1
|
Li J, Macchia J, Elhossiny AM, Arya N, Kadiyala P, Branch G, Peterson N, Liu J, Kwon R, Machicado JD, Wamsteker EJ, Schulman A, Philips G, Menees S, Singhi AD, Sahai V, Fang JM, Frankel TL, Bednar F, Pasca di Magliano M, Shi J, Carpenter ES. Spatial analysis of IPMNs defines a paradoxical KRT17-positive, low-grade epithelial population harboring malignant features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643943. [PMID: 40166305 PMCID: PMC11957041 DOI: 10.1101/2025.03.18.643943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background & Aims Intraductal papillary mucinous neoplasms (IPMNs) are pancreatic cysts that represent one of the few radiologically identifiable precursors to pancreatic ductal adenocarcinoma (PDAC).Though the IPMN-bearing patient population represents a unique opportunity for early detection and interception, current guidelines provide insufficient accuracy in determining which patients should undergo resection versus surveillance, resulting in a sizable fraction of resected IPMNs only harboring low-grade dysplasia, suggesting that there may be overtreatment of this clinical entity. Methods To investigate the transcriptional changes that occur during IPMN progression, we performed spatial transcriptomics using the Nanostring GeoMx on patient samples containing the entire spectrum of IPMN disease including low-grade dysplasia, high-grade dysplasia, and IPMN-derived carcinoma. Single cell RNA sequencing was performed on side branch and main duct IPMN biospecimens. Results We identified a subpopulation of histologically low-grade IPMN epithelial cells that express malignant transcriptional features including KRT17 , S100A10 and CEACAM5 , markers that are enriched in PDAC. We validated and refined this high-risk gene signature by integrating our ST analysis with an external ST dataset containing a larger number of IPMN samples including non-tumor bearing IPMN (i.e. low-grade IPMN in isolation). We confirmed the presence of the KRT17+ population using immunofluorescence on a large cohort of patient tissues, revealing a widespread but patchy distribution of KRT17+ cells in histologically low-grade IPMN. Conclusions Our study demonstrates that KRT17 marks a distinct transcriptional signature in a subpopulation of epithelial cells within histologically low-grade IPMN. This population of cells likely represents a transitional state of histologically low-grade epithelial cells undergoing progression to a higher grade of dysplasia and thus may represent a higher risk of progression to carcinoma. Graphical abstract
Collapse
|
2
|
Gao Z, Azar J, Erstad D, Sun Z, Janakiraman H, Chung D, Lewin D, Lee HS, Van Buren G, Fisher W, Rubinstein MP, Camp ER. Tumor Immune Microenvironment Differences Associated With Racial Disparities in Pancreatic Cancer. J Surg Res 2025; 307:21-32. [PMID: 39970547 DOI: 10.1016/j.jss.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/08/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
INTRODUCTION Racial differences in antitumoral immunity have been identified in a variety of cancers and may contribute to survival disparities, but limited data exist exploring the molecular differences in pancreatic adenocarcinoma (PDAC). Using racially diverse PDAC datasets, we explored biologic differences that may drive disparities between African American (AA) and European American (EA) PDAC patients. METHODS Genomic PDAC mutational data was analyzed for mutational differences based on race. In a separate cohort, surgical PDAC specimens were processed for both tissue microarray and multiplex gene expression analysis using NanoString. RESULTS Of the 4679 patient samples in the mutational dataset, AA PDAC patients had significantly more TP53 mutations compared to the EA cohort. The tissue microarray included 12 AA and 41 EA surgically resected treatment-naive PDAC samples. NanoString analysis revealed significant differences between AA and EA groups in immunologic gene annotations (P < 0.05). CONCLUSIONS In the present study, we demonstrated that across racially diverse datasets, there exist molecular and microenvironmental differences between AA and EA patients that may contribute to cancer survival disparities. Defining molecular differences underlying PDAC racial disparities is an essential step in advancing care and improving outcomes for AA patients that suffer worse survival across cancer types.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Derek Erstad
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Zequn Sun
- Department of Preventative Medicine, Northwestern University Clinical and Translational Sciences Institute, Chicago, Illinois
| | | | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - David Lewin
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas
| | - William Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas
| | - Mark P Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - E Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Michael E. DeBakey VA Medical Center, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Sun X, Yang J, Wang Z, Nie Q, Yang Q, Zhang W, Liu M, Wang L, Zhu L. ZEB1 expression in Th17 cells correlated with p-STAT3 in human apical periodontitis. BMC Oral Health 2025; 25:315. [PMID: 40016707 PMCID: PMC11869427 DOI: 10.1186/s12903-025-05633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND ZEB1, a zinc-finger E homeobox-binding transcription factor most frequently associated with developmental programs linked to epithelial-mesenchymal transition, has been demonstrated to regulate immune cell function. The study aimed to investigate the expression pattern of ZEB1 in Th17 cells and its colocalization with p-STAT3 in human apical periodontitis lesions. METHODS Thirty-nine human periapical tissues were collected for ex vivo study, including periapical granulomas (PGs, n = 14), radicular cysts (RCs, n = 12), and healthy control tissues (control group, n = 13). Inflammatory infiltration of the lesions was assessed using hematoxylin-eosin staining. The expression of ZEB1 was detected and analyzed by immunohistochemistry. The localization of ZEB1 in Th17 cells and its colocalization with p-STAT3 were assessed using fluorescence colocalization. RESULTS ZEB1 expression was significantly higher in PGs and RCs than in the healthy control group; however no significant difference between the two groups was observed. Immunofluorescence analysis revealed that ZEB1 expression was correlated with IL17 and CD4 double-positive cells in human periapical lesions. ZEB1/ p-STAT3 double-positive cells were predominant in RCs and PGs than in the healthy control group. CONCLUSIONS The expression of ZEB1 was significantly elevated in PGs and RCs, and correlated with Th17 cells and p-STAT3 expression. This study revealed that ZEB1 is a potential player correlated with STAT3 activation and Th17 cells in apical periodontitis pathogenesis.
Collapse
Affiliation(s)
- Xiaoyue Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zijun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qing Nie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wei Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Mingwen Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Li Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
4
|
Kim S, Kim KH, Jung HW, Jeong EO, Lee HJ, Kwon J, Kwon HJ, Choi SW, Koh HS, Kim SH. Elevated Serum IL-6 as a Negative Prognostic Biomarker in Glioblastoma: Integrating Bioinformatics and Clinical Validation. J Cancer 2025; 16:802-811. [PMID: 39781345 PMCID: PMC11705068 DOI: 10.7150/jca.104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most lethal type of primary brain tumor, necessitating the discovery of reliable serum prognostic biomarkers. This study aimed to investigate the prognostic value of serum Interleukin-6 (IL-6) in GBM patients. Methods: Bioinformatics analysis via gene set enrichment analysis was conducted on The Cancer Genome Atlas RNA-seq data to explore the pathways enriched in samples with high IL-6 expression. The Tumor IMmune Estimation Resource database was used to analyze the association between IL-6 expression and immune cell infiltration. To validate the role of IL-6 in a clinical setting, a retrospective cohort study was conducted on newly diagnosed GBM patients. Serum IL-6 levels were repeatedly measured at key milestone time points, and their correlation with survival data was analyzed. Results: Bioinformatics analysis revealed that high IL-6 expression is associated with the activation of procancer pathways, that there is a positive correlation between IL-6 expression and immune cell infiltration in GBM. Between March 2021 and September 2023, 36 GBM patients and their serum IL-6 measurements at various time points were included in the clinical data analyses. Elevated serum IL-6 levels at baseline, with a cutoff of 7pg/mL, were identified in 11 patients (30.6%). In the multivariate analyses for overall survival (OS), elevated IL-6 was a significant risk factor (p = 0.048), along with unfavorable surgical resection (p = 0.039) and O6-methylguanine-DNA methyltransferase promotor unmethylation (p = 0.027). The median actuarial OS of the high initial IL-6 group was significantly shorter than that of the low initial IL-6 group (6.4 vs. 19.7 months, p < 0.001). However, IL-6 levels at other time points were not related to patient prognosis. Conclusion: Elevated IL-6 mRNA expression is correlated with the activation of procancer pathways, increased immune cell infiltration, and poor prognosis in GBM patients. In addition, elevated serum IL-6 at baseline is a negative prognostic factor confirmed in a clinical study. Serum IL-6 may be a potential prognostic biomarker enhancing the management of GBM.
Collapse
Affiliation(s)
- Sup Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyung Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hee-won Jung
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Oh Jeong
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Han-Joo Lee
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jeanny Kwon
- Department of Radiation Oncology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyon-jo Kwon
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seung-Won Choi
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyeon-Song Koh
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
5
|
Osman EEA, Neamati N. Ironing Out the Mechanism of gp130 Signaling. Pharmacol Rev 2024; 76:1399-1443. [PMID: 39414364 DOI: 10.1124/pharmrev.124.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
gp130 functions as a shared signal-transducing subunit not only for interleukin (IL)-6 but also for eight other human cytokine receptor complexes. The IL-6 signaling pathway mediated through gp130 encompasses classical, trans, or cluster signaling, intricately regulated by a diverse array of modulators affecting IL-6, its receptor, and gp130. Currently, only a limited number of small molecule antagonists and agonists for gp130 are known. This review aims to comprehensively examine the current knowledge of these modulators and provide insights into their pharmacological properties, particularly in the context of cancer and other diseases. Notably, the prominent gp130 modulators SC144, bazedoxifene, and raloxifene are discussed in detail, with a specific focus on the discovery of SC144's iron-chelating properties. This adds a new dimension to the understanding of its pharmacological effects and therapeutic potential in conditions where iron homeostasis is significant. Our bioinformatic analysis of gp130 and genes related to iron homeostasis reveals insightful correlations, implicating the role of iron in the gp130 signaling pathway. Overall, this review contributes to the evolving understanding of gp130 modulation and its potential therapeutic applications in various disease contexts. SIGNIFICANCE STATEMENT: This perspective provides a timely and comprehensive analysis of advancements in gp130 signaling research, emphasizing the therapeutic implications of the currently available modulators. Bioinformatic analysis demonstrates potential interplay between gp130 and genes that regulate iron homeostasis, suggesting new therapeutic avenues. By combining original research findings with a broader discussion of gp130's therapeutic potential, this perspective significantly contributes to the field.
