1
|
Liu H, Zhao H, Zhou M, Zhao X, Lu Y. Neutrophils in cancer drug resistance: Roles and therapeutic opportunities. Cancer Lett 2024; 611:217417. [PMID: 39722405 DOI: 10.1016/j.canlet.2024.217417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
The tumor microenvironment (TME) is closely associated with the therapeutic response and clinical outcome of cancer drug therapies, which mainly include immunotherapy, chemotherapy and targeted therapy. Neutrophils that infiltrate tumors, also known as tumor-associated neutrophils (TANs), constitute a primary part of the TME. However, the functional importance of TANs in cancer drug therapy has long been overlooked because of their relatively short life span. Recent studies have shown that TANs play crucial protumoral or antitumoral roles in cancer drug treatment, largely because of their diversity and plasticity. This review describes the development, heterogeneity and recruitment of neutrophils in the context of cancer and emphasizes the role and mechanisms of TANs in cancer drug resistance. Additionally, several potential neutrophil-targeted strategies are discussed.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Hongyu Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Mingzhen Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Pesini C, Artal L, Paúl Bernal J, Sánchez Martinez D, Pardo J, Ramírez-Labrada A. In-depth analysis of the interplay between oncogenic mutations and NK cell-mediated cancer surveillance in solid tumors. Oncoimmunology 2024; 13:2379062. [PMID: 39036370 PMCID: PMC11259085 DOI: 10.1080/2162402x.2024.2379062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in antitumoral and antiviral responses. Yet, cancer cells can alter themselves or the microenvironment through the secretion of cytokines or other factors, hindering NK cell activation and promoting a less cytotoxic phenotype. These resistance mechanisms, often referred to as the "hallmarks of cancer" are significantly influenced by the activation of oncogenes, impacting most, if not all, of the described hallmarks. Along with oncogenes, other types of genes, the tumor suppressor genes are frequently mutated or modified during cancer. Traditionally, these genes have been associated with uncontrollable tumor growth and apoptosis resistance. Recent evidence suggests oncogenic mutations extend beyond modulating cell death/proliferation programs, influencing cancer immunosurveillance. While T cells have been more studied, the results obtained highlight NK cells as emerging key protagonists for enhancing tumor cell elimination by modulating oncogenic activity. A few recent studies highlight the crucial role of oncogenic mutations in NK cell-mediated cancer recognition, impacting angiogenesis, stress ligands, and signaling balance within the tumor microenvironment. This review will critically examine recent discoveries correlating oncogenic mutations to NK cell-mediated cancer immunosurveillance, a relatively underexplored area, particularly in the era dominated by immune checkpoint inhibitors and CAR-T cells. Building on these insights, we will explore opportunities to improve NK cell-based immunotherapies, which are increasingly recognized as promising alternatives for treating low-antigenic tumors, offering significant advantages in terms of safety and manufacturing suitability.
Collapse
Affiliation(s)
- Cecilia Pesini
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Laura Artal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Institute of Carbochemistry (ICB-CSIC), Zaragoza, Spain
| | - Jorge Paúl Bernal
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Diego Sánchez Martinez
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
- Department of Microbiology, Radiology, Pediatry and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ariel Ramírez-Labrada
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
- Center for Biomedical Research in the Network of Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Zaragoza, Spain
| |
Collapse
|
3
|
Sinkarevs S, Strumfs B, Volkova S, Strumfa I. Tumour Microenvironment: The General Principles of Pathogenesis and Implications in Diffuse Large B Cell Lymphoma. Cells 2024; 13:1057. [PMID: 38920685 PMCID: PMC11201569 DOI: 10.3390/cells13121057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide, constituting around 30-40% of all cases. Almost 60% of patients develop relapse of refractory DLBCL. Among the reasons for the therapy failure, tumour microenvironment (TME) components could be involved, including tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs), cancer-associated fibroblasts (CAFs), and different subtypes of cytotoxic CD8+ cells and T regulatory cells, which show complex interactions with tumour cells. Understanding of the TME can provide new therapeutic options for patients with DLBCL and improve their prognosis and overall survival. This review provides essentials of the latest understanding of tumour microenvironment elements and discusses their role in tumour progression and immune suppression mechanisms which result in poor prognosis for patients with DLBCL. In addition, we point out important markers for the diagnostic purposes and highlight novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Ilze Strumfa
- Department of Pathology, Riga Stradins University, 16 Dzirciema Street, LV-1007 Riga, Latvia
| |
Collapse
|
4
|
