1
|
Yang B, Qu W, Lu J, Wu Z, Li Y, Yao R, Wang J, Li Y, Lu Z, Geng Z, Wang Z. Red-emitting aggregation-induced emission fluorescent probe for monitoring fluctuation of HClO in mitochondria during ferroptosis. Anal Chim Acta 2025; 1360:344140. [PMID: 40409902 DOI: 10.1016/j.aca.2025.344140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Ferroptosis is an iron-dependent programmed cell death pathway driven by lipid peroxidation that involves various inflammation-related diseases and even cancer, which is often accompanied by the accumulation of mitochondrial ROS. HClO, as one of the vital ROS in organisms, is mainly derived from the mitochondria of cells. And abnormal levels of HClO can disrupt redox homeostasis in cells and lead to various diseases. Importantly, intracellular HClO levels are also associated with ferroptosis. Therefore, it is very important to study the fluctuation of intracellular HClO level during ferroptosis. RESULTS Herein, a HClO fluorescent probe TPA-ClO was synthesized using triphenylamine fluorophore and benzothiadiazole structure. Notably, TPA-ClO exhibited the advantages of NIR fluorescence emission, good AIE properties and large Stokes shift, and which could selectively detect HClO with a detection limit of 150.0 nM. TPA-ClO could be well targeted in mitochondria and had been successfully applied to monitor exogenous and endogenous HClO in MCF7 cells. Moreover, the imaging experiment of TPA-ClO indicated that erastin- and RSL3-induced ferroptosis in MCF7 cells led to increased levels of mitochondrial HClO and that MCF7 cells showed high ferroptosis sensitivity to RSL3. SIGNIFICANCE TPA-ClO exhibited high selectivity to HClO over other potential interfering substances, and could be employed to monitor HClO level fluctuations in MCF7 cells. More importantly, TPA-ClO could be an effective tool to monitor the fluctuations of HClO level in mitochondria during ferroptosis as well as for investigating various diseases associated with ferroptosis for future research.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Wangbo Qu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Jiao Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Zhou Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Yong Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Ruihong Yao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Jun Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Yanli Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Zhihao Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China
| | - Zhirong Geng
- College of Pharmacy, Jiangsu Joint International Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Xing Z, Wei X, Fan Q, Zhao D, He J, Cheng J. Cryptotanshinone promotes ferroptosis in glioblastoma via KEAP1/NRF2/HMOX1 signaling pathway. Biochem Biophys Res Commun 2025; 768:151959. [PMID: 40345007 DOI: 10.1016/j.bbrc.2025.151959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/12/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Glioblastoma multiforme (GBM) is a common and highly malignant brain tumor characterized by heterogeneity, invasiveness, and resistance to therapy. Inducing ferroptosis in GBM represents a promising therapeutic strategy that inhibits angiogenesis. Natural ingredients in anti-tumor adjuvants are increasingly reported to promote cell death with fewer side effects. Salvia miltiorrhiza Bunge has been widely proven to have significant anti-tumor activity, but its mechanism remains unclear and not deeply understood. This study aimed to investigate the mechanisms by which the compound cryptotanshinone (CTS) induces cell death in glioblastoma (GBM). Our findings revealed that cryptotanshinone, a lipophilic compound, exhibited the most significant anti-tumor activity against GBM. We observed that cryptotanshinone triggered ferroptosis in GBM cells both in vitro and in vivo. RNA sequencing analysis (RNA-seq) revealed that cryptotanshinone led to the upregulation of heme oxygenase 1 (HMOX1), a key protein that facilitates the release of iron ions, which is essential for the induction of ferroptosis. Knocking down HMOX1 could restore ferrous ion levels and Glutathione peroxidase 4 (GPX4) expression to antagonize GBM ferroptosis induced by cryptotanshinone. An in vivo study also showed that cryptotanshinone inhibited GBM growth and upregulated HMOX1 expression without significant side effects. Mechanistically, we found that cryptotanshinone, acting as a protein-protein interaction (PPI) inhibitor of nuclear factor erythroid 2-related factor 2 (NRF2) and Kelch-like ECH-associated protein 1 (KEAP1), promoted the dissociation of NRF2 from KEAP1, enhancing NRF2 nuclear translocation and the transcription of HMOX1. Together, our results revealed that cryptotanshinone is a novel ferroptosis inducer for GBM treatment.
Collapse
Affiliation(s)
- Zhengcao Xing
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangyun Wei
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuju Fan
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongfeng Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Longhua Hospital, Shanghai University of Traditional Chinese Medicine at Shanghai, Shanghai, China.
| | - Jianli He
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jinke Cheng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Ke A, Yang W, Zhang W, Chen Y, Meng X, Liu J, Dai D. The cardiac glycoside periplocymarin sensitizes gastric cancer to ferroptosis via the ATP1A1-Src-YAP/TAZ-TFRC axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156804. [PMID: 40311597 DOI: 10.1016/j.phymed.2025.156804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Targeting ferroptosis vulnerabilities in tumors has become an increasingly promising therapeutic strategy. While the regulatory effects of natural products on ferroptosis are progressively being elucidated, the role of cardiac glycosides in modulating ferroptosis remains poorly understood. PURPOSE This study aims to investigate the ferroptosis-sensitizing effects of periplocymarin (PPM), a cardiac glycoside derived from the traditional plant Periploca sepium, and to elucidate the underlying molecular mechanisms. METHODS The effects of PPM on ferroptosis regulation were comprehensively assessed through functional assays, followed by sequencing analysis to identify associated signaling pathways. Subsequent mechanistic validation experiments were conducted to confirm the upstream and downstream regulatory components involved in this ferroptosis-modulating axis. RESULTS PPM induced slow and mild apoptosis in gastric cancer cells through the inhibition of glycolysis. However, when combined with ferroptosis inducers, it promoted rapid and robust ferroptosis. In vivo, PPM sensitized gastric cancer xenografts to cisplatin-induced ferroptosis with no observable cardiotoxicity or renal impairment. Mechanistically, PPM targeted the α1 subunit of the Na+/K+-ATPase (ATP1A1), leading to the activation of Src, which subsequently induced tyrosine phosphorylation of YAP/TAZ in a Hippo-independent manner, promoting their nuclear translocation. The YAP/TAZ-TEAD transcriptional complex directly bound to the TFRC promoter region between nucleotides 401-409 upstream of the transcription start site, thereby activating TFRC transcription. This resulted in increased iron influx, elevated lipid peroxidation, and heightened sensitivity to ferroptosis. Notably, ATP1A1 was essential for ferroptosis resistance, as its knockdown mimicked the sensitizing effect of PPM on ferroptosis. Moreover, the oncogenic Src-YAP/TAZ-TFRC axis may have represented a ferroptosis vulnerability and a potential biomarker in ferroptosis therapy for cancer. Importantly, other cardiac glycosides targeting Na+/K+-ATPase, such as digitoxin and bufalin, also enhanced ferroptosis sensitivity in gastric cancer cells through activation of YAP/TAZ signaling. CONCLUSION Our findings establish the cardiac glycoside PPM as a novel ferroptosis sensitizer that targets ATP1A1 to activate the Src-YAP/TAZ-TFRC axis, providing mechanistic insights for repurposing cardiac glycosides as ferroptosis modulators in precision combinatorial cancer therapy.
Collapse
Affiliation(s)
- Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wanchuan Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yibin Chen
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xiangyu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang 110122, China
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
4
|
Alarcón-Veleiro C, López-Calvo I, Berjawi L, Lucio-Gallego S, Mato-Basalo R, Quindos-Varela M, Lesta-Mellid R, Santamarina-Caínzos I, Varela-Rodríguez S, Fraga M, Quintela M, Vizoso-Vázquez A, Arufe MC, Fafián-Labora J. Ferroptosis: An emerging strategy for managing epithelial ovarian cancer. Biomed Pharmacother 2025; 187:118065. [PMID: 40306179 DOI: 10.1016/j.biopha.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/30/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Ferroptosis is a regulated form of cell death characterised by iron-dependent lipid peroxidation, a process intricately linked to cellular redox homeostasis. This form of cell death is induced by the accumulation of intracellular iron and the subsequent generation of reactive oxygen species (ROS), which leads to lipid peroxidation and ultimately cell death. Ferroptosis is distinct from traditional forms of cell death, such as apoptosis, and holds significant therapeutic potential, particularly in cancers harboring rat sarcoma virus (RAS) mutations, such as epithelial ovarian cancer (EOC). EOC is notoriously resistant to conventional therapies and is associated with a poor prognosis. In this review, we examine recent progress in the understanding of ferroptosis, with a particular focus on its redox biology and the complex regulatory networks involved. We also propose a novel classification system for ferroptosis modulators, grouping them into six categories (I, II, III, IV, V and VI) based on their mechanisms of action and their roles in modulating cellular redox status. By refining these categories, we aim to provide deeper insights into the role of ferroptosis in cancer biology, especially in EOC, and to identify potential therapeutic avenues. We propose that further investigation of ferroptosis in the context of redox biology could reveal novel biomarkers and therapeutic targets, offering promising strategies to overcome resistance mechanisms and improve clinical outcomes for patients with EOC and other treatment-resistant cancers.
