population. Accelerated telomere attrition is also implicated in metabolic dysfunction and the development of metabolic disorders. Impaired metabolic homeostasis arises secondary to age-related increases in the synthesis of free radicals, decreased oxidative capacity, impaired antioxidant defense, and disrupted energy metabolism. In particular, several cellular and molecular mechanisms of aging have been identified to decipher the influence of premature aging on metabolic diseases. These include defective DNA repair, telomere attrition, epigenetic alterations, and dysregulation of nutrient-sensing pathways. The role of telomere attrition premature aging in the pathogenesis of metabolic diseases has been largely attributed to pro-inflammatory states that promote telomere shortening, genetic mutations in the telomerase reverse transcriptase, epigenetic alteration, oxidative stress, and mitochondrial dysfunctions. Nonetheless, the therapeutic interventions focus on restoring the length of telomeres and may include treatment approaches to restore telomerase enzyme activity, promote alternative lengthening of telomeres, counter oxidative stress, and decrease the concentration of pro-inflammatory cytokines. Given the significance and robust potential of delaying telomere attrition in age-related metabolic diseases, this review aimed to explore the molecular and cellular mechanisms of aging underlying premature telomere attrition and metabolic diseases, assimilating evidence from both human and animal studies.
Collapse
Affiliation(s)
| | | | - Prerana Aditi
- Department of Medical Biochemistry, Faculty of Allied Health Sciences, Mahayogi Gorakhnath University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
14
|
Lutz M, Arancibia M, Moran-Kneer J, Manterola M. Ultraprocessed Foods and Neuropsychiatric Outcomes: Putative Mechanisms. Nutrients 2025; 17:1215. [PMID: 40218973 PMCID: PMC11990412 DOI: 10.3390/nu17071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
A body of evidence indicates an association between ultraprocessed foods (UPFs) and health outcomes. Most of it has been obtained through preclinical studies, although a number of observational studies substantiate how a high intake of these products increases the risk of neuropsychiatric disorders, and an increasing amount of dietary intervention studies confirm these findings. The aim of this narrative review is to describe some of the putative mechanisms involved in the deleterious effects of a high intake of UPFs on neuropsychiatric outcomes. A myriad of unhealthy actions may be associated with the consumption of UPFs, and some mechanisms are being discussed. They include UPFs' high caloric density; their high sugar, sodium, and additives content and low amounts of fiber; and a high palatability that induces overconsumption, acting as obesogens. Moreover, thermal treatment of these foods generates oxidative products such as glycotoxins, lipotoxins, and acrolein, all of which affect the brain. The chemical products act, directly or indirectly, on the gut microbiome and affect the gut-brain axis, causing neuroinflammation, oxidative stress, and neurodegeneration. UPFs also exert various epigenetic effects that affect mental health and might explain the intergenerational inheritance of neuropsychiatric disorders. A diet containing a high proportion of these foods has a low nutritional density, including bioactive protective agents such as antioxidant and anti-inflammatory compounds that promote eubiosis. The evidence shows that UPFs intake affects neuropsychiatric outcomes such as neurodegeneration, cognitive decline, dementia, and mood disorders and reinforces the need to promote a healthy dietary pattern throughout all life stages, thus interfering with the current commercial determinants of health.
Collapse
Affiliation(s)
- Mariane Lutz
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Marcelo Arancibia
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Javier Moran-Kneer
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- School of Psychology, Faculty of Social Sciences, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Marcia Manterola
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
15
|
Xing JH, Yu Y, Teng L, Hui XY, Guo WG. Association of Blood Heavy Metals with Diabetic Foot Ulcers in U.S. Adults with Diabetes: Insights from the 1999-2004 NHANES Data. Diabetes Ther 2025:10.1007/s13300-025-01730-x. [PMID: 40153229 DOI: 10.1007/s13300-025-01730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/14/2025] [Indexed: 03/30/2025] Open
Abstract
INTRODUCTION Diabetic foot ulcers (DFU) are serious complications of diabetes. These ulcers significantly increase the risk of amputations. Many studies have examined how blood heavy metals affect insulin secretion in diabetes. However, research linking blood heavy metal exposure to DFU is limited. This study aims to explore the connection between blood heavy metal exposure and DFU in people with diabetes. METHODS This cross-sectional study used data from the 1999-2004 cycle of the National Health and Nutrition Examination Survey (NHANES). Researchers measured blood levels of lead (Pb) and cadmium (Cd) using inductively coupled plasma mass spectrometry (ICP-MS). Four logistic regression models assessed the relationship between blood heavy metals and the prevalence of DFU. The models adjusted for potential confounding factors. Additionally, smooth curve fitting and piecewise regression analyses were conducted to investigate the correlation further. Subgroup analyses and interaction tests helped evaluate consistency across the general population. RESULTS A total of 1664 participants aged 40 years or older with diabetes were included in the final analysis. The average age is 64.66 ± 11.79 years, with 52.52% being male and 47.48% being female. Among these individuals, 135 (8.11%) were diagnosed with DFU. Statistical modeling revealed a significant positive correlation between blood cadmium (Cd) levels and the prevalence of DFU. Specifically, model 4, which was the fully adjusted model, indicated that for each unit increase in blood Cd level, there was a corresponding 64% increase in DFU prevalence [OR = 1.64; 95% CI (1.42-1.89), p = 0.004]. Further analysis through smooth curve fitting demonstrated a significant linear relationship between blood Cd levels and DFU prevalence. CONCLUSIONS This study identified a positive correlation between blood cadmium (Cd) levels and the prevalence of DFU. These results suggest that monitoring blood Cd levels in patients with diabetes during follow-up may be important for preventing the development of DFU. However, further prospective studies are necessary to provide additional evidence.
Collapse
Affiliation(s)
- Jia-Hao Xing
- Heilongjiang University of Chinese Medicine, Heilongjiang, 150001, China
| | - Yang Yu
- Department of Peripheral Vascular Diseases, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, Heilongjiang, China
| | - Lin Teng
- Department of Peripheral Vascular Diseases, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, Heilongjiang, China
| | - Xue-Ying Hui
- Department of Peripheral Vascular Diseases, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, Heilongjiang, China
| | - Wei-Guang Guo
- Department of Peripheral Vascular Diseases, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
16
|
Aquilino M, Ditzer N, Namba T, Albert M. Epigenetic and metabolic regulation of developmental timing in neocortex evolution. Trends Neurosci 2025:S0166-2236(25)00056-6. [PMID: 40155272 DOI: 10.1016/j.tins.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
The human brain is characterized by impressive cognitive abilities. The neocortex is the seat of higher cognition, and neocortex expansion is a hallmark of human evolution. While developmental programs are similar in different species, the timing of developmental transitions and the capacity of neural progenitor cells (NPCs) to proliferate differ, contributing to the increased production of neurons during human cortical development. Here, we review the epigenetic regulation of developmental transitions during corticogenesis, focusing mostly on humans while building on knowledge from studies in mice. We discuss metabolic-epigenetic interplay as a potential mechanism to integrate extracellular signals into neural chromatin. Moreover, we synthesize current understanding of how epigenetic and metabolic deregulation can cause neurodevelopmental disorders. Finally, we outline how developmental timing can be investigated using brain organoid models.
Collapse
Affiliation(s)
- Matilde Aquilino
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Nora Ditzer
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, 01307 Dresden, Germany
| | - Takashi Namba
- Neuroscience Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland; Department of Developmental Biology, Fujita Health University School of Medicine, Toyoake, Japan; International Center for Brain Science (ICBS), Fujita Health University, Toyoake, Japan.
