1
|
Xu Y, Wang Z, Li C, Tian S, Du W. Droplet microfluidics: unveiling the hidden complexity of the human microbiome. LAB ON A CHIP 2025; 25:1128-1148. [PMID: 39775305 DOI: 10.1039/d4lc00877d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The human body harbors diverse microbial communities essential for maintaining health and influencing disease processes. Droplet microfluidics, a precise and high-throughput platform for manipulating microscale droplets, has become vital in advancing microbiome research. This review introduces the foundational principles of droplet microfluidics, its operational capabilities, and wide-ranging applications. We emphasize its role in enhancing single-cell sequencing technologies, particularly genome and RNA sequencing, transforming our understanding of microbial diversity, gene expression, and community dynamics. We explore its critical function in isolating and cultivating traditionally unculturable microbes and investigating microbial activity and interactions, facilitating deeper insight into community behavior and metabolic functions. Lastly, we highlight its broader applications in microbial analysis and its potential to revolutionize human health research by driving innovations in diagnostics, therapeutic development, and personalized medicine. This review provides a comprehensive overview of droplet microfluidics' impact on microbiome research, underscoring its potential to transform our understanding of microbial dynamics and their relevance to health and disease.
Collapse
Affiliation(s)
- Yibin Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhiyi Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuiquan Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
- Medical School and College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Falco N, Griffin ME. Discovering microbiota functions via chemical probe incorporation for targeted sequencing. Curr Opin Chem Biol 2025; 84:102551. [PMID: 39615426 PMCID: PMC11799120 DOI: 10.1016/j.cbpa.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
Our microbiota plays crucial roles in immune development and homeostasis and has been implicated in virtually all major diseases of the 21st century. Nevertheless, our understanding of the exact microbial functions that underlie these correlations remains extremely limited, due in large part to the difficulty of profiling cellular activities within non-model organisms and complex communities. Over the past decade, new flow cytometric approaches have been developed to distinguish specific microbial populations based on their interactions with metabolite analogs, modified biomolecules, and reactive compounds. By selecting and separating active microbes via fluorescence-activated cell sorting, PRobe INcorporation for Targeted sequencing (PRINT-seq) has inspired innovative approaches to identify and characterize functional members of our microbiota. Here, we provide a broad overview of this evolving technology and summarize how this method has been recently employed as a diagnostic fingerprint for diverse microbial activities.
Collapse
Affiliation(s)
- Natalie Falco
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew E Griffin
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
3
|
Whidbey C. The right tool for the job: Chemical biology and microbiome science. Cell Chem Biol 2025; 32:83-97. [PMID: 39765228 DOI: 10.1016/j.chembiol.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025]
Abstract
Microbiomes exist in ecological niches ranging from the ocean and soil to inside of larger organisms like plants and animals. Within these niches, microbes play key roles in biochemical processes that impact larger phenomena, such as biogeochemical cycling or health. By understanding of how these processes occur at the molecular level, it may be possible to develop new interventions to address global problems. The complexity of these systems poses challenges to more traditional techniques. Chemical biology can help overcome these challenges by providing tools that are broadly applicable and can obtain molecular-level information about complex systems. This primer is intended to serve as a brief introduction to chemical biology and microbiome science, to highlight some of the ways that these two disciplines complement each other, and to encourage dialog and collaboration between these fields.
Collapse
|
4
|
Landor LAI, Tjendra J, Erstad K, Krabberød AK, Töpper JP, Våge S. At what cost? The impact of bacteriophage resistance on the growth kinetics and protein synthesis of Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70046. [PMID: 39562842 PMCID: PMC11576411 DOI: 10.1111/1758-2229.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
Cost of bacteriophage resistance (COR) is important in explaining processes of diversification and coexistence in microbial communities. COR can be expressed in different traits, and the lack of universally applicable methods to measure fitness trade-offs makes COR challenging to study. Due to its fundamental role in growth, we explored protein synthesis as a target for quantifying COR. In this study, the growth kinetics of three genome-sequenced strains of phage-resistant Escherichia coli, along with the phage-susceptible wild-type, were characterized over a range of glucose concentrations. Bioorthogonal non-canonical amino acid tagging (BONCAT) was used to track differences in protein synthetic activity between the wild-type and phage-resistant E. coli. Two of the resistant strains, with different levels of phage susceptibility, showed mucoid phenotypes corresponding with mutations in genes associated with the Rcs phosphorelay. These mucoid isolates, however, had reduced growth rates and potentially lower protein synthetic activity. Another resistant isolate with a different mutational profile maintained the same growth rate as the wild-type and showed increased BONCAT fluorescence, but its yield was lower. Together, these findings present different patterns of trade-offs resulting from the phage-induced mutations and demonstrate the potential applicability of BONCAT as a tool for measuring COR.
Collapse
Affiliation(s)
- Lotta A. I. Landor
- Department of Biological SciencesUniversity of BergenBergenNorway
- Marine Biological Section, Department of BiologyUniversity of CopenhagenHelsingørDenmark
| | - Jesslyn Tjendra
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Karen Erstad
- Department of Biological SciencesUniversity of BergenBergenNorway
| | | | | | - Selina Våge
- Department of Biological SciencesUniversity of BergenBergenNorway
| |
Collapse
|
5
|
Nou NO, Covington JK, Lai D, Mayali X, Seymour CO, Johnston J, Jiao JY, Buessecker S, Mosier D, Muok AR, Torosian N, Cook AM, Briegel A, Woyke T, Eloe-Fadrosh E, Shapiro N, Bryan SG, Sleezer S, Dimapilis J, Gonzalez C, Gonzalez L, Noriega M, Hess M, Carlson RP, Liu L, Li MM, Lian ZH, Zhu S, Liu F, Sun X, Gao B, Mewalal R, Harmon-Smith M, Blaby IK, Cheng JF, Weber PK, Grigorean G, Li WJ, Dekas AE, Pett-Ridge J, Dodsworth JA, Palmer M, Hedlund BP. Genome-guided isolation of the hyperthermophilic aerobe Fervidibacter sacchari reveals conserved polysaccharide metabolism in the Armatimonadota. Nat Commun 2024; 15:9534. [PMID: 39496591 PMCID: PMC11535203 DOI: 10.1038/s41467-024-53784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Few aerobic hyperthermophilic microorganisms degrade polysaccharides. Here, we describe the genome-enabled enrichment and optical tweezer-based isolation of an aerobic polysaccharide-degrading hyperthermophile, Fervidibacter sacchari, previously ascribed to candidate phylum Fervidibacteria. F. sacchari uses polysaccharides and monosaccharides for growth at 65-87.5 °C and expresses 191 carbohydrate-active enzymes (CAZymes) according to RNA-Seq and proteomics, including 31 with unusual glycoside hydrolase domains (GH109, GH177, GH179). Fluorescence in-situ hybridization and nanoscale secondary ion mass spectrometry confirmed rapid assimilation of 13C-starch in spring sediments. Purified GHs were optimally active at 80-100 °C on ten different polysaccharides. Finally, we propose reassigning Fervidibacteria as a class within phylum Armatimonadota, along with 18 other species, and show that a high number and diversity of CAZymes is a hallmark of the phylum, in both aerobic and anaerobic lineages. Our study establishes Fervidibacteria as hyperthermophilic polysaccharide degraders in terrestrial geothermal springs and suggests a broad role for Armatimonadota in polysaccharide catabolism.