Collapse
Affiliation(s)
- C Alarcón-Veleiro
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - I López-Calvo
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain; Grupo EXPRELA, Departamento de Bioloxía, Facultade de Ciencias, Rúa da Fraga, A Coruña 15071, Spain; Centro Interdisciplinar de Química de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Rúa as Xubias 84, A Coruña 15006, Spain
| | - L Berjawi
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - S Lucio-Gallego
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - R Mato-Basalo
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain
| | - M Quindos-Varela
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - R Lesta-Mellid
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - I Santamarina-Caínzos
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - S Varela-Rodríguez
- Translational Cancer Research Group, A Coruña Biomedical Research Institute (INIBIC), Carretera del Pasaje s/n, A Coruña 15006, UK; Complexo Hospitalario Universitario de A Coruña (CHUAC), Spain
| | - M Fraga
- Department of Anatomical Pathology, University Hospital Complex A Coruña, As Xubias 84, A Coruña 15006, Spain
| | - M Quintela
- European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
| | - A Vizoso-Vázquez
- Grupo EXPRELA, Departamento de Bioloxía, Facultade de Ciencias, Rúa da Fraga, A Coruña 15071, Spain
| | - M C Arufe
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain.
| | - J Fafián-Labora
- Grupo de Investigación en Terapia Celular y Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Ciencias de la Salud, INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Centro Interdisciplinar de Química y Biología (CICA), Universidade da Coruña (UDC), A Coruña 15008, Spain.
| |
Collapse
|
5
|
Ge T, Wang Y, Han Y, Bao X, Lu C. Exploring the Updated Roles of Ferroptosis in Liver Diseases: Mechanisms, Regulators, and Therapeutic Implications. Cell Biochem Biophys 2025; 83:1445-1464. [PMID: 39543068 DOI: 10.1007/s12013-024-01611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Ferroptosis, a newly discovered mode of cell death, is a type of iron-dependent regulated cell death characterized by intracellular excessive lipid peroxidation and imbalanced redox. As the liver is susceptible to oxidative damage and the abnormal iron accumulation is a major feature of most liver diseases, studies on ferroptosis in the field of liver diseases are of great interest. Studies show that targeting the key regulators of ferroptosis can effectively alleviate or even reverse the deterioration process of liver diseases. System Xc- and glutathione peroxidase 4 are the main defense regulators of ferroptosis, while acyl-CoA synthetase long chain family member 4 is a key enzyme causing peroxidation in ferroptosis. Generally speaking, ferroptosis should be suppressed in alcoholic liver disease, non-alcoholic fatty liver disease, and drug-induced liver injury, while it should be induced in liver fibrosis and hepatocellular carcinoma. In this review, we summarize the main regulators involved in ferroptosis and then the mechanisms of ferroptosis in different liver diseases. Treatment options of drugs targeting ferroptosis are further concluded. Determining different triggers of ferroptosis can clarify the mechanism of ferroptosis occurs at both physiological and pathological levels.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yang Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yiwen Han
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
6
|
Jia SZ, Li Y, Xu XW, Huang YP, Deng XY, Zhang ZH, Song GL. Selenoprotein K Confers Protection against Iron Dyshomeostasis-Related Neurotoxicity by Regulating the Palmitoylation of TfR-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12233-12246. [PMID: 40296316 PMCID: PMC12100729 DOI: 10.1021/acs.jafc.4c08266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
Selenoprotein K (SELENOK), a protein residing in the endoplasmic reticulum (ER), is modulated by dietary selenium and is expressed at elevated levels in neurons. SELENOK has been shown to participate in cellular antioxidant activity and posttranslational palmitoylation. This study presents both in vivo and in vitro evidence that SELENOK deficiency reduces the palmitoylation of TfR-1, thereby impairing transferrin transport and ultimately leading to a decrease in the intracellular iron content, impaired mitochondrial respiratory chain activity and decreased ATP production. Remarkably, restoring SELENOK levels significantly enhanced TfR-1 palmitoylation, increased intracellular iron levels, and restored mitochondrial function, thus ameliorating cognitive deficits in 7 month-old SELENOK knockout mice. Consistent with these findings, iron supplementation also improved mitochondrial function by elevating intracellular iron levels, thereby improving cognitive deficits in 7 month-old SELENOK knockout mice. Therefore, SELENOK exerts its neuroprotective effect by regulating the palmitoylation of TfR-1 to maintain iron homeostasis, thereby protecting mitochondrial function in neurons.
Collapse
Affiliation(s)
- Shi-Zheng Jia
- Shenzhen
Key Laboratory of Marine Bioresources and Ecology, Brain Disease and
Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen518060, China
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Shenzhen
University Health Science Center, Shenzhen518060, China
| | - Yu Li
- Shenzhen
Key Laboratory of Marine Bioresources and Ecology, Brain Disease and
Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen518060, China
| | - Xin-Wen Xu
- Shenzhen
Key Laboratory of Marine Bioresources and Ecology, Brain Disease and
Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen518060, China
| | - Yan-Ping Huang
- Shenzhen
Key Laboratory of Marine Bioresources and Ecology, Brain Disease and
Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen518060, China
| | - Xiao-Yi Deng
- Shenzhen
Key Laboratory of Marine Bioresources and Ecology, Brain Disease and
Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen518060, China
| | - Zhong-Hao Zhang
- Shenzhen
Key Laboratory of Marine Bioresources and Ecology, Brain Disease and
Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen518060, China
- Shenzhen-Hong
Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen518060, China
| | - Guo-Li Song
- Shenzhen
Key Laboratory of Marine Bioresources and Ecology, Brain Disease and
Big Data Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen518060, China
- Shenzhen-Hong
Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen518060, China
| |
Collapse
|
7
|
Li C, Wu Z, Xue H, Gao Q, Kuai S, Zhao P. Influence of Sevoflurane Postconditioning on Hypoxic-Ischemic Brain Injury via Nrf2-Regulated Ferroptosis in Neonatal Rats. Anesth Analg 2025:00000539-990000000-01294. [PMID: 40378085 DOI: 10.1213/ane.0000000000007547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
BACKGROUND The mechanisms by which sevoflurane protects the brain from hypoxic-ischemic brain injury (HIBI) are unknown. Ferroptosis occurs during HIBI and is regulated by the nuclear factor erythroid 2-related factor 2 (Nrf2). This study investigated the roles of Nrf2-regulated ferroptosis in sevoflurane postconditioning (SPC)-mediated neuroprotection during HIBI. METHODS HIBI was induced in 7-day-old rats. SPC (2.5%, 30 minutes) was performed immediately after HIBI, and some rats were injected with ML385 (an Nrf2-inhibitor) 30 minutes before HIBI. Ferroptosis was evaluated by measuring glutathione peroxidase 4 (GPx4), solute carrier family 7 member 11 (SLC7A11, also known as xCT), glutathione (GSH), cysteine, iron, malondialdehyde (MDA) levels, and mitochondrial morphology. Nrf2 and heme oxygenase-1 (HO-1) expression were determined to explore the signaling pathways involved in SPC-mediated neuroprotection. Brain morphology, left/right hemisphere weight ratios, and Nissl staining were measured to assess brain damage. The Morris water maze was conducted to assess long-term learning and memory abilities. RESULTS SPC alleviated HIBI-induced cysteine depletion-induced (HIBI versus SPC, xCT/β-tubulin ratio: -0.435 [95% CI, -0.727 to -0.143], P = .003; Cysteine (% of Sham): -29.8 [95% CI, -39.4 to -20.2], P < .001; GSH (% of Sham): -46.5 [95% CI, -54.6 to -38.4], P < .001) and GPx4 inhibition-induced ferroptosis (HIBI versus SPC, GPx4/β-tubulin ratio: -0.287 [95% CI, -0.514 to -0.0603], P = .01). Compared with the HIBI group, the SPC group showed improved learning and memory abilities (HIBI versus SPC, platform crossings: -4 times [95% CI, -7 to -1], P = .002; escape latency: 46 seconds [95% CI, 24 to 68], P < .001), reduced brain damage (HIBI versus SPC, weight ratio of left/right cerebral hemispheres: -13.1 [95% CI, -15.7 to -10.4], P < .001; neuronal density ratio: -0.450 [-0.620 to -0.280], P < .001), and increased Nrf2 and HO-1 protein levels (HIBI versus SPC, Nrf2/β-tubulin ratio: -1.89 [95% CI, -2.82 to -0.970], P < .001; HO-1/β-tubulin ratio: -1.08 [95% CI, -1.73 to -0.442], P < .001). Inhibiting Nrf2 via ML385 partly reversed SPC-mediated neuroprotection (SPC versus SPC+ML385, weight ratio of left/right cerebral hemispheres: 12.4 [95% CI, 9.73-15.1], P < .001; neuronal density ratio: 0.412 [95% CI, 0.242-0.582], P < .001), accompanied by decreased HO-1 expression (SPC versus SPC+ML385, HO-1/β-tubulin ratio: 1.70 [95% CI, 1.05-2.34], P < .001). CONCLUSIONS SPC inhibits both cysteine depletion- and GPx4 inhibition-induced ferroptosis by regulating Nrf2/HO-1 signaling to protect against HIBI.
Collapse
Affiliation(s)
- Chang Li
- From the Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Lin SP, Huang FY, Wu RH, Xie WJ, Chen MH, Dai SZ, Xu WT, Zheng WP, Tan GH. Toxicarioside H induces ferroptosis in triple-negative breast cancer cells through Nrf2/HO-1 pathway. Discov Oncol 2025; 16:772. [PMID: 40372576 PMCID: PMC12081807 DOI: 10.1007/s12672-025-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Recent studies have identified novel cardiac glycosides from natural sources with potential anti-tumor properties. Toxicarioside H (ToxH) is a novel cardiac glycoside isolated by our collaborative research team. However, its ability to induce ferroptosis in triple-negative breast cancer (TNBC) cells has not been investigated. Therefore, this study evaluates whether ToxH has the capability of inducing ferroptosis and elucidates the underlying molecular mechanisms. Treatment with ToxH led to dose- and time-dependent growth inhibition in BT-549 and MDA-MB-468 cells. Flow cytometry analysis and lactate dehydrogenase assay revealed that ToxH induced various forms of cell death in both BT-549 and MDA-MB-468 cells. Examination through transmission electron microscopy, along with flow cytometry analysis of 7-AAD-stained dead cells and ferroptosis markers BODIPY-C11 and Fe2+ ions, identified various forms of cell death induced by ToxH, including apoptosis, autophagy, apoptotic necrosis, and ferroptosis. Co-treatment with the ferroptosis inhibitor Fer-1 significantly reduced ToxH-induced cell death, indicating that ToxH primarily inhibits TNBC cell growth by inducing ferroptosis. Further investigation into the molecular mechanisms revealed upregulation of Nrf2 and HO-1 expression by ToxH. Effective inhibition of ToxH-induced ferroptosis was achieved through shRNA-mediated knockdown of HO-1 expression. Animal experiments demonstrated that ToxH treatment markedly suppressed tumor growth compared to the control group, while co-administration of Fer-1 led to an increase in tumor growth. These findings suggest that ToxH suppresses TNBC cell growth by modulating the Nrf2/HO-1 signaling pathway to induce ferroptosis. ToxH presents itself as a promising cardiac glycoside compound for TNBC treatment, warranting further translational research.