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, TUD Dresden University of Technology, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Krishnan A, Mukherjee D. Association of cardiovascular health metrics and metabolic associated fatty liver disease: Methodological limitations, and future directions. World J Hepatol 2025; 17:105635. [PMID: 40177198 PMCID: PMC11959666 DOI: 10.4254/wjh.v17.i3.105635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/21/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is an increasing global health challenge with substantial implications for metabolic and cardiovascular health (CVH). A recent study by Fu et al investigated the relationship between CVH metrics, specifically Life's Simple 7 and Life's Essential 8, and the prevalence of MAFLD. While this study offered important insights into the relationship between CVH and MAFLD, several methodological limitations, unaddressed confounding factors, and potential biases that could impact the interpretation of their findings should be considered. The study's cross-sectional nature restricted the ability to draw causal conclusions, and it did not fully account for potential confounding factors such as dietary habits, genetic predispositions, and medication use. Furthermore, relying on transient elastography to diagnose MAFLD introduces certain diagnostic limitations. Longitudinal study designs, advanced statistical modeling techniques, and diverse population groups should be utilized to strengthen future research. Exploring the mechanistic pathways that link CVH metrics to MAFLD through multi-omics approaches and interventional studies will be essential in formulating targeted prevention and treatment strategies. Structural equation modeling and machine learning techniques could provide a more refined analysis of these interrelated factors. Additionally, future research should employ longitudinal study designs and explore genetic and epigenetic influences to enhance our understanding of CVH and MAFLD interactions.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Department of Supportive Oncology, Atrium Health Levine Cancer, Charlotte, NC 28204, United States.
| | - Diptasree Mukherjee
- Department of Medicine, Apex Institute of Medical Science, Kolkata 700075, West Bengal, India
| |
Collapse
|
18
|
Phengpol N, Promsan S, Pengrattanachot N, Jaruan O, Sutthasupha P, Lungkaphin A. Maternal obesity promotes impaired renal autophagic process and kidney injury in male offspring. Int J Obes (Lond) 2025:10.1038/s41366-025-01751-3. [PMID: 40133698 DOI: 10.1038/s41366-025-01751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Obesity during pregnancy increases the risk of obesity, insulin resistance, diabetes, and the development and progression of chronic kidney disease (CKD) in later life in offspring. Impaired renal autophagic process is linked to kidney dysfunction in the setting of increased renal lipid accumulation. The aim of this study was to elucidate the effect of maternal obesity on kidney injury related to impaired renal autophagic process in the offspring. METHODS Maternal obesity model was conducted using female C57BL/6 mice fed with high-fat diet (HFD) for 8 weeks before mating. HFD was consecutively maintained throughout gestation and lactation. Male offspring were selected for investigation after weaning. Metabolic parameters and kidney morphology were performed. Renal insulin signaling, lipid metabolism, lipid accumulation, fibrosis and autophagy were determined. RESULTS Male offspring of HFD fed mothers developed obesity with insulin resistance, hyperglycemia, hyperlipidemia and consequently promoted kidney injury. Maternal obesity increased CD36, FAS, SREBP1c and Perilipin-2 while suppressed PPARα and CPT1A. The reduction of AMPK, SIRT1, Beclin-1, LC3B, and LAMP2 and the elevation of mTOR and SQSTM1/P62 were observed. These findings indicated the impairment of autophagy and renal lipid metabolism exaggerating renal lipid accumulation in the offspring of maternal obesity. CONCLUSIONS This study demonstrated that long-term HFD consumption in mothers promoted obesity with insulin resistance related kidney injury through the impairment of autophagic process and renal lipid metabolism in the offspring. These circumstances accelerated kidney injury and contributed to an increased susceptibility to CKD in male offspring of maternal obesity.
Collapse
Affiliation(s)
- Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Food Research Center for Well-being, Multidisciplinary Research Institute Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
19
|
Jin F, Cheng N, Wang L, Ye B, Xia J. FDPSM: Feature-Driven Prediction Modeling of Pathogenic Synonymous Mutations. J Chem Inf Model 2025; 65:3064-3076. [PMID: 40082068 DOI: 10.1021/acs.jcim.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Synonymous mutations, once considered to be biologically neutral, are now recognized to affect protein expression and function by altering the RNA splicing, stability, or translation efficiency. These effects can contribute to disease, making the prediction of the pathogenicity a crucial task. Computational methods have been developed to analyze the sequence features and biological functions of synonymous mutations, but existing methods face limitations, including scarcity of labeled data, reliance on other prediction tools, and insufficient representation of feature interrelationships. Here, we present FDPSM, a novel prediction method specifically designed to predict pathogenic synonymous mutations. FDPSM was trained on a robust data set of 4251 positive and negative training samples to enhance predictive accuracy. The method leveraged a comprehensive set of features, including genomic context, conservation, splicing effects, functional effects, and epigenomics, without relying on prediction scores from other mutation pathogenicity tools. Recognizing that original features alone may not fully capture the distinctions between pathogenic and benign synonymous mutations, we enhanced the feature set by extracting effective information from the interactions and distribution of these features. The experimental results showed that FDPSM significantly outperformed existing methods in predicting the pathogenicity of synonymous mutations, offering a more accurate and reliable tool for this important task. FDPSM is available at https://github.com/xialab-ahu/FDPSM.
Collapse
Affiliation(s)
- Fangfang Jin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Na Cheng
- School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui 230032, China
| | - Lihua Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Information Engineering, Huangshan University, Huangshan, Anhui 245041, China
| | - Bin Ye
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
- School of Computer Science and Technology, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
20
|
Zhang Z, Wu Y, Liang W, Liao Z, Liao H, Xing X, Yi W, Liu Z, Li Y, Shi M, Lin D, Gu T, Wu B, Zou M, Miao H, Wu X. Eurycomalactone switched hepatocellular carcinoma cells into quiescence through 5'tRF Ala/DVL/β-catenin pathway inhibition. Sci Rep 2025; 15:10106. [PMID: 40128187 PMCID: PMC11933253 DOI: 10.1038/s41598-025-86888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
Although tsRNA has been demonstrated to modulate various physiological processes analogous to miRNA, the potential regulatory functions and mechanisms of tsRNAs related to the pharmacological effects of small molecule drugs remain unclear. Herein, it is shown that eurycomalactone (ELT), a natural product, can reversibly switch hepatocellular carcinoma (HCC) PLC/PRF/5 and HUH7 cells into a quiescent state. This quiescence is characterized by cell proliferation inhibition without cytotoxicity, cell cycle arrest at the G0/G1 phase, and cell reactivation following the removal of ELT. Given the established role of β-catenin activity in mediating cancer cellular quiescence or proliferation, a notable reduction in total, cytoplasmic, and nuclear β-catenin expression, along with its downstream targets Survivin, c-myc, and Cyclin D1, was observed in ELT-treated cells. Subsequently, two new tsRNAs, namely 5'tRFAla and 5'tiRNAAla, which match well with the mRNAs of two pivotal upstream regulators (DVL2 and DVL3) of β-catenin based on bioinformatics analyses, were detected to be significantly decreased in ELT-treated PLC/PRF/5 cells using Arraystar small RNA microarray analyses. Consistently, the concentrations of the DVL2 and DVL3 proteins were also found to be reduced by ELT. The mimic of 5'tRFAla could increase the relative expression of DVL2 and DVL3 mRNA and rescue their decrease induced by ELT, while the mimic of 5'tiRNAAla could not. It therefore seems that ELT could down-regulate the expression of 5'tRFAla, leading to the suppression of DVL2 and DVL3 mRNA translation, consequently inhibiting the β-catenin signaling pathway and reversibly switching HCC cells into a quiescent state. Conclusively, our findings imply that tsRNAs, like miRNAs, might activate the translation of their matched mRNAs in non-dividing cells and provide a possible potential for repressing tumor cell growth, although further evidence is still needed.
Collapse
Affiliation(s)
- Zhipeng Zhang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yanmei Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenqiang Liang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zhifang Liao
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Hongbo Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Xingxing Xing
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenxin Yi
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zixuan Liu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yicheng Li
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mengya Shi
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Dongling Lin
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Ting Gu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Biao Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mingzhi Zou
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Huilai Miao
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Xin Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China.
| |
Collapse
|
21
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
22
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
23
|
Arancibia M, Manterola M, Ríos U, Moya PR, Moran-Kneer J, Bustamante ML. The rs1360780 Variant of FKBP5: Genetic Variation, Epigenetic Regulation, and Behavioral Phenotypes. Genes (Basel) 2025; 16:325. [PMID: 40149476 PMCID: PMC11941772 DOI: 10.3390/genes16030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
FKBP5 has been of special scientific interest in the behavioral sciences since it has been involved in the pathophysiology of several mental disorders. It is a gene with pleiotropic effects which encodes the protein FKBP5, a cochaperone that decreases glucocorticoid receptor (GR) affinity for glucocorticoids by competing with FKBP4, altering the GR chaperone complex, and impairing GR activation. As a key modulator of the stress response, FKBP5 plays a critical role in regulating cortisol levels in the organism. The FKBP5 gene is regulated through a combination of transcriptional, epigenetic, post-transcriptional, and environmental mechanisms, as well as genetic polymorphisms that influence its transcription and stress responsiveness. Notably, the rs1360780 T-allele in FKBP5 significantly affects FKBP5 regulation and has been linked to stress-related disorders by influencing transcription and stress responsiveness. In this narrative review, we aim to provide an overview of the role played by the single-nucleotide polymorphism rs1360780 in the FKBP5 locus in gene expression, its epigenetic regulation, and the impact of early stress in its functioning. We discuss some brain regions with differential expression of FKBP5 and some behavioral phenotypes linked to the locus. The T-allele of rs1360780 is considered a risk variant, as it leads to high FKBP5 induction, which delays negative feedback and increases GR resistance. This results in states of relative hypercortisolemia and brain morphofunctional alterations, particularly in regions sensitive to glucocorticoid activity during critical periods of neurodevelopment. Additionally, exposure to childhood maltreatment is associated with demethylation of the glucocorticoid response elements of FKBP5, further increasing its expression levels. Among the psychological dimensions analyzed in which FKBP5 is involved are neurocognition, aggression, suicidality, and social cognition. At the level of mental disorders, the gene may play a role in the pathogenesis of post-traumatic stress disorder, depression, and bipolar disorder. In psychotic disorders, its role is less clear. This knowledge enhances the understanding of disease mechanisms that operate through psychopathological dimensions, and highlights the need to design specific, person-centered psychopharmacological and environmental therapeutic interventions.