Collapse
Affiliation(s)
- Nancy O Nou
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | | | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Cale O Seymour
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Juliet Johnston
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Damon Mosier
- Department of Biology, California State University, San Bernardino, CA, USA
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB, Canada
| | - Alise R Muok
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Nicole Torosian
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Allison M Cook
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Ariane Briegel
- Department of Microbial Sciences, Institute of Biology, Leiden University, Sylviusweg 72, Leiden, The Netherlands
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- University of California Merced, Life and Environmental Sciences, Merced, CA, USA
| | - Emiley Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicole Shapiro
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Scott G Bryan
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Savannah Sleezer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Joshua Dimapilis
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Cristina Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Lizett Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marlene Noriega
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Matthias Hess
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Ross P Carlson
- Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zheng-Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Siqi Zhu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Fan Liu
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Xian Sun
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Beile Gao
- CAS Key Laboratory of Tropical Marine Bio Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Ritesh Mewalal
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ian K Blaby
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory, Sun Yat-Sen University, Zhuhai, PR China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, PR China
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
6
|
Majekodunmi T, Britton D, Montclare JK. Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:9113-9135. [PMID: 39008623 PMCID: PMC11327963 DOI: 10.1021/acs.chemrev.3c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The incorporation of noncanonical amino acids into proteins and protein-based materials has significantly expanded the repertoire of available protein structures and chemistries. Through residue-specific incorporation, protein properties can be globally modified, resulting in the creation of novel proteins and materials with diverse and tailored characteristics. In this review, we highlight recent advancements in residue-specific incorporation techniques as well as the applications of the engineered proteins and materials. Specifically, we discuss their utility in bio-orthogonal noncanonical amino acid tagging (BONCAT), fluorescent noncanonical amino acid tagging (FUNCAT), threonine-derived noncanonical amino acid tagging (THRONCAT), cross-linking, fluorination, and enzyme engineering. This review underscores the importance of noncanonical amino acid incorporation as a tool for the development of tailored protein properties to meet diverse research and industrial needs.
Collapse
Affiliation(s)
- Temiloluwa Majekodunmi
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Dustin Britton
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016, United States
- Department of Chemistry, New York University, New York, New York 10012, United States
- Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States
- Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
7
|
Kohtz AJ, Petrosian N, Krukenberg V, Jay ZJ, Pilhofer M, Hatzenpichler R. Cultivation and visualization of a methanogen of the phylum Thermoproteota. Nature 2024; 632:1118-1123. [PMID: 39048824 DOI: 10.1038/s41586-024-07631-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
Methane is the second most abundant climate-active gas, and understanding its sources and sinks is an important endeavour in microbiology, biogeochemistry, and climate sciences1,2. For decades, it was thought that methanogenesis, the ability to conserve energy coupled to methane production, was taxonomically restricted to a metabolically specialized group of archaea, the Euryarchaeota1. The discovery of marker genes for anaerobic alkane cycling in metagenome-assembled genomes obtained from diverse habitats has led to the hypothesis that archaeal lineages outside the Euryarchaeota are also involved in methanogenesis3-6. Here we cultured Candidatus Methanosuratincola verstraetei strain LCB70, a member of the archaeal class Methanomethylicia (formerly Verstraetearchaeota) within the phylum Thermoproteota, from a terrestrial hot spring. Growth experiments combined with activity assays, stable isotope tracing, and genomic and transcriptomic analyses demonstrated that this thermophilic archaeon grows by means of methyl-reducing hydrogenotrophic methanogenesis. Cryo-electron tomography revealed that Ca. M. verstraetei are coccoid cells with archaella and chemoreceptor arrays, and that they can form intercellular bridges connecting two to three cells with continuous cytoplasm and S-layer. The wide environmental distribution of Ca. M. verstraetei suggests that they might play important and hitherto overlooked roles in carbon cycling within diverse anoxic habitats.
Collapse
Affiliation(s)
- Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Nikolai Petrosian
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
8
|
Hellwig P, Kautzner D, Heyer R, Dittrich A, Wibberg D, Busche T, Winkler A, Reichl U, Benndorf D. Tracing active members in microbial communities by BONCAT and click chemistry-based enrichment of newly synthesized proteins. ISME COMMUNICATIONS 2024; 4:ycae153. [PMID: 39736848 PMCID: PMC11683836 DOI: 10.1093/ismeco/ycae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025]
Abstract
A comprehensive understanding of microbial community dynamics is fundamental to the advancement of environmental microbiology, human health, and biotechnology. Metaproteomics, defined as the analysis of all proteins present within a microbial community, provides insights into these complex systems. Microbial adaptation and activity depend to an important extent on newly synthesized proteins (nP), however, the distinction between nP and bulk proteins is challenging. The application of BONCAT with click chemistry has demonstrated efficacy in the enrichment of nP in pure cultures for proteomics. However, the transfer of this technique to microbial communities and metaproteomics has proven challenging and thus it has not not been used on microbial communities before. To address this, a new workflow with efficient and specific nP enrichment was developed using a laboratory-scale mixture of labelled Escherichia coli and unlabeled yeast. This workflow was then successfully applied to an anaerobic microbial community with initially low bioorthogonal non-canonical amino acid tagging efficiency. A substrate shift from glucose to ethanol selectively enriched nP with minimal background. The identification of bifunctional alcohol dehydrogenase and a syntrophic interaction between an ethanol-utilizing bacterium and two methanogens (hydrogenotrophic and acetoclastic) demonstrates the potential of metaproteomics targeting nP to trace microbial activity in complex microbial communities.
Collapse
Affiliation(s)
- Patrick Hellwig
- Otto-von-Guericke University Magdeburg, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Daniel Kautzner
- Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Robert Heyer
- Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, North Rhine-Westphalia, Germany
| | - Anna Dittrich
- Department of Systems Biology, Institute of Biology, Otto-von-Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Daniel Wibberg
- Institute for Genome Research and Systems Biology, CeBiTec, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, North Rhine-Westphalia, Germany
- Institute of Bio- and Geosciences IBG-5, Computational Metagenomics, Forschungszentrum Jülich GmbH,52425 Juelich, North Rhine-Westphalia, Germany
| | - Tobias Busche
- Center for Biotechnology—CeBiTec, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, North Rhine-Westphalia, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Anika Winkler
- Center for Biotechnology—CeBiTec, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, North Rhine-Westphalia, Germany
- Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, North Rhine-Westphalia, Germany
| | - Udo Reichl
- Otto-von-Guericke University Magdeburg, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Saxony-Anhalt, Germany
| | - Dirk Benndorf
- Otto-von-Guericke University Magdeburg, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Saxony-Anhalt, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Saxony-Anhalt, Germany
- Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06354 Köthen, Saxony-Anhalt, Germany
| |
Collapse
|
9
|
Kostešić E, Mitrović M, Kajan K, Marković T, Hausmann B, Orlić S, Pjevac P. Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia. MICROBIAL ECOLOGY 2023; 86:2305-2319. [PMID: 37209180 PMCID: PMC10640420 DOI: 10.1007/s00248-023-02239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Hot spring biofilms are stable, highly complex microbial structures. They form at dynamic redox and light gradients and are composed of microorganisms adapted to the extreme temperatures and fluctuating geochemical conditions of geothermal environments. In Croatia, a large number of poorly investigated geothermal springs host biofilm communities. Here, we investigated the microbial community composition of biofilms collected over several seasons at 12 geothermal springs and wells. We found biofilm microbial communities to be temporally stable and highly dominated by Cyanobacteria in all but one high-temperature sampling site (Bizovac well). Of the physiochemical parameters recorded, temperature had the strongest influence on biofilm microbial community composition. Besides Cyanobacteria, the biofilms were mainly inhabited by Chloroflexota, Gammaproteobacteria, and Bacteroidota. In a series of incubations with Cyanobacteria-dominated biofilms from Tuhelj spring and Chloroflexota- and Pseudomonadota-dominated biofilms from Bizovac well, we stimulated either chemoorganotrophic or chemolithotrophic community members, to determine the fraction of microorganisms dependent on organic carbon (in situ predominantly produced via photosynthesis) versus energy derived from geochemical redox gradients (here simulated by addition of thiosulfate). We found surprisingly similar levels of activity in response to all substrates in these two distinct biofilm communities, and observed microbial community composition and hot spring geochemistry to be poor predictors of microbial activity in the study systems.