Collapse
Affiliation(s)
- Sheng-Ping Lin
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China
| | - Feng-Ying Huang
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China
| | - Ri-Hong Wu
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China
| | - Wei-Jing Xie
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China
| | - Ming-Hui Chen
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China
| | - Shu-Zhen Dai
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China
| | - Wen-Tian Xu
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China.
| | - Wu-Ping Zheng
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China.
| | - Guang-Hong Tan
- NHC Key Laboratory of Tropical Disease Control & The Second Affiliated Hospital, Hainan Medical University, 3 Xueyuan Road, Longhua District, Haikou City, 571199, Hainan Province, China.
| |
Collapse
|
9
|
Kaushal K, Kapoor DU, Kumar S, Sony A, Viswanath A, Chaitanya MVNL, Singh M, Singh SK, Mazumder A. Natural sesquiterpene lactones in prostate cancer therapy: mechanisms and sources. Med Oncol 2025; 42:212. [PMID: 40372575 DOI: 10.1007/s12032-025-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Prostate cancer is a condition characterized by the uncontrolled proliferation of abnormal cells inside the prostate gland, part of the male reproductive system. Prostate cancer is the most common cancer among men and the second largest cause of cancer-related mortality in the United States. A novel approach to treating advanced Prostate cancer has emerged, attributable to the enhanced effectiveness of new pharmacological agents sourced from natural origins and this has led to increased rates of global existence and progression-free survival. Sesquiterpene lactones and their derivatives are now used worldwide to create and manufacture innovative cancer therapeutics. A thorough search was performed according to PRISMA guidelines in SciMed, PubMed, and Google Scholar, focusing on publications published from 1999 to 2024. The safety, efficacy, and bioactivity of sesquiterpene lactones must be evaluated via clinical trials, in vitro studies, and in vivo research and data was rigorously gathered and validated to verify its accuracy and usefulness. Prostate cancer may be treated far more effectively using naturally occurring sesquiterpene lactone molecules. The most prominent sesquiterpene lactones identified were artemisinin, alantolactone, costunolide, helenalin, cynaropicrin, parthenolide, and inuviscolide, which are originated from botanical sources like Ferula penninervis, Tanacetum argenteum, Artemisia kopetdaghensis, Cichorium intybus, Carpesium divaricatum, and Leptocarpha rivularis. Numerous studies indicated that sesquiterpene lactones may treat cancer by modifying many cellular signaling pathways, including PI3K/AKT, MAPK, JNK, NF-κB, TNF-α, and STAT3. Sesquiterpene lactones were shown to be significant in suppressing the proliferation of prostate cancer cell lines (DU-145, PC-3, LNCaP, MR49F, and BPH-1) in both laboratory and clinical settings.
Collapse
Affiliation(s)
- Keshav Kaushal
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India
| | | | - Sanjesh Kumar
- Rakshpal Bahadur College of Pharmacy, Bareilly, U.P, India
| | - Anakha Sony
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, 682041, India
| | - Aswin Viswanath
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India.
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India.
| | - Mansi Singh
- Rakshpal Bahadur College of Pharmacy, Bareilly, U.P, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Grand Trunk Rd, Phagwara, Punjab, 144411, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology(Pharmacy Institute), 19 Knowledge Park II, Institutional Area, Greater Noida, 201306, India
| |
Collapse
|
10
|
Zhao J, Yin Y, Liu M, Lu Y, Cao J, Qi X, Wu L, Shen S. Ferritin/Ferroportin-Regulating Nanoparticles Boosting Intracellular Free Iron for Enhanced Ferrotherapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26445-26454. [PMID: 40277408 DOI: 10.1021/acsami.5c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Ferroptosis therapy efficacy of cancers suffers from relatively low concentrations of intracellular free iron ions due to the efficient regulation of iron through storage in ferritin and efflux via ferroportin (FPN). In this study, a ferritin/ferroportin-hijacking nanoplatform (Fe3O4-ART@MM-Hep) containing artemisinin (ART) and hepcidin (Hep) is fabricated to boost intracellular free iron ions and induce reactive oxygen species (ROS) storm. Once the tumor site is reached, the hepcidin targeted binds to FPN and triggers the internalization and degradation of FPN, blocking the efflux of intracellular iron ions. Meanwhile, artemisinin induces lysosomal degradation of ferritin, liberating the endogenous iron. Combined with exogenous iron supplemented by Fe3O4, the nanoplatform facilities the generation of ROS. What's more, the released Fe2+ catalyzes artemisinin to generate carbon-centered free radicals, further enhancing tumor killing ability. All of the above strategies trigger an ROS storm in tumor cells and indicate a promising platform for high-performance ferrotherapy.
Collapse
Affiliation(s)
- Junsheng Zhao
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanzhao Yin
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Mengxiao Liu
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ying Lu
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jin Cao
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xueyong Qi
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lin Wu
- Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Song Shen
- College of Pharmaceutical Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
11
|
Li J, Li Y, Fu L, Chen H, Du F, Wang Z, Zhang Y, Huang Y, Miao J, Xiao Y. Targeting ncRNAs to overcome metabolic reprogramming‑mediated drug resistance in cancer (Review). Int J Oncol 2025; 66:35. [PMID: 40116120 PMCID: PMC12002672 DOI: 10.3892/ijo.2025.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
The emergence of resistance to antitumor drugs in cancer cells presents a notable obstacle in cancer therapy. Metabolic reprogramming is characterized by enhanced glycolysis, disrupted lipid metabolism, glutamine dependence and mitochondrial dysfunction. In addition to promoting tumor growth and metastasis, metabolic reprogramming mediates drug resistance through diverse molecular mechanisms, offering novel opportunities for therapeutic intervention. Non‑coding RNAs (ncRNAs), a diverse class of RNA molecules that lack protein‑coding function, represent a notable fraction of the human genome. Due to their distinct expression profiles and multifaceted roles in various cancers, ncRNAs have relevance in cancer pathophysiology. ncRNAs orchestrate metabolic abnormalities associated with drug resistance in cancer cells. The present review provides a comprehensive analysis of the mechanisms by which metabolic reprogramming drives drug resistance, with an emphasis on the regulatory roles of ncRNAs in glycolysis, lipid metabolism, mitochondrial dysfunction and glutamine metabolism. Furthermore, the present review aimed to discuss the potential of ncRNAs as biomarkers for predicting chemotherapy responses, as well as emerging strategies to target ncRNAs that modulate metabolism, particularly in the context of combination therapy with anti‑cancer drugs.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yanyu Li
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Lin Fu
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Huiling Chen
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital of Southwest Medical University, Meishan, Sichuan 64200, P.R. China
| | - Zhongshu Wang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yan Zhang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yu Huang
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Jidong Miao
- Department of Oncology, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| | - Yi Xiao
- Department of Pharmacy, Zigong Fourth People's Hospital, Zigong, Sichuan 643000, P.R. China
| |
Collapse
|
12
|
Han L, Gao C, Jin X, Li Y, Chen L, Li D, Deng Q, Bian X. Bioactive natural alkaloid 6-Methoxydihydrosanguinarine exerts anti-tumor effects in hepatocellular carcinoma cells via ferroptosis. Front Pharmacol 2025; 16:1500461. [PMID: 40343005 PMCID: PMC12058669 DOI: 10.3389/fphar.2025.1500461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Ferroptosis is a form of regulated cell death driven by the accumulation of iron-dependent lipid peroxides, and ferroptosis-mediated cancer therapy has gained considerable attention. Despite emerging evidence that ferroptosis induction effectively suppresses hepatocellular carcinoma (HCC) progression and enhances chemosensitivity, the development of resistance to ferroptosis-targeting therapies remains a critical challenge. Natural active compounds have great potential in cancer treatment. Methods The impact of 6-ME on the cell viability of HCC cells was assessed using the Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Furthermore, cellular morphology of HCC cells was visualized under inverted fluorescence microscopy. Intracellular reactive oxygen species (ROS) and lipid peroxidation levels were quantified using fluorescence probes and determined by flow cytometry analysis. The expression of ferroptosis-related proteins and genes was determined via Western blot and quantitative real-time PCR analyses. Results Here, we demonstrate that 6-Methoxydihydrosanguinarine (6-ME), an alkaloid from Macleaya cordata, exerts anti-tumor functions in HCC cells via ferroptosis. Stimulation with 6-ME induces intracellular ROS production, cell growth inhibition, and cell death in HCC cells, and these effects can be weakened by the ROS scavenger GSH or NAC and ferroptosis inhibitors deferoxamine mesylate (DFO) or ferrostatin-1 (Fer-1). Mechanistically, 6-ME downregulates the expression of the key ferroptosis defense enzyme GPX4 at the transcriptional level, leading to excessive lipid peroxidation and ferroptosis in HCC cells. Importantly, low concentrations of 6-ME also enhanced the ferroptosis sensitivity induced by RSL3 and IKE in HCC cells. Conclusion These findings reveal that the natural product 6-ME exerts anti-tumor functions in HCC cells via ferroptosis and underscore the potential of 6-ME administered alone or in combination with canonical ferroptosis inducers for the treatment of HCC patients.