Collapse
Affiliation(s)
- Marcelo Arancibia
- Department of Psychiatry, Faculty of Medicine, School of Medicine, Universidad de Valparaíso, Valparaíso 2360002, Chile; (M.A.)
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.M.); (P.R.M.); (J.M.-K.)
- Program of Human Genetics, Biomedical Science Institute, Universidad de Chile, Independencia 8380453, Chile
| | - Marcia Manterola
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.M.); (P.R.M.); (J.M.-K.)
- Program of Human Genetics, Biomedical Science Institute, Universidad de Chile, Independencia 8380453, Chile
| | - Ulises Ríos
- Department of Psychiatry, Faculty of Medicine, School of Medicine, Universidad de Valparaíso, Valparaíso 2360002, Chile; (M.A.)
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.M.); (P.R.M.); (J.M.-K.)
| | - Pablo R. Moya
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.M.); (P.R.M.); (J.M.-K.)
- Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Javier Moran-Kneer
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.M.); (P.R.M.); (J.M.-K.)
- Department of Clinical Psychology, School of Psychology, Faculty of Social Sciences, Universidad de Valparaíso, Valparaíso 2341369, Chile
| | - M. Leonor Bustamante
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Faculty of Sciences, Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.M.); (P.R.M.); (J.M.-K.)
- Program of Human Genetics, Biomedical Science Institute, Universidad de Chile, Independencia 8380453, Chile
| |
Collapse
|
24
|
Bhingardeve S, Sagvekar P, Desai S, Mangoli V, Jagtap R, Mukherjee S. The regulatory interplay between miRNA and DNA methylation orchestrates vital ovarian functions and associated traits in PCOS. Gene 2025; 940:149165. [PMID: 39681146 DOI: 10.1016/j.gene.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Polycystic ovary syndrome (PCOS) is the leading cause of amenorrhea and anovulatory infertility in women of reproductive age. Both gene polymorphisms and tissue-specific epigenetic alterations, which determine gene transcription and translation dynamics in disease-states, strongly influence PCOS development. Particularly, promoter-proximal DNA methylation and microRNA expression changes show strong associations with follicular defects, suggesting post-transcriptional dysregulation of localized gene networks. Our recent methylome study and other studies, posit DNA methylation as a regulator of microRNA expression in PCOS. Here, we identified microRNAs, potentially regulated by DNA methylation, and investigated whether their altered expression influences target gene expression in the PCOS ovary. Using granulosa cell samples of women with PCOS and age-BMI matched controls, we evaluated the transcript levels of 14 microRNAs participating in different ovarian processes and assessed their CpG-DNA methylation levels. For 9 of these microRNAs, which revealed differential methylation consistent with their gene hypomethylation or hypermethylation profiles, we evaluated the expression of their predicted, proteincoding target transcripts. Our data indicated that microRNA hypermethylation and decreased transcription of miR-10b-5p, miR-127-3p, miR-5189, miR-410-3p and miR23a-3p were consistent with the upregulation of PTEN, MMP13, OLR1, TET3 and APAF1 in PCOS. Conversely, microRNA hypomethylation and increased expression of miR-140-5p, miR-182-3p, miR-200b-5p and miR-3687 were consistent with downregulation of FZD6, LRP6, ZEB1 and LDLR. However, these observations need robust validations in larger study cohorts complemented with functional and mechanistic studies. Overall, our study indicates that altered microRNA expression as a consequence of DNA methylation changes, may contribute to metabolic and reproductive dysfunction in PCOS.
Collapse
Affiliation(s)
- Snehal Bhingardeve
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India
| | - Pooja Sagvekar
- Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, 61231 Bad Nauheim, Germany
| | | | | | | | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health (ICMR-NIRRCH), J.M. Street, Parel, Mumbai 400012, India.
| |
Collapse
|
25
|
Čereškevičius D, Čiapienė I, Aldujeli A, Zabiela V, Lesauskaitė V, Zubielienė K, Raškevičius V, Žaliaduonytė D, Unikas R, Pranevičius R, Simanauskas I, Bakšytė G, Tamošiūnas A, Lukšienė D, Šakalytė G, Tatarūnas V. The Impact of SNP Score on Low-Density Lipoprotein Cholesterol Concentration and Coronary Artery Disease. Int J Mol Sci 2025; 26:2337. [PMID: 40076958 PMCID: PMC11899937 DOI: 10.3390/ijms26052337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Hypercholesterolemia, characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), along with inflammation, is a well-known risk factor for developing atherosclerosis and coronary artery disease (CAD). Many patients with hypercholesterolemia may carry inherited genetic variants that are not part of the commonly recognized mutations in the LDLR, APOB, LDLRAP1, and PCSK9 genes. These genetic variants may have cumulative effects that contribute to increased LDL-C levels and CAD development. The polygenic risk score (PRS) may provide an essential tool for evaluating an individual's genetic predisposition to these conditions. This pilot study aimed to investigate the impact of the PRS calculated from specific single nucleotide polymorphisms (SNPs) associated with LDL cholesterol (LDL-C)-namely, CELSR2 rs629301, APOB rs1367117, ABCG8 rs6544713, LDLR rs6511720, APOE rs429358, and rs7412-on LDL-C levels in both healthy individuals with elevated LDL-C levels (>2.6 mmol/L) and those diagnosed with ST-segment elevation myocardial infarction (STEMI). A total of 61 healthy individuals with high LDL-C levels (>2.6 mmol/L) and 93 STEMI patients were selected for the study. The High-Resolution Melting Polymerase Chain Reaction (HRM PCR) method was adopted and sequencing techniques were employed to identify the specific single nucleotide polymorphisms (SNPs) of interest. The patient group exhibited a PRS of 0.824 (with a range of -0.62 to 1.174) compared to 0.674 (range: -0.176 to 0.974) in healthy individuals, indicating a higher genetic predisposition to elevated LDL-C levels (p = 0.001) in patients. Interestingly, patients had lower LDL-C concentrations than healthy individuals. Additionally, a more significant number of patients were past smokers and statin users. The PRS calculations revealed that patients with a higher PRS had increased odds of experiencing an MI, with an odds ratio of 12.044 (95% confidence interval: 1.551-93.517, p = 0.017). Similarly, smokers showed even higher odds, with an odds ratio of 24.962 (95% CI: 7.171-86.890, p < 0.001). Among healthy individuals, those with a higher PRS had increased odds of having an LDL-C concentration greater than 4.9 mmol/L (odds ratio: 20.391, 95% CI: 1.116-358.486, p = 0.039). However, no significant association was found between the PRS and LDL-C levels in the patient group during hospitalization (p = 0.782). This pilot study shows that PRS can be employed to evaluate the risk of MI and to estimate concentrations greater than 4.9 mmol/L LDL-C in healthy individuals.
Collapse
Affiliation(s)
- Darius Čereškevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Ali Aldujeli
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Vytautas Zabiela
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Kristina Zubielienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Vytautas Raškevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Diana Žaliaduonytė
- Department of Cardiology, Kaunas Hospital of the Lithuanian University of Health Sciences, Hipodromo 13, 45130 Kaunas, Lithuania;
| | - Ramūnas Unikas
- Department of Cardiology, Lithuanian University of Health Sciences, Eivenių 2, 50009 Kaunas, Lithuania; (R.U.); (G.B.)
| | - Robertas Pranevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Ignas Simanauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Giedrė Bakšytė
- Department of Cardiology, Lithuanian University of Health Sciences, Eivenių 2, 50009 Kaunas, Lithuania; (R.U.); (G.B.)
| | - Abdonas Tamošiūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Dalia Lukšienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Gintarė Šakalytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| | - Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, 50103 Kaunas, Lithuania; (D.Č.); (I.Č.); (A.A.); (V.Z.); (V.L.); (K.Z.); (V.R.); (R.P.); (I.S.); (A.T.); (D.L.); (G.Š.)
| |
Collapse
|
26
|
Ni J, Li B, Miao S, Zhang X, Yan D, Jing S, Lu S, Xie Z, Zhang X, Liu Y. MethPriorGCN: a deep learning tool for inferring DNA methylation prior knowledge and guiding personalized medicine. Brief Bioinform 2025; 26:bbaf131. [PMID: 40131311 PMCID: PMC11934576 DOI: 10.1093/bib/bbaf131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
DNA methylation plays a crucial role in human diseases pathogenesis. Substantial experimental evidence from clinical and biological studies has confirmed numerous methylation-disease associations, which provide valuable prior knowledge for advancing precision medicine through biomarker discovery and disease subtyping. To systematically mine reliable methylation prior knowledge from known DNA methylation-disease associations and develop robust computational methods for precision medicine applications, we propose MethPriorGCN. By integrating layer attention mechanisms and feature weighting mechanisms, MethPriorGCN not only identified reliable methylation digital biomarkers but also achieved superior disease subtype classification accuracy.