Recent Advances and Challenges in Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14163972. [PMID: 36010965 PMCID: PMC9406446 DOI: 10.3390/cancers14163972] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapy helps a person’s immune system to target tumor cells. Recent advances in cancer immunotherapy, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination, have changed the landscape of cancer treatment. These approaches have had profound success in certain cancer types but still fail in the majority of cases. This review will cover both successes and current challenges in cancer immunotherapy, as well as recent advances in the field of basic tumor immunology that will allow us to overcome resistance to existing treatments. Abstract Cancer immunotherapy has revolutionized the field of oncology in recent years. Harnessing the immune system to treat cancer has led to a large growth in the number of novel immunotherapeutic strategies, including immune checkpoint inhibition, chimeric antigen receptor T-cell therapy and cancer vaccination. In this review, we will discuss the current landscape of immuno-oncology research, with a focus on elements that influence immunotherapeutic outcomes. We will also highlight recent advances in basic aspects of tumor immunology, in particular, the role of the immunosuppressive cells within the tumor microenvironment in regulating antitumor immunity. Lastly, we will discuss how the understanding of basic tumor immunology can lead to the development of new immunotherapeutic strategies.
Collapse
|
5
|
Yang M, Wang B, Hou W, Yu H, Zhou B, Zhong W, Liu Z, Li J, Zeng H, Liu C, Qin H, Lin T, Huang J. Negative Effects of Stromal Neutrophils on T Cells Reduce Survival in Resectable Urothelial Carcinoma of the Bladder. Front Immunol 2022; 13:827457. [PMID: 35386697 PMCID: PMC8978967 DOI: 10.3389/fimmu.2022.827457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Urothelial carcinoma of the bladder (UCB) is a major type of bladder cancer with a distinct tumor microenvironment (TME). Although neutrophils are the main component of myeloid cells in the TME, the clinical significance and function of the neutrophils remain unclear in UCB. Here, we observed CD66b+ neutrophils were predominantly enriched in the stroma of UCB tissues and their levels emerged as an independent prognostic factor for overall survival (P = 0.006, n = 237), and were positively associated with age (P = 0.033), tumor stage (P < 0.0001), nodal metastasis (P = 0.045), and histological grade (P < 0.0001). Furthermore, we found that CD66b+ neutrophils were frequently co-localized with CD4+ T cells (R=0.35, P = 0.0067), CD8+ T cells (R=0.52, P<0.0001) and Cleaved Caspase-3+ apoptosis cells (R=0.44, P = 0.0007) in the stroma of UCB tissue. In addition, better effects of T cells on patients’ survival were markedly reduced by neutrophils and T cells co-infiltration. Moreover, we confirmed bladder tumor cell supernatant treated neutrophils suppressed T cell proliferation and activation, and promoted T cell apoptosis through GM-CSF induced PD-L1 in vitro. The expression of PD-L1 by neutrophils was also detected in fresh UCB tissues by using flow cytometric analysis. These data suggested that stromal CD66b+ neutrophils may potentially represent a reliable marker of poor prognosis for UCB patients, and neutrophils might play an immunosuppressive role on T cell immunity partially via the expression of PD-L1.
Collapse
Affiliation(s)
- Meihua Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Bo Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Weibin Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Hao Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Bingkun Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Wenlong Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Zhuowei Liu
- Department of Urology, Cancer Center, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Jinqing Li
- Department of Urology, Cancer Center, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Hong Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Cheng Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tianxin Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| | - Jian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, China
| |
Collapse
|
6
|
The Role of Neutrophils in the Pathogenesis of Chronic Lymphocytic Leukemia. Int J Mol Sci 2021; 23:ijms23010365. [PMID: 35008790 PMCID: PMC8745265 DOI: 10.3390/ijms23010365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/19/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor-associated neutrophils appear to be a crucial element of the tumor microenvironment that actively participates in the development and progression of cancerous diseases. The increased lifespan, plasticity in changing of phenotype, and functions of neutrophils influence the course of the disease and may significantly affect survival. In patients with chronic lymphocytic leukemia (CLL), disturbances in neutrophils functions impede the effective immune defense against pathogens. Therefore, understanding the mechanism underlying such a phenomenon in CLL seems to be of great importance. Here we discuss the recent reports analyzing the phenotype and functions of neutrophils in CLL, the most common leukemia in adults. We summarize the data concerning both the phenotype and the mechanisms by which neutrophils directly support the proliferation and survival of malignant B cells.