Collapse
Affiliation(s)
- Linfen Han
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Department of Nutrition, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chengchang Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaorui Jin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingping Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Liangjie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Donglin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qinqin Deng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xueli Bian
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Department of Nutrition, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Ren J, Yan G, Yang L, Kong L, Guan Y, Sun H, Liu C, Liu L, Han Y, Wang X. Cancer chemoprevention: signaling pathways and strategic approaches. Signal Transduct Target Ther 2025; 10:113. [PMID: 40246868 PMCID: PMC12006474 DOI: 10.1038/s41392-025-02167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025] Open
Abstract
Although cancer chemopreventive agents have been confirmed to effectively protect high-risk populations from cancer invasion or recurrence, only over ten drugs have been approved by the U.S. Food and Drug Administration. Therefore, screening potent cancer chemopreventive agents is crucial to reduce the constantly increasing incidence and mortality rate of cancer. Considering the lengthy prevention process, an ideal chemopreventive agent should be nontoxic, inexpensive, and oral. Natural compounds have become a natural treasure reservoir for cancer chemoprevention because of their superior ease of availability, cost-effectiveness, and safety. The benefits of natural compounds as chemopreventive agents in cancer prevention have been confirmed in various studies. In light of this, the present review is intended to fully delineate the entire scope of cancer chemoprevention, and primarily focuses on various aspects of cancer chemoprevention based on natural compounds, specifically focusing on the mechanism of action of natural compounds in cancer prevention, and discussing in detail how they exert cancer prevention effects by affecting classical signaling pathways, immune checkpoints, and gut microbiome. We also introduce novel cancer chemoprevention strategies and summarize the role of natural compounds in improving chemotherapy regimens. Furthermore, we describe strategies for discovering anticancer compounds with low abundance and high activity, revealing the broad prospects of natural compounds in drug discovery for cancer chemoprevention. Moreover, we associate cancer chemoprevention with precision medicine, and discuss the challenges encountered in cancer chemoprevention. Finally, we emphasize the transformative potential of natural compounds in advancing the field of cancer chemoprevention and their ability to introduce more effective and less toxic preventive options for oncology.
Collapse
Affiliation(s)
- Junling Ren
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guangli Yan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Ling Kong
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Yu Guan
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Chang Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Lei Liu
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
14
|
He J, He Y, Qian Y, Du S, Sun R, Liu Y, Yu J, Ding Y, Zhou S, Jiang L, Wang S. Design, synthesis, and biological evaluation of novel artemisinin-based HDAC inhibitors with antitumor and antimalarial activities. Bioorg Chem 2025; 157:108312. [PMID: 40022850 DOI: 10.1016/j.bioorg.2025.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In addition to the clinical applications as antimalarial agents, artemisinin and its derivatives have demonstrated significant potential in antitumor drug discovery. To enhance antitumor activity, a novel series of artemisinin-containing histone deacetylase (HDAC) inhibitors was designed using a hybrid strategy that fused the artemisinin moiety with HDAC inhibitory functionality. A triazole ring was incorporated into the linker region to improve water solubility. Among these derivatives, compound Hj-9 exhibited broad spectrum and especially potent antitumor activity against acute myelogenous leukemia cells MV4-11 (IC50 = 0.38 μM). Mechanism studies revealed that Hj-9 effectively arrests the cancer cell cycle at the G0/G1 phase and exhibits significant antiangiogenic activity. Further investigation demonstrated that Hj-9 induces cell autophagy, apoptosis, and mitochondrial membrane potential changes. Enzyme inhibitory activities against HDAC isoforms indicated that Hj-9 broadly inhibits multiple HDAC subtypes, especially showing particularly good inhibition of HDAC6. Furthermore, the antimalarial evaluation revealed derivatives Hj-1, Hj-2 and Hj-9 showed good antimalarial activity.
Collapse
Affiliation(s)
- Jin He
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China; School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Yunan Qian
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Shuaibo Du
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Ruikang Sun
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Yujiao Liu
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Jiping Yu
- School of Life Science and Medicine, Northwest University, Xi'an, Shaanxi Province, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Siyuan Zhou
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Lubin Jiang
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Shengzheng Wang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
15
|
Xiao Y, He Y, Zhong D, Liu B, Tang Z, Lan X, Dong Y, Du H, Liu Y, Luo J. Effect of Engineered Cyanobacterial Capsules on a Neurogenic Bladder after Spinal Cord Injury. ACS NANO 2025; 19:11841-11860. [PMID: 40116782 DOI: 10.1021/acsnano.4c14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
The presence of a neurogenic bladder is a severe but common complication of spinal cord injury (SCI). Multiple pathological factors, such as hypoxia, ischemia, and oxidative stress caused by SCI, promote M1 microglial polarization and the release of proinflammatory factors to amplify inflammation. An excessive inflammatory response stimulates the generation of reactive oxygen species (ROS) and induces oxidative stress to promote neuronal ferroptosis, thus leading to bladder dysfunction after SCI. Therefore, promoting the recovery of neural function by regulating the interaction between microglia and neurons is important. For this purpose, we developed an engineered immunoregulatory cyanobacterial capsule named siRNA@Cyanzyme, which consists of MnO2@zeolitic-imidazolate framework@cyanobacteria (Cyanzyme) and a small-interfering RNA targeting ACSL4 (siRNA-ACSL4). Cyanzyme reversed M1 microglial polarization via photosynthetic oxygen to promote anti-inflammatory factor release. MnO2 nanoenzymes grown on the surface of ZIF-8 eliminated excessive ROS to reduce oxidative stress. Moreover, Cyanzyme increased the delivery efficiency of siRNA-ACSL4, which is a key regulator of ferroptosis. Both treatments alleviated GABAergic neuron damage to mitigate bladder dysfunction. Our data demonstrated that siRNA@Cyanzyme effectively reversed M1 microglial polarization, reduced neuronal ferroptosis, and ultimately restored neurogenic bladder function.
Collapse
Affiliation(s)
- Yuhong Xiao
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yizhe He
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Da Zhong
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330006, P.R. China
| | - Bo Liu
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - ZhiBo Tang
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoyong Lan
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - YiYang Dong
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huixian Du
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu Liu
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Luo
- The Department of Rehabilitation Medicine, the Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- The Institute of Translational Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Zhu S, Cui Y, Hu H, Zhang C, Chen K, Shan Z, Teng W, Li J. Dihydroartemisinin inhibits the development of autoimmune thyroiditis by modulating oxidative stress and immune imbalance. Free Radic Biol Med 2025; 231:57-67. [PMID: 39988064 DOI: 10.1016/j.freeradbiomed.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Autoimmune thyroiditis is among the most prevalent autoimmune endocrine illnesses. However, the pathophysiology has not been determined, and efficacious treatments are still lacking. The current study used network pharmacology analysis and an experimental autoimmune thyroiditis (EAT) mouse model to explore whether dihydroartemisinin (DHA) has therapeutic effects on autoimmune thyroiditis and to investigate the potentially related mechanisms concerning oxidative stress (OS) responses and T-cell immune imbalance. The therapeutic effects of DHA on autoimmune thyroiditis and potentially related processes were first anticipated using network pharmacology analysis and then verified using the EAT model. DHA may influence the onset of autoimmune thyroiditis by regulating immune imbalance and OS responses, according to network pharmacology analysis. ELISA, immunofluorescence staining, and histopathological examination were used to detect changes in serum thyroid autoantibody levels and intrathyroidal inflammatory infiltration following DHA intervention. RT-PCR was used to determine the spleen's mRNA expression of typical T-cell cytokines, whereas an OS kit and immunohistochemical staining were used to assess the thyroid's glutathione (GSH) content, superoxide dismutase (SOD) activity, and Nrf2 protein expression. Furthermore, serum TgAb levels and intrathyroidal inflammatory infiltrates were considerably lower in EAT mice given high-dose DHA than in vehicle-treated controls. In the spleen, IFN-γ, IL-17A, and IL-6 mRNA expressions were dramatically downregulated, while IL-4 and IL-10 were significantly raised. Following high-dose DHA treatment, GSH content, SOD activity, and Nrf2 protein expression levels were markedly increased in thyroid tissue. These findings imply that DHA administration may suppress TgAb formation and reduce intrathyroidal inflammatory cell infiltration by restoring T-cell immune imbalance and increasing antioxidant capacity via the Nrf2 pathway. This study provides important experimental data for DHA's therapeutic use in patients with autoimmune thyroiditis.
Collapse
Affiliation(s)
- Shuangjie Zhu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Yongqi Cui
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Huizheng Hu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Chenxi Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Kan Chen
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
17
|
Xu SY, Yin SS, Wang L, Zhong H, Wang H, Yu HY. Insights into emerging mechanisms of ferroptosis: new regulators for cancer therapeutics. Cell Biol Toxicol 2025; 41:63. [PMID: 40131564 PMCID: PMC11937073 DOI: 10.1007/s10565-025-10010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxides, which has been implicated in the pathogenesis of various diseases, and therapeutic agents targeting ferroptosis are emerging as promising tools for cancer treatment. Current research reveals that ferroptosis-targeted therapies can effectively inhibit tumor progression or delay cancer development. Notably, natural product-derived compounds-such as artemisinin, baicalin, puerarin, quercetin, kaempferol, and apigenin-have demonstrated the ability to modulate ferroptosis, offering potential anti-cancer benefits. Mechanistically, ferroptosis exhibits negative glutathione peroxidase 4 (GPX4) regulation and demonstrates a positive correlation with plasma membrane polyunsaturated fatty acid (PUFA) abundance. Moreover, the labile iron pool (LIP) serves as the redox engine of ferroptosis. This review systematically analyzes the hallmarks, signaling pathways, and molecular mechanisms of ferroptosis, with a focus on how natural product-derived small molecules regulate this process. It further evaluates their potential as ferroptosis inducers or inhibitors in anti-tumor therapy, providing a foundation for future clinical translation.