Collapse
Affiliation(s)
- Essam Eldin A Osman
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan (E.E.A.O., N.N.) and Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt (E.E.A.O.)
| |
Collapse
|
6
|
Toth KA, Schmitt EG, Kolicheski A, Greenberg ZJ, Levendosky E, Saucier N, Trammel K, Oikonomou V, Lionakis MS, Klechevsky E, Kim BS, Schuettpelz LG, Saligrama N, Cooper MA. A human STAT3 gain-of-function variant drives local Th17 dysregulation and skin inflammation in mice. J Exp Med 2024; 221:e20232091. [PMID: 38861030 PMCID: PMC11167377 DOI: 10.1084/jem.20232091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
Germline gain-of-function (GOF) variants in STAT3 cause an inborn error of immunity associated with early-onset poly-autoimmunity and immune dysregulation. To study tissue-specific immune dysregulation, we used a mouse model carrying a missense variant (p.G421R) that causes human disease. We observed spontaneous and imiquimod (IMQ)-induced skin inflammation associated with cell-intrinsic local Th17 responses in STAT3 GOF mice. CD4+ T cells were sufficient to drive skin inflammation and showed increased Il22 expression in expanded clones. Certain aspects of disease, including increased epidermal thickness, also required the presence of STAT3 GOF in epithelial cells. Treatment with a JAK inhibitor improved skin disease without affecting local Th17 recruitment and cytokine production. These findings collectively support the involvement of Th17 responses in the development of organ-specific immune dysregulation in STAT3 GOF and suggest that the presence of STAT3 GOF in tissues is important for disease and can be targeted with JAK inhibition.
Collapse
Affiliation(s)
- Kelsey A. Toth
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica G. Schmitt
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Kolicheski
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zev J. Greenberg
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth Levendosky
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nermina Saucier
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelsey Trammel
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, Precision Immunology Institute, Friedman Brain Institute, Mark Lebwohl Center for Neuroinflammation and Sensation, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
| | - Laura G. Schuettpelz
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naresha Saligrama
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
- Bursky Center for Human Immunology & Immunotherapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan A. Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Tang J, Zhang J, Zhang G, Peng W, Ling N, Zhou Y, Xu H, Ren H, Chen M. Stat3 activation-triggered transcriptional networks govern the early stage of HBV-induced hepatic inflammation. mBio 2024; 15:e0306823. [PMID: 38440978 PMCID: PMC11005361 DOI: 10.1128/mbio.03068-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
The chronic carrier state of the hepatitis B virus (HBV) often leads to the development of liver inflammation as carriers age. However, the exact mechanisms that trigger this hepatic inflammation remain poorly defined. We analyzed the sequential processes during the onset of liver inflammation based on time-course transcriptome and transcriptional regulatory networks in an HBV transgenic (HBV-Tg) mice model and chronic HBV-infected (CHB) patients (data from GSE83148). The key transcriptional factor (TF) responsible for hepatic inflammation occurrence was identified and then validated both in HBV-Tg mice and liver specimens from young CHB patients. By time-course analysis, an early stage of hepatic inflammation was demonstrated in 3-month-old HBV-Tg mice: a marked upregulation of genes related to inflammation (Saa1/2, S100a8/9/11, or Il1β), innate immunity (Tlr2, Tlr7, or Tlr8), and cells chemotaxis (Ccr2, Cxcl1, Cxcl13, or Cxcl14). Within CHB samples, a unique early stage of inflammation activation was discriminated from immune tolerance and immune activation groups based on distinct gene expression patterns. Enhanced activation of TF Stat3 was strongly associated with increased inflammatory gene expression in this early stage of inflammation. Expression of phosphorylated Stat3 was higher in liver specimens from young CHB patients with relatively higher alanine aminotransferase levels. Specific inhibition of Stat3 activation significantly attenuated the degree of liver inflammation, the expression of inflammation-related genes, and the inflammatory monocytes and macrophages in 3-month-old HBV-Tg mice. Stat3 activation is essential for hepatic inflammation occurrence and is a novel indicator of early-stage immune activation in chronic HBV carriers. IMPORTANCE Until now, it remains a mystery that chronic hepatitis B virus (HBV)-infected patients in the "immune tolerance phase" will transition to the "immune activation phase" as they age. In this study, we reveal that Stat3 activation-triggered hepatic transcriptional alterations are distinctive characteristics of the early stage of immune/inflammation activation in chronic HBV infection. For the first time, we discover a mechanism that might trigger the transition from immune tolerance to immune activation in chronic HBV carriers.
Collapse
Affiliation(s)
- Jinglin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxuan Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Gaoli Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhui Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Department of Infection, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Department of Infection, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Guo Z, Ashrafizadeh M, Zhang W, Zou R, Sethi G, Zhang X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: a pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev 2024; 43:29-53. [PMID: 37453022 DOI: 10.1007/s10555-023-10125-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The metastasis is a multistep process in which a small proportion of cancer cells are detached from the colony to enter into blood cells for obtaining a new place for metastasis and proliferation. The metastasis and cell plasticity are considered major causes of cancer-related deaths since they improve the malignancy of cancer cells and provide poor prognosis for patients. Furthermore, enhancement in the aggressiveness of cancer cells has been related to the development of drug resistance. Metastasis of pancreatic cancer (PC) cells has been considered one of the major causes of death in patients and their undesirable prognosis. PC is among the most malignant tumors of the gastrointestinal tract and in addition to lifestyle, smoking, and other factors, genomic changes play a key role in its progression. The stimulation of EMT in PC cells occurs as a result of changes in molecular interaction, and in addition to increasing metastasis, EMT participates in the development of chemoresistance. The epithelial, mesenchymal, and acinar cell plasticity can occur and determines the progression of PC. The major molecular pathways including STAT3, PTEN, PI3K/Akt, and Wnt participate in regulating the metastasis of PC cells. The communication in tumor microenvironment can provide by exosomes in determining PC metastasis. The components of tumor microenvironment including macrophages, neutrophils, and cancer-associated fibroblasts can modulate PC progression and the response of cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Zhenli Guo
- Department of Oncology, First Affiliated Hospital, Gannan Medical University, 128 Jinling Road, Ganzhou City, Jiangxi Province, 341000, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, 16 Medical Drive, Singapore, 117600, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
9
|
De Blander H, Tonon L, Fauvet F, Pommier RM, Lamblot C, Benhassoun R, Angileri F, Gibert B, Rodriguez R, Ouzounova M, Morel AP, Puisieux A. Cooperative pro-tumorigenic adaptation to oncogenic RAS through epithelial-to-mesenchymal plasticity. SCIENCE ADVANCES 2024; 10:eadi1736. [PMID: 38354248 PMCID: PMC10866563 DOI: 10.1126/sciadv.adi1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α. Our data contrast with the common view of cellular senescence as a tumor-suppressive mechanism and EMP as a process promoting late stages of tumor progression in response to signals from the tumor microenvironment. We highlighted here a pro-tumorigenic cooperation of RAS-activated mammary epithelial cells, which leverages on oncogene-induced senescence and EMP to trigger cellular reprogramming and malignant transformation.
Collapse
Affiliation(s)
- Hadrien De Blander
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Plateforme de Bioinformatique ‘Gilles Thomas’, Centre Léon Bérard, Lyon, France
| | - Frédérique Fauvet
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Roxane M. Pommier
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
- Synergie Lyon Cancer, Plateforme de Bioinformatique ‘Gilles Thomas’, Centre Léon Bérard, Lyon, France
| | - Christelle Lamblot
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Rahma Benhassoun
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Francesca Angileri
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Benjamin Gibert
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
- Gastroenterology and Technologies for Health Group, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, 69008, Lyon, France
| | - Raphaël Rodriguez
- Equipe Labellisée Ligue Contre le Cancer, CNRS UMR 3666, INSERM U1143, Paris, France
- Institut Curie, PSL Research University, Paris, France
| | - Maria Ouzounova
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Anne-Pierre Morel
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer, CNRS UMR 3666, INSERM U1143, Paris, France
- Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
10
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Du Q, Zhu T, Wen G, Jin H, An J, Xu J, Xie R, Zhu J, Yang X, Zhang T, Liu Q, Yao S, Yang X, Tuo B, Ma X. The S100 calcium-binding protein A6 plays a crucial role in hepatic steatosis by mediating lipophagy. Hepatol Commun 2023; 7:e0232. [PMID: 37655980 PMCID: PMC10476764 DOI: 10.1097/hc9.0000000000000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/10/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND S100 calcium-binding protein A6 (S100A6) is a calcium-binding protein that is involved in a variety of cellular processes, such as proliferation, apoptosis, and the cellular response to various stress stimuli. However, its role in NAFLD and associated metabolic diseases remains uncertain. METHODS AND RESULTS In this study, we revealed a new function and mechanism of S100A6 in NAFLD. S100A6 expression was upregulated in human and mouse livers with hepatic steatosis, and the depletion of hepatic S100A6 remarkably inhibited lipid accumulation, insulin resistance, inflammation, and obesity in a high-fat, high-cholesterol (HFHC) diet-induced murine hepatic steatosis model. In vitro mechanistic investigations showed that the depletion of S100A6 in hepatocytes restored lipophagy, suggesting S100A6 inhibition could alleviate HFHC-induced NAFLD. Moreover, S100A6 liver-specific ablation mediated by AAV9 alleviated NAFLD in obese mice. CONCLUSIONS Our study demonstrates that S100A6 functions as a positive regulator of NAFLD, targeting the S100A6-lipophagy axis may be a promising treatment option for NAFLD and associated metabolic diseases.