Collapse
|
7
|
Immunotherapy for Hepatocellular Carcinoma: New Prospects for the Cancer Therapy. Life (Basel) 2021; 11:life11121355. [PMID: 34947886 PMCID: PMC8704694 DOI: 10.3390/life11121355] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. HCC patients may benefit from liver transplantation, hepatic resection, radiofrequency ablation, transcatheter arterial chemoembolization, and targeted therapies. The increased infiltration of immunosuppressive immune cells and the elevated expression of immunosuppressive factors in the HCC microenvironment are the main culprits of the immunosuppressive nature of the HCC milieu. The immunosuppressive tumor microenvironment can substantially attenuate antitumoral immune responses and facilitate the immune evasion of tumoral cells. Immunotherapy is an innovative treatment method that has been promising in treating HCC. Immune checkpoint inhibitors (ICIs), adoptive cell transfer (ACT), and cell-based (primarily dendritic cells) and non-cell-based vaccines are the most common immunotherapeutic approaches for HCC treatment. However, these therapeutic approaches have not generally induced robust antitumoral responses in clinical settings. To answer to this, growing evidence has characterized immune cell populations and delineated intercellular cross-talk using single-cell RNA sequencing (scRNA-seq) technologies. This review aims to discuss the various types of tumor-infiltrating immune cells and highlight their roles in HCC development. Besides, we discuss the recent advances in immunotherapeutic approaches for treating HCC, e.g., ICIs, dendritic cell (DC)-based vaccines, non-cell-based vaccines, oncolytic viruses (OVs), and ACT. Finally, we discuss the potentiality of scRNA-seq to improve the response rate of HCC patients to immunotherapeutic approaches.
Collapse
|
8
|
Gao S, Yang X, Xu J, Qiu N, Zhai G. Nanotechnology for Boosting Cancer Immunotherapy and Remodeling Tumor Microenvironment: The Horizons in Cancer Treatment. ACS NANO 2021; 15:12567-12603. [PMID: 34339170 DOI: 10.1021/acsnano.1c02103] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunotherapy that harnesses the human immune system to fight cancer has received widespread attention and become a mainstream strategy for cancer treatment. Cancer immunotherapy not only eliminates primary tumors but also treats metastasis and recurrence, representing a major advantage over traditional cancer treatments. Recently with the development of nanotechnology, there exists much work applying nanomaterials to cancer immunotherapy on the basis of their excellent physiochemical properties, such as efficient tissue-specific delivery function, huge specific surface area, and controllable surface chemistry. Consequently, nanotechnology holds significant potential in improving the efficacy of cancer immunotherapy. Nanotechnology-based immunotherapy mainly manifests its inhibitory effect on tumors via two different approaches: one is to produce an effective anti-tumor immune response during tumorigenesis, and the other is to enhance tumor immune defense ability by modulating the immune suppression mechanism in the tumor microenvironment. With the success of tumor immunotherapy, understanding the interaction between the immune system and smart nanomedicine has provided vigorous vitality for the development of cancer treatment. This review highlights the application, progress, and prospect of nanomedicine in the process of tumor immunoediting and also discusses several engineering methods to improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Jiangkang Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Na Qiu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, China
| |
Collapse
|
9
|
Veluvolu S, Pellin M, Vos N. Evaluation of neutrophilia as a prognostic factor in dogs with multicentric lymphoma treated with a cyclophosphamide, doxorubicin, vincristine, and prednisone-based chemotherapy protocol. J Am Vet Med Assoc 2021; 259:494-502. [PMID: 34388019 DOI: 10.2460/javma.259.5.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether, in dogs with naïve multicentric lymphoma, neutrophilia at the time of initial diagnosis was associated with progression-free survival time (PFST) or overall response rate (ie, percentage of dogs with a complete or partial remission) and whether the initial neutrophil-to-lymphocyte ratio was associated with PFST. ANIMALS 30 dogs with multicentric lymphoma and neutrophilia (including 16 treated with a cyclophosphamide, doxorubicin, vincristine, and prednisone [CHOP]-based protocol) and 37 historical control dogs without neutrophilia treated with a CHOP-based protocol. PROCEDURES Medical records were reviewed, and PFSTs and responses were documented. RESULTS Median PFST for the 16 dogs with neutrophilia treated with a CHOP-based protocol (70 days; range, 0 to 296 days) was significantly shorter than that for the 37 control dogs without neutrophilia (184.5 days; range, 23 to 503 days), and the overall response rate for dogs with neutrophilia (12/16 [75%]) was significantly lower than the rate for dogs without neutrophilia (36/37 [97%]). However, when all dogs in the study and control populations were considered together, the neutrophil-to-lymphocyte ratio at the time of diagnosis was not significantly associated with PFST. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that neutrophilia at the time of initial diagnosis may suggest a poorer prognosis in dogs with multicentric lymphoma. Prospective investigation into the role of neutrophils in the peripheral circulation and tumor microenvironment of cancer-bearing patients is warranted.