Collapse
Affiliation(s)
- Si-Yi Xu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuang-Shuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hao Zhong
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hai-Yang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
18
|
Zhang D, Xu T, Gao X, Qu Y, Su X. Methyltransferase-like 3-mediated RNA N 6-methyladenosine contributes to immune dysregulation: diagnostic biomarker and therapeutic target. Front Immunol 2025; 16:1523503. [PMID: 40196133 PMCID: PMC11973086 DOI: 10.3389/fimmu.2025.1523503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Methyltransferase-like 3 (METTL3) plays a crucial role in post-transcriptional gene regulation. Substantial evidence links METTL3 to various immune dysfunctions, such as the suppression of antiviral immunity during viral infections and the disruption of immune tolerance in conditions like autoimmune diseases, myeloid leukemia, skin cancers, and anticancer immunotherapy. However, a thorough review and analysis of this evidence is currently missing, which limits the understanding of METTL3's mechanisms and significance in immune dysfunctions. This review aims to elucidate the roles and mechanisms of METTL3 in these immune issues, highlighting its connections and proposing new insights into its modulation of immune responses. Analysis results in this review suggest that METTL3 hampers antiviral immunity, worsens viral replication and infection, and disrupts immune tolerance; conversely, regulating METTL3 enhances antiviral immunity and facilitates viral clearance. Moreover, clinical data corroborates these findings, showing that METTL3 overexpression is associated with increased susceptibility to viral infections and autoimmune conditions. This review establishes a theoretical basis for considering METTL3 as a novel regulator, an important diagnostic biomarker, and a potential target for treating immune dysfunctions.
Collapse
Affiliation(s)
- Deshuang Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Xu
- Department of Pediatrics, School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoxue Gao
- Department of Pediatrics, School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Su
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Meng C, Li S, Ma Y, Yu H, Song J, Zhi J, Zhu B, Shao L, Liu X, Yang L, Zhang M, Zhang Y, Li G. Assembling Ruthenium Complexes to Form Ruthenosome Unleashing Ferritinophagy-Mediated Tumor Suppression. ACS NANO 2025; 19:10207-10219. [PMID: 40040589 PMCID: PMC11925053 DOI: 10.1021/acsnano.4c17344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
We introduce ruthenosomes, a fusion of liposomal and reactive oxygen species (ROS)-generating properties meticulously engineered as potent ferroptosis inducers (FINs), marking a significant advancement in metallodrug design for cancer therapy. Formed through the self-assembly of oleate-conjugated ruthenium complexes, these ruthenosomes exhibit exceptional cellular uptake, selectively accumulating in mitochondria and causing substantial disruption. This targeted mitochondrial damage significantly elevates ROS levels, triggering autophagy and selectively activating ferritinophagy. Together, these processes sensitize cancer cells to ferroptosis. In vivo, ruthenosomes effectively suppress colorectal tumor growth, underscoring their therapeutic potential. Our study pioneers a design strategy that transforms ruthenium complexes into liposome-like structures capable of inducing ferroptosis independent of light activation. By leveraging ruthenosomes as multifunctional nanocarriers, this research offers a versatile and powerful platform for ROS-mediated, ferroptosis-driven cancer cell eradication.
Collapse
Affiliation(s)
- Caiting Meng
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Shuaijun Li
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- The
Second
Affiliated Hospital, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yana Ma
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department
of Interventional Radiology, The Affiliated
Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hongwen Yu
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jiaqi Song
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Junchao Zhi
- Active
Soft
Matter Group, Songshan Lake Materials Laboratory, Dongguan, Guangdong 523008, China
| | - Bin Zhu
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Liang Shao
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xinling Liu
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lulu Yang
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Mingzhen Zhang
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Ye Zhang
- Active
Soft
Matter Group, Songshan Lake Materials Laboratory, Dongguan, Guangdong 523008, China
| | - Guanying Li
- Department
of Biophysics, School of Basic Medical Sciences, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- The
Second
Affiliated Hospital, Health Science Centre, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
20
|
Ma Y, Wang X, Li Y, Zhao J, Zhou X, Wang X. Mechanisms Associated with Mitophagy and Ferroptosis in Cerebral Ischemia-reperfusion Injury. J Integr Neurosci 2025; 24:26458. [PMID: 40152564 DOI: 10.31083/jin26458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke (IS) constitutes a major threat to human health. Vascular recanalization by intravenous thrombolysis and mechanical thrombolysis remain the most significant and effective methods for relief of ischemia. Key elements of these treatments include achieving blood-vessel recanalization, restoring brain-tissue reperfusion, and preserving the ischemic penumbra. However, in achieving the therapeutic goals of vascular recanalization, secondary damage to brain tissue from cerebral ischemia-reperfusion injury (CIRI) must also be addressed. Despite advancements in understanding the pathological processes associated with CIRI, effective interventions to prevent its onset and progression are still lacking. Recent research has indicated that mitophagy and ferroptosis are critical mechanisms in the development of CIRI, and significantly contribute to the onset and progression of IS and CIRI because of common targets and co-occurrence mechanisms. Therefore, exploring and summarizing the potential connections between mitophagy and ferroptosis during CIRI is crucial. In the present review, we mainly focused on the mechanisms of mitochondrial autophagy and ferroptosis, and their interaction, in the development of CIRI. We believe that the data show a strong relationship between mitochondrial autophagy and ferroptosis with interactive regulation. This information may underpin new potential approaches for the prevention and treatment of IS and subsequent CIRI.
Collapse
Affiliation(s)
- Yugang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xuebin Wang
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Yahui Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Department of Gerontology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| | - Jing Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, 250399 Jinan, Shandong, China
| | - Xue Zhou
- Postdoctoral Research Station, Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
- Division of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250014 Jinan, Shandong, China
| | - Xingchen Wang
- Department of Neurology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, 250001 Jinan, Shandong, China
| |
Collapse
|
21
|
Czechowicz P, Więch-Walów A, Sławski J, Collawn JF, Bartoszewski R. Old drugs, new challenges: reassigning drugs for cancer therapies. Cell Mol Biol Lett 2025; 30:27. [PMID: 40038587 PMCID: PMC11881393 DOI: 10.1186/s11658-025-00710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
The "War on Cancer" began with the National Cancer Act of 1971 and despite more than 50 years of effort and numerous successes, there still remains much more work to be done. The major challenge remains the complexity and intrinsic polygenicity of neoplastic diseases. Furthermore, the safety of the antitumor therapies still remains a concern given their often off-target effects. Although the amount of money invested in research and development required to introduce a novel FDA-approved drug has continuously increased, the likelihood for a new cancer drug's approval remains limited. One interesting alternative approach, however, is the idea of repurposing of old drugs, which is both faster and less costly than developing new drugs. Repurposed drugs have the potential to address the shortage of new drugs with the added benefit that the safety concerns are already established. That being said, their interactions with other new drugs in combination therapies, however, should be tested. In this review, we discuss the history of repurposed drugs, some successes and failures, as well as the multiple challenges and obstacles that need to be addressed in order to enhance repurposed drugs' potential for new cancer therapies.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Anna Więch-Walów
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383, Wroclaw, Poland.