Collapse
Affiliation(s)
- Qian Du
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Tingting Zhu
- School of Medicine, Guizhou University, Guiyang, Guizhou, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xiaoxu Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
12
|
Mandarino A, Thiyagarajan S, Martins ACF, Gomes RDS, Vetter SW, Leclerc E. S100s and HMGB1 Crosstalk in Pancreatic Cancer Tumors. Biomolecules 2023; 13:1175. [PMID: 37627239 PMCID: PMC10452588 DOI: 10.3390/biom13081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Pancreatic cancer remains a disease that is very difficult to treat. S100 proteins are small calcium binding proteins with diverse intra- and extracellular functions that modulate different aspects of tumorigenesis, including tumor growth and metastasis. High mobility group box 1 (HMGB1) protein is a multifaceted protein that also actively influences the development and progression of tumors. In this study, we investigate the possible correlations, at the transcript level, between S100s and HMGB1 in pancreatic cancer. For this purpose, we calculated Pearson's correlations between the transcript levels of 13 cancer-related S100 genes and HMGB1 in a cDNA array containing 19 pancreatic cancer tumor samples, and in 8 human pancreatic cancer cell lines. Statistically significant positive correlations were found in 5.5% (5 out of 91) and 37.4% (34 of 91) of the possible S100/S100 or S100/HMGB1 pairs in cells and tumors, respectively. Our data suggest that many S100 proteins crosstalk in pancreatic tumors either with other members of the S100 family, or with HMGB1. These newly observed interdependencies may be used to further the characterization of pancreatic tumors based on S100 and HMGB1 transcription profiles.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
13
|
Pakola S, Quixabeira DCA, Kudling TV, Clubb JHA, Grönberg-Vähä-Koskela S, Basnet S, Jirovec E, Arias V, Haybout L, Heiniö C, Santos JM, Cervera-Carrascon V, Havunen R, Anttila M, Hemminki A. An oncolytic adenovirus coding for a variant interleukin 2 cytokine improves response to chemotherapy through enhancement of effector lymphocyte cytotoxicity, fibroblast compartment modulation and mitotic slippage. Front Immunol 2023; 14:1171083. [PMID: 37475863 PMCID: PMC10354511 DOI: 10.3389/fimmu.2023.1171083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly treatment-resistant cancer. Currently, the only curative treatment for PDAC is surgery, but most patients are diagnosed with metastatic disease and thus outside the scope of surgery. The majority of metastatic patients receive chemotherapy, but responses are limited. New therapeutics are thus urgently needed for PDAC. One major limitation in treating PDAC has been the highly immunosuppressive tumor microenvironment (TME) which inhibits anti-cancer immune responses. We have constructed an oncolytic adenovirus coding for a variant the interleukin 2 molecule, Ad5/3-E2F-d24-vIL2 (also known as TILT-452, and "vIL-2 virus"), with preferential binding to IL-2 receptors on the surface of effector lymphocytes over T regulatory cells (T regs). In the present study this virus was evaluated in combination with nab-paclitaxel and gemcitabine chemotherapy in Panc02 mouse model. Ad5/3-E2F-d24-vIL2 showed marked PDAC cell killing in vitro, alongside induction of mitotic slippage and immunogenic cell death in PDAC cell lines, when combined with chemotherapy. Increased survival was seen in vivo with 80% of animals surviving long term, when compared to chemotherapy alone. Moreover, combination therapy mediated enhanced tumor growth control, without observable toxicities in internal organs or external features. Survival and tumor control benefits were associated with activation of tumor infiltrating immune cells, downregulation of inhibitory signals, change in fibroblast populations in the tumors and changes in intratumoral cytokines, with increased chemokine amounts (CCL2, CCL3, CCL4) and anti-tumor cytokines (IFN-γ and TNFα). Furthermore, vIL-2 virus in combination with chemotherapy efficiently induced tumor protection upon rechallenge, that was extended to a previously non-encountered cancer cell line. In conclusion, Ad5/3-E2F-d24-vIL2 is a promising immunotherapy candidate when combined with nab-paclitaxel and gemcitabine.
Collapse
Affiliation(s)
- Santeri Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Dafne C. A. Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Tatiana V. Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - James H. A. Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Susanna Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Elise Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Victor Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Lyna Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Joao M. Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
| | | | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
14
|
Huang YH, Chen HK, Hsu YF, Chen HC, Chuang CH, Huang SW, Hsu MJ. Src-FAK Signaling Mediates Interleukin 6-Induced HCT116 Colorectal Cancer Epithelial–Mesenchymal Transition. Int J Mol Sci 2023; 24:ijms24076650. [PMID: 37047623 PMCID: PMC10095449 DOI: 10.3390/ijms24076650] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Colorectal cancer is one of the most prevalent and lethal malignancies, affecting approximately 900,000 individuals each year worldwide. Patients with colorectal cancer are found with elevated serum interleukin-6 (IL-6), which is associated with advanced tumor grades and is related to their poor survival outcomes. Although IL-6 is recognized as a potent inducer of colorectal cancer progression, the detail mechanisms underlying IL-6-induced colorectal cancer epithelial–mesenchymal transition (EMT), one of the major process of tumor metastasis, remain unclear. In the present study, we investigated the regulatory role of IL-6 signaling in colorectal cancer EMT using HCT116 human colorectal cancer cells. We noted that the expression of epithelial marker E-cadherin was reduced in HCT116 cells exposed to IL-6, along with the increase in a set of mesenchymal cell markers including vimentin and α-smooth muscle actin (α-SMA), as well as EMT transcription regulators—twist, snail and slug. The changes of EMT phenotype were related to the activation of Src, FAK, ERK1/2, p38 mitogen-activated protein kinase (p38MAPK), as well as transcription factors STAT3, κB and C/EBPβ. IL-6 treatment has promoted the recruitment of STAT3, κB and C/EBPβ toward the Twist promoter region. Furthermore, the Src-FAK signaling blockade resulted in the decline of IL-6 induced activation of ERK1/2, p38MAPK, κB, C/EBPβ and STAT3, as well as the decreasing mesenchymal state of HCT116 cells. These results suggested that IL-6 activates the Src-FAK-ERK/p38MAPK signaling cascade to cause the EMT of colorectal cancer cells. Pharmacological approaches targeting Src-FAK signaling may provide potential therapeutic strategies for rescuing colorectal cancer progression.
Collapse
Affiliation(s)
- Yu-Han Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Han-Kun Chen
- Department of General Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan 324, Taiwan
| | - Hsiu-Chen Chen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chin-Hui Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shiu-Wen Huang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Research Center of Thoracic Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Ming-Jen Hsu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
15
|
Low RRJ, Fung KY, Gao H, Preaudet A, Dagley LF, Yousef J, Lee B, Emery-Corbin SJ, Nguyen PM, Larsen RH, Kershaw NJ, Burgess AW, Gibbs P, Hollande F, Griffin MDW, Grimmond SM, Putoczki TL. S100 family proteins are linked to organoid morphology and EMT in pancreatic cancer. Cell Death Differ 2023; 30:1155-1165. [PMID: 36828915 PMCID: PMC10154348 DOI: 10.1038/s41418-023-01126-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a continuum that includes epithelial, partial EMT, and mesenchymal states, each of which is associated with cancer progression, invasive capabilities, and ultimately, metastasis. We used a lineage-traced sporadic model of pancreatic cancer to generate a murine organoid biobank from primary and secondary tumors, including sublines that underwent partial EMT and complete EMT. Using an unbiased proteomics approach, we found that organoid morphology predicts the EMT state, and the solid organoids are associated with a partial EMT signature. We also observed that exogenous TGFβ1 induces solid organoid morphology that is associated with changes in the S100 family, complete EMT, and the formation of high-grade tumors. S100A4 may be a useful biomarker for predicting EMT state, disease progression, and outcome in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Ronnie Ren Jie Low
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
| | - Ka Yee Fung
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hugh Gao
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, 3800, Australia
| | - Adele Preaudet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura F Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jumana Yousef
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Belinda Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samantha J Emery-Corbin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Paul M Nguyen
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Rune H Larsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nadia J Kershaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Antony W Burgess
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter Gibbs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Frédéric Hollande
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, 3000, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
16
|
S100A6 Protein-Expression and Function in Norm and Pathology. Int J Mol Sci 2023; 24:ijms24021341. [PMID: 36674873 PMCID: PMC9866648 DOI: 10.3390/ijms24021341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
S100A6, also known as calcyclin, is a calcium-binding protein belonging to the S100 protein family. It was first identified and purified more than 30 years ago. Initial structural studies, focused mostly on the mode and affinity of Ca2+ binding and resolution of the resultant conformational changes, were soon complemented by research on its expression, localization and identification of binding partners. With time, the use of biophysical methods helped to resolve the structure and versatility of S100A6 complexes with some of its ligands. Meanwhile, it became clear that S100A6 expression was altered in various pathological states and correlated with the stage/progression of many diseases, including cancers, indicative of its important, and possibly causative, role in some of these diseases. This, in turn, prompted researchers to look for the mechanism of S100A6 action and to identify the intermediary signaling pathways and effectors. After all these years, our knowledge on various aspects of S100A6 biology is robust but still incomplete. The list of S100A6 ligands is growing all the time, as is our understanding of the physiological importance of these interactions. The present review summarizes available data concerning S100A6 expression/localization, interaction with intracellular and extracellular targets, involvement in Ca2+-dependent cellular processes and association with various pathologies.