Collapse
Affiliation(s)
- Ema Kostešić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Mitrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | | | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Split, Croatia
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Reichart NJ, Steiger AK, Van Fossen EM, McClure R, Overkleeft HS, Wright AT. Selection and enrichment of microbial species with an increased lignocellulolytic phenotype from a native soil microbiome by activity-based probing. ISME COMMUNICATIONS 2023; 3:106. [PMID: 37777628 PMCID: PMC10542759 DOI: 10.1038/s43705-023-00305-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
Multi-omic analyses can provide information on the potential for activity within a microbial community but often lack specificity to link functions to cell, primarily offer potential for function or rely on annotated databases. Functional assays are necessary for understanding in situ microbial activity to better describe and improve microbiome biology. Targeting enzyme activity through activity-based protein profiling enhances the accuracy of functional studies. Here, we introduce a pipeline of coupling activity-based probing with fluorescence-activated cell sorting, culturing, and downstream activity assays to isolate and examine viable populations of cells expressing a function of interest. We applied our approach to a soil microbiome using two activity-based probes to enrich for communities with elevated activity for lignocellulose-degradation phenotypes as determined by four fluorogenic kinetic assays. Our approach efficiently separated and identified microbial members with heightened activity for glycosyl hydrolases, and by expanding this workflow to various probes for other function, this process can be applied to unique phenotype targets of interest.
Collapse
Affiliation(s)
- Nicholas J Reichart
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Andrea K Steiger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Elise M Van Fossen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
- Department of Biology, Baylor University, Waco, TX, USA.
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA.
| |
Collapse
|
11
|
Frates ES, Spietz RL, Silverstein MR, Girguis P, Hatzenpichler R, Marlow JJ. Natural and anthropogenic carbon input affect microbial activity in salt marsh sediment. Front Microbiol 2023; 14:1235906. [PMID: 37744927 PMCID: PMC10512730 DOI: 10.3389/fmicb.2023.1235906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Salt marshes are dynamic, highly productive ecosystems positioned at the interface between terrestrial and marine systems. They are exposed to large quantities of both natural and anthropogenic carbon input, and their diverse sediment-hosted microbial communities play key roles in carbon cycling and remineralization. To better understand the effects of natural and anthropogenic carbon on sediment microbial ecology, several sediment cores were collected from Little Sippewissett Salt Marsh (LSSM) on Cape Cod, MA, USA and incubated with either Spartina alterniflora cordgrass or diesel fuel. Resulting shifts in microbial diversity and activity were assessed via bioorthogonal non-canonical amino acid tagging (BONCAT) combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Both Spartina and diesel amendments resulted in initial decreases of microbial diversity as well as clear, community-wide shifts in metabolic activity. Multi-stage degradative frameworks shaped by fermentation were inferred based on anabolically active lineages. In particular, the metabolically versatile Marinifilaceae were prominent under both treatments, as were the sulfate-reducing Desulfovibrionaceae, which may be attributable to their ability to utilize diverse forms of carbon under nutrient limited conditions. By identifying lineages most directly involved in the early stages of carbon processing, we offer potential targets for indicator species to assess ecosystem health and highlight key players for selective promotion of bioremediation or carbon sequestration pathways.
Collapse
Affiliation(s)
- Erin S. Frates
- Department of Biology, Boston University, Boston, MA, United States
| | - Rachel L. Spietz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | | | - Peter Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
| | | |
Collapse
|
12
|
Mermans F, Mattelin V, Van den Eeckhoudt R, García-Timermans C, Van Landuyt J, Guo Y, Taurino I, Tavernier F, Kraft M, Khan H, Boon N. Opportunities in optical and electrical single-cell technologies to study microbial ecosystems. Front Microbiol 2023; 14:1233705. [PMID: 37692384 PMCID: PMC10486927 DOI: 10.3389/fmicb.2023.1233705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/12/2023] Open
Abstract
New techniques are revolutionizing single-cell research, allowing us to study microbes at unprecedented scales and in unparalleled depth. This review highlights the state-of-the-art technologies in single-cell analysis in microbial ecology applications, with particular attention to both optical tools, i.e., specialized use of flow cytometry and Raman spectroscopy and emerging electrical techniques. The objectives of this review include showcasing the diversity of single-cell optical approaches for studying microbiological phenomena, highlighting successful applications in understanding microbial systems, discussing emerging techniques, and encouraging the combination of established and novel approaches to address research questions. The review aims to answer key questions such as how single-cell approaches have advanced our understanding of individual and interacting cells, how they have been used to study uncultured microbes, which new analysis tools will become widespread, and how they contribute to our knowledge of ecological interactions.
Collapse
Affiliation(s)
- Fabian Mermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
- Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Ruben Van den Eeckhoudt
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Cristina García-Timermans
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Yuting Guo
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Irene Taurino
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Semiconductor Physics, Department of Physics and Astronomy, KU Leuven, Leuven, Belgium
| | - Filip Tavernier
- MICAS, Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
| | - Michael Kraft
- Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
- Leuven Institute of Micro- and Nanoscale Integration (LIMNI), KU Leuven, Leuven, Belgium
| | - Hira Khan
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Mansfield CR, Chirgwin ME, Derbyshire ER. Labeling strategies to track protozoan parasite proteome dynamics. Curr Opin Chem Biol 2023; 75:102316. [PMID: 37192562 PMCID: PMC10895934 DOI: 10.1016/j.cbpa.2023.102316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Intracellular protozoan parasites are responsible for wide-spread infectious diseases. These unicellular pathogens have complex, multi-host life cycles, which present challenges for investigating their basic biology and for discovering vulnerabilities that could be exploited for disease control. Throughout development, parasite proteomes are dynamic and support stage-specific functions, but detection of these proteins is often technically challenging and complicated by the abundance of host proteins. Thus, to elucidate key parasite processes and host-pathogen interactions, labeling strategies are required to track pathogen proteins during infection. Herein, we discuss the application of bioorthogonal non-canonical amino acid tagging and proximity-dependent labeling to broadly study protozoan parasites and include outlooks for future applications to study Plasmodium, the causative agent of malaria. We highlight the potential of these technologies to provide spatiotemporal labeling with selective parasite protein enrichment, which could enable previously unattainable insight into the biology of elusive developmental stages.
Collapse
Affiliation(s)
| | | | - Emily R Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Trexler RV, Van Goethem MW, Goudeau D, Nath N, Malmstrom RR, Northen TR, Couradeau E. BONCAT-FACS-Seq reveals the active fraction of a biocrust community undergoing a wet-up event. Front Microbiol 2023; 14:1176751. [PMID: 37434715 PMCID: PMC10330726 DOI: 10.3389/fmicb.2023.1176751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Determining which microorganisms are active within soil communities remains a major technical endeavor in microbial ecology research. One promising method to accomplish this is coupling bioorthogonal non-canonical amino acid tagging (BONCAT) with fluorescence activated cell sorting (FACS) which sorts cells based on whether or not they are producing new proteins. Combined with shotgun metagenomic sequencing (Seq), we apply this method to profile the diversity and potential functional capabilities of both active and inactive microorganisms in a biocrust community after being resuscitated by a simulated rain event. We find that BONCAT-FACS-Seq is capable of discerning the pools of active and inactive microorganisms, especially within hours of applying the BONCAT probe. The active and inactive components of the biocrust community differed in species richness and composition at both 4 and 21 h after the wetting event. The active fraction of the biocrust community is marked by taxa commonly observed in other biocrust communities, many of which play important roles in species interactions and nutrient transformations. Among these, 11 families within the Firmicutes are enriched in the active fraction, supporting previous reports indicating that the Firmicutes are key early responders to biocrust wetting. We highlight the apparent inactivity of many Actinobacteria and Proteobacteria through 21 h after wetting, and note that members of the Chitinophagaceae, enriched in the active fraction, may play important ecological roles following wetting. Based on the enrichment of COGs in the active fraction, predation by phage and other bacterial members, as well as scavenging and recycling of labile nutrients, appear to be important ecological processes soon after wetting. To our knowledge, this is the first time BONCAT-FACS-Seq has been applied to biocrust samples, and therefore we discuss the potential advantages and shortcomings of coupling metagenomics to BONCAT to intact soil communities such as biocrust. In all, by pairing BONCAT-FACS and metagenomics, we are capable of highlighting the taxa and potential functions that typifies the microbes actively responding to a rain event.