| |
Collapse
|
22
|
Wang Z, Zhang Z, Yue Y, Hou Y, Cao Y, Guo C, Nie X, Hou J. Cross-talk between WNT Signaling and Ferroptosis in Cancer. Mol Cancer Res 2025; 23:175-189. [PMID: 39786453 DOI: 10.1158/1541-7786.mcr-24-0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Cancer remains one of the most formidable challenges in the medical field in this century, largely because of its poorly understood pathogenesis. Fortunately, recent advancements in the understanding of cancer pathogenesis have helped identify more therapeutic targets for improved treatment outcomes. The WNT signaling pathways are highly conserved cascades that participate in diverse physiologic processes, such as embryonic development, tissue homeostasis, and tissue regeneration. Ferroptosis, a unique iron-dependent form of cell death that is distinct from apoptosis, is driven by lipid peroxidation and excessive reactive oxygen species production. Emerging evidence shows that the dysregulation of WNT signaling pathways and ferroptosis, as well as their intricate cross-talk, plays crucial roles in cancer progression and therapeutic resistance, indicating their potential as targets for cancer therapies. This review provides a comprehensive overview of the current understanding of the cross-talk between WNT signaling pathways and ferroptosis in the pathogenesis and progression of cancer, with a specific focus on the regulatory role of the canonical WNT cascade in cancer-related ferroptosis. In addition, we discuss the pharmacologic mechanisms of current strategies that inhibit canonical WNT signaling and/or induce ferroptosis in cancer treatment. We propose that combining canonical WNT pathway inhibitors and ferroptosis inducers with current therapies represents a promising therapeutic strategy for personalized cancer treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhixiang Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yunhui Yue
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yifan Hou
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yujia Cao
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Changsheng Guo
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Junqing Hou
- Kaifeng 155 Hospital, China RongTong Medical Healthcare Group Co. Ltd., Kaifeng, China
| |
Collapse
|
23
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
24
|
Ding Z, Li Z, Sun K, Liu Y, Fang Z, Sun S, Li C, Wang Z. Mitochondrial Regulation of Ferroptosis in Cancer Cells. Int J Biol Sci 2025; 21:2179-2200. [PMID: 40083691 PMCID: PMC11900798 DOI: 10.7150/ijbs.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
Ferroptosis is an iron-dependent nonapoptotic regulated cell death modality characterized by lethal levels of lipid peroxide accumulation and disrupted antioxidant systems. An increasing number of studies have revealed correlations between ferroptosis and the pathophysiology and treatment of cancer. Given the intricate involvement of mitochondria in ferroptosis, as suggested by previous studies, here, we review advances in understanding the roles of mitochondrial quality control and mitochondrial metabolism (including the roles of the TCA cycle, reactive oxygen species, iron metabolism, and lipid metabolism) in cancer-related ferroptosis and outline the molecular mechanism and clinical translation of mitochondria-related ferroptosis in cancer treatment. with the aim of promoting the precise utilization and prevention of ferroptosis in cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengrong Sun
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Chenyuan Li
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhong Wang
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
25
|
Li H, Li Y, Wang Y, Sheng Y. Neuronal protective effect of Artemisinin in ischemic stroke: Achieved by blocking lysine demethylase 1A-mediated demethylation of sphingosine kinase 2. Brain Res 2025; 1849:149442. [PMID: 39746391 DOI: 10.1016/j.brainres.2024.149442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Artemisinin (ART), a natural product isolated from the traditional Chinese plant Artemisia annua L., has shown neuroprotective properties in addition to its well-established antimalarial activities. This study investigates the therapeutic effect of ART in ischemic stroke (IS) and delves into its functional mechanism. Bioinformatics analyses revealed lysine demethylase 1A (KDM1A) as a promising target of ART aberrantly overexpressed in the context of IS. Increased KDM1A expression was detected in oxygen-glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons and transient middle cerebral artery occlusion (tMCAO)-challenged mice. Treatment with ART reduced KDM1A protein level, thus protecting mouse hippocampal neurons from OGD/R-induced oxidative stress and apoptosis. In vivo, ART reduced infarct size, reduced brain content, enhanced neurological function, and enhanced neuronal survival in tMCAO. Regarding the downstream cascade, KDM1A was found to repress transcription of sphingosine kinase 2 (SPHK2) by removing H3K4me2 modification near the SPHK2 promoter. Either KDM1A overexpression or SPHK2 knockdown abrogated the neuroprotective effects of ART. The ample evidence of this study suggests that ART fulfills neuroprotective functions in the context of IS by protecting SPHK2 from KDM1A-mediated transcription repression, highlighting ART as a promising regimen for the treatment of IS.
Collapse
Affiliation(s)
- He Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Ying Li
- Department of Neurology, Heilongjiang Chinese Medicine Hospital, Harbin 150001, Heilongjiang, PR China
| | - Yingju Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Yuchen Sheng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
26
|
Zhao Y, Chen Z, Xie S, Xiao F, Hu Q, Ju Z. The emerging role and therapeutical implications of ferroptosis in wound healing. BURNS & TRAUMA 2025; 13:tkae082. [PMID: 39958433 PMCID: PMC11827611 DOI: 10.1093/burnst/tkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 02/18/2025]
Abstract
Wound healing is a complex biological process involving multiple steps, including hemostasis, inflammation, proliferation, and remodeling. A novel form of regulated cell death, ferroptosis, has garnered attention because of its involvement in these processes. Ferroptosis is characterized by the accumulation of lipid peroxides and is tightly regulated by lipid metabolism, iron metabolism, and the lipid-peroxide repair network, all of which exert a significant influence on wound healing. This review highlights the current findings and emerging concepts regarding the multifaceted roles of ferroptosis throughout the stages of normal and chronic wound healing. Additionally, the potential of targeted interventions aimed at modulating ferroptosis to improve wound-healing outcomes is discussed.
Collapse
Affiliation(s)
- Yanan Zhao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Shenghao Xie
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Feng Xiao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, No. 601, Huangpu Avenue West, Tianhe District, Guangzhou, 510632, China
| |
Collapse
|
27
|
Barbosa MAG, Kruschel RD, Almeida MJ, Pereira RF, Xavier CPR, McCarthy FO, Vasconcelos MH. Isoquinolinequinone N-oxides with diverging mechanisms of action induce collateral sensitivity against multidrug resistant cancer cells. Eur J Pharmacol 2025; 988:177234. [PMID: 39725135 DOI: 10.1016/j.ejphar.2024.177234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Multidrug resistance (MDR) is a major challenge in cancer research. Collateral sensitizers, compounds that exploit the enhanced defense mechanisms of MDR cells as weaknesses, are a proposed strategy to overcome MDR. Our previous work reported the synthesis of two novel Isoquinolinequinone (IQQ) N-oxides that induce collateral sensitivity in MDR ABCB1-overexpressing non-small cell lung cancer (NSCLC) and colorectal cancer cells. Herein, we aimed to investigate underlying mechanisms of antitumor and collateral sensitivity activity of these compounds. We evaluated their effect on cancer cell viability, proliferation, cell cycle profile, and studied their cytotoxicity in non-tumorigenic cells. Their antitumor effect was further studied using NSCLC and colorectal cancer MDR spheroids. To understand underlying collateral sensitivity mechanisms, we assessed the effect on rhodamine-123 accumulation, ROS production, GSH/GSSG balance and expression of key proteins associated with metabolism and redox balance. Both compounds reduced the viability of MDR cells, as 2D cultures or as spheroids, without decreasing the growth of a human nontumorigenic cell line, and increased rhodamine-123 accumulation in MDR NCI-H460/R cells. Moreover, RK2 increased ROS, disrupted GSH balance, and altered expression of proteins associated with oxidative stress protection, particularly in NCI-H460/R cells. The collateral sensitivity effect of RK3 could not be attributed to redox balance disruption, but increased IDH1 expression following treatment suggests a potential metabolic shift in MDR cells. These findings highlight RK2 and RK3 as promising candidates for next stages of drug development. Their distinct mechanisms of action could lead to therapeutic solutions for MDR-related cancers, specifically linked to ABCB1 overexpression.
Collapse
Affiliation(s)
- Mélanie A G Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal
| | - Ryan D Kruschel
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 K8AF, Ireland
| | - Maria João Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Biofabrication Group, INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, 4585-116, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, 4585-116, Portugal
| | - Florence O McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, T12 K8AF, Ireland.
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135, Porto, Portugal; FFUP - Faculty of Pharmacy of the University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
28
|
Deng PX, Silva M, Yang N, Wang Q, Meng X, Ye KQ, Gao HC, Zheng WH. Artemisinin inhibits neuronal ferroptosis in Alzheimer's disease models by targeting KEAP1. Acta Pharmacol Sin 2025; 46:326-337. [PMID: 39251858 PMCID: PMC11747332 DOI: 10.1038/s41401-024-01378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Ferroptosis, a form of cell death characterized by lipid peroxidation, is involved in neurodegenerative diseases such as Alzheimer´s disease (AD). Recent studies have shown that a first-line antimalarial drug artemisinin is effective to counteract AD pathology. In this study, we investigated the protective effect of artemisinin against neuronal ferroptosis and the underlying mechanisms. In hippocampal HT22 cells, pretreatment with artemisinin dose-dependently protected against Erastin-induced cell death with an EC50 value of 5.032 µM, comparable to the ferroptosis inhibitor ferrostatin-1 (EC50 = 4.39 µM). We demonstrated that artemisinin (10 μM) significantly increased the nuclear translocation of Nrf2 and upregulated SLC7A11 and GPX4 in HT22 cells. Knockdown of Nrf2, SLC7A11 or GPX4 prevented the protective action of artemisinin, indicating that its anti-ferroptosis effect is mediated by the Nrf2-SLC7A11-GPX4 pathway. Molecular docking and Co-Immunoprecipitation (Co-IP) analysis revealed that artemisinin competitively binds with KEAP1, promoting the dissociation of KEAP1-Nrf2 complex and inhibiting the ubiquitination of Nrf2. Intrahippocampal injection of imidazole-ketone-Erastin (IKE) induced ferroptosis in mice accompanied by cognitive deficits evidenced by lower preference for exploration of new objects and new object locations in the NOR and NOL tests. Artemisinin (5, 10 mg/kg, i.p.) dose-dependently inhibited IKE-induced ferroptosis in hippocampal CA1 region and ameliorated learning and memory impairments. Moreover, we demonstrated that artemisinin reversed Aβ1-42-induced ferroptosis, lipid peroxidation and glutathione depletion in HT22 cells, primary hippocampal neurons, and 3×Tg mice via the KEAP1-Nrf2 pathway. Our results demonstrate that artemisinin is a novel neuronal ferroptosis inhibitor that targets KEAP1 to activate the Nrf2-SLC7A11-GPX4 pathway.