Collapse
|
17
|
Yang H, Karl MN, Wang W, Starich B, Tan H, Kiemen A, Pucsek AB, Kuo YH, Russo GC, Pan T, Jaffee EM, Fertig EJ, Wirtz D, Spangler JB. Engineered bispecific antibodies targeting the interleukin-6 and -8 receptors potently inhibit cancer cell migration and tumor metastasis. Mol Ther 2022; 30:3430-3449. [PMID: 35841152 PMCID: PMC9637575 DOI: 10.1016/j.ymthe.2022.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/12/2022] [Accepted: 07/09/2022] [Indexed: 12/15/2022] Open
Abstract
Simultaneous inhibition of interleukin-6 (IL-6) and interleukin-8 (IL-8) signaling diminishes cancer cell migration, and combination therapy has recently been shown to synergistically reduce metastatic burden in a preclinical model of triple-negative breast cancer. Here, we have engineered two novel bispecific antibodies that target the IL-6 and IL-8 receptors to concurrently block the signaling activity of both ligands. We demonstrate that a first-in-class bispecific antibody design has promising therapeutic potential, with enhanced selectivity and potency compared with monoclonal antibody and small-molecule drug combinations in both cellular and animal models of metastatic triple-negative breast cancer. Mechanistic characterization revealed that our engineered bispecific antibodies have no impact on cell viability, but profoundly reduce the migratory potential of cancer cells; hence they constitute a true anti-metastatic treatment. Moreover, we demonstrate that our antibodies can be readily combined with standard-of-care anti-proliferative drugs to develop effective anti-cancer regimens. Collectively, our work establishes an innovative metastasis-focused direction for cancer drug development.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michelle N Karl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wentao Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Haotian Tan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexandra B Pucsek
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yun-Huai Kuo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Gabriella C Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Tim Pan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth M Jaffee
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA
| | - Elana J Fertig
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Institute for Nano Biotechnology (INBT), the Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Sidney Kimmel Cancer Center, the Johns Hopkins University, Baltimore, MD 21231, USA; Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
18
|
Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100055. [DOI: 10.1016/j.adcanc.2022.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
19
|
Ohara Y, Valenzuela P, Hussain SP. The interactive role of inflammatory mediators and metabolic reprogramming in pancreatic cancer. Trends Cancer 2022; 8:556-569. [PMID: 35525794 PMCID: PMC9233125 DOI: 10.1016/j.trecan.2022.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its highly reactive inflammatory desmoplastic stroma with evidence of an extensive tumor stromal interaction largely mediated by inflammatory factors. KRAS mutation and inflammatory signaling promote protumorigenic events, including metabolic reprogramming with several inter-regulatory crosstalks to fulfill the high demand of energy and regulate oxidative stress for tumor growth and progression. Notably, the more aggressive molecular subtype of PDAC enhances influx of glycolytic intermediates. This review focuses on the interactive role of inflammatory signaling and metabolic reprogramming with emerging evidence of crosstalk, which supports the development, progression, and therapeutic resistance of PDAC. Understanding the emerging crosstalk between inflammation and metabolic adaptations may identify potential targets and develop novel therapeutic approaches for PDAC.
Collapse
Affiliation(s)
- Yuuki Ohara
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paloma Valenzuela
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Perwez Hussain
- Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Zhang Y, Sun M, Gao L, Liang X, Ma C, Lu J, Yue X. ZHX2 inhibits thyroid cancer metastasis through transcriptional inhibition of S100A14. Cancer Cell Int 2022; 22:76. [PMID: 35151335 PMCID: PMC8840030 DOI: 10.1186/s12935-022-02499-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/30/2022] [Indexed: 12/21/2022] Open
Abstract
Background Thyroid cancer is the most common malignant endocrine tumour, and metastasis has become the main reason for treatment failure. However, the underlying molecular mechanism of thyroid cancer metastasis remains poorly understood. We investigated the role of the tumour suppressor zinc fingers and homeoboxes 2 (ZHX2) in the metastasis of thyroid cancer. Methods To study the role of ZHX2 in thyroid cancer metastasis, we evaluated the EMT process using cell migration, wound healing and lung metastatic tumour formation in vitro and in vivo models. Results ZHX2 expression was significantly decreased in thyroid cancer tissues, which correlated with poor prognosis of thyroid cancer patients. ZHX2 knockdown significantly promoted the migration of thyroid cancer cells. Mechanistically, ZHX2 associated with the S100 calcium binding protein A14 (S100A14) promoter to decrease the transcription of S100A14. Moreover, S100A14 was highly expressed in human thyroid cancer samples, and its expression negatively correlated with ZHX2 expression. Conclusions Inhibition of S100A14 attenuated the ZHX2 knockdown-induced enhanced metastasis of thyroid cancer cells both in vitro and in vivo. The evidence presented here suggests that ZHX2 inhibits the progression of thyroid cancer by blocking S100A14-mediated metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02499-w.
Collapse
|
21
|
EMT and Inflammation: Crossroads in HCC. J Gastrointest Cancer 2022; 54:204-212. [PMID: 35020133 DOI: 10.1007/s12029-021-00801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Hepatocellular carcinoma is one of the major causes of cancer-related deaths worldwide and is associated with several inflammatory mediators, since 90% of HCCs occur based on chronic hepatitis B or C, alcoholism or increasingly metabolic syndrome-associated inflammation. EMT is a physiological process, with coordinated changes in epithelial gene signatures and is regulated by multiple factors, including cytokines and growth factors such as TGFβ, EGF, and FGF. Recent reports propose a strong association between EMT and inflammation, which is also correlated with tumor aggressiveness and poor outcomes. Cellular heterogeneity results collectively as an outcome of EMT, inflammation, and the tumor microenvironment, and it plays a fundamental role in the progression, complexity of cancer, and chemoresistance. In this review, we highlight recent developments concerning the association of EMT and inflammation in the context of HCC progression. Identifying potential EMT-related biomarkers and understanding EMT regulatory molecules will likely contribute to promising developments in clinical practice and will be a valuable tool for predicting metastasis in general and specifically in HCC.
Collapse
|
22
|
Lai CY, Yeh KY, Liu BF, Chang TM, Chang CH, Liao YF, Liu YW, Her GM. MicroRNA-21 Plays Multiple Oncometabolic Roles in Colitis-Associated Carcinoma and Colorectal Cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α Signaling Pathways in Zebrafish. Cancers (Basel) 2021; 13:5565. [PMID: 34771727 PMCID: PMC8583575 DOI: 10.3390/cancers13215565] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Patients with inflammatory bowel disease (IBD) have a high risk of developing CRC. Inflammatory cytokines are regulated by complex gene networks and regulatory RNAs, especially microRNAs. MicroRNA-21 (miR-21) is amongst the most frequently upregulated microRNAs in inflammatory responses and cancer development. miR-21 has become a target for genetic and pharmacological regulation in various diseases. However, the association between inflammation and tumorigenesis in the gut is largely unknown. Hence, in this study, we generated a zebrafish model (ImiR-21) with inducible overexpression of miR-21 in the intestine. The results demonstrate that miR-21 can induce CRC or colitis-associated cancer (CAC) in ImiR-21 through the PI3K/AKT, PDCD4/TNF-α, and IL-6/STAT3 signaling network. miR-21 activated the PI3K/AKT and NF-κB signaling pathways, leading to initial inflammation; thereafter, miR-21 and TNF-α repressed PDCD4 and its tumor suppression activity. Eventually, active STAT3 stimulated a strong inflammatory response and activated the invasion/metastasis process of tumor cells. Hence, our findings indicate that miR-21 is critical for the development of CRC/CAC via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling networks.
Collapse
Affiliation(s)
- Chi-Yu Lai
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang-Chung Memorial Hospital, Keelung 204, Taiwan;
| | - Bi-Feng Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Tzu-Ming Chang
- Division of Surgical Oncology, Department of Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan; (T.-M.C.); (C.-H.C.)
| | - Chuan-Hsun Chang
- Division of Surgical Oncology, Department of Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan; (T.-M.C.); (C.-H.C.)
- Division of General Surgery, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Yung-Feng Liao
- Laboratory of Molecular Neurobiology, Institute of Cellular and Organismic Biology, Academia Sinica, ICOB 238, 128 Sec. 2 Academia Rd., Taipei 11529, Taiwan;
| | - Yi-Wen Liu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| | - Guor Mour Her
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-Y.L.); (B.-F.L.); (Y.-W.L.)
| |
Collapse
|
23
|
Wu Y, Zhou Q, Guo F, Chen M, Tao X, Dong D. S100 Proteins in Pancreatic Cancer: Current Knowledge and Future Perspectives. Front Oncol 2021; 11:711180. [PMID: 34527585 PMCID: PMC8435722 DOI: 10.3389/fonc.2021.711180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system. Currently, there is a lack of specific and effective interventions for PC; thus, further exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein family, a collection of calcium-binding proteins expressed only in vertebrates, comprises 25 members with high sequence and structural similarity. Dysregulated expression of S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these proteins are associated with the regulation of multiple cellular processes, including proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion, Ca2+ homeostasis, and energy metabolism. This review highlights the significance of the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell metastasis, invasion and proliferation. A further understanding of S100 proteins will provide potential therapeutic targets for preventing or treating PC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mingming Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
24
|
The Role of the IL-6 Cytokine Family in Epithelial-Mesenchymal Plasticity in Cancer Progression. Int J Mol Sci 2021; 22:ijms22158334. [PMID: 34361105 PMCID: PMC8347315 DOI: 10.3390/ijms22158334] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Epithelial–mesenchymal plasticity (EMP) plays critical roles during embryonic development, wound repair, fibrosis, inflammation and cancer. During cancer progression, EMP results in heterogeneous and dynamic populations of cells with mixed epithelial and mesenchymal characteristics, which are required for local invasion and metastatic dissemination. Cancer development is associated with an inflammatory microenvironment characterized by the accumulation of multiple immune cells and pro-inflammatory mediators, such as cytokines and chemokines. Cytokines from the interleukin 6 (IL-6) family play fundamental roles in mediating tumour-promoting inflammation within the tumour microenvironment, and have been associated with chronic inflammation, autoimmunity, infectious diseases and cancer, where some members often act as diagnostic or prognostic biomarkers. All IL-6 family members signal through the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway and are able to activate a wide array of signalling pathways and transcription factors. In general, IL-6 cytokines activate EMP processes, fostering the acquisition of mesenchymal features in cancer cells. However, this effect may be highly context dependent. This review will summarise all the relevant literature related to all members of the IL-6 family and EMP, although it is mainly focused on IL-6 and oncostatin M (OSM), the family members that have been more extensively studied.