Collapse
Affiliation(s)
- Ryan V. Trexler
- Intercollege Graduate Degree Program in Ecology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Marc W. Van Goethem
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Danielle Goudeau
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Nandita Nath
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Rex R. Malmstrom
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Trent R. Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States
| | - Estelle Couradeau
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
15
|
Lynes MM, Krukenberg V, Jay ZJ, Kohtz AJ, Gobrogge CA, Spietz RL, Hatzenpichler R. Diversity and function of methyl-coenzyme M reductase-encoding archaea in Yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME COMMUNICATIONS 2023; 3:22. [PMID: 36949220 PMCID: PMC10033731 DOI: 10.1038/s43705-023-00225-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
Metagenomic studies on geothermal environments have been central in recent discoveries on the diversity of archaeal methane and alkane metabolism. Here, we investigated methanogenic populations inhabiting terrestrial geothermal features in Yellowstone National Park (YNP) by combining amplicon sequencing with metagenomics and mesocosm experiments. Detection of methyl-coenzyme M reductase subunit A (mcrA) gene amplicons demonstrated a wide diversity of Mcr-encoding archaea inhabit geothermal features with differing physicochemical regimes across YNP. From three selected hot springs we recovered twelve Mcr-encoding metagenome assembled genomes (MAGs) affiliated with lineages of cultured methanogens as well as Candidatus (Ca.) Methanomethylicia, Ca. Hadesarchaeia, and Archaeoglobi. These MAGs encoded the potential for hydrogenotrophic, aceticlastic, hydrogen-dependent methylotrophic methanogenesis, or anaerobic short-chain alkane oxidation. While Mcr-encoding archaea represent minor fractions of the microbial community of hot springs, mesocosm experiments with methanogenic precursors resulted in the stimulation of methanogenic activity and the enrichment of lineages affiliated with Methanosaeta and Methanothermobacter as well as with uncultured Mcr-encoding archaea including Ca. Korarchaeia, Ca. Nezhaarchaeia, and Archaeoglobi. We revealed that diverse Mcr-encoding archaea with the metabolic potential to produce methane from different precursors persist in the geothermal environments of YNP and can be enriched under methanogenic conditions. This study highlights the importance of combining environmental metagenomics with laboratory-based experiments to expand our understanding of uncultured Mcr-encoding archaea and their potential impact on microbial carbon transformations in geothermal environments and beyond.
Collapse
Affiliation(s)
- Mackenzie M Lynes
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - Viola Krukenberg
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
| | - Zackary J Jay
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - Anthony J Kohtz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | | | - Rachel L Spietz
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Center for Biofilm Engineering, and Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
16
|
Landor LAI, Bratbak G, Larsen A, Tjendra J, Våge S. Differential toxicity of bioorthogonal non-canonical amino acids (BONCAT) in Escherichia coli. J Microbiol Methods 2023; 206:106679. [PMID: 36720393 DOI: 10.1016/j.mimet.2023.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Single-cell methods allow studying the activity of single bacterial cells, potentially shedding light on regulatory mechanisms involved in services like biochemical cycling. Bioorthogonal non-canonical amino acid tagging (BONCAT) is a promising method for studying bacterial activity in natural communities, using the methionine analogues L-azidohomoalanine (AHA) and L-homopropargylglycine (HPG) to track protein production in single cells. Both AHA and HPG have been deemed non-toxic, but recent findings suggest that HPG affects bacterial metabolism. In this study we examined the effect of AHA and HPG on Escherichia coli with respect to acute toxicity and growth. E. coli exposed to 5.6-90 μM HPG showed no growth, and the growth rate was significantly reduced at >0.35 μM HPG, compared to the HPG-free control. In contrast, E. coli showed growth at concentrations up to 9 mM AHA. In assays where AHA or HPG were added during the exponential growth phase, the growth sustained but the growth rate was immediately reduced at the highest concentrations (90 μM HPG and 10 mM AHA). Prolonged incubations (20h) with apparently non-toxic concentrations suggest that the cells incorporating NCAAs fail to divide and do not contribute to the next generation resulting in the relative abundance of labelled cells to decrease over time. These results show that HPG and AHA have different impact on the growth of E. coli. Both concentration and incubation time affect the results and need to be considered when designing BONCAT experiments and evaluating results. Time course incubations are suggested as a possible way to obtain more reliable results.
Collapse
Affiliation(s)
| | - Gunnar Bratbak
- Department of Biological Sciences, University of Bergen, Norway
| | - Aud Larsen
- NORCE Environment and Climate, Bergen, Norway
| | - Jesslyn Tjendra
- Department of Biological Sciences, University of Bergen, Norway
| | - Selina Våge
- Department of Biological Sciences, University of Bergen, Norway.
| |
Collapse
|
17
|
Devi J, Pegu R, Mondal H, Roy R, Sundar Bhattacharya S. Earthworm stocking density regulates microbial community structure and fatty acid profiles during vermicomposting of lignocellulosic waste: Unraveling the microbe-metal and mineralization-humification interactions. BIORESOURCE TECHNOLOGY 2023; 367:128305. [PMID: 36370943 DOI: 10.1016/j.biortech.2022.128305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Earthworm-induced microbial enrichment is the key to success in vermitechnology, yet the influence of initial earthworm stocking density on microbial community profiles in vermibeds is unknown. Therefore, vermicomposting of lignocellulosic feedstock was performed with different stocking densities of two earthworms (Eisenia fetida and Eudrilus eugeniae) compared with composting. Eventually, earthworm growth, microbial (activity and community profiles), and physicochemical dynamics were assessed. The earthworm population significantly increased under low stocking, while denser stocking (15/kg) was stressful. The XRD-based crystallinity assessment revealed that comminuting efficiency of Eisenia and Eudrilus was prudent at 7 and 10 worm/kg stockings, respectively. Moreover, the 5 and 7 worm/kg stockings effectively mobilized microbial activity, promoting NPK-mineralization and C-humification balance. Correlation statistics indicated that earthworm stocking density-driven microbial community shift and fatty acid profiles strongly influenced metal removal in vermibeds. Hence, the findings implied that 5-7 worm/kg stockings of earthworms produced high-quality sanitized vermicompost.