Collapse
|
10
|
Liu Y, Zhou X, Wang X. Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 2021; 14:125. [PMID: 34404434 PMCID: PMC8369706 DOI: 10.1186/s13045-021-01134-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
B-cell lymphoma is a group of hematological malignancies with high clinical and biological heterogeneity. The pathogenesis of B-cell lymphoma involves a complex interaction between tumor cells and the tumor microenvironment (TME), which is composed of stromal cells and extracellular matrix. Although the roles of the TME have not been fully elucidated, accumulating evidence implies that TME is closely relevant to the origination, invasion and metastasis of B-cell lymphoma. Explorations of the TME provide distinctive insights for cancer therapy. Here, we epitomize the recent advances of TME in B-cell lymphoma and discuss its function in tumor progression and immune escape. In addition, the potential clinical value of targeting TME in B-cell lymphoma is highlighted, which is expected to pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yingyue Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324, Jingwu Road, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- School of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
11
|
Guo H, Li B, Diao L, Wang H, Chen P, Jiang M, Zhao L, He Y, Zhou C. An immune-based risk-stratification system for predicting prognosis in pulmonary sarcomatoid carcinoma (PSC). Oncoimmunology 2021; 10:1947665. [PMID: 34290908 PMCID: PMC8279095 DOI: 10.1080/2162402x.2021.1947665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pulmonary sarcomatoid carcinoma (PSC) is an uncommon subtype of lung cancer, and immune checkpoint blockade promises in clinical benefit. However, virtually nothing is known about the expression of common immune checkpoints in PSC. Here, we performed immunohistochemistry (IHC) to detect nine immune-related proteins in 97 PSC patients. Based on the univariable Cox regression, random forests were used to establish risk models for OS and DFS. Moreover, we used the GSEA, CIBERSORT, and ImmuCellAI to analyze the enriched pathways and microenvironment. Univariable analysis revealed that CD4 (P = 0.008), programmed cell death protein 1 (PD-1; P = 0.003), galectin-9 (Gal-9) on tumor cells (TCs; P = 0.021) were independent for DFS, while CD4 (P = 0.020), PD-1 (P = 0.004), Gal-9 (P = 0.033), and HLA on TILs (P = 0.031) were significant for OS. Meanwhile, the expression level of CD8 played a marginable role in DFS (P = 0.061), limited by the number of patients. The combination of Gal-9 on TC with CD4 and PD-1 on TILs demonstrated the most accurate prediction for DFS (AUC: 0.636-0.791, F1-score: 0.635–0.799), and a dramatic improvement to TNM-stage (P < 0.001 for F1-score of 1-y, 3-y, and 5-yDFS). A similar finding was also observed in the predictive ability of CD4 for OS (AUC: 0.602-0.678, F1-score: 0.635–0.679). CD4 was negatively associated with the infiltration of neutrophils (P = 0.015). PDCD1 (coding gene of PD-1) was positively correlated to the number of exhausted T cells (Texs; P = 0.020) and induced regulatory T cells (iTregs; P = 0.021), and LGALS9 (coding gene of Gal-9) was positively related to the level of dendritic cells (DCs; P = 0.021). Further, a higher combinational level of CD4, PDCD1 on TILs, and LAGLS9 on TCs were proved to be infiltrated with more M1-type macrophages (P < 0.05). We confirmed the expression status of nine immune-related proteins and established a TNM-Immune system for OS and DFS in PSC to assist clinical risk-stratification.