Collapse
|
25
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499. [PMID: 34083781 PMCID: PMC8173513 DOI: 10.1038/s41568-021-00363-z] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Janina Dörr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
26
|
Bettaieb L, Brulé M, Chomy A, Diedro M, Fruit M, Happernegg E, Heni L, Horochowska A, Housseini M, Klouyovo K, Laratte A, Leroy A, Lewandowski P, Louvieaux J, Moitié A, Tellier R, Titah S, Vanauberg D, Woesteland F, Prevarskaya N, Lehen’kyi V. Ca 2+ Signaling and Its Potential Targeting in Pancreatic Ductal Carcinoma. Cancers (Basel) 2021; 13:3085. [PMID: 34205590 PMCID: PMC8235326 DOI: 10.3390/cancers13123085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a major cause of cancer-associated mortality in Western countries (and estimated to be the second cause of cancer deaths by 2030). The main form of PC is pancreatic adenocarcinoma, which is the fourth most common cause of cancer-related death, and this situation has remained virtually unchanged for several decades. Pancreatic ductal adenocarcinoma (PDAC) is inherently linked to the unique physiology and microenvironment of the exocrine pancreas, such as pH, mechanical stress, and hypoxia. Of them, calcium (Ca2+) signals, being pivotal molecular devices in sensing and integrating signals from the microenvironment, are emerging to be particularly relevant in cancer. Mutations or aberrant expression of key proteins that control Ca2+ levels can cause deregulation of Ca2+-dependent effectors that control signaling pathways determining the cells' behavior in a way that promotes pathophysiological cancer hallmarks, such as enhanced proliferation, survival and invasion. So far, it is essentially unknown how the cancer-associated Ca2+ signaling is regulated within the characteristic landscape of PDAC. This work provides a complete overview of the Ca2+ signaling and its main players in PDAC. Special consideration is given to the Ca2+ signaling as a potential target in PDAC treatment and its role in drug resistance.
Collapse
Affiliation(s)
- Louay Bettaieb
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Maxime Brulé
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Axel Chomy
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Mel Diedro
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Malory Fruit
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Eloise Happernegg
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Leila Heni
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Anaïs Horochowska
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Mahya Housseini
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Kekely Klouyovo
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Agathe Laratte
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Alice Leroy
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Paul Lewandowski
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Joséphine Louvieaux
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Amélie Moitié
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Rémi Tellier
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Sofia Titah
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Dimitri Vanauberg
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Flavie Woesteland
- Option Biology, Master Biology-Health, Faculty of Medicine Henry Warembourg, University of Lille, 59120 Loos, France; (L.B.); (M.B.); (A.C.); (M.D.); (M.F.); (E.H.); (L.H.); (A.H.); (M.H.); (K.K.); (A.L.); (A.L.); (P.L.); (J.L.); (A.M.); (R.T.); (S.T.); (D.V.); (F.W.)
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France;
- University Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
| | - V’yacheslav Lehen’kyi
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologies, University of Lille, 59650 Villeneuve d’Ascq, France;
- University Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, F-59000 Lille, France
| |
Collapse
|
27
|
Xu Z, Cheng C, Kong R, Liu Y, Wang S, Ma Y, Xing X. S100A8 and S100A9, both transcriptionally regulated by PU.1, promote epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn. Aging (Albany NY) 2021; 13:15523-15537. [PMID: 34099591 PMCID: PMC8221299 DOI: 10.18632/aging.203112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/29/2021] [Indexed: 12/25/2022]
Abstract
S100 calcium-binding protein A8 (S100A8) and S100A9 are small molecular weight calcium-binding regulatory proteins that have been involved in multiple chronic inflammatory diseases. However, the role of S100A8 and S100A9 in keratinocytes in wounded skin and how they are regulated during this process are still unclear. Here, we found that S100A8 and S100A9 were both upregulated in burn-wounded skins in vivo and thermal-stimulated epidermal keratinocytes in vitro, accompanied by increased levels of epithelial-mesenchymal transition (EMT). Then, we demonstrated that upregulation of S100A8 and S100A9 alone or together enhanced characteristics of EMT in normal keratinocytes, manifested by excessive proliferation rate, abnormal ability of cell invasion, and high expression levels of EMT marker proteins. The transcription factor PU box-binding protein (PU.1) bound to the promoter regions and transcriptionally promoted the expression of S100A8 and S100A9 both in the human and mice, and it had strong positive correlations with both S100A8 and S100A9 protein levels in burned skin in vivo. Moreover, PU.1 positively regulated expression of S100A8 and S100A9 in a dose-dependent manner, and enhanced EMT of keratinocytes in vitro. Finally, through the burn mouse model, we found that PU.1-/- mice displayed a lower ability of scar formation, manifested by smaller scar volume, thickness, and collagen content, which could be enhanced by S100A8 and S100A9. In conclusion, PU.1 transcriptionally promotes expression of S100A8 and S100A9, thus positively regulating epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn.
Collapse
Affiliation(s)
- Zhigang Xu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Chuantao Cheng
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Ranran Kong
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Shuang Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| | - Xin Xing
- Department of Cadre Health, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710000, China
| |
Collapse
|
28
|
Deshmukh AP, Vasaikar SV, Tomczak K, Tripathi S, den Hollander P, Arslan E, Chakraborty P, Soundararajan R, Jolly MK, Rai K, Levine H, Mani SA. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proc Natl Acad Sci U S A 2021; 118:e2102050118. [PMID: 33941680 PMCID: PMC8126782 DOI: 10.1073/pnas.2102050118] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a critical role during normal development and in cancer progression. EMT is induced by various signaling pathways, including TGF-β, BMP, Wnt-β-catenin, NOTCH, Shh, and receptor tyrosine kinases. In this study, we performed single-cell RNA sequencing on MCF10A cells undergoing EMT by TGF-β1 stimulation. Our comprehensive analysis revealed that cells progress through EMT at different paces. Using pseudotime clustering reconstruction of gene-expression profiles during EMT, we found sequential and parallel activation of EMT signaling pathways. We also observed various transitional cellular states during EMT. We identified regulatory signaling nodes that drive EMT with the expression of important microRNAs and transcription factors. Using a random circuit perturbation methodology, we demonstrate that the NOTCH signaling pathway acts as a key driver of TGF-β-induced EMT. Furthermore, we demonstrate that the gene signatures of pseudotime clusters corresponding to the intermediate hybrid EMT state are associated with poor patient outcome. Overall, this study provides insight into context-specific drivers of cancer progression and highlights the complexities of the EMT process.
Collapse
Affiliation(s)
- Abhijeet P Deshmukh
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Shubham Tripathi
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115
| | - Petra den Hollander
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Emre Arslan
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Priyanka Chakraborty
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, 560012 Bangalore, India
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115;
- Department of Physics, Northeastern University, Boston, MA 02115
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030;
| |
Collapse
|
29
|
Yang L, Xia H, Smith K, Gilbertsen A, Beisang D, Kuo J, Bitterman PB, Henke CA. A CD44/Brg1 nuclear complex confers mesenchymal progenitor cells with enhanced fibrogenicity in idiopathic pulmonary fibrosis. JCI Insight 2021; 6:144652. [PMID: 33822772 PMCID: PMC8262361 DOI: 10.1172/jci.insight.144652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease. We previously identified fibrogenic mesenchymal progenitor cells (MPCs) in the lungs of patients with IPF who serve as drivers of progressive fibrosis. Recent single-cell RNA sequencing work revealed that IPF MPCs with the highest transcriptomic network entropy differ the most from control MPCs and that increased CD44 was a marker of these IPF MPCs. We hypothesize that IPF MPCs with high CD44 (CD44hi) expression will display enhanced fibrogenicity. We demonstrate that CD44-expressing MPCs are present at the periphery of the IPF fibroblastic focus, placing them in regions of active fibrogenesis. In a humanized mouse xenograft model, CD44hi IPF MPCs are more fibrogenic than CD44lo IPF MPCs, and knockdown of CD44 diminishes their fibrogenicity. CD44hi IPF MPCs display increased expression of pluripotency markers and enhanced self-renewal compared with CD44lo IPF MPCs, properties potentiated by IL-8. The mechanism involves the accumulation of CD44 within the nucleus, where it associates with the chromatin modulator protein Brahma-related gene 1 (Brg1) and the zinc finger E-box binding homeobox 1 (Zeb1) transcription factor. This CD44/Brg1/Zeb1 nuclear protein complex targets the Sox2 gene, promoting its upregulation and self-renewal. Our data implicate CD44 interaction with the epigenetic modulator protein Brg1 in conveying IPF MPCs with cell-autonomous fibrogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Daniel Beisang
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
30
|
Tu G, Gao W, Li Y, Dian Y, Xue B, Niu L, Yu X, Zhu H. Expressional and Prognostic Value of S100A16 in Pancreatic Cancer Via Integrated Bioinformatics Analyses. Front Cell Dev Biol 2021; 9:645641. [PMID: 33912559 PMCID: PMC8072221 DOI: 10.3389/fcell.2021.645641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
Studies have shown that the calcium-binding protein family S100 may play a role in the development of pancreatic cancer (PC), but the role of S100A16 in PC is still unknown. In this study, Oncomine was first used to detect the expression level and prognosis of S100A16 in PC and other tumors. The results showed that S100A16 was highly expressed in PC tissues compared with a normal pancreas, and the increased expression level may be related to poor prognosis in PC patients. The TCGA and ICGC RNA-seq data of PC patients were downloaded, and the S100A16-related differentially expressed genome (DEGs) was defined by taking the intersection of two gene sets. The GO and KEGG pathways were then analyzed. For clinical analysis, boxplots were depicted for the correlation between clinical characteristics and S100A16 expression. Then Cox regression was applied for exploring the prognostic value of S100A16 for PDAC patients. Based on the Cox regression model, we further estabished a S100A16-related risk score system to strengthen the ability to predict patients' prognosis. After integrating the risk score model and multiple clinicopathological factors, we finally established a nomogram that could predict the survival time of patients. Moreover, Gene set enrichment the effect of S100A16 expression differences on downstream biological processes. At last, using TIMER, ImmuneCellAI and GSEA we analyzed the correlation between S100A16 and pancreatic cancer immune infiltration and predicted the response of patients to checkpoint Blocker (ICB). In summary, S100A16 is involved in the occurrence and development of PC, affecting the prognosis of patients, and may have potential reference values for the immunotherapy of PC.