Collapse
Affiliation(s)
- Jinnashri Devi
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Ratul Pegu
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Himadri Mondal
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Rashmi Roy
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India
| | - Satya Sundar Bhattacharya
- Soil and Agro Bio-engineering Lab, Department of Environmental Science, Tezpur University, Tezpur 784 028, India.
| |
Collapse
|
18
|
Wang KL, Zhang JX, Min D, Lv JL, Liu DF, Yu HQ. Detection and Quantification of Antimicrobial-Resistant Cells in Aquatic Environments by Bioorthogonal Noncanonical Amino Acid Tagging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15685-15694. [PMID: 36251006 DOI: 10.1021/acs.est.2c05024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aquatic environments are important reservoirs of antibiotic wastes, antibiotic resistance genes, and bacteria, enabling the persistence and proliferation of antibiotic resistance in different bacterial populations. To prevent the spread of antibiotic resistance, effective approaches to detect antimicrobial susceptibility in aquatic environments are highly desired. In this work, we adopt a metabolism-based bioorthogonal noncanonical amino acid tagging (BONCAT) method to detect, visualize, and quantify active antimicrobial-resistant bacteria in water samples by exploiting the differences in bacterial metabolic responses to antibiotics. The BONCAT approach can be applied to rapidly detect bacterial resistance to multiple antibiotics within 20 min of incubation, regardless of whether they act on proteins or DNA. In addition, the combination of BONCAT with the microscope enables the intuitive characterization of antibiotic-resistant bacteria in mixed systems at single-cell resolution. Furthermore, BONCAT coupled with flow cytometry exhibits good performance in determining bacterial resistance ratios to chloramphenicol and population heterogeneity in hospital wastewater samples. In addition, this approach is also effective in detecting antibiotic-resistant bacteria in natural water samples. Therefore, such a simple, fast, and efficient BONCAT-based approach will be valuable in monitoring the increase and spread of antibiotic resistance within natural and engineered aquatic environments.
Collapse
Affiliation(s)
- Kai-Li Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Xin Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Lu Lv
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Peach JT, Mueller RC, Skorupa DJ, Mesle MM, Kanta S, Boltinghouse E, Sharon B, Copié V, Bothner B, Peyton BM. Longitudinal analysis of the Five Sisters hot springs in Yellowstone National Park reveals a dynamic thermoalkaline environment. Sci Rep 2022; 12:18707. [PMID: 36333441 PMCID: PMC9636164 DOI: 10.1038/s41598-022-22047-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Research focused on microbial populations of thermoalkaline springs has been driven in a large part by the lure of discovering functional enzymes with industrial applications in high-pH and high temperature environments. While several studies have focused on understanding the fundamental ecology of these springs, the small molecule profiles of thermoalkaline springs have largely been overlooked. To better understand how geochemistry, small molecule composition, and microbial communities are connected, we conducted a three-year study of the Five Sisters (FS) springs that included high-resolution geochemical measurements, 16S rRNA sequencing of the bacterial and archaeal community, and mass spectrometry-based metabolite and extracellular small molecule characterization. Integration of the four datasets facilitated a comprehensive analysis of the interwoven thermoalkaline spring system. Over the course of the study, the microbial population responded to changing environmental conditions, with archaeal populations decreasing in both relative abundance and diversity compared to bacterial populations. Decreases in the relative abundance of Archaea were associated with environmental changes that included decreased availability of specific nitrogen- and sulfur-containing extracellular small molecules and fluctuations in metabolic pathways associated with nitrogen cycling. This multi-factorial analysis demonstrates that the microbial community composition is more closely correlated with pools of extracellular small molecules than with the geochemistry of the thermal springs. This is a novel finding and suggests that a previously overlooked component of thermal springs may have a significant impact on microbial community composition.
Collapse
Affiliation(s)
- Jesse T. Peach
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Rebecca C. Mueller
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Dana J. Skorupa
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Margaux M. Mesle
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA
| | - Sutton Kanta
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Eric Boltinghouse
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Bailey Sharon
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Valerie Copié
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA
| | - Brian Bothner
- grid.41891.350000 0001 2156 6108Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA
| | - Brent M. Peyton
- grid.41891.350000 0001 2156 6108Thermal Biology Institute, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717 USA ,grid.41891.350000 0001 2156 6108Department of Biological and Chemical Engineering, Montana State University, Bozeman, MT 59717 USA
| |
Collapse
|
20
|
McKay LJ, Smith HJ, Barnhart EP, Schweitzer HD, Malmstrom RR, Goudeau D, Fields MW. Activity-based, genome-resolved metagenomics uncovers key populations and pathways involved in subsurface conversions of coal to methane. THE ISME JOURNAL 2022; 16:915-926. [PMID: 34689183 PMCID: PMC8941128 DOI: 10.1038/s41396-021-01139-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Microbial metabolisms and interactions that facilitate subsurface conversions of recalcitrant carbon to methane are poorly understood. We deployed an in situ enrichment device in a subsurface coal seam in the Powder River Basin (PRB), USA, and used BONCAT-FACS-Metagenomics to identify translationally active populations involved in methane generation from a variety of coal-derived aromatic hydrocarbons. From the active fraction, high-quality metagenome-assembled genomes (MAGs) were recovered for the acetoclastic methanogen, Methanothrix paradoxum, and a novel member of the Chlorobi with the potential to generate acetate via the Pta-Ack pathway. Members of the Bacteroides and Geobacter also encoded Pta-Ack and together, all four populations had the putative ability to degrade ethylbenzene, phenylphosphate, phenylethanol, toluene, xylene, and phenol. Metabolic reconstructions, gene analyses, and environmental parameters also indicated that redox fluctuations likely promote facultative energy metabolisms in the coal seam. The active "Chlorobi PRB" MAG encoded enzymes for fermentation, nitrate reduction, and multiple oxygenases with varying binding affinities for oxygen. "M. paradoxum PRB" encoded an extradiol dioxygenase for aerobic phenylacetate degradation, which was also present in previously published Methanothrix genomes. These observations outline underlying processes for bio-methane from subbituminous coal by translationally active populations and demonstrate activity-based metagenomics as a powerful strategy in next generation physiology to understand ecologically relevant microbial populations.
Collapse
Affiliation(s)
- Luke J McKay
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Thermal Biology Institute, Montana State University, Bozeman, MT, 59717, USA.
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Heidi J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| | - Elliott P Barnhart
- U.S. Geological Survey, Wyoming-Montana Water Science Center, Helena, MT, 59601, USA
| | - Hannah D Schweitzer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA
- Arctic University of Norway, Tromsø, Norway
| | | | | | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
21
|
Metagenomes and Metagenome-Assembled Genomes from Substrate-Amended Hot Spring Sediment Incubations from Yellowstone National Park. Microbiol Resour Announc 2022; 11:e0106521. [PMID: 35352956 PMCID: PMC9022548 DOI: 10.1128/mra.01065-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report on eight sediment metagenomes obtained from an alkaline hot spring, with their corresponding metagenome-assembled genomes. Samples had been incubated for 48 h with various substrate amendments in conjunction with the amino acid analog l-homopropargylglycine in a study targeted at identifying anabolicly active uncultured thermophilic archaea and bacteria.
Collapse
|
22
|
Dynamics of actively dividing prokaryotes in the western Mediterranean Sea. Sci Rep 2022; 12:2064. [PMID: 35136122 PMCID: PMC8825817 DOI: 10.1038/s41598-022-06120-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3–3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.