Collapse
Affiliation(s)
- Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Binglei Li
- Department of Computer Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Li Diao
- Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Minlin Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Lishu Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer 2021; 1876:188585. [PMID: 34224836 DOI: 10.1016/j.bbcan.2021.188585] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/28/2021] [Accepted: 06/23/2021] [Indexed: 01/09/2023]
Abstract
The tumor microenvironment plays a pivotal role in tumor initiation and progression by creating a dynamic interaction with cancer cells. The tumor microenvironment consists of various cellular components, including endothelial cells, fibroblasts, pericytes, adipocytes, immune cells, cancer stem cells and vasculature, which provide a sustained environment for cancer cell proliferation. Currently, targeting tumor microenvironment is increasingly being explored as a novel approach to improve cancer therapeutics, as it influences the growth and expansion of malignant cells in various ways. Despite continuous advancements in targeted therapies for cancer treatment, drug resistance, toxicity and immune escape mechanisms are the basis of treatment failure and cancer escape. Targeting tumor microenvironment efficiently with approved drugs and combination therapy is the solution to this enduring challenge that involves combining more than one treatment modality such as chemotherapy, surgery, radiotherapy, immunotherapy and nanotherapy that can effectively and synergistically target the critical pathways associated with disease pathogenesis. This review shed light on the composition of the tumor microenvironment, interaction of different components within tumor microenvironment with tumor cells and associated hallmarks, the current status of combinatorial therapies being developed, and various growing advancements. Furthermore, computational tools can also be used to monitor the significance and outcome of therapies being developed. We addressed the perceived barriers and regulatory hurdles in developing a combinatorial regimen and evaluated the present status of these therapies in the clinic. The accumulating depth of knowledge about the tumor microenvironment in cancer may facilitate further development of effective treatment modalities. This review presents the tumor microenvironment as a sweeping landscape for developing novel cancer therapies.
Collapse
|
13
|
Kotlov N, Bagaev A, Revuelta MV, Phillip JM, Cacciapuoti MT, Antysheva Z, Svekolkin V, Tikhonova E, Miheecheva N, Kuzkina N, Nos G, Tabbo F, Frenkel F, Ghione P, Tsiper M, Almog N, Fowler N, Melnick AM, Leonard JP, Inghirami G, Cerchietti L. Clinical and Biological Subtypes of B-cell Lymphoma Revealed by Microenvironmental Signatures. Cancer Discov 2021; 11:1468-1489. [PMID: 33541860 DOI: 10.1158/2159-8290.cd-20-0839] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease. Transcriptomic and genetic characterization of DLBCL has increased the understanding of its intrinsic pathogenesis and provided potential therapeutic targets. However, the role of the microenvironment in DLBCL biology remains less understood. Here, we performed a transcriptomic analysis of the microenvironment of 4,655 DLBCLs from multiple independent cohorts and described four major lymphoma microenvironment categories that associate with distinct biological aberrations and clinical behavior. We also found evidence of genetic and epigenetic mechanisms deployed by cancer cells to evade microenvironmental constraints of lymphoma growth, supporting the rationale for implementing DNA hypomethylating agents in selected patients with DLBCL. In addition, our work uncovered new therapeutic vulnerabilities in the biochemical composition of the extracellular matrix that were exploited to decrease DLBCL proliferation in preclinical models. This novel classification provides a road map for the biological characterization and therapeutic exploitation of the DLBCL microenvironment. SIGNIFICANCE: In a translational relevant transcriptomic-based classification, we characterized the microenvironment as a critical component of the B-cell lymphoma biology and associated it with the DLBCL clinical behavior establishing a novel opportunity for targeting therapies.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
| | | | - Maria V Revuelta
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Jude M Phillip
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Maria Teresa Cacciapuoti
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | | | | | | | | | | | | | - Fabrizio Tabbo
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | | | - Paola Ghione
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York.,Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Nava Almog
- BostonGene Corporation, Waltham, Massachusetts
| | | | - Ari M Melnick
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - John P Leonard
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York
| | - Leandro Cerchietti
- Hematology and Oncology Division, Medicine Department, New York Presbyterian Hospital, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
14
|