Collapse
Affiliation(s)
- Peng-Xi Deng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Marta Silva
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
| | - Na Yang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Xin Meng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ke-Qiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong-Chang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wen-Hua Zheng
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macao, China.
| |
Collapse
|
29
|
Lu Z, Jiang J, Yao X, Hou G. Network pharmacological mechanism and molecular experimental validation of artemisinin in the treatment of lung adenocarcinoma. Toxicol Appl Pharmacol 2025; 495:117226. [PMID: 39778717 DOI: 10.1016/j.taap.2025.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Lung cancer is a medical ailment with high mortality and prevalence rates. Artemisinin (ART) and its derivatives exhibit anti-cancer properties against various malignancies, including lung cancer. However, further research is required to determine the precise anti-cancer mechanisms of ART. Hence, this study aimed to utilize network pharmacology to preliminarily investigate the therapeutic effectiveness and mode of action of this medication. METHODS Using a bioinformatics approach, five target proteins with the strongest connections were selected for docking. Gene enrichment analysis was performed, and the ART target proteins were predicted. Various methods, including methyl thiazolyl tetrazolium (MTT) assays, colony formation assays, microsphere formation assays, flow cytometry, and western blotting analysis, were employed to assess the impact of ART on the malignant characteristics of lung cancer cells. RESULTS Bioinformatic analysis identified 51 ART target genes in lung adenocarcinoma for further analysis. Pathway enrichment analysis of target genes revealed 639 enriched Gene Ontology-Biological Process (GO BP) and 17 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. These findings imply that ART may control the IL-6 signaling pathway by focusing on important molecules such as CDK4 and IL-6. The ART-treated group experienced apoptosis induction, cell cycle arrest, and inhibition of cell proliferation and microsphere formation compared with the control group (p < 0.05, p < 0.01). Additionally, ART reduced the protein expression of CDK4, COX2, ERBB2, CD44, and EpCAM while increasing that of caspase 3, IL-6, p53, and SRC (p < 0.01). CONCLUSION ART inhibited the growth and stemness of HCC827 cells.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Outpatient, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jialu Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Xuming Yao
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Guoxin Hou
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China.
| |
Collapse
|
30
|
Safari MH, Rahimzadeh P, Alaei E, Alimohammadi M, Esfandiari N, Daneshi S, Malgard N, Farahani N, Taheriazam A, Hashemi M. Targeting ferroptosis in gastrointestinal tumors: Interplay of iron-dependent cell death and autophagy. Mol Cell Probes 2025; 79:102013. [PMID: 39837469 DOI: 10.1016/j.mcp.2025.102013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Ferroptosis is a regulated cell death mechanism distinct from apoptosis, autophagy, and necroptosis, marked by iron accumulation and lipid peroxidation. Since its identification in 2012, it has developed into a potential therapeutic target, especially concerning GI disorders like PC, HCC, GC, and CRC. This interest arises from the distinctive role of ferroptosis in the progression of diseases, presenting a new avenue for treatment where existing therapies fall short. Recent studies emphasize the promise of focusing on ferroptosis to fight GI cancers, showcasing its unique pathophysiological mechanisms compared to other types of cell death. By comprehending how ferroptosis aids in the onset and advancement of GI diseases, scientists aim to discover novel drug targets and treatment approaches. Investigating ferroptosis in gastrointestinal disorders reveals exciting possibilities for novel therapies, potentially revolutionizing cancer treatment and providing renewed hope for individuals affected by these tumors.
Collapse
Affiliation(s)
- Mohamad Hosein Safari
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Alaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Neda Malgard
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
31
|
Ye D, Liu H, Dai E, Fan J, Wu L. Recent advances in nanomedicine design strategies for targeting subcellular structures. iScience 2025; 28:111597. [PMID: 39811659 PMCID: PMC11732483 DOI: 10.1016/j.isci.2024.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability. This flexibility enables researchers to develop tailored treatments for different types of tumors and populations. As nanodrug technology evolves from first to third generation, the focus is now on achieving precise drug delivery by targeting subcellular structures within tumors. This review summarizes the progress made in subcellular structure-targeted nanodrugs over the past 5 years, highlighting design strategies for targeting mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus, and cytoskeleton. The review also addresses the current status, limitations, and future directions about the research of nanodrugs.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Wang L, Liu X, Lv H, Zhang H, Lin R, Xu S, Zhang C, Lou S, Qiu Z, Sun C, Cui N. Research Progress on Natural Products That Regulate miRNAs in the Treatment of Osteosarcoma. BIOLOGY 2025; 14:61. [PMID: 39857292 PMCID: PMC11759184 DOI: 10.3390/biology14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
miRNAs are small non-coding RNA molecules that play critical roles in the regulation of gene expression and have been closely associated with various diseases, including cancer. These molecules significantly influence the cell cycle of tumor cells and control programmed cell death (apoptosis). Currently, research on miRNAs has become a major focus in developing cancer therapies. Osteosarcoma, a malignant neoplasm predominantly occurring during adolescence and later in life, is characterized by a high propensity for metastasis. This review explores the role of miRNAs in the initiation and progression of cancer, highlighting their potential as predictive biomarkers for disease. It discusses the mechanisms by which natural products modulate miRNA activity to influence apoptosis, ferroptosis, and autophagy in osteosarcoma cells, aiming to identify new strategies for osteosarcoma treatment. Recent studies on how natural products regulate miRNAs to reduce tumor cell resistance to chemotherapy are also reviewed. Furthermore, the review elaborates on how natural products regulate m6A modifications to influence miRNA expression, thereby exerting antitumor effects. In this process, interactions between m6A modifications and miRNAs have been identified, with both jointly influencing tumorigenesis and cancer progression, offering a new perspective in osteosarcoma treatment. These approaches could help uncover novel regulatory mechanisms in osteosarcoma pathways and provide a theoretical foundation for developing new drugs and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Lin Wang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Xinyu Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Haoze Lv
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Han Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Rimei Lin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shan Xu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Chaojing Zhang
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Shilei Lou
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (L.W.); (X.L.); (H.L.); (H.Z.); (R.L.); (S.X.); (C.Z.); (Z.Q.)
| | - Cong Sun
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Ning Cui
- Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
33
|
Kong D, Duan J, Chen S, Wang Z, Ren J, Lu J, Chen T, Song Z, Wu D, Chang Y, Yin Z, Shen Z, Zheng H. Transplant oncology and anti-cancer immunosuppressants. Front Immunol 2025; 15:1520083. [PMID: 39840041 PMCID: PMC11747528 DOI: 10.3389/fimmu.2024.1520083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Organ transplantation is a life-saving intervention that enhances the quality of life for patients with end-stage organ failure. However, long-term immunosuppressive therapy is required to prevent allogeneic graft rejection, which inadvertently elevates the risk of post-transplant malignancies, especially for liver transplant recipients with a prior history of liver cancer. In response, the emerging field of transplant oncology integrates principles from oncology and immunology to improve outcomes for patients at high risk of tumor occurrence or recurrence following transplantation. Therefore, it is of substantial clinical significance to develop immunosuppressants that possess both immunosuppressive and anti-tumor properties. For instance, mTOR inhibitors demonstrate anti-tumor effects among antimetabolite immunosuppressive drugs, and recent studies indicate that capecitabine, an antimetabolite chemotherapeutic, may also exhibit immunosuppressive activity in the clinic for liver transplants suffering from hepatocellular carcinoma. This review systematically explores potential immunosuppressants with dual anti-tumor and immunosuppressive effects to support the management of transplant patients at elevated risk of tumor occurrence or recurrence.
Collapse
Affiliation(s)
- Dejun Kong
- Nankai University School of Medicine, Tianjin, China
| | - Jinliang Duan
- Nankai University School of Medicine, Tianjin, China
| | - Shaofeng Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhenglu Wang
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jiashu Ren
- Tianjin First Central Clinical College, Tianjin, China
| | - Jianing Lu
- Tianjin First Central Clinical College, Tianjin, China
| | - Tao Chen
- Nankai University School of Medicine, Tianjin, China
| | - Zhuolun Song
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Di Wu
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
| | - Yuan Chang
- Nankai University School of Medicine, Tianjin, China
| | - Zhongqian Yin
- Tianjin First Central Clinical College, Tianjin, China
| | - Zhongyang Shen
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Hong Zheng
- Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China
- Key Laboratory of Transplant Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| |
Collapse
|
34
|
Yang Y, Yu S, Liu W, Zhuo Y, Qu C, Zeng Y. Ferroptosis-related signaling pathways in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:1. [PMID: 39935430 PMCID: PMC11813627 DOI: 10.20517/cdr.2024.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation. This process is regulated by signaling pathways associated with redox balance, iron metabolism, and lipid metabolism. Cancer cells' increased iron demand makes them especially susceptible to ferroptosis, significantly influencing cancer development, therapeutic response, and metastasis. Recent findings indicate that cancer cells can evade ferroptosis by downregulating key signaling pathways related to this process, contributing to drug resistance. This underscores the possibility of modulating ferroptosis as an approach to counteract drug resistance and enhance therapeutic efficacy. This review outlines the signaling pathways involved in ferroptosis and their interactions with cancer-related signaling pathways. We also highlight the current understanding of ferroptosis in cancer drug resistance, offering insights into how targeting ferroptosis can provide novel therapeutic approaches for drug-resistant cancers. Finally, we explore the potential of ferroptosis-inducing compounds and examine the challenges and opportunities for drug development in this evolving field.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Simin Yu
- XiangYa School of Medicine, Central South University, Changsha 410013, Hunan, China
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanyao Liu
- XiangYa School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Yi Zhuo
- First Clinical Department of Changsha Medical University, Changsha 410219, Hunan, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
35
|
Xu Q, Deng H, Huang X, Chen GQ, Quan YS, Wang YL, Liu JY, Yan R, Nie WZ, Shen QK, Quan ZS, Guo HY. Design, synthesis, and in vitro and in vivo biological evaluation of dihydroartemisinin derivatives as potent anti-cancer agents with ferroptosis-inducing and apoptosis-activating properties. Eur J Med Chem 2025; 281:117018. [PMID: 39488969 DOI: 10.1016/j.ejmech.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Natural products play a pivotal role in drug development, including their direct use as pharmaceuticals and their structural modification, yielding molecules with enhanced therapeutic potential. The discovery of bioactive molecules, lead compounds, and novel drugs is intrinsically linked to the structural optimization of natural products. In this study, forty-one derivatives of dihydroartemisinin (DHA) were synthesized by incorporating fragments with anti-tumour activity via molecular hybridization, and assessed for their anti-proliferative activity against human cancer cell lines (A549, Bel-7402, HCT-116, and SW620) and normal human liver cells (LO2). Most derivatives exhibited superior anti-proliferative activity compared to DHA. Notably, compound A3, featuring a 4-Cl phenyl carbamate moiety, demonstrated significant anti-proliferative activity against HCT-116 cells with an IC50 of 0.31 μM, making it 16-fold more potent than DHA (IC50 = 5.10 μM). The anti-proliferative mechanism did not involve cytotoxicity (SI = 54.13), indicating its superior safety profile compared to DHA (SI = 1.65). Further mechanistic studies revealed that compound A3 inhibits HCT-116 cell proliferation by modulating the expression of PI3K/AKT/mTOR and STAT3 proteins. STAT3 downregulation represses the expression of the critical ferroptosis protein glutathione peroxidase 4 (GPX4), aggravating the accumulation of reactive oxygen species (ROS) and depletion of glutathione (GSH). This redox imbalance triggers and accelerates ferroptosis. Additionally, A3 also induces apoptosis by damaging mitochondria and influencing MAPK signaling. Compound A3 arrested cells in the G2/M phase by regulating p53 expression. In an HCT-116 xenograft mouse model, compound A3 exhibited significant anti-cancer efficacy, with a tumor growth inhibition rate of 58.7 %. Therefore, compound A3 thus has the potential to serve as a lead compound for the development of new anti-tumor drugs.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433, Shanghai, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 200433, Shanghai, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Guo-Qing Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Ya-Lan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Wen-Zhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
36
|
Wang Z, Tang Y, Li Q. A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy. LIGHT, SCIENCE & APPLICATIONS 2025; 14:16. [PMID: 39743555 DOI: 10.1038/s41377-024-01673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025]
Abstract
The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited. Herein, a multifunctional pH-responsive theranostic nanoplatform (M@P) is designed and constructed by self-assembly of aggregation-induced emission photosensitizer MTCN-3 and immunoadjuvant Poly(I: C), which are further encapsulated in amphiphilic polymers. This nanoplatform is found to have the characteristics of cancer cell targeting, pH response, near-infrared fluorescence imaging, and lysosome targeting. Therefore, after targeting lysosomes, M@P can cause lysosome dysfunction through the generation of reactive oxygen species and heat under light irradiation, triggering pyroptosis and ferroptosis of tumor cells, achieving immunogenic cell death, and further enhancing immunotherapy through the combined effect with the immunoadjuvant Poly(I: C). The anti-tumor immunotherapy effect of M@P has been further demonstrated in in vivo antitumor experiment of 4T1 tumor-bearing mouse model with poor immunogenicity. This research would provide an impetus as well as a novel strategy for dual function inducers and combined immune activators enhanced photoimmunotherapy.