Collapse
|
23
|
Lindivat M, Bratbak G, Larsen A, Hess-Erga OK, Hoell IA. Flow Cytometric Analysis of Bacterial Protein Synthesis: Monitoring Vitality After Water Treatment. Front Microbiol 2021; 12:772651. [PMID: 34956134 PMCID: PMC8702973 DOI: 10.3389/fmicb.2021.772651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial vitality after water disinfection treatment was investigated using bio-orthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM). Protein synthesis activity and DNA integrity (BONCAT–SYBR Green) was monitored in Escherichia coli monocultures and in natural marine samples after UV irradiation (from 25 to 200 mJ/cm2) and heat treatment (from 15 to 45 min at 55°C). UV irradiation of E. coli caused DNA degradation followed by the decrease in protein synthesis within a period of 24 h. Heat treatment affected both DNA integrity and protein synthesis immediately, with an increased effect over time. Results from the BONCAT method were compared with results from well-known methods such as plate counts (focusing on growth) and LIVE/DEAD™ BacLight™ (focusing on membrane permeability). The methods differed somewhat with respect to vitality levels detected in bacteria after the treatments, but the results were complementary and revealed that cells maintained metabolic activity and membrane integrity despite loss of cell division. Similarly, analysis of protein synthesis in marine bacteria with BONCAT displayed residual activity despite inability to grow or reproduce. Background controls (time zero blanks) prepared using different fixatives (formaldehyde, isopropanol, and acetic acid) and several different bacterial strains revealed that the BONCAT protocol still resulted in labeled, i.e., apparently active, cells. The reason for this is unclear and needs further investigation to be understood. Our results show that BONCAT and FCM can detect, enumerate, and differentiate bacterial cells after physical water treatments such as UV irradiation and heating. The method is reliable to enumerate and explore vitality of single cells, and a great advantage with BONCAT is that all proteins synthesized within cells are analyzed, compared to assays targeting specific elements such as enzyme activity.
Collapse
Affiliation(s)
- Mathilde Lindivat
- Faculty of Engineering and Science, Institute of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Haugesund, Norway
| | - Gunnar Bratbak
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aud Larsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE Environment, NORCE Norwegian Research Center AS, Bergen, Norway
| | | | - Ingunn Alne Hoell
- Faculty of Engineering and Science, Institute of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Haugesund, Norway
| |
Collapse
|
24
|
Krukenberg V, Reichart NJ, Spietz RL, Hatzenpichler R. Microbial Community Response to Polysaccharide Amendment in Anoxic Hydrothermal Sediments of the Guaymas Basin. Front Microbiol 2021; 12:763971. [PMID: 34956126 PMCID: PMC8703129 DOI: 10.3389/fmicb.2021.763971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Organic-rich, hydrothermal sediments of the Guaymas Basin are inhabited by diverse microbial communities including many uncultured lineages with unknown metabolic potential. Here we investigated the short-term effect of polysaccharide amendment on a sediment microbial community to identify taxa involved in the initial stage of macromolecule degradation. We incubated anoxic sediment with cellulose, chitin, laminarin, and starch and analyzed the total and active microbial communities using bioorthogonal non-canonical amino acid tagging (BONCAT) combined with fluorescence-activated cell sorting (FACS) and 16S rRNA gene amplicon sequencing. Our results show a response of an initially minor but diverse population of Clostridia particularly after amendment with the lower molecular weight polymers starch and laminarin. Thus, Clostridia may readily become key contributors to the heterotrophic community in Guaymas Basin sediments when substrate availability and temperature range permit their metabolic activity and growth, which expands our appreciation of the potential diversity and niche differentiation of heterotrophs in hydrothermally influenced sediments. BONCAT-FACS, although challenging in its application to complex samples, detected metabolic responses prior to growth and thus can provide complementary insight into a microbial community's metabolic potential and succession pattern. As a primary application of BONCAT-FACS on a diverse deep-sea sediment community, our study highlights important considerations and demonstrates inherent limitations associated with this experimental approach.
Collapse
Affiliation(s)
- Viola Krukenberg
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Nicholas J. Reichart
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Rachel L. Spietz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
- Thermal Biology Institute, Montana State University, Bozeman, MT, United States
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
25
|
Conspicuous Smooth and White Egg-Shaped Sulfur Structures on a Deep-Sea Hydrothermal Vent Formed by Sulfide-Oxidizing Bacteria. Microbiol Spectr 2021; 9:e0095521. [PMID: 34468192 PMCID: PMC8557937 DOI: 10.1128/spectrum.00955-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conspicuous egg-shaped, white, and smooth structures were observed at a hydrothermal vent site in the Guaymas Basin, Gulf of California. The gelatinous structures decomposed within hours after sampling. Scanning electron microscopy (SEM) and light microscopy showed that the structure consisted of filaments of less than 0.1 μm thickness, similar to those observed for "Candidatus Arcobacter sulfidicus." SEM-energy-dispersive X-ray spectroscopy (EDS) showed that the filaments were sulfur rich. According to 16S rRNA gene amplicon and fluorescence in situ hybridization (FISH) analyses, Arcobacter, a sulfide oxidizer that is known to produce filamentous elemental sulfur, was among the dominant species in the structure and was likely responsible for its formation. Arcobacter normally produces woolly snowflake like structures in opposed gradients of sulfide and oxygen. In the laboratory, we observed sulfide consumption in the anoxic zone of the structure, suggesting an anaerobic conversion. The sulfide oxidation and decomposition of the structure in the laboratory may be explained by dissolution of the sulfur filaments by reaction with sulfide under formation of polysulfides. IMPORTANCE At the deep-sea Guaymas Basin hydrothermal vent system, sulfide-rich hydrothermal fluids mix with oxygenated seawater, thereby providing a habitat for microbial sulfur oxidation. Microbial sulfur oxidation in the deep sea involves a variety of organisms and processes and can result in the excretion of elemental sulfur. Here, we report on conspicuous white and smooth gelatinous structures found on hot vents. These strange egg-shaped structures were often observed on previous occasions in the Guaymas Basin, but their composition and formation process were unknown. Our data suggest that the notable and highly ephemeral structure was likely formed by the well-known sulfide-oxidizing Arcobacter. While normally Arcobacter produces loose flocs or woolly layers, here smooth gel-like structures were found.
Collapse
|
26
|
McDaniel EA, Wahl SA, Ishii S, Pinto A, Ziels R, Nielsen PH, McMahon KD, Williams RBH. Prospects for multi-omics in the microbial ecology of water engineering. WATER RESEARCH 2021; 205:117608. [PMID: 34555741 DOI: 10.1016/j.watres.2021.117608] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions - including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.
Collapse
Affiliation(s)
- Elizabeth A McDaniel
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| | | | - Shun'ichi Ishii
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Yokosuka 237-0061, Japan
| | - Ameet Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Ryan Ziels
- Department of Civil Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA; Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Republic of Singapore.
| |
Collapse
|
27
|
Du Z, Behrens SF. Tracking de novo protein synthesis in the activated sludge microbiome using BONCAT-FACS. WATER RESEARCH 2021; 205:117696. [PMID: 34601360 DOI: 10.1016/j.watres.2021.117696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
In order to ensure stable performance of engineered biotechnologies that rely on mixed microbial community systems, it is important to identify process-specific microbial traits and study their in-situ activity and responses to changing environmental conditions and system operational parameters. We used BioOrthogonal Non-Canonical Amino acid Tagging (BONCAT) in combination with Fluorescence-Activated Cell Sorting (FACS) and 16S rRNA gene amplicon sequencing to identify translationally active cells in activated sludge. We found that only a subset of the activated sludge microbiome is translationally active during the aerobic treatment phase of a full-scale sequencing batch reactor designed to enhance biological phosphorus removal from municipal wastewater. Relative abundance of amplicon sequence variants was not a reliable predictor of species activity. BONCAT-positive and -negative cells revealed a broad range of population-wide and taxa-specific translational heterogeneity. BONCAT-FACS in combination with amplicon sequencing can provide new insights into the ecophysiology of highly dynamic microbiomes in activated sludge systems.