Collapse
Affiliation(s)
- Gangping Tu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Li
- Medical College of Xiangya, Central South University, Changsha, China
| | - Yating Dian
- Medical College of Xiangya, Central South University, Changsha, China
| | - Bingyang Xue
- Medical College of Xiangya, Central South University, Changsha, China
| | - Li Niu
- Medical College of Xiangya, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Koguchi D, Matsumoto K, Shimizu Y, Kobayashi M, Hirano S, Ikeda M, Sato Y, Iwamura M. Prognostic Impact of AHNAK2 Expression in Patients Treated with Radical Cystectomy. Cancers (Basel) 2021; 13:cancers13081748. [PMID: 33918555 PMCID: PMC8069489 DOI: 10.3390/cancers13081748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Data regarding expression levels of AHNAK2 in bladder cancer (BCa) have been very scarce. We retrospectively reviewed clinical data including clinicopathological features in 120 patients who underwent radical cystectomy (RC) for BCa. The expression levels of AHNAK2 in the specimens obtained by RC were classified as low expression (LE) or high expression (HE) by immunohistochemical staining. Statistical analyses were performed to compare associations between the two AHNAK2 expression patterns and the prognoses in terms of recurrence-free survival (RFS) and cancer-specific survival (CSS). A Kaplan-Meier analysis showed that patients with HE had a significantly worse RFS and CSS than those with LE (hazard ratio [HR]: 1.78, 95% confidence interval [CI]: 1.02-2.98, p = 0.027 and HR: 1.91, 95% CI: 1.08-3.38, p = 0.023, respectively). In a multivariate analysis, independent risk factors for worse RFS and CSS were shown as HE (HR: 1.96, 95% CI: 1.08-3.53, p = 0.026 and HR: 2.22, 95% CI: 1.14-4.31, p = 0.019, respectively) and lymph node metastasis (HR: 2.04, 95% CI: 1.09-3.84, p = 0.026 and HR: 1.19, 95% CI: 1.25-4.97, p = 0.009, respectively). The present study showed that AHNAK2 acts as a novel prognostic biomarker in patients with RC for BCa.
Collapse
|
32
|
Wang X, Chung L, Hooks J, Maestas DR, Lebid A, Andorko JI, Huleihel L, Chin AF, Wolf M, Remlinger NT, Stepp MA, Housseau F, Elisseeff JH. Type 2 immunity induced by bladder extracellular matrix enhances corneal wound healing. SCIENCE ADVANCES 2021; 7:eabe2635. [PMID: 33863719 PMCID: PMC8051883 DOI: 10.1126/sciadv.abe2635] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/03/2021] [Indexed: 05/06/2023]
Abstract
The avascular nature of cornea tissue limits its regenerative potential, which may lead to incomplete healing and formation of scars when damaged. Here, we applied micro- and ultrafine porcine urinary bladder matrix (UBM) particulate to promote type 2 immune responses in cornea wounds. Results demonstrated that UBM particulate substantially reduced corneal haze formation as compared to the saline-treated group. Flow cytometry and gene expression analysis showed that UBM particulate suppressed the differentiation of corneal stromal cells into α-smooth muscle actin-positive (αSMA+) myofibroblasts. UBM treatments up-regulated interleukin-4 (IL-4) produced primarily by eosinophils in the wounded corneas and CD4+ T cells in draining lymph nodes, suggesting a cross-talk between local and peripheral immunity. Gata1-/- mice lacking eosinophils did not respond to UBM treatment and had impaired wound healing. In summary, stimulating type 2 immune responses in the wounded cornea can promote proregenerative environments that lead to improved wound healing for vision restoration.
Collapse
Affiliation(s)
- Xiaokun Wang
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua Hooks
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - David R Maestas
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Andriana Lebid
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - James I Andorko
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luai Huleihel
- ACell Inc., Columbia, MD 21046, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alexander F Chin
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Matthew Wolf
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | - Mary Ann Stepp
- Department of Anatomy and Cell Biology and Department of Ophthalmology, School of Medicine and Health Sciences, George Washington University, Washington DC 20037, USA
| | - Franck Housseau
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
33
|
Downregulation of RIPK4 Expression Inhibits Epithelial-Mesenchymal Transition in Ovarian Cancer through IL-6. J Immunol Res 2021; 2021:8875450. [PMID: 33855091 PMCID: PMC8019379 DOI: 10.1155/2021/8875450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
RIPK4 has been implicated in multiple cancer types, but its role in ovarian cancer (OC) has not been clearly elucidated. Our data from Gene Expression Profiling Interactive Analysis, RT-PCR, and immunohistochemical analysis showed that RIPK4 was expressed at higher levels in OC tissues and cells than in normal ovarian tissues and cells. Increased RIPK4 expression in OC markedly correlated with a worse overall survival than lower RIPK4 expression levels (hazard rate (HR) 1.5 (1.45–1.87); P = 0.001). In functional experiments, RIPK4 downregulation significantly inhibited metastatic behaviours in OC cells. Subsequently, based on data from 593 OC patients in the TCGA database, gene set enrichment analysis revealed that RIPK4 was involved in epithelial-mesenchymal transition (EMT) in OC. At the molecular level, silencing RIPK4 significantly downregulated vimentin, N-cadherin, and Twist expression but induced an increase in the protein level of E-cadherin and inhibited the IL-6 and STAT3 levels. Moreover, IL-6 levels were significantly decreased in RIPK4-silenced OC cells (P < 0.05). The addition of IL-6 to OC cells rescued the suppressive effect of RIPK4 knockdown on EMT. Thus, our data illustrate that downregulation of RIPK4 expression can restrain EMT in OC by inhibiting IL-6. This finding may provide a novel diagnostic and therapeutic target for improving the poor prognoses of OC patients.
Collapse
|
34
|
Luo L, Li Y, Huang C, Lin Y, Su Y, Cen H, Chen Y, Peng S, Ren T, Xie R, Zeng L. A new 7-gene survival score assay for pancreatic cancer patient prognosis prediction. Am J Cancer Res 2021; 11:495-512. [PMID: 33575083 PMCID: PMC7868749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023] Open
Abstract
Gene expression features that are valuable for pancreatic ductal adenocarcinoma (PDAC) prognosis are still largely unknown. We aimed to explore pivotal molecular signatures for PDAC progression and establish an efficient survival score to predict PDAC prognosis. Overall, 163 overlapping genes were identified from three statistical methods, including differentially expressed genes (DEGs), coexpression network analysis (WGCNA), and target genes for miRNAs that were significantly related to PDAC patients' overall survival (OS). Then, according to the optimal value of the cross-validation curve (lambda = 0.031), 7 non-zero coefficients (ARNTL2, DSG3, PTPRR, ANLN, S100A14, ANKRD22, and TSPAN7) were selected to establish a prognostic prediction model of PDAC patients. We further confirmed the expression level of 7 genes using RT-PCR, western blot, and immunohistochemistry staining in PDAC patients' tissues. Our results showed that the ROC curve of the 7-mRNA model indicated good predictive ability for 1- and 2-year OS in three datasets (TCGA: 0.71, 0.69; ICGC: 0.8, 0.74; GEO batch: 0.61, 0.7, respectively). The hazard ratio (HR) of the low-risk group had a similar significant result (TCGA: HR = 0.3723; ICGC: HR = 0.2813; GEO batch: HR = 0.4999; all P < 0.001). Furthermore, Log-rank test results in three cohorts showed that the 7-mRNA assay excellently predicted the prognosis and metastasis, especially in TNM stage I&II subgroups of PDAC. In conclusion, the strong validation of our 7-mRNA signature indicates the promising effectiveness of its clinical application, especially in patients with TNM stages I&II.
Collapse
Affiliation(s)
- Lisi Luo
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Yufang Li
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Chumei Huang
- Department of Gastroenterology, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen 518107, China
| | - Yujing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai, China
| | - Yonghui Su
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Hong Cen
- Department of General Surgery, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Yutong Chen
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Siqi Peng
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Tianyi Ren
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Rongzhi Xie
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| | - Linjuan Zeng
- Department of Abdominal Oncology, The Cancer Center of The Fifth Affiliated Hospital, Sun Yat-sen UniversityZhuhai 519000, Guangdong Province, China
| |
Collapse
|
35
|
Ashrafizadeh M, Gholami MH, Mirzaei S, Zabolian A, Haddadi A, Farahani MV, Kashani SH, Hushmandi K, Najafi M, Zarrabi A, Ahn KS, Khan H. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci 2021; 270:119006. [PMID: 33421521 DOI: 10.1016/j.lfs.2020.119006] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Uncontrolled growth and metastasis of cancer cells is an increasing challenge for overcoming cancer, and improving survival of patients. Complicated signaling networks account for proliferation and invasion of cancer cells that need to be elucidated for providing effective cancer therapy, and minimizing their malignancy. Long non-coding RNAs (lncRNAs) are RNA molecules with a length of more than 200 nucleotides. They participate in cellular events, and their dysregulation in a common phenomenon in different cancers. Noteworthy, lncRNAs can regulate different molecular pathways, and signal transducer and activator of transcription 3 (STAT3) is one of them. STAT3 is a tumor-promoting factors in cancers due to its role in cancer proliferation (cell cycle progression and apoptosis inhibition) and metastasis (EMT induction). LncRNAs can function as upstream mediators of STAT3 pathway, reducing/enhancing its expression. This dual relationship is of importance in affecting proliferation and metastasis of cancer cells. The response of cancer cells to therapy such as chemotherapy and radiotherapy is regulated by lncRNA/STAT3 axis. Tumor-promoting lncRNAs including NEAT1, SNHG3 and H19 induces STAT3 expression, while tumor-suppressing lncRNAs such as MEG3, PTCSC3 and NKILA down-regulate STAT3 expression. Noteworthy, upstream mediators of STAT3 such as microRNAs can be regulated by lncRNAs. These complicated signaling networks are mechanistically described in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| |
Collapse
|
36
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
37
|
Lan J, Xie K. miR-202-3p overexpression attenuates endometriosis-like lesions by modulating YAP-dependent transcription of S100A6 in murine models. Life Sci 2020; 265:118757. [PMID: 33197444 DOI: 10.1016/j.lfs.2020.118757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
AIM Recent evidence has suggested the important implications of microRNAs (miRNAs) in the processes of proliferation and tissue remodeling in endometriosis (EMS). We therefore aim to determine the role of miR-202-3p in the pathophysiology of EMS and its underlying mechanisms. METHODS Experimental endometriosis was induced in ovariectomized mice implanted with a slow-release 17-β estradiol capsule. Eutopic endometrial stromal cells (euESCs) were isolated and assayed for proliferative, invasive and apoptotic properties by EdU staining, Transwell assays, and flow cytometry. The invasive and apoptotic features in the endometrium of mice with EMS in vivo were evaluated by using immunohistochemical staining and TUNEL assays. RESULTS miR-202-3p was observed to be downregulated in the endometrial tissues of EMS patients. MiR-202-3p was also found to target YAP1 which resulted in reduced euESC proliferation and invasion and increased apoptosis. YAP1 was able to phosphorylated STAT3 which consequently upregulated S100A6 to promote the proliferative and invasive abilities of euESCs. MiR-202-3p was thereby proposed to act as an inhibitor of proliferation and tissue damage in the in vivo setting of EMS, its effects however, were able to be counteracted byS100A6, which reversed the effects of miR-202-3p on tissue injury and cell proliferation. CONCLUSION Our data together evidenced that miR-202-3p targeted YAP1 to reduce STAT3-mediated S100A6 whereby preventing the progression of EMS.