Lee J, Lee D, Lawler S, Kim Y. Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model. PLoS Comput Biol 2021; 17:e1008257. [PMID: 33596197 PMCID: PMC7920364 DOI: 10.1371/journal.pcbi.1008257] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/01/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide and is characterized by hijacking immune system for active growth and aggressive metastasis. Neutrophils, which in their original form should establish immune activities to the tumor as a first line of defense, are undermined by tumor cells to promote tumor invasion in several ways. In this study, we investigate the mutual interactions between the tumor cells and the neutrophils that facilitate tumor invasion by developing a mathematical model that involves taxis-reaction-diffusion equations for the critical components in the interaction. These include the densities of tumor and neutrophils, and the concentrations of signaling molecules and structure such as neutrophil extracellular traps (NETs). We apply the mathematical model to a Boyden invasion assay used in the experiments to demonstrate that the tumor-associated neutrophils can enhance tumor cell invasion by secreting the neutrophil elastase. We show that the model can both reproduce the major experimental observation on NET-mediated cancer invasion and make several important predictions to guide future experiments with the goal of the development of new anti-tumor strategies. Moreover, using this model, we investigate the fundamental mechanism of NET-mediated invasion of cancer cells and the impact of internal and external heterogeneity on the migration patterning of tumour cells and their response to different treatment schedules.
Collapse
Affiliation(s)
- Junho Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Brigham and Women’s Hospital & Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
15
|
Chaudhary A, Bag S, Arora N, Radhakrishnan VS, Mishra D, Mukherjee G. Hypoxic Transformation of Immune Cell Metabolism Within the Microenvironment of Oral Cancers. FRONTIERS IN ORAL HEALTH 2020; 1:585710. [PMID: 35047983 PMCID: PMC8757756 DOI: 10.3389/froh.2020.585710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) includes tumors of the lips, tongue, gingivobuccal complex, and floor of the mouth. Prognosis for OSCC is highly heterogeneous, with overall 5-year survival of ~50%, but median survival of just 8-10 months for patients with locoregional recurrence or metastatic disease. A key feature of OSCC is microenvironmental oxygen depletion due to rapid growth of constituent tumor cells, which triggers hypoxia-associated signaling events and metabolic adaptations that influence subsequent tumor progression. Better understanding of leukocyte responses to tissue hypoxia and onco-metabolite expression under low-oxygen conditions will therefore be essential to develop more effective methods of diagnosing and treating patients with OSCC. This review assesses recent literature on metabolic reprogramming, redox homeostasis, and associated signaling pathways that mediate crosstalk of OSCC with immune cells in the hypoxic tumor microenvironment. The likely functional consequences of this metabolic interface between oxygen-starved OSCC and infiltrating leukocytes are also discussed. The hypoxic microenvironment of OSCC modifies redox signaling and alters the metabolic profile of tumor-infiltrating immune cells. Improved understanding of heterotypic interactions between host leukocytes, tumor cells, and hypoxia-induced onco-metabolites will inform the development of novel theranostic strategies for OSCC.
Collapse
Affiliation(s)
- Amrita Chaudhary
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Swarnendu Bag
- Department of Histopathology, Tata Medical Center, Kolkata, India
| | - Neeraj Arora
- Department of Laboratory Hematology and Molecular Genetics, Tata Medical Center, Kolkata, India
| | | | - Deepak Mishra
- Department of Laboratory Hematology and Molecular Genetics, Tata Medical Center, Kolkata, India
| | | |
Collapse
|
16
|
Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci 2020; 21:E7820. [PMID: 33105656 PMCID: PMC7659937 DOI: 10.3390/ijms21217820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of immunotherapy has had a major impact on the outcome and overall survival in many types of cancer. Current immunotherapeutic strategies typically aim to (re)activate anticancer T cell immunity, although the targeting of macrophage-mediated anticancer innate immunity has also emerged in recent years. Neutrophils, although comprising ≈ 60% of all white blood cells in the circulation, are still largely overlooked in this respect. Nevertheless, neutrophils have evident anticancer activity and can induce phagocytosis, trogocytosis, as well as the direct cytotoxic elimination of cancer cells. Furthermore, therapeutic tumor-targeting monoclonal antibodies trigger anticancer immune responses through all innate Fc-receptor expressing cells, including neutrophils. Indeed, the depletion of neutrophils strongly reduced the efficacy of monoclonal antibody treatment and increased tumor progression in various preclinical studies. In addition, the infusion of neutrophils in murine cancer models reduced tumor progression. However, evidence on the anticancer effects of neutrophils is fragmentary and mostly obtained in in vitro assays or murine models with reports on anticancer neutrophil activity in humans lagging behind. In this review, we aim to give an overview of the available knowledge of anticancer activity by neutrophils. Furthermore, we will describe strategies being explored for the therapeutic activation of anticancer neutrophil activity.