Collapse
Affiliation(s)
- Jie Ni
- Institute for Molecular Medical Technology, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu 211102, China
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, No. 101, Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China
- Institute of Biomedical Devices (Suzhou), Southeast University, No. 8, Jinfeng Road, Suzhou New District, Suzhou, Jiangsu 215163, China
| | - Bin Li
- Institute for Molecular Medical Technology, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu 211102, China
- Institute of Biomedical Devices (Suzhou), Southeast University, No. 8, Jinfeng Road, Suzhou New District, Suzhou, Jiangsu 215163, China
| | - Shumei Miao
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Xinting Zhang
- Institute for Molecular Medical Technology, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu 211102, China
- Institute of Biomedical Devices (Suzhou), Southeast University, No. 8, Jinfeng Road, Suzhou New District, Suzhou, Jiangsu 215163, China
| | - Donghui Yan
- Institute for Molecular Medical Technology, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu 211102, China
- Institute of Biomedical Devices (Suzhou), Southeast University, No. 8, Jinfeng Road, Suzhou New District, Suzhou, Jiangsu 215163, China
| | - Shengqi Jing
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, No. 101, Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
- Center for Data Management, The First Affiliated Hospital, Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Shan Lu
- Women and Children Department, The First Affiliated Hospital, Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Zhuoying Xie
- Institute for Molecular Medical Technology, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu 211102, China
- Institute of Biomedical Devices (Suzhou), Southeast University, No. 8, Jinfeng Road, Suzhou New District, Suzhou, Jiangsu 215163, China
| | - Xin Zhang
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital, Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, Jiangsu 210029, China
| |
Collapse
|
27
|
Diane A, Mu-U-Min RBA, Al-Siddiqi HH. Epigenetic memory as crucial contributing factor in directing the differentiation of human iPSC into pancreatic β-cells in vitro. Cell Tissue Res 2025; 399:267-276. [PMID: 39883142 PMCID: PMC11870940 DOI: 10.1007/s00441-025-03952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage. Emerging β-cell replacement with human-induced pluripotent stem cell (iPSC) provides high remedial therapy hopes. Thus, tremendous progress has been made in developing β-cell differentiation protocols in vitro; however, most of the differentiated iPSC-derived β-cells showed immature phenotypes associated with low efficiency depending on the iPSC lines used, creating a crucial barrier for their clinical implementation. Multiple mechanisms including differences in genetic, cell cycle patterns, and mitochondrial dysfunction underlie the defective differentiation propensity of iPSC into insulin-producing β-cells. Accumulating evidence recently indicated that, following the reprogramming, epigenetic memory inherited from parental cells substantially affects the differentiation capacity of many iPSC lines. Therefore, differences in epigenetic signature are likely to be essential contributing factors influencing the propensity of iPSC differentiation. In this review, we will document the impact of the epigenome on the reprogramming efficacy and differentiation potential of iPSCs and how targeting the epigenetic residual memory could be an additional strategy to improve the differentiation efficiency of existing protocols to generate fully functional hPSC-derived pancreatic β-cells for diabetes therapy and drug screening.
Collapse
Affiliation(s)
- Abdoulaye Diane
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| | - Razik Bin Abdul Mu-U-Min
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Heba Hussain Al-Siddiqi
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
28
|
Li N, Du J, Yang Y, Zhao T, Wu D, Peng F, Wang D, Kong L, Zhou W, Hao A. Microglial PCGF1 alleviates neuroinflammation associated depressive behavior in adolescent mice. Mol Psychiatry 2025; 30:914-926. [PMID: 39215186 PMCID: PMC11835731 DOI: 10.1038/s41380-024-02714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Epigenetics plays a crucial role in regulating gene expression during adolescent brain maturation. In adolescents with depression, microglia-mediated chronic neuroinflammation may contribute to the activation of cellular signaling cascades and cause central synapse loss. However, the exact mechanisms underlying the epigenetic regulation of neuroinflammation leading to adolescent depression remain unclear. In this study, we found that the expression of polycomb group 1 (PCGF1), an important epigenetic regulator, was decreased both in the plasma of adolescent major depressive disorder (MDD) patients and in the microglia of adolescent mice in a mouse model of depression. We demonstrated that PCGF1 alleviates neuroinflammation mediated by microglia in vivo and in vitro, reducing neuronal damage and improving depression-like behavior in adolescent mice. Mechanistically, PCGF1 inhibits the transcription of MMP10 by upregulating RING1B/H2AK119ub and EZH2/H3K27me3 in the MMP10 promoter region, specifically inhibiting microglia-mediated neuroinflammation. These results provide valuable insights into the pathogenesis of adolescent depression, highlighting potential links between histone modifications, neuroinflammation and nerve damage. Potential mechanisms of microglial PCGF1 regulates depression-like behavior in adolescent mice. Microglial PCGF1 inhibits NF-κB/MAPK pathway activation through regulation of RING1B/H2AK119ub and EZH2/H3K27me3 in the MMP10 promoter region, which attenuates neuroinflammation and ameliorates depression-like behaviors in adolescent mice.
Collapse
Affiliation(s)
- Naigang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jingyi Du
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Yang
- Childhood Psychiatry Unit, Shandong Mental Health Center, Jinan, China
| | - Tiantian Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongshuang Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linghua Kong
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, Department of Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
29
|
Li X, Hallajzadeh J. Circulating microRNAs and physical activity: Impact in diabetes. Clin Chim Acta 2025; 569:120178. [PMID: 39900127 DOI: 10.1016/j.cca.2025.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
The term "ci-miRNAs," or "circulating microRNAs," refers to extracellular microRNAs (miRNAs) that exist outside of cells and can be detected in various bodily fluids, including blood, saliva, urine, and breast milk. These ci-miRNAs play a role in regulating gene expression and are mainly recognized for their functions beyond the cell, serving as signaling molecules in the blood. Researchers have thoroughly investigated the roles of these circulating miRNAs in various diseases. The capacity to detect and quantify ci-miRNAs in bodily fluids suggests their potential as biomarkers for monitoring several health conditions, including cancer, heart disease, brain disorders, and metabolic disorders, where fluctuations in miRNA levels may correlate with different physiological and pathological states. Current methods enable researchers to identify and measure miRNAs in these fluids, facilitating the exploration of their roles in health maintenance and disease resistance. Although research on ci-miRNAs is ongoing, recent studies focus on uncovering their significance, assessing their viability as biomarkers, and clarifying their functions. However, our understanding of how various types, intensities, and durations of exercise influence the levels of these miRNAs in the bloodstream is still limited. This section seeks to provide an overview of the changes in ci-miRNAs in response to exercise.
Collapse
Affiliation(s)
- Xiu Li
- Shanghai Minyuan College, Shanghai 201210, China.
| | - Jamal Hallajzadeh
- Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
30
|
Acheampong A, Bondzie-Quaye P, Fetisoa MR, Huang Q. Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review. BIORESOURCE TECHNOLOGY 2025; 419:132019. [PMID: 39725362 DOI: 10.1016/j.biortech.2024.132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation. Also, this review suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae. By shedding light on the benefits and applications of LTP, we hope to inspire new solutions to the challenges of commercial-scale microalgae development.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Monia Ravelonandrasana Fetisoa
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
31
|
Ribeiro G, Schellekens H, Cuesta-Marti C, Maneschy I, Ismael S, Cuevas-Sierra A, Martínez JA, Silvestre MP, Marques C, Moreira-Rosário A, Faria A, Moreno LA, Calhau C. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan. Am J Physiol Gastrointest Liver Physiol 2025; 328:G206-G228. [PMID: 39811913 DOI: 10.1152/ajpgi.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut-microbiota-targeted approaches such as pre-, pro-, post-, and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is 1) to provide an overview of the role of the microbiota-gut-brain axis in appetite regulation across the lifespan and 2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ivie Maneschy
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shámila Ismael
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Amanda Cuevas-Sierra
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Marta P Silvestre
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - André Moreira-Rosário
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Faria
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Conceição Calhau
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Bae Y, Venkat H, Preveza N, Turner M, Jarome TJ. Decreases in H2A monoubiquitination in the amygdala constrain fear memory formation. Learn Mem 2025; 32:a054092. [PMID: 40101936 PMCID: PMC11924595 DOI: 10.1101/lm.054092.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Evidence suggests a role for monoubiquitination of histone H2B, a regulator of increased gene transcription, in memory formation. However, whether monoubiquitination of histone H2A (H2Aubi), a transcriptional repressor, is involved in memory formation has not been explored. We found global and gene-specific decreases in H2Aubi in the amygdala following fear conditioning. H2Aubi decreased at Pten, an inhibitor of PI3K-AKT-mTOR signaling, which occurred concurrently with increases in PTEN expression. CRISPR-dCas9 mediated upregulation of the H2Aubi ligase, Ring1b, in the amygdala enhanced contextual memory. These results suggest that decreases in transcriptionally repressive H2Aubi in the amygdala functions to constrain fear memory strength.