Collapse
Affiliation(s)
- Zhe Du
- The BioTechnology Institute, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA
| | - Sebastian F Behrens
- The BioTechnology Institute, University of Minnesota Twin Cities, St. Paul, MN, 55108, USA; Department of Civil, Environmental, and Geo-Engineering, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
28
|
Characterizing the Uncultivated Microbial Minority: towards Understanding the Roles of the Rare Biosphere in Microbial Communities. mSystems 2021; 6:e0077321. [PMID: 34427533 PMCID: PMC8407377 DOI: 10.1128/msystems.00773-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Microbial communities are frequently numerically dominated by just a few species. Often, the long “tail” of the rank-abundance plots of microbial communities constitutes the so-called “rare biosphere,” microorganisms that are highly diverse but are typically found in low abundance in these communities. Their presence in microbial communities has only recently become apparent with advances in high-throughput sequencing technologies. Despite their low numbers, they are thought to play important roles in their communities and may function as potential members to keep the communities intact and resilient. Their phylogenetic diversity also means that they are important subjects for better understanding the interplay between microbial diversity and evolution. I propose that more efforts should be put into characterizing these poorly understood and mostly unknown microbial lineages that hold vast potentials for our understanding of microbial diversity, ecology, and evolution of life on this planet.
Collapse
|
29
|
Marlow J, Spietz R, Kim K, Ellisman M, Girguis P, Hatzenpichler R. Spatially resolved correlative microscopy and microbial identification reveal dynamic depth- and mineral-dependent anabolic activity in salt marsh sediment. Environ Microbiol 2021; 23:4756-4777. [PMID: 34346142 PMCID: PMC8456820 DOI: 10.1111/1462-2920.15667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 07/08/2021] [Indexed: 01/04/2023]
Abstract
Coastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural-functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7-day in situ incubations with a non-canonical amino acid that was incorporated into new biomass, samples were resin-embedded and analysed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence-activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ~60% in the top centimetre to 9.4%-22.4% between 2 and 10 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to putative sulfate-reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non-quartz minerals including rutile, orthoclase and plagioclase. Microbe-mineral relationships appear to be dynamic and context-dependent arbiters of biogeochemical cycling.
Collapse
Affiliation(s)
- Jeffrey Marlow
- Department of Organismic and Evolutionary BiologyHarvard University16 Divinity AveCambridgeMassachusetts02138USA
| | - Rachel Spietz
- Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology, Thermal Biology Institute, and Center for Biofilm EngineeringMontana State UniversityBozemanMontana59717USA
| | - Keun‐Young Kim
- Department of NeurosciencesUniversity of California at San Diego School of Medicine and National Center for Microscopy and Imaging Research, University of CaliforniaSan DiegoLa JollaCalifornia92093USA
| | - Mark Ellisman
- Department of NeurosciencesUniversity of California at San Diego School of Medicine and National Center for Microscopy and Imaging Research, University of CaliforniaSan DiegoLa JollaCalifornia92093USA
- Department of PharmacologyUniversity of CaliforniaSan DiegoLa JollaCalifornia92161USA
| | - Peter Girguis
- Department of Organismic and Evolutionary BiologyHarvard University16 Divinity AveCambridgeMassachusetts02138USA
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Department of Microbiology and Cell Biology, Thermal Biology Institute, and Center for Biofilm EngineeringMontana State UniversityBozemanMontana59717USA
| |
Collapse
|
30
|
Wisnoski NI, Lennon JT. Stabilising role of seed banks and the maintenance of bacterial diversity. Ecol Lett 2021; 24:2328-2338. [PMID: 34322982 DOI: 10.1111/ele.13853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023]
Abstract
Coexisting species often exhibit negative frequency dependence due to mechanisms that promote population growth and persistence when rare. These stabilising mechanisms can maintain diversity through interspecific niche differences, but also through life-history strategies like dormancy that buffer populations in fluctuating environments. However, there are few tests demonstrating how seed banks contribute to long-term community dynamics and the maintenance of diversity. Using a multi-year, high-frequency time series of bacterial community data from a north temperate lake, we documented patterns consistent with stabilising coexistence. Bacterial taxa exhibited differential responses to seasonal environmental conditions, while seed bank dynamics helped maintain diversity over less-favourable winter periods. Strong negative frequency dependence in rare, but metabolically active, taxa suggested a role for biotic interactions in promoting coexistence. Together, our results provide field-based evidence that niche differences and seed banks contribute to recurring community dynamics and the long-term maintenance of diversity in nature.
Collapse
Affiliation(s)
- Nathan I Wisnoski
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
31
|
Activity-Based Cell Sorting Reveals Resistance of Functionally Degenerate Nitrospira during a Press Disturbance in Nitrifying Activated Sludge. mSystems 2021; 6:e0071221. [PMID: 34282936 PMCID: PMC8407113 DOI: 10.1128/msystems.00712-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Managing and engineering activated sludge wastewater treatment microbiomes for low-energy nitrogen removal requires process control strategies to stop the oxidation of ammonium at nitrite. Our ability to out-select nitrite-oxidizing bacteria (NOB) from activated sludge is challenged by their metabolic and physiological diversity, warranting measurements of their in situ physiology and activity under selective growth pressures. Here, we examined the stability of nitrite oxidation in activated sludge during a press disturbance induced by treating a portion of return activated sludge with a sidestream flow containing free ammonia (FA) at 200 mg NH3-N/liter. The nitrite accumulation ratio peaked at 42% by day 40 in the experimental bioreactor with the press disturbance, while it did not increase in the control bioreactor. A subsequent decrease in nitrite accumulation within the experimental bioreactor coincided with shifts in dominant Nitrospira 16S rRNA amplicon sequence variants (ASVs). We applied bioorthogonal noncanonical amino acid tagging (BONCAT) coupled with fluorescence-activated cell sorting (FACS) to investigate changes in the translational activity of NOB populations throughout batch exposure to FA. BONCAT-FACS confirmed that the single Nitrospira ASV washed out of the experimental bioreactor had reduced translational activity following exposure to FA, whereas the two Nitrospira ASVs that emerged after process acclimation were not impacted by FA. Thus, the coexistence of functionally degenerate and physiologically resistant Nitrospira populations provided resilience to the nitrite-oxidizing function during the press disturbance. These results highlight how BONCAT-FACS can resolve ecological niche differentiation within activated sludge and inform strategies to engineer and control microbiome function. IMPORTANCE Nitrogen removal from activated sludge wastewater treatment systems is an energy-intensive process due to the large aeration requirement for nitrification. This energy footprint could be minimized with engineering control strategies that wash out nitrite-oxidizing bacteria (NOB) to limit oxygen demands. However, NOB populations can have a high degree of physiological diversity, and it is currently difficult to decipher the behavior of individual taxa during applied selective pressures. Here, we utilized a new substrate analog probing approach to measure the activity of NOB at the cellular translational level in the face of a press disturbance applied to the activated sludge process. Substrate analog probing corroborated the time series reactor sampling, showing that coexisting and functionally degenerate Nitrospira populations provided resilience to the nitrite oxidation process. Taken together, these results highlight how substrate analog approaches can illuminate in situ ecophysiologies within shared niches, and can inform strategies to improve microbiome engineering and management.