Collapse
Affiliation(s)
| | | | - Edwin Bremer
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| | - Valerie R. Wiersma
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen (UMCG), University of Groningen, Hanzeplein 1/DA13, 9713 GZ Groningen, The Netherlands; (N.U.A.); (N.V.)
| |
Collapse
|
17
|
Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A. Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 2020; 20:485-503. [PMID: 32694624 DOI: 10.1038/s41568-020-0281-y] [Citation(s) in RCA: 716] [Impact Index Per Article: 143.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Neutrophils play a key role in defence against infection and in the activation and regulation of innate and adaptive immunity. In cancer, tumour-associated neutrophils (TANs) have emerged as an important component of the tumour microenvironment. Here, they can exert dual functions. TANs can be part of tumour-promoting inflammation by driving angiogenesis, extracellular matrix remodelling, metastasis and immunosuppression. Conversely, neutrophils can also mediate antitumour responses by direct killing of tumour cells and by participating in cellular networks that mediate antitumour resistance. Neutrophil diversity and plasticity underlie the dual potential of TANs in the tumour microenvironment. Myeloid checkpoints as well as the tumour and tissue contexture shape neutrophil function in response to conventional therapies and immunotherapy. We surmise that neutrophils can provide tools to tailor current immunotherapy strategies and pave the way to myeloid cell-centred therapeutic strategies, which would be complementary to current approaches.
Collapse
Affiliation(s)
- Sebastien Jaillon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
| | - Andrea Ponzetta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Diletta Di Mitri
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Angela Santoni
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma 'La Sapienza', Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Raffaella Bonecchi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy.
- Humanitas Clinical and Research Center IRCCS, Rozzano (MI), Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
18
|
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front Immunol 2020; 11:940. [PMID: 32499786 PMCID: PMC7243284 DOI: 10.3389/fimmu.2020.00940] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The success of cancer immunotherapy relies on the knowledge of the tumor microenvironment and the immune evasion mechanisms in which the tumor, stroma, and infiltrating immune cells function in a complex network. The potential barriers that profoundly challenge the overall clinical outcome of promising therapies need to be fully identified and counteracted. Although cancer immunotherapy has increasingly been applied, we are far from understanding how to utilize different strategies in the best way and how to combine therapeutic options to optimize clinical benefit. This review intends to give a contemporary and detailed overview of the different roles of immune cells, exosomes, and molecules acting in the tumor microenvironment and how they relate to immune activation and escape. Further, current and novel immunotherapeutic options will be discussed.
Collapse
Affiliation(s)
| | | | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
The complexity of neutrophils in health and disease: Focus on cancer. Semin Immunol 2020; 48:101409. [PMID: 32958359 PMCID: PMC7500440 DOI: 10.1016/j.smim.2020.101409] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Neutrophils are essential soldiers of the immune response and their role have long been restricted to their activities in defence against microbial infections and during the acute phase of the inflammatory response. However, increasing number of investigations showed that neutrophils are endowed with plasticity and can participate in the orchestration of both innate and adaptive immune responses. Neutrophils have an impact on a broad range of disorders, including infections, chronic inflammations, and cancer. Neutrophils are present in the tumour microenvironment and have been reported to mediate both pro-tumour and anti-tumour responses. Neutrophils can contribute to genetic instability, tumour cell proliferation, angiogenesis and suppression of the anti-tumour immune response. In contrast, neutrophils are reported to mediate anti-tumour resistance by direct killing of tumour cells or by engaging cooperative interactions with other immune cells. Here we discuss the current understandings of neutrophils biology and functions in health and diseases, with a specific focus on their role in cancer biology and their prognostic significance in human cancer.