Collapse
Affiliation(s)
- Yeeun Bae
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Harshini Venkat
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Natalie Preveza
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Meagan Turner
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Timothy J Jarome
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
33
|
Suraweera A, O'Byrne KJ, Richard DJ. Epigenetic drugs in cancer therapy. Cancer Metastasis Rev 2025; 44:37. [PMID: 40011240 PMCID: PMC11865116 DOI: 10.1007/s10555-025-10253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Genetic and epigenetic modifications of DNA are involved in cancer initiation and progression. Epigenetic modifications change chromatin structure and DNA accessibility and thus affect DNA replication, DNA repair and transcription. Epigenetic modifications are reversible and include DNA methylation, histone acetylation and histone methylation. DNA methylation is catalysed by DNA methyltransferases, histone acetylation and deacetylation are catalysed by histone acetylases and deacetylases, while histone methylation is catalysed by histone methyltransferases. Epigenetic modifications are dysregulated in several cancers, making them cancer therapeutic targets. Epigenetic drugs (epi-drugs) which are inhibitors of epigenetic modifications and include DNA methyltransferase inhibitors (DNMTi), histone deacetylase inhibitors (HDACi), histone methyltransferase inhibitors (HMTi) and bromodomain and extra-terminal motif protein inhibitors (BETi), have demonstrated clinical success as anti-cancer agents. Furthermore, the combination of epi-drugs with standard chemotherapeutic agents has demonstrated promising anti-cancer effects in pre-clinical and clinical settings. In this review, we discuss the role of epi-drugs in cancer therapy and explore their current and future use in combination with other anti-cancer agents used in the clinic. We further highlight the side effects and limitations of epi-drugs. We additionally discuss novel delivery methods and novel tumour epigenetic biomarkers for the screening, diagnosis and development of personalised cancer treatments, in order to reduce off-target toxicity and improve the specificity and anti-tumour efficacy of epi-drugs.
Collapse
Affiliation(s)
- Amila Suraweera
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kenneth J O'Byrne
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
- Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, QLD, 4102, Australia
| | - Derek J Richard
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
34
|
Irisarri A, Corral A, Perez-Salvador N, Bellver-Sanchis A, Ribalta-Vilella M, Bentanachs R, Alegret M, Laguna JC, Barroso E, Palomer X, Ortuño-Sahagún D, Vázquez-Carrera M, Pallàs M, Herrero L, Griñán-Ferré C. FTO inhibition mitigates high-fat diet-induced metabolic disturbances and cognitive decline in SAMP8 mice. Mol Med 2025; 31:73. [PMID: 39984825 PMCID: PMC11843768 DOI: 10.1186/s10020-025-01126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
This study investigated the effects of fat mass and obesity-associated (FTO) inhibition on cognitive function and metabolic parameters of senescence-accelerated mouse prone 8 (SAMP8) mice fed a high-fat diet (HFD). SAMP8 mice fed an HFD exhibited increased body weight, impaired glucose tolerance, and elevated serum leptin levels. In epididymal white adipose tissue (eWAT), pharmacological treatment with FB23, a well-established FTO inhibitor, increased leptin production and modulated genes involved in lipid metabolism (Cpt1a, Atgl, Hsl, Fas), oxidative stress (OS) (Bip, Edem), and inflammation (Mcp1, Tnfα). Expression of hepatic genes related to lipid metabolism (Cpt1a, Atgl, Mgl, Dgat2, Srebp, Plin2) and OS (catalase, Edem) were modulated by FB23, although hepatic steatosis remained unchanged. Remarkably, FB23 treatment increased m6A RNA methylation in the brain, accompanied by changes in N6-methyladenosine (m6A)-regulatory enzymes and modulation of neuroinflammatory markers (Il6, Mcp1, iNOS). FTO inhibition reduced the activity of matrix metalloproteases (Mmp2, Mmp9) and altered IGF1 signaling (Igf1, Pten). Notably, enhanced leptin signaling was observed through increased expression of immediate early genes (Arc, Fos) and the transcription factor Stat3. Improved synaptic plasticity was evident, as shown by increased levels of neurotrophic factors (Bdnf, Ngf) and restored neurite length and spine density. Consistent with these findings, behavioral tests demonstrated that FB23 treatment effectively rescued cognitive impairments in SAMP8 HFD mice. The novel object recognition test (NORT) and object location test (OLT) revealed that treated mice exhibited enhanced short- and long-term memory and spatial memory compared to the HFD control group. Additionally, the open field test showed a reduction in anxiety-like behavior after treatment with FB23. In conclusion, pharmacological FTO inhibition ameliorated HFD-induced metabolic disturbances and cognitive decline in SAMP8 mice. These results suggest that targeting FTO may be a promising therapeutic approach to counteract obesity-induced cognitive impairment and age-related neurodegeneration.
Collapse
Grants
- PID2021-122116OB-100 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PDC2022-133441-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2020-114953RB-C21 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2022-139016OA-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- CIBERDEM CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
- 2021 SGR 00357 the Government of Catalonia
- CB06/03/0001 CIBEROBN
- 2021SGR00367 Carlos III Health Institute project and the Government of Catalonia
- Producte 0092 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Llavor 005 and 007 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Departament d’Empresa i Coneixement de la Generalitat de Catalunya 2023
Collapse
Affiliation(s)
- Alba Irisarri
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Ana Corral
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Núria Perez-Salvador
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Marta Ribalta-Vilella
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain.
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
35
|
Singh MK, Han S, Ju S, Ranbhise JS, Akter S, Kim SS, Kang I. Fruit Carbohydrates and Their Impact on the Glycemic Index: A Study of Key Determinants. Foods 2025; 14:646. [PMID: 40002091 PMCID: PMC11854304 DOI: 10.3390/foods14040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Fruits are a convenient and natural source of carbohydrates that can rapidly affect blood sugar levels and the glycemic index (GI). The GI plays a crucial role in the management of chronic diseases, including diabetes, obesity, hyperglycemia, and diet-related illnesses. Despite there being several health benefits linked with consuming fruits, it remains unclear which specific components of fruits are the key determinants that significantly influence the GI. Methods: This study retrospectively examined the relationship between different types of carbohydrates and the GI of various fruits to determine their correlation. The fruits' sugar and fiber contents were identified from available public databases, the U.S. Department of Agriculture (USDA), FooDB, PubMed, and published sources. Results: Previously, the GI was determined by the available carbohydrates, which include different types of sugar. In this study, individual hexose sugars, along with the total carbohydrates and dietary fiber, were examined. The results indicated a strong correlation between fructose and the GI, whereas glucose and total glucose did not exhibit such a correlation. The total carbohydrate-to-fiber ratio displayed a stronger correlation (R = 0.57 and p > 0.0001) with the GI compared to glucose alone (R = 0.37; p = 0.01) or the total glucose (R = 0.45; p = 0.0009) with the consideration of fiber, while the scattering of data points around the regression line suggested that factors beyond the total carbohydrate and fiber also contribute to determining the GI. Conclusions: This study demonstrated that individual hexose sugars, especially fructose, significantly influence the GI. These findings suggest that the carbohydrate-to-fiber ratio may offer a more accurate and reliable metric for determining the GI than traditional methods. Further research is warranted to investigate the specific contribution of dietary fiber components, fruit texture, micronutrients, vitamins, genetic predispositions, gut microbiota, and the body's physiological status to gain a deeper understanding of GI regulation.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (S.A.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (S.A.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (S.A.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Suresh Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (S.A.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (S.A.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (S.A.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.); (S.J.); (J.S.R.); (S.A.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
36
|
Kumbham S, Md Mahabubur Rahman K, Foster BA, You Y. A Comprehensive Review of Current Approaches in Bladder Cancer Treatment. ACS Pharmacol Transl Sci 2025; 8:286-307. [PMID: 39974639 PMCID: PMC11833730 DOI: 10.1021/acsptsci.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
Bladder cancer is one of the most common malignant tumors of the urinary system globally. It is also one of the most expensive cancers to manage, due to the need for extensive treatment and follow-ups that often involve invasive and costly procedures. Although there have been some improvements in treatment options, the quality of life they offer has not improved at the same rate as other cancers. Therefore, there is an urgent need to find new alternatives to ease the burden of bladder cancer on patients. Recent discoveries have opened new avenues for the diagnosis and management of bladder cancer even though the clinical approach has largely remained the same for years. The decline in bladder cancer-specific mortality in regions that promote social awareness of risk factors and reduction of carcinogenic exposure demonstrates the effectiveness of such measures. New agents have been approved for patients who have undergone radical cystectomy after Bacillus Calmette-Guérin failure. Current best practices for diagnosing and treating bladder cancer are presented in this review. The review discusses radiation therapy, photodynamic therapy, gene therapy, chemotherapy, and nanomedicine in relation to non muscle-invasive cancers and muscle-invasive bladder cancers, as well as systemic treatments.