Collapse
Affiliation(s)
- Jing Lan
- The Second Department of Gynecologic Oncology, Hunan Cancer Hospital (The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University), Changsha 410013, PR China
| | - Kangling Xie
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
38
|
Yang J, Li Y, Sun Z, Zhan H. Macrophages in pancreatic cancer: An immunometabolic perspective. Cancer Lett 2020; 498:188-200. [PMID: 33122097 DOI: 10.1016/j.canlet.2020.10.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
As one of the most fatal gastrointestinal cancers, pancreatic cancer (PC) has a long-term survival rate that has shown limited improvement during recent decades and remains dismal. The poor prognosis is attributed to challenges in early detection, low opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are one of the most abundant infiltrating immune cells in PC stroma, and they can crosstalk with cancer cells, adipocytes and other stromal cells to modulate metabolism, inflammation and immune status, create an immunosuppressive tumor microenvironment (TME), and ultimately facilitate tumor initiation and progression. In this review, we summarize recent advances in our understanding of macrophage origin, distribution and polarization, as well as provide a thorough review of the role macrophages in PC carcinogenesis and development, as well as the underlying molecular mechanism. Additionally, we investigated macrophage targets in preclinical and clinical trials to evaluate their potential therapeutic value in PC.
Collapse
Affiliation(s)
- Jian Yang
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Yongzheng Li
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China
| | - Zhaowei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, 266003, China
| | - Hanxiang Zhan
- Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
39
|
Liu S, Zhang J, Fang S, Su X, Zhang Q, Zhu G, Zhu L, Zhao M, Liu F. Antitumor efficacy of oncolytic HSV-1 expressing cytosine deaminase is synergistically enhanced by DPD down-regulation and EMT inhibition in uveal melanoma xenograft. Cancer Lett 2020; 495:123-134. [PMID: 32946963 DOI: 10.1016/j.canlet.2020.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 01/04/2023]
Abstract
Uveal melanoma (UM) is the most common intraocular tumor in adults and has a high incidence of metastases. Possible treatments remain limited in UM with enucleation and radiation, leading to poor prognosis in this chemo-resistant carcinoma. Thus, urging demand for novel treatment is needed. We examined the antitumor efficacy of a new recombinant oncolytic herpes simplex virus type 1 (oHSV-1) armed with E.coli cytosine deaminase (CD). We determined the efficacy of the oncolytic virus in UM cell lines. In vivo experiments showed that oHSV-CD/5-fluorocytosine (5-FC) treatment reduce tumor volume and prolonged survival. We further demonstrated the molecular mechanisms of oHSV-CD/5-FC treatment. The oncolytic virus down-regulated IL-6 expression and thereby reversed the epithelial-mesenchymal transition (EMT) phenotype. Dihydropyrimidine dehydrogenase (DPD), the rate-limiting enzyme in 5-fluorouracil (5-FU) metabolism, was also down-regulated. Therefore, the efficacy of oHSV-CD/5-FC was synergistically enhanced by DPD down-regulation and EMT inhibition. This study provides solid evidence for the antitumor efficacy of oHSV-CD/5-FC treatment in vitro and in vivo. The molecular mechanisms of this treatment may bring a new therapeutic approach for future treatment of UM.
Collapse
Affiliation(s)
- Sisi Liu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Xiaodong Su
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Qing Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Guidong Zhu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing, China.
| |
Collapse
|
40
|
Zhao M, Wang J, Yuan M, Ma Z, Bao Y, Hui Z. Multivariate gene expression-based survival predictor model in esophageal adenocarcinoma. Thorac Cancer 2020; 11:2896-2908. [PMID: 32869505 PMCID: PMC7529573 DOI: 10.1111/1759-7714.13626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the recent development of molecular‐targeted treatment and immunotherapy, survival of patients with esophageal adenocarcinoma (EAC) with poor prognosis is still poor due to lack of an effective biomarker. In this study, we aimed to explore the ceRNA and construct a multivariate gene expression predictor model using data from The Cancer Genome Atlas (TCGA) to predict the prognosis of EAC patients. Methods We conducted differential expression analysis using mRNA, miRNA and lncRNA transciptome data from EAC and normal patients as well as corresponding clinical information from TCGA database, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of those unique differentially expressed mRNAs using the Integrate Discovery Database (DAVID) database. We then constructed the lncRNA‐miRNA‐mRNA competing endogenous RNA (ceRNA) network of EAC and used Cox proportional hazard analysis to generate a multivariate gene expression predictor model. We finally performed survival analysis to determine the effect of differentially expressed mRNA on patients' overall survival and discover the hub gene. Results We identified a total of 488 lncRNAs, 33 miRNAs, and 1207 mRNAs with differentially expressed profiles. Cox proportional hazard analysis and survival analysis using the ceRNA network revealed four genes (IL‐11, PDGFD, NPTX1, ITPR1) as potential biomarkers of EAC prognosis in our predictor model, and IL‐11 was identified as an independent prognostic factor. Conclusions In conclusion, we identified differences in the ceRNA regulatory networks and constructed a four–gene expression‐based survival predictor model, which could be referential for future clinical research.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jingsong Wang
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meng Yuan
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zeliang Ma
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yongxin Bao
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhouguang Hui
- Department of Radiation Oncology, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of VIP Medical Services, National Cancer Center/ National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Lu C, Zhao H, Luo C, Lei T, Zhang M. Knockdown of ferritin heavy chain (FTH) inhibits the migration of prostate cancer through reducing S100A4, S100A2, and S100P expression. Transl Cancer Res 2020; 9:5418-5429. [PMID: 35117907 PMCID: PMC8797967 DOI: 10.21037/tcr-19-2852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/08/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ferritin plays a key role in the development of prostate cancer (PCa). Our earlier studies showed that the knockdown of ferritin heavy chain (FTH) suppressed the migration and invasion of the prostate cancer cell line (PC3). However, the mechanisms behind FTH in the cell migration regulation of PCa have not been thoroughly investigated. METHODS Isobaric tags for relative and absolute quantitation (iTRAQ) proteomics was used to analyze the protein expression in PC3 cells with FTH knockdown by small interfering RNAs and negative control cells. We subsequently ranked the differentially expressed proteins according to the change in expression. We further performed Gene Ontology (GO) analysis for the changing-expression protein. Finally, Western blot analysis was performed to determine the expression of the target protein. RESULTS Compared with the negative group, 420 proteins were downregulated, including proteins S100A4, S100P, and S100A2, while the expression of 442 protein was elevated in FTH-silencing PC3 cells (P<0.05, fold change >1.2). The mass spectrometry results showing decreased expression of protein S100A4, S100P, and S100A2 in the cells were further validated by Western blot (P<0.05). Levels of protein S100A4, S100A2, and S100P were reduced in FTH-silencing PC3 cells (P<0.05, fold change >1.6). CONCLUSIONS The downregulation of FTH expression reduced the level of protein S100A4, S100A2, and S100P, which all play a key role in the migration and invasion of tumor cells. Therefore, it is reasonable to assume that there are correlations between the expression of the S100A4, S100A2, and S100P genes with FTH. Based on this research, FTH may be a new biomarker for the diagnosis of PCa.