Collapse
|
32
|
Abstract
Characterizing the cell-level metabolic trade-offs that phytoplankton exhibit in response to changing environmental conditions is important for predicting the impact of these changes on marine food web dynamics and biogeochemical cycling. The time-selective proteome-labeling approach, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to provide insight into differential allocation of resources at the cellular level, especially when coupled with proteomics. However, the application of this technique in marine phytoplankton remains limited. We demonstrate that the marine cyanobacteria Synechococcus sp. and two groups of eukaryotic algae take up the modified amino acid l-homopropargylglycine (HPG), suggesting that BONCAT can be used to detect translationally active phytoplankton. However, the impact of HPG addition on growth dynamics varied between groups of phytoplankton. In addition, proteomic analysis of Synechococcus cells grown with HPG revealed a physiological shift in nitrogen metabolism, general protein stress, and energy production, indicating a potential limitation for the use of BONCAT in understanding the cell-level response of Synechococcus sp. to environmental change. Variability in HPG sensitivity between algal groups and the impact of HPG on Synechococcus physiology indicates that particular considerations should be taken when applying this technique to other marine taxa or mixed marine microbial communities. IMPORTANCE Phytoplankton form the base of the marine food web and substantially impact global energy and nutrient flow. Marine picocyanobacteria of the genus Synechococcus comprise a large portion of phytoplankton biomass in the ocean and therefore are important model organisms. The technical challenges of environmental proteomics in mixed microbial communities have limited our ability to detect the cell-level adaptations of phytoplankton communities to a changing environment. The proteome labeling technique, bioorthogonal noncanonical amino acid tagging (BONCAT), has potential to address some of these challenges by simplifying proteomic analyses. This study explores the ability of marine phytoplankton to take up the modified amino acid, l-homopropargylglycine (HPG), required for BONCAT, and investigates the proteomic response of Synechococcus to HPG. We not only demonstrate that cyanobacteria can take up HPG but also highlight the physiological impact of HPG on Synechococcus, which has implications for future applications of this technique in the marine environment.
Collapse
|
33
|
Sommers P, Chatterjee A, Varsani A, Trubl G. Integrating Viral Metagenomics into an Ecological Framework. Annu Rev Virol 2021; 8:133-158. [PMID: 34033501 DOI: 10.1146/annurev-virology-010421-053015] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral metagenomics has expanded our knowledge of the ecology of uncultured viruses, within both environmental (e.g., terrestrial and aquatic) and host-associated (e.g., plants and animals, including humans) contexts. Here, we emphasize the implementation of an ecological framework in viral metagenomic studies to address questions in virology rarely considered ecological, which can change our perception of viruses and how they interact with their surroundings. An ecological framework explicitly considers diverse variants of viruses in populations that make up communities of interacting viruses, with ecosystem-level effects. It provides a structure for the study of the diversity, distributions, dynamics, and interactions of viruses with one another, hosts, and the ecosystem, including interactions with abiotic factors. An ecological framework in viral metagenomics stands poised to broadly expand our knowledge in basic and applied virology. We highlight specific fundamental research needs to capitalize on its potential and advance the field. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pacifica Sommers
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Anushila Chatterjee
- Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.,These authors contributed equally to this article
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA; .,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
34
|
Reichart NJ, Bowers RM, Woyke T, Hatzenpichler R. High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics. Front Microbiol 2021; 12:668238. [PMID: 33968004 PMCID: PMC8098120 DOI: 10.3389/fmicb.2021.668238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Enzyme stability and activity at elevated temperatures are important aspects in biotechnological industries, such as the conversion of plant biomass into biofuels. In order to reduce the costs and increase the efficiency of biomass conversion, better enzymatic processing must be developed. Hot springs represent a treasure trove of underexplored microbiological and protein chemistry diversity. Herein, we conduct an exploratory study into the diversity of hot spring biomass-degrading potential. We describe the taxonomic diversity and carbohydrate active enzyme (CAZyme) coding potential in 71 publicly available metagenomic datasets from 58 globally distributed terrestrial geothermal features. Through taxonomic profiling, we detected a wide diversity of microbes unique to varying temperature and pH ranges. Biomass-degrading enzyme potential included all five classes of CAZymes and we described the presence or absence of genes encoding 19 glycosyl hydrolases hypothesized to be involved with cellulose, hemicellulose, and oligosaccharide degradation. Our results highlight hot springs as a promising system for the further discovery and development of thermo-stable biomass-degrading enzymes that can be applied toward generation of renewable biofuels. This study lays a foundation for future research to further investigate the functional diversity of hot spring biomass-degrading enzymes and their potential utility in biotechnological processing.
Collapse
Affiliation(s)
- Nicholas J Reichart
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.,Thermal Biology Institute, Montana State University, Bozeman, MT, United States.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - Robert M Bowers
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Roland Hatzenpichler
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States.,Thermal Biology Institute, Montana State University, Bozeman, MT, United States.,Center for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
35
|
Klassen L, Xing X, Tingley JP, Low KE, King ML, Reintjes G, Abbott DW. Approaches to Investigate Selective Dietary Polysaccharide Utilization by Human Gut Microbiota at a Functional Level. Front Microbiol 2021; 12:632684. [PMID: 33679661 PMCID: PMC7933471 DOI: 10.3389/fmicb.2021.632684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
The human diet is temporally and spatially dynamic, and influenced by culture, regional food systems, socioeconomics, and consumer preference. Such factors result in enormous structural diversity of ingested glycans that are refractory to digestion by human enzymes. To convert these glycans into metabolizable nutrients and energy, humans rely upon the catalytic potential encoded within the gut microbiome, a rich collective of microorganisms residing in the gastrointestinal tract. The development of high-throughput sequencing methods has enabled microbial communities to be studied with more coverage and depth, and as a result, cataloging the taxonomic structure of the gut microbiome has become routine. Efforts to unravel the microbial processes governing glycan digestion by the gut microbiome, however, are still in their infancy and will benefit by retooling our approaches to study glycan structure at high resolution and adopting next-generation functional methods. Also, new bioinformatic tools specialized for annotating carbohydrate-active enzymes and predicting their functions with high accuracy will be required for deciphering the catalytic potential of sequence datasets. Furthermore, physiological approaches to enable genotype-phenotype assignments within the gut microbiome, such as fluorescent polysaccharides, has enabled rapid identification of carbohydrate interactions at the single cell level. In this review, we summarize the current state-of-knowledge of these methods and discuss how their continued development will advance our understanding of gut microbiome function.
Collapse
Affiliation(s)
- Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P. Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Kristin E. Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L. King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Greta Reintjes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
36
|
Thrash JC. Towards culturing the microbe of your choice. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:36-41. [PMID: 33073476 DOI: 10.1111/1758-2229.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
37
|
Taguer M, Shapiro BJ, Maurice CF. Translational activity is uncoupled from nucleic acid content in bacterial cells of the human gut microbiota. Gut Microbes 2021; 13:1-15. [PMID: 33779505 PMCID: PMC8009119 DOI: 10.1080/19490976.2021.1903289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/12/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023] Open
Abstract
Changes in bacterial diversity in the human gut have been associated with many conditions, despite not always reflecting changes in bacterial activity. Methods linking bacterial identity to function are needed for improved understanding of how bacterial communities adapt and respond to their environment, including the gut. Here, we optimized bioorthogonal non-canonical amino acid tagging (BONCAT) for the gut microbiota and combined it with fluorescently activated cell sorting and sequencing (FACS-Seq) to identify the translationally active members of the community. We then used this novel technique to compare with other bulk community measurements of activity and viability: relative nucleic acid content and membrane damage. The translationally active bacteria represent about half of the gut microbiota, and are not distinct from the whole community. The high nucleic acid content bacteria also represent half of the gut microbiota, but are distinct from the whole community and correlate with the damaged subset. Perturbing the community with xenobiotics previously shown to alter bacterial activity but not diversity resulted in stronger changes in the distinct physiological fractions than in the whole community. BONCAT is a suitable method to probe the translationally active members of the gut microbiota, and combined with FACS-Seq, allows for their identification. The high nucleic acid content bacteria are not necessarily the protein-producing bacteria in the community; thus, further work is needed to understand the relationship between nucleic acid content and bacterial metabolism in the human gut. Considering physiologically distinct subsets of the gut microbiota may be more informative than whole-community profiling.
Collapse
Affiliation(s)
- Mariia Taguer
- Department of Microbiology & Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - B. Jesse Shapiro
- Department of Microbiology & Immunology, McGill Genome Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
38
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|