Collapse
Affiliation(s)
- Soniya Kumbham
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Kazi Md Mahabubur Rahman
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| | - Barbara A. Foster
- Department
of Pharmacology & Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, New York 14263, United States
| | - Youngjae You
- Department
of Pharmaceutical Sciences, University at
Buffalo, The State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
37
|
Miranda-Mendizabal A, Vetter D, Zambrano J, Zarp J, Chavarría V, Giménez-Palomo A, Gonzalez-Campos M, Valenti M, Walczer Baldinazzo L, Siddi S, Ferrari M, Weissmann D, Henry C, Haro JM, Vedel Kessing L, Vieta E. RNA editing-based biomarker blood test for the diagnosis of bipolar disorder: protocol of the EDIT-B study. Ann Gen Psychiatry 2025; 24:7. [PMID: 39915772 PMCID: PMC11803998 DOI: 10.1186/s12991-024-00544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025] Open
Abstract
INTRODUCTION Misdiagnosis of bipolar disorder (BD) can lead to ineffective treatment, increased risk of manic episodes, and increased severity. Objective diagnostic tests or precise tools to diagnose BD and distinguish it from major depressive disorder (MDD) in depressed patients are lacking. AIM To assess the external diagnostic validity of a blood-based test using an RNA epigenetic signature for the differential diagnosis of BD versus MDD in patients with depression. METHODS AND ANALYSIS Multicentre cross-sectional study including an adult sample of inpatients or outpatients diagnosed with BD or MDD, currently treated for a major depressive episode. A structured diagnostic interview based on validated scales will be conducted. Sociodemographic variables, clinical history, toxic consumption, current treatment and quality of life will be assessed. Blood samples will be obtained and stored at -80 °C until RNA sequencing analysis. The EDIT-B is a blood-based test that combines RNA editing biomarkers and individual data (e.g., age, sex, and tobacco consumption). The clinical validation performance of the EDIT-B will be evaluated using the area under the curve, sensitivity, specificity, positive and negative predictive values, and likelihood ratios. ETHICS AND DISSEMINATION The principles of the Declaration of Helsinki 2013, precision psychiatry research and good clinical practice will be followed. The Research Ethics Committees of the participating centres approved the study. Participants will receive an information sheet and must sign the informed consent before the interview. Participants' data will be pseudonymized at the research sites. Any publication will use fully anonymized data. Publications with the final study results will be disseminated in international peer-reviewed journals and presented at international conferences. STUDY REGISTRATION This study has been registered on clinicaltrials.gov (NCT05603819). Registration date: 28-10-2022.
Collapse
Affiliation(s)
- Andrea Miranda-Mendizabal
- Impact and Prevention of Mental Disorders Research Group, Sant Joan de Déu Research Institut, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Spain.
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Madrid, Spain.
| | - Diana Vetter
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, 1682 rue de la Valsière, Parc Euromédecine, 34188, Montpellier, France.
| | | | - Jeff Zarp
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Victor Chavarría
- Impact and Prevention of Mental Disorders Research Group, Sant Joan de Déu Research Institut, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Spain
- Acute Psychiatric Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion and Prevention (RICAPPS), Madrid, Spain
| | - Anna Giménez-Palomo
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Meritxell Gonzalez-Campos
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Valenti
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Sara Siddi
- Impact and Prevention of Mental Disorders Research Group, Sant Joan de Déu Research Institut, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Spain
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Madrid, Spain
- Teaching, Research and Innovation Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | - Maurizio Ferrari
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), SYNLAB SDN, Naples, Italy
| | - Dinah Weissmann
- ALCEDIAG/Sys2Diag, CNRS UMR 9005, 1682 rue de la Valsière, Parc Euromédecine, 34188, Montpellier, France
| | - Chantal Henry
- GHU Psychiatrie & Neurosciences, Paris, France
- Université Paris Cité, Paris, France
| | - Josep Maria Haro
- Impact and Prevention of Mental Disorders Research Group, Sant Joan de Déu Research Institut, Santa Rosa, 39-57, 08950, Esplugues de Llobregat, Spain
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Madrid, Spain
- Teaching, Research and Innovation Unit, Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
- University of Barcelona, Barcelona, Spain
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eduard Vieta
- Mental Health Networking Biomedical Research Centre (CIBERSAM), Madrid, Spain
- Bipolar and Depressive Disorders Unit, Hospital Clinic, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
38
|
Pilala KM, Panoutsopoulou K, Papadimitriou MA, Soureas K, Scorilas A, Avgeris M. Exploring the methyl-verse: Dynamic interplay of epigenome and m6A epitranscriptome. Mol Ther 2025; 33:447-464. [PMID: 39659016 PMCID: PMC11852398 DOI: 10.1016/j.ymthe.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
The orchestration of dynamic epigenetic and epitranscriptomic modifications is pivotal for the fine-tuning of gene expression. However, these modifications are traditionally examined independently. Recent compelling studies have disclosed an interesting communication and interplay between m6A RNA methylation (m6A epitranscriptome) and epigenetic modifications, enabling the formation of feedback circuits and cooperative networks. Intriguingly, the interaction between m6A and DNA methylation machinery, coupled with the crosstalk between m6A RNA and histone modifications shape the transcriptional profile and translational efficiency. Moreover, m6A modifications interact also with non-coding RNAs, modulating their stability, abundance, and regulatory functions. In the light of these findings, m6A imprinting acts as a versatile checkpoint, linking epigenetic and epitranscriptomic layers toward a multilayer and time-dependent control of gene expression and cellular homeostasis. The scope of the present review is to decipher the m6A-coordinated circuits with DNA imprinting, chromatin architecture, and non-coding RNAs networks in normal physiology and carcinogenesis. Ultimately, we summarize the development of innovative CRISPR-dCas engineering platforms fused with m6A catalytic components (m6A writers or erasers) to achieve transcript-specific editing of m6A epitranscriptomes that can create new insights in modern RNA therapeutics.