Collapse
|
20
|
Zhao Y, Shi Y, Shen H, Zhou D, Li L, Zhu J, Yang X, Zheng Y, Zhu L, Ye X, Xie W. The prognostic value of platelet-lymphocyte ratio and neutrophil-lymphocyte ratio in the treatment response and survival of patients with peripheral T-cell lymphoma. Leuk Lymphoma 2019; 61:623-630. [PMID: 31809624 DOI: 10.1080/10428194.2019.1700244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and highly heterogeneous non-Hodgkin lymphoma (NHL). Although a few prognostic models have been put forward to predict the prognosis of PTCL, some patients with poor prognosis remain unidentified. Therefore, we conducted a retrospective study of 213 adult PTCL patients and assessed the prognostic role of platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) in the complete response (CR) and survival of PTCL patients. Patients with PLR ≥ 232.5 achieved a lower CR rate than patients with PLR < 232.5 (18.5% vs. 56.6%, p < .001). Moreover, there was a statistical significance in CR rate between patients with NLR ≥ 3.7 and < 3.7 (31.7% vs. 60.7%, p < .001). The univariable analysis indicated that both PLR and NLR were related with worse OS. However, only PLR remained an independent prognostic indicator of OS (p = .002) by multivariable analysis.
Collapse
Affiliation(s)
- Yanchun Zhao
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Yuanfei Shi
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Huafei Shen
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - De Zhou
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Li Li
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Jingjing Zhu
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Xiudi Yang
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Yanlong Zheng
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Lixia Zhu
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Xiujin Ye
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| | - Wanzhuo Xie
- Senior Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
|
22
|
Nie M, Yang L, Bi X, Wang Y, Sun P, Yang H, Liu P, Li Z, Xia Y, Jiang W. Neutrophil Extracellular Traps Induced by IL8 Promote Diffuse Large B-cell Lymphoma Progression via the TLR9 Signaling. Clin Cancer Res 2018; 25:1867-1879. [PMID: 30446590 DOI: 10.1158/1078-0432.ccr-18-1226] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/21/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE More than 30% of patients with diffuse large B-cell lymphoma (DLBCL) experience treatment failure after first-line therapy. Neutrophil extracellular traps (NETs), a pathogen-trapping structure in tumor microenvironment, can promote the transition of autoimmunity to lymphomagenesis. Here, we investigate whether NETs play a novel role in DLBCL progression and its underlying mechanism.Experimental Design: NETs in DLBCL tumor samples and plasma were detected by immunofluorescence and ELISA, respectively. The correlation between NETs and clinical features were analyzed. The effects of NETs on cellular proliferation and migration and mechanisms were explored, and the mechanism of NET formation was also studied by a series of in vitro and in vivo assays. RESULTS Higher levels of NETs in plasma and tumor tissues were associated with dismal outcome in patients with DLBCL. Furthermore, we identified NETs increased cell proliferation and migration in vitro and tumor growth and lymph node dissemination in vivo. Mechanistically, DLBCL-derived IL8 interacted with its receptor (CXCR2) on neutrophils, resulting in the formation of NETs via Src, p38, and ERK signaling. Newly formed NETs directly upregulated the Toll-like receptor 9 (TLR9) pathways in DLBCL and subsequently activated NFκB, STAT3, and p38 pathways to promote tumor progression. More importantly, disruption of NETs, blocking IL8-CXCR2 axis or inhibiting TLR9 could retard tumor progression in preclinical models. CONCLUSIONS Our data reveal a tumor-NETs aggressive interaction in DLBCL and indicate that NETs is a useful prognostic biomarker and targeting this novel cross-talk represents a new therapeutic opportunity in this challenging disease.
Collapse
Affiliation(s)
- Man Nie
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P.R. China
| | - Xiwen Bi
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Yu Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Peng Sun
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Hang Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Panpan Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Zhiming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China.,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Yi Xia
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China. .,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| | - Wenqi Jiang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China. .,State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P.R. China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, P.R. China
| |
Collapse
|