Collapse
Affiliation(s)
- Cuixiu Lu
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Huijun Zhao
- Clinical Laboratory Medicine, Capital Medical University, Beijing, China
| | - Chenshuo Luo
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - Ting Lei
- Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China.,Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
42
|
Li L, Pan Y, Mo X, Wei T, Song J, Luo M, Huang G, Teng C, Liang K, Mao N, Yang J. A novel metastatic promoter CEMIP and its downstream molecular targets and signaling pathway of cellular migration and invasion in SCLC cells based on proteome analysis. J Cancer Res Clin Oncol 2020; 146:2519-2534. [PMID: 32648226 DOI: 10.1007/s00432-020-03308-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/01/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Metastasis is an unavoidable event happened among almost all small cell lung cancer (SCLC) patients. However, the molecular driven factors have not been elucidated. Recently, a novel hydrolase called cell migration inducing hyaluronidase (CEMIP) triggered both migration and invasion in many tumors but not SCLC. Therefore, in this study, we verified that CEMIP promoted migration and invasion in SCLC and applied proteomics analysis to screen out potential target profiles and the signaling pathway related to CEMIP regulation. METHOD Immunofluorescence was conducted to exam the expression of CEMIP on SCLC and paired adjacent normal tissues among enrollment. RT-qPCR and Western blot (WB) assays were conducted to valuate cellular protein and mRNA expression of CEMIP and EMT markers. Lentivirus-CEMIP-shRNAs and CEMIP plasmid were used for expression manipulating. Changes of cellular migration and invasion were tested through transwell assays. Tandem Mass Tag (TMT) peptide labeling coupled with LC-MS/MS was used for quantifying proteins affected by reducing expression of CEMIP on H446 cells. RESULTS The expression of CEMIP showed 1.64 ± 0.16-fold higher in SCLC tissues than their normal counterpart. Decreasing the expression of CEMIP on SCLC cells H446 regressed both cellular migration and invasion ability, whereas the promoting cellular migration and invasion was investigated through over-expressing CEMIP on H1688. Proteomic and bioinformatics analysis revealed that total 215 differentially expressed proteins (DEPs) that either their increasing or decreasing relative expression met threshold of 1.2-fold changes with p value ≤ 0.05. The dramatic up-regulated DEPs included an unidentified peptide sequence (encoded by cDNA FLJ52096) SPICE1 and CRYAB, while the expression of S100A6 was largely down-regulated. DEPs mainly enriched on caveolae of cellular component, calcium ion binding of biological process and epithelial cell migration of molecular function. KEGG enrichment indicated that DEPs mainly exerted their function on TGF-β, GABAergic synapse and MAPK signaling pathway. CONCLUSION It is the first report illustrating that CEMIP might be one of the metastatic triggers in SCLC. And also, it provided possible molecular mechanism cue and potential downstream target on CEMIP-induced cellular migration and invasion on SCLC.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Yingxing Pan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Tongtong Wei
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jinjing Song
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Min Luo
- Department of Pharmacy, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 530001, Guangxi, People's Republic of China
| | - Guolin Huang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Department of Pharmacy, The First People's Hospital of Nanning, Nanning, 530022, Guangxi, People's Republic of China
| | - Cuifang Teng
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Kai Liang
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Naiquan Mao
- Department of Thoracic Tumor Surgery, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
43
|
Samonig L, Loipetzberger A, Blöchl C, Rurik M, Kohlbacher O, Aberger F, Huber CG. Proteins and Molecular Pathways Relevant for the Malignant Properties of Tumor-Initiating Pancreatic Cancer Cells. Cells 2020; 9:E1397. [PMID: 32503348 PMCID: PMC7349116 DOI: 10.3390/cells9061397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer stem cells (CSCs), a small subset of the tumor bulk with highly malignant properties, are deemed responsible for tumor initiation, growth, metastasis, and relapse. In order to reveal molecular markers and determinants of their tumor-initiating properties, we enriched rare stem-like pancreatic tumor-initiating cells (TICs) by harnessing their clonogenic growth capacity in three-dimensional multicellular spheroid cultures. We compared pancreatic TICs isolated from three-dimensional tumor spheroid cultures with nontumor-initiating cells (non-TICs) enriched in planar cultures. Employing differential proteomics (PTX), we identified more than 400 proteins with significantly different expression in pancreatic TICs and the non-TIC population. By combining the unbiased PTX with mRNA expression analysis and literature-based predictions of pro-malignant functions, we nominated the two calcium-binding proteins S100A8 (MRP8) and S100A9 (MRP14) as well as galactin-3-binding protein LGALS3BP (MAC-2-BP) as putative determinants of pancreatic TICs. In silico pathway analysis followed by candidate-based RNA interference mediated loss-of-function analysis revealed a critical role of S100A8, S100A9, and LGALS3BP as molecular determinants of TIC proliferation, migration, and in vivo tumor growth. Our study highlights the power of combining unbiased proteomics with focused gene expression and functional analyses for the identification of novel key regulators of TICs, an approach that warrants further application to identify proteins and pathways amenable to drug targeting.
Collapse
Affiliation(s)
- Lisa Samonig
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Andrea Loipetzberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
| | - Constantin Blöchl
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
| | - Marc Rurik
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
| | - Oliver Kohlbacher
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany; (M.R.); (O.K.)
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9, 72076 Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Fritz Aberger
- Department of Biosciences, Cancer Cluster Salzburg, Molecular Cancer and Stem Cell Research, University of Salzburg, A-5020 Salzburg, Austria;
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, A-5020 Salzburg, Austria; (L.S.); (C.B.)
- Department of Biosciences, Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
44
|
Yue Y, Qian W, Li J, Wu S, Zhang M, Wu Z, Ma Q, Wang Z. 2'-Hydroxyflavanone inhibits the progression of pancreatic cancer cells and sensitizes the chemosensitivity of EGFR inhibitors via repressing STAT3 signaling. Cancer Lett 2020; 471:135-146. [PMID: 31811906 DOI: 10.1016/j.canlet.2019.11.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/09/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, and chemotherapy is still an important treatment. It is urgent to develop new medicines because of the limitation and side effects of chemotherapy. 2'-Hydroxyflavanone (2HF) is a citrus-bioflavonoid that is considered to have anti-cancer efficacy. Compared to human pancreatic ductal epithelial cells hTERT-HPNE, more significant growth-inhibitory effects were seen in PDAC cells BxPC-3 and MIA PaCa-2. We showed that apoptosis was induced and that the cell cycle was arrested when cells were treated with 2HF. The expression of the molecular proteins cleaved PARP, cleaved Caspase3, Bax, Bcl-2, CyclinD1, and p27 changed correspondingly. Also, we observed anti-metastatic effects and changes in MMP9, E-cadherin, N-cadherin and Vimentin when cells were treated with a low dose of 2HF. Suppression of STAT3 and EGFR phosphorylation was also identified as a result of treatment with a combination of 2HF and EGFR inhibitors. The in vivo antitumor effects in KPC mice were consistent with those observed in vitro. 2HF has impactful anti-cancer efficacy and sensitizes human pancreatic cancer cells to EGFR inhibitors through the inhibition of STAT3.
Collapse
Affiliation(s)
- Yangyang Yue
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Jie Li
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Shiqi Wu
- Department of Urology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Mengzhao Zhang
- Department of Urology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, Shaanxi province, China.
| |
Collapse
|
45
|
Llorens MC, Rossi FA, García IA, Cooke M, Abba MC, Lopez-Haber C, Barrio-Real L, Vaglienti MV, Rossi M, Bocco JL, Kazanietz MG, Soria G. PKCα Modulates Epithelial-to-Mesenchymal Transition and Invasiveness of Breast Cancer Cells Through ZEB1. Front Oncol 2019; 9:1323. [PMID: 31828042 PMCID: PMC6890807 DOI: 10.3389/fonc.2019.01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.
Collapse
Affiliation(s)
- María Candelaria Llorens
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabiana Alejandra Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - María Victoria Vaglienti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
46
|
Monkman JH, Thompson EW, Nagaraj SH. Targeting Epithelial Mesenchymal Plasticity in Pancreatic Cancer: A Compendium of Preclinical Discovery in a Heterogeneous Disease. Cancers (Basel) 2019; 11:E1745. [PMID: 31703358 PMCID: PMC6896204 DOI: 10.3390/cancers11111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive disease that causes significant mortality worldwide. The direct correlation between PDAC incidence, disease progression, and mortality highlights the critical need to understand the mechanisms by which PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities. One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in PDAC, further promotes cellular transformation by inducing inflammatory interactions with the stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify the molecular regulators and effectors of this EMP program. While inhibition of individual targets may provide therapeutic insights, a single 'master-key' remains elusive, making their collective interactions of greater importance in controlling the behaviours' of heterogeneous tumour cell populations. Much work has been undertaken to understand key transcriptional programs that drive EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent programs governing EMP regulation is needed in order to design therapeutic strategies to curb PDAC mortality.
Collapse
Affiliation(s)
- James H. Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Erik W. Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Shivashankar H. Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
47
|
Liu J, Xiao M, Wang Y. Oral sarcomatoid squamous cell carcinoma: a retrospective study based on 14 cases. Histol Histopathol 2019; 35:385-394. [PMID: 31642511 DOI: 10.14670/hh-18-176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The treatment outcomes for oral sarcomatoid squamous cell carcinoma (OSSCC) are far from satisfactory in our hospital. The aim of this study was to retrospectively summarize the OSSCC cases admitted to our department. From 2003 to 2017, 14 patients were hospitalized and diagnosed with OSSCC. We summarized and analysed the medical histories, diagnostic examinations, treatment strategies, and clinical outcomes of the involved cases. Of the 14 cases, 8 were located in the gingiva. The imageological diagnosis identified the existence of a mass with an infiltrative morphology pre-operatively. The cytopathologic features revealed a malignant neoplasm with a mixture of squamous cell carcinoma (SCC) components and spindle cell neoplastic components. To confirm the diagnosis of OSSCC, the use of the immunohistochemical markers AE1/AE3 and Vimentin were more indicative. Complete follow-up data were available for 12 patients, and at the last follow-up, all 12 of the patients had died. The median overall survival for these patients was 11.67 months (range: 3-24 months). OSSCC patients respond poorly to the strategies solely referring to experiences from oral squamous cell carcinoma (OSCC) treatment. The effective diagnosis and treatment of OSSCC at an early stage is necessary. The treatment for OSSCC still poses a great challenge for clinical oncologists.
Collapse
Affiliation(s)
- Jialiang Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Meng Xiao
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Yan'an Wang
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China.,Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
48
|
Epigenetic Regulation of Inflammatory Cytokine-Induced Epithelial-To-Mesenchymal Cell Transition and Cancer Stem Cell Generation. Cells 2019; 8:cells8101143. [PMID: 31557902 PMCID: PMC6829508 DOI: 10.3390/cells8101143] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The neoplastic transformation of normal to metastatic cancer cells is a complex multistep process involving the progressive accumulation of interacting genetic and epigenetic changes that alter gene function and affect cell physiology and homeostasis. Epigenetic changes including DNA methylation, histone modifications and changes in noncoding RNA expression, and deregulation of epigenetic processes can alter gene expression during the multistep process of carcinogenesis. Cancer progression and metastasis through an ‘invasion–metastasis cascade’ involving an epithelial-to-mesenchymal cell transition (EMT), the generation of cancer stem cells (CSCs), invasion of adjacent tissues, and dissemination are fueled by inflammation, which is considered a hallmark of cancer. Chronic inflammation is generated by inflammatory cytokines secreted by the tumor and the tumor-associated cells within the tumor microenvironment. Inflammatory cytokine signaling initiates signaling pathways leading to the activation of master transcription factors (TFs) such as Smads, STAT3, and NF-κB. Moreover, the same inflammatory responses also activate EMT-inducing TF (EMT-TF) families such as Snail, Twist, and Zeb, and epigenetic regulators including DNA and histone modifying enzymes and micoRNAs, through complex interconnected positive and negative feedback loops to regulate EMT and CSC generation. Here, we review the molecular regulatory feedback loops and networks involved in inflammatory cytokine-induced EMT and CSC generation.
Collapse
|
49
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|
50
|
Al-Ismaeel Q, Al-Mahmoodi H, Alshamarti I, Salih A, Najeeb H, Al-Rubaay R. S100A4 and S100A6 proteins expression promote migration of Bladder cancer cells in Zebrafish. MEDICAL JOURNAL OF BABYLON 2019. [DOI: 10.4103/mjbl.mjbl_34_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|