Collapse
Affiliation(s)
- Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| |
Collapse
|
39
|
Kim DJ. The Role of the DNA Methyltransferase Family and the Therapeutic Potential of DNMT Inhibitors in Tumor Treatment. Curr Oncol 2025; 32:88. [PMID: 39996888 PMCID: PMC11854558 DOI: 10.3390/curroncol32020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Members of the DNA methyltransferase (DNMT) family have been recognized as major epigenetic regulators of altered gene expression during tumor development. They establish and maintain DNA methylation of the CpG island of promoter and non-CpG region of the genome. The abnormal methylation status of tumor suppressor genes (TSGs) has been associated with tumorigenesis, leading to genomic instability, improper gene silence, and immune evasion. DNMT1 helps preserve methylation patterns during DNA replication, whereas the DNMT3 family is responsible for de novo methylation, creating new methylation patterns. Altered DNA methylation significantly supports tumor growth by changing gene expression patterns. FDA-approved DNMT inhibitors reverse hypermethylation-induced gene repression and improve therapeutic outcomes for cancer. Recent studies indicate that combining DNMT inhibitors with chemotherapies and immunotherapies can have synergistic effects, especially in aggressive metastatic tumors. Improving the treatment schedules, increasing isoform specificity, reducing toxicity, and utilizing genome-wide analyses of CRISPR-based editing to create personalized epigenetic therapies tailored to individual patient needs are promising strategies for enhancing therapeutic outcomes. This review discusses the interaction between DNMT regulators and DNMT1, its binding partners, the connection between DNA methylation and tumors, how these processes contribute to tumor development, and DNMT inhibitors' advancements and pharmacological properties.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Microbiology, Immunology & Cancer Biology, The University of Virginia, Charlottesville, VA 20908, USA
| |
Collapse
|
40
|
Yang P, Rong X, Gao Z, Wang J, Liu Z. Metabolic and epigenetic regulation of macrophage polarization in atherosclerosis: Molecular mechanisms and targeted therapies. Pharmacol Res 2025; 212:107588. [PMID: 39778637 DOI: 10.1016/j.phrs.2025.107588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Atherosclerosis, a multifactorial progressive inflammatory disease, is the common pathology underlying cardiovascular and cerebrovascular diseases. The macrophage plasticity is involved in the pathogenesis of atherosclerosis. With the advance of metabolomics and epigenetics, metabolites/metabolic and epigenetic modification such as DNA methylation, histone modification and noncoding RNA, play a crucial role in macrophage polarization and the progression of atherosclerosis. Herein, we provide a comprehensive review of the essential role of metabolic and epigenetic regulation, as well as the crosstalk between the two in regulating macrophage polarization in atherosclerosis. We also highlight the potential therapeutic strategies of regulating macrophage polarization via epigenetic and metabolic modifications for atherosclerosis, and offer recommendations to advance our knowledge of the roles of metabolic-epigenetic crosstalk in macrophage polarization in the context of atherosclerosis. Fundamental studies that elucidate the mechanisms by which metabolic and epigenetic regulation of macrophage polarization influence atherosclerosis will pave the way for novel therapeutic approaches.
Collapse
Affiliation(s)
- Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaoling Rong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhechang Gao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
41
|
wu Z, Xu Y, Zhou C, Zhang Y, Chen J. tsRNA in head and neck tumors: Opportunities and challenges in the field. Noncoding RNA Res 2025; 10:223-230. [PMID: 39468996 PMCID: PMC11513501 DOI: 10.1016/j.ncrna.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a newly recognized class of small non-coding RNAs that are implicated in a variety of cancers, including head and neck tumors. Studies have identified tsRNAs with differential expression profiles in head and neck malignancies, highlighting their potential as biomarkers for diagnosis and prognosis. Functional analyses show that tsRNAs are involved in regulating critical cellular pathways, including those related to cell proliferation, migration, and metabolic processes. Despite these encouraging insights, there are myriad challenges that must be tackled. In summary, tsRNAs present considerable potential as therapeutic targets and biomarkers in the realm of head and neck tumors, meriting further investigation and clinical application to optimize outcomes in the management of these complex diseases. This literature review synthesizes current research on tsRNAs, tsRNAs hold significant promise as biomarkers and therapeutic targets, with the potential to transform diagnostic and treatment strategies for head and neck tumors, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Zhuo wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yufeng Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| | - Changzeng Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Yongbo Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, 315010, China
| | - Jingjing Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, 315040, China
| |
Collapse
|
42
|
Alemu R, Sharew NT, Arsano YY, Ahmed M, Tekola-Ayele F, Mersha TB, Amare AT. Multi-omics approaches for understanding gene-environment interactions in noncommunicable diseases: techniques, translation, and equity issues. Hum Genomics 2025; 19:8. [PMID: 39891174 PMCID: PMC11786457 DOI: 10.1186/s40246-025-00718-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Non-communicable diseases (NCDs) such as cardiovascular diseases, chronic respiratory diseases, cancers, diabetes, and mental health disorders pose a significant global health challenge, accounting for the majority of fatalities and disability-adjusted life years worldwide. These diseases arise from the complex interactions between genetic, behavioral, and environmental factors, necessitating a thorough understanding of these dynamics to identify effective diagnostic strategies and interventions. Although recent advances in multi-omics technologies have greatly enhanced our ability to explore these interactions, several challenges remain. These challenges include the inherent complexity and heterogeneity of multi-omic datasets, limitations in analytical approaches, and severe underrepresentation of non-European genetic ancestries in most omics datasets, which restricts the generalizability of findings and exacerbates health disparities. This scoping review evaluates the global landscape of multi-omics data related to NCDs from 2000 to 2024, focusing on recent advancements in multi-omics data integration, translational applications, and equity considerations. We highlight the need for standardized protocols, harmonized data-sharing policies, and advanced approaches such as artificial intelligence/machine learning to integrate multi-omics data and study gene-environment interactions. We also explore challenges and opportunities in translating insights from gene-environment (GxE) research into precision medicine strategies. We underscore the potential of global multi-omics research in advancing our understanding of NCDs and enhancing patient outcomes across diverse and underserved populations, emphasizing the need for equity and fairness-centered research and strategic investments to build local capacities in underrepresented populations and regions.
Collapse
Affiliation(s)
- Robel Alemu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Anderson School of Management, University of California Los Angeles, Los Angeles, CA, USA.
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| | - Nigussie T Sharew
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Yodit Y Arsano
- Alpert Medical School, Lifespan Health Systems, Brown University, WarrenProvidence, Rhode Island, USA
| | - Muktar Ahmed
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Azmeraw T Amare
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
43
|
Mansour RM, Abdel Mageed SS, Abulsoud AI, Sayed GA, Lutfy RH, Awad FA, Sadek MM, Shaker AAS, Mohammed OA, Abdel-Reheim MA, Elimam H, Doghish AS. From fatty liver to fibrosis: the impact of miRNAs on NAFLD and NASH. Funct Integr Genomics 2025; 25:30. [PMID: 39888504 DOI: 10.1007/s10142-025-01544-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/30/2024] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a disease with various levels varying from fatty liver steatosis to acute steatosis which is non-alcoholic steatohepatitis (NASH), which can develop into hepatic failure, as well as in some conditions it can develop into hepatocellular carcinoma (HCC). In the NAFLD and NASH context, aberrant microRNA (miRNA) expression has a thorough contribution to the incidence and development of these liver disorders by influencing key biological actions, involving lipid metabolism, inflammation, and fibrosis. Dysregulated miRNAs can disrupt the balance between lipid accumulation and clearance, exacerbate inflammatory responses, and promote fibrogenesis, thus advancing the severeness of the disorder from simple steatosis to more complex NASH. In the current review, the latest development concerned with the activity of complex regulatory networks of miRNA in the incidence as well as the evolution of NAFLD is to be discussed, also conferring about the miRNAs' role in the onset, pathogenesis as well as diagnosis of NAFLD and NASH discussing miRNAs' role as diagnostic biomarkers and their therapeutic effects on NAFLD/NASH.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mohamed M Sadek
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Abanoub A S Shaker
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
44
|
Pan J, Chen S, Chen X, Song Y, Cheng H. Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective. Clin Rev Allergy Immunol 2025; 68:6. [PMID: 39871086 DOI: 10.1007/s12016-024-09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis. A deeper understanding of these epigenetic mechanisms not only helps unveil the molecular mechanisms underlying the initiation and progression of psoriasis but may also provide new insights into diagnostic and therapeutic strategies. Given the unique roles and significant contributions of various cell types involved in the process of psoriasis, a thorough analysis of specific epigenetic patterns in different cell types becomes a key entry point for elucidating the mechanisms of disease development. Although epigenetic modifications encompass multiple complex layers, this review will focus on histone modifications and DNA methylation, describing how they function in different cell types and subsequently impact the pathophysiological processes of psoriasis. Finally, we will summarize the current problems in research concerning histone modifications and DNA methylation in psoriasis and discuss the clinical application prospects and challenges of targeting epigenetic modifications as therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Jing Pan
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
45
|
Gkiouleka M, Karalexi M, Sergentanis TN, Nouvakis D, Proikaki S, Kornarou E, Vassilakou T. The Epigenetic Role of Nutrition Among Children and Adolescents: A Systematic Literature Review. CHILDREN (BASEL, SWITZERLAND) 2025; 12:143. [PMID: 40003245 PMCID: PMC11854644 DOI: 10.3390/children12020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND/OBJECTIVES Recent research has focused on the study of the epigenetic role of nutrition as a tool which is expected to introduce new perspectives in the field of disease prevention and management. Although maternal nutrition is one of the best-studied mechanisms of epigenetic modifications of the fetus/newborn, less is known on the impact of childhood/adolescent nutrition on the regulation of epigenetic mecha-nisms after the first year of life. The aim of the present study was the assessment of the epigenetic role of nutrition in the health and development of children and adolescents. METHODS A systematic review was performed according to the Preferred Reported Items for Systematic Reviews and Meta-analyses guidelines in five databases (PubMed, Cochrane, Science Direct, Scopus, and Google Scholar) up to 31 October 2024, which yielded 17 eligible studies. The Newcastle-Ottawa Scale and the Cochrane Collabora-tion Risk of Bias-2 tool were used for the evaluation of risk of bias in observational studies and randomized trials, respectively. RESULTS Three studies investigated the epi-genetic modifications due to lifestyle interventions combining changes both in diet and physical activity; the remaining 14 studies examined the role of dietary nutrients in the regulation of epigenetic mechanisms in various health conditions, such as Angelman's syndrome, parenteral nutrition in Intensive Care Units, attention deficit hyperactivity disorder, risk of cardiovascular diseases, asthma or food sensitization, obesity, insulin resistance, and type 2 diabetes or evaluated epigenetic markers as new tools for the comprehension and prediction of the participants' response to nutritional interven-tions. CONCLUSIONS The important impact of diet on the regulation of epigenetic mech-anisms and the expression of various genes and gene pathways could be utilized for personalized nutritional interventions in various pediatric health conditions.
Collapse
Affiliation(s)
- Maria Gkiouleka
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Maria Karalexi
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, 45110 Ioannina, Greece;
| | - Theodoros N. Sergentanis
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Dimitrios Nouvakis
- Central Middlesex Hospital, London North West University Healthcare NHS Trust, Harrow HA1 3UJ, UK;
| | - Stella Proikaki
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Eleni Kornarou
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| | - Tonia Vassilakou
- MSc in Public Health, Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, 11521 Athens, Greece; (M.G.); (T.N.S.); (S.P.); (E.K.)
| |
Collapse
|
46
|
Sobral AF, Dinis-Oliveira RJ, Barbosa DJ. CRISPR-Cas technology in forensic investigations: Principles, applications, and ethical considerations. Forensic Sci Int Genet 2025; 74:103163. [PMID: 39437497 DOI: 10.1016/j.fsigen.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins) systems are adaptive immune systems originally present in bacteria, where they are essential to protect against external genetic elements, including viruses and plasmids. Taking advantage of this system, CRISPR-Cas-based technologies have emerged as incredible tools for precise genome editing, thus significantly advancing several research fields. Forensic sciences represent a multidisciplinary field that explores scientific methods to investigate and resolve legal issues, particularly criminal investigations and subject identification. Consequently, it plays a critical role in the justice system, providing scientific evidence to support judicial investigations. Although less explored, CRISPR-Cas-based methodologies demonstrate strong potential in the field of forensic sciences due to their high accuracy and sensitivity, including DNA profiling and identification, interpretation of crime scene investigations, detection of food contamination or fraud, and other aspects related to environmental forensics. However, using CRISPR-Cas-based methodologies in human samples raises several ethical issues and concerns regarding the potential misuse of individual genetic information. In this manuscript, we provide an overview of potential applications of CRISPR-Cas-based methodologies in several areas of forensic sciences and discuss the legal implications that challenge their routine implementation in this research field.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal; Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto 4200-319, Portugal; FOREN - Forensic Science Experts, Dr. Mário Moutinho Avenue, No. 33-A, Lisbon 1400-136, Portugal.
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal.
| |
Collapse
|
47
|
Guay SP, Paquette M, Taschereau A, Desgagné V, Bouchard L, Bernard S, Baass A. DNA methylation levels may contribute to severe hypertriglyceridemia in multifactorial chylomicronemia syndrome. Clin Biochem 2025; 135:110873. [PMID: 39756670 DOI: 10.1016/j.clinbiochem.2025.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
BACKGROUND AND AIMS Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia syndrome (MCS) are the two main causes of severe hypertriglyceridemia (sHTG). FCS is a rare autosomal recessive form of sHTG, whereas MCS is mainly polygenic in nature with both common and rare variants accumulating and leading to sHTG. However, 30 to 50% of MCS patients have no identified genetic cause of sHTG. DNA methylation (DNAm) is a non-traditional heritable factor known to be associated with triglyceride (TG) levels. The aim of this study is to determine if DNAm level at three candidate genes for hypertriglyceridemia (ABCG1, CPT1A and SREBF1) could contribute to sHTG in MCS patients. METHODS A total of 114 MCS and 20 FCS patients were included in this retrospective study. DNAm levels were measured at ABCG1 (cg06500161), CPT1A (cg00574958), and SREBF1 (cg11024682) gene loci using pyrosequencing of bisulfite-treated DNA. RESULTS DNAm levels at ABCG1, CPT1A and SREBF1 were significantly associated with TG levels or minimal TG levels in MCS patients. Prevalence of patients with at least 2 loci with DNAm levels into the top tertile of DNAm associated with hypertriglyceridemia was significantly higher in MCS patients with genetically undefined sHTG compared to MCS patients with polygenic sHTG and FCS patients (57 % vs. 24 % vs. 0 %, respectively; p < 0.0001). CONCLUSION This study suggests for the first time that DNAm could contribute to sHTG in MCS patients. It suggests that further studies of epivariations may contribute to better understand the clinical heterogeneity seen in MCS patients.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada; Department of Pediatric, Division of Medical Genetics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martine Paquette
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada
| | - Amélie Taschereau
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Véronique Desgagné
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, Québec, Canada
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-Saint-Jean - Hôpital de Chicoutimi, Saguenay, Québec, Canada
| | - Sophie Bernard
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada
| | - Alexis Baass
- Genetic Dyslipidemias Clinic of the Montreal Clinical Research Institute, Montréal, Québec, Canada; Department of Medicine, Divisions of Experimental Medicine and Medical Biochemistry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
48
|
Islam MS, Wei P, Suzauddula M, Nime I, Feroz F, Acharjee M, Pan F. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Mol Med 2024; 30:279. [PMID: 39731011 DOI: 10.1186/s10020-024-01019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Metabolic syndrome (MetS) is an indicator and diverse endocrine syndrome that combines different metabolic defects with clinical, physiological, biochemical, and metabolic factors. Obesity, visceral adiposity and abdominal obesity, dyslipidemia, insulin resistance (IR), elevated blood pressure, endothelial dysfunction, and acute or chronic inflammation are the risk factors associated with MetS. Abdominal obesity, a hallmark of MetS, highlights dysfunctional fat tissue and increased risk for cardiovascular disease and diabetes. Insulin, a vital peptide hormone, regulates glucose metabolism throughout the body. When cells become resistant to insulin's effects, it disrupts various molecular pathways, leading to IR. This condition is linked to a range of disorders, including obesity, diabetes, fatty liver disease, cardiovascular disease, and polycystic ovary syndrome. Atherogenic dyslipidemia is characterized by three key factors: high levels of small, low-dense lipoprotein (LDL) particles and triglycerides, alongside low levels of high-density lipoprotein (HDL), the "good" cholesterol. Such a combination is a major player in MetS, where IR is a driving force. Atherogenic dyslipidemia contributes significantly to the development of atherosclerosis, which can lead to cardiovascular disease. On top of that, genetic alteration and lifestyle factors such as diet and exercise influence the complexity and progression of MetS. To enhance our understanding and consciousness, it is essential to understand the fundamental pathogenesis of MetS. This review highlights current advancements in MetS research including the involvement of gut microbiome, epigenetic regulation, and metabolomic profiling for early detection of Mets. In addition, this review emphasized the epidemiology and fundamental pathogenesis of MetS, various risk factors, and their preventive measures. The goal of this effort is to deepen understanding of MetS and encourage further research to develop effective strategies for preventing and managing complex metabolic diseases.
Collapse
Affiliation(s)
- Md Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Microbiology, Stamford University Bangladesh, 51, Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Ping Wei
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Farahnaaz Feroz
- Department of Microbiology, Stamford University Bangladesh, 51, Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, 51, Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
49
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
50
|
Ha S, Wong VWS, Zhang X, Yu J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma. Gut 2024; 74:141-152. [PMID: 38950910 PMCID: PMC11671994 DOI: 10.1136/gutjnl-2024-332398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/08/2024] [Indexed: 07/03/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a wide spectrum of liver injuries, ranging from hepatic steatosis, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis to MASLD-associated hepatocellular carcinoma (MASLD-HCC). Recent studies have highlighted the bidirectional impacts between host genetics/epigenetics and the gut microbial community. Host genetics influence the composition of gut microbiome, while the gut microbiota and their derived metabolites can induce host epigenetic modifications to affect the development of MASLD. The exploration of the intricate relationship between the gut microbiome and the genetic/epigenetic makeup of the host is anticipated to yield promising avenues for therapeutic interventions targeting MASLD and its associated conditions. In this review, we summarise the effects of gut microbiome, host genetics and epigenetic alterations in MASLD and MASLD-HCC. We further discuss research findings demonstrating the bidirectional impacts between gut microbiome and host genetics/epigenetics, emphasising the significance of this interconnection in MASLD prevention and treatment.
Collapse
Affiliation(s)
- Suki Ha
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- 1Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|