Collapse
Affiliation(s)
- Zhichao Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
37
|
Qian W, Zhang C, He L, Jin S, Suo R, Li Y, Li S, Zhu L, Deng K, Wu B, Wei Y. X-ray induced in-situ ferroptosis through the Fenton reaction of iron supplements for the cancer therapy. Bioorg Chem 2025; 154:108021. [PMID: 39642753 DOI: 10.1016/j.bioorg.2024.108021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
The potential of iron-based therapeutic agents in enhancing radiotherapy efficacy through catalyzing the Fenton reaction has garnered widespread interest. The inherent instability of ferrous ions requires the use of complex ligands for the ligand-dependent reduction from Fe3+ to Fe2+, thereby boosting ferroptosis through inducing the Fenton reaction. However, the reliance on complex redox systems and potential long-term toxicity have seriously limited the clinical application in cancer treatment. In this study, we propose an innovative approach that utilizes the reduction capabilities of hydrated electrons generated by X-ray to directly reduce both ferric ions (Fe3+) and Iron Proteinsuccinylate, a clinically used iron supplement. Our experiments showed that over 20 % of Fe3+, at a concentration of 23 μM, was reduced by X-ray without the need for ligand involvement. Furthermore, both in vitro and in vivo studies confirmed that Iron Proteinsuccinylate exhibited the highest tumor growth inhibition rate through the Fenton reaction and ferroptosis, offering a new and safer method for the in-situ reduction of Fe3+ and enhancing the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Wang Qian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Caiju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Li He
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Shiqi Jin
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Ruiyang Suo
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Shuqi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Ling Zhu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Kai Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
38
|
Xie Z, Hou Q, He Y, Xie Y, Mo Q, Wang Z, Zhao Z, Chen X, Peng T, Li L, Xie W. Ferritin Hinders Ferroptosis in Non-Tumorous Diseases: Regulatory Mechanisms and Potential Consequences. Curr Protein Pept Sci 2025; 26:89-104. [PMID: 39225224 DOI: 10.2174/0113892037315874240826112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Ferritin, as an iron storage protein, has the potential to inhibit ferroptosis by reducing excess intracellular free iron concentrations and lipid reactive oxygen species (ROS). An insufficient amount of ferritin is one of the conditions that can lead to ferroptosis through the Fenton reaction mediated by ferrous iron. Consequently, upregulation of ferritin at the transcriptional or posttranscriptional level may inhibit ferroptosis. In this review, we have discussed the essential role of ferritin in ferroptosis and the regulatory mechanism of ferroptosis in ferritin-deficient individuals. The description of the regulatory factors governing ferritin and its properties in regulating ferroptosis as underlying mechanisms for the pathologies of diseases will allow potential therapeutic approaches to be developed.
Collapse
Affiliation(s)
- Zhongcheng Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Qin Hou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yinling He
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yushu Xie
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Qinger Mo
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ziyi Wang
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Ziye Zhao
- Class of Clinical Medicine, University of South China, Hengyang 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| |
Collapse
|
39
|
Jin S, Wang H, Zhang Z, Yan M. Targeting Ferroptosis: Small-molecule Inducers as Novel Anticancer Agents. Anticancer Agents Med Chem 2025; 25:517-532. [PMID: 39411969 DOI: 10.2174/0118715206342278241008081126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 05/14/2025]
Abstract
Ferroptosis, a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation, is increasingly recognized for its role in cancer development and as a potential therapeutic target. This review consolidates insights into the molecular mechanisms underpinning ferroptosis and evaluates the therapeutic potential of small-molecule inducers, such as erastin, RSL3, sulfasalazine, and sorafenib, which selectively trigger ferroptosis in cancer cells. It highlights the distinct morphological and molecular signatures of ferroptosis, its complex interplay with iron, lipid, and amino acid metabolic pathways, and the resultant implications for cancer treatment strategies. Strategic manipulation of the ferroptosis pathway offers a groundbreaking approach to cancer treatment, potentially circumventing the resistance that cancers develop against traditional apoptosis-inducing agents. Furthermore, it also emphasizes the necessity of refining these small molecules for clinical application and exploring their synergistic potential when combined with current therapies to augment overall treatment efficacy and improve patient outcomes. Ferroptosis thus emerges as a promising avenue in the realm of cancer therapy. Moving forward, research endeavors should focus on a more nuanced understanding of the interconnections between ferroptosis and other cell death modalities. Additionally, comprehensive evaluations of the long-term safety and therapeutic indices of the involved compounds are imperative. Such investigations are poised to herald a transformative shift in the paradigm of oncology, paving the way for innovative and targeted interventions.
Collapse
Affiliation(s)
- Shihao Jin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao Road, Jinan, 250000, China
| | - Huannan Wang
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Rizhao, 276826, China
| |
Collapse
|
40
|
Qin S, Zhu C, Chen C, Sheng Z, Cao Y. An emerging double‑edged sword role of ferroptosis in cardiovascular disease (Review). Int J Mol Med 2025; 55:16. [PMID: 39540363 PMCID: PMC11573318 DOI: 10.3892/ijmm.2024.5457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The pathophysiology of cardiovascular disease (CVD) is complex and presents a serious threat to human health. Cardiomyocyte loss serves a pivotal role in both the onset and progression of CVD. Among various forms of programmed cell death, ferroptosis, along with apoptosis, autophagy and pyroptosis, is closely linked to the advancement of CVD. Ferroptosis, a mechanism of cell death, is driven by the buildup of oxidized lipids and excess iron. This pathway is modulated by lipid, amino acid and iron metabolism. Key characteristics of ferroptosis include disrupted iron homeostasis, increased peroxidation of polyunsaturated fatty acids due to reactive oxygen species, decreased glutathione levels and inactivation of glutathione peroxidase 4. Treatments targeting ferroptosis could potentially prevent or alleviate CVD by inhibiting the ferroptosis pathway. Ferroptosis is integral to the pathogenesis of several types of CVD and inhibiting its occurrence in cardiomyocytes could be a promising therapeutic strategy for the future treatment of CVD. The present review provided an in‑depth analysis of advancements in understanding the mechanisms underlying ferroptosis. The present manuscript summarized the interplay between ferroptosis and CVDs, highlighting its dual roles in these conditions. Additionally, potential therapeutic targets within the ferroptosis pathway were discussed, alongside the current limitations and future directions of these novel treatment strategies. The present review may offer novel insights into preventive and therapeutic approaches for CVDs.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Can Zhu
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
41
|
Wang Z, Liu Y, Asemi Z. Quercetin and microRNA Interplay in Apoptosis Regulation: A New Therapeutic Strategy for Cancer? Curr Med Chem 2025; 32:939-957. [PMID: 38018191 DOI: 10.2174/0109298673259466231031050437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/06/2023] [Accepted: 10/09/2023] [Indexed: 11/30/2023]
Abstract
Cancer is known as a global problem for the health and economy. Following cancer onset, apoptosis is the primary mechanism countering the tumor cells' growth. Most anticancer agents initiate apoptosis to remove tumor cells. Phytochemicals have appeared as a beneficial treatment option according to their less adverse effects. In recent decades, quercetin has been highlighted due to its high pharmacological benefits, and various literature has suggested it as a potential anti-proliferative agent against different kinds of cancers. The microRNAs (miRNAs) play key roles in cancer treatment, progression, and apoptosis. This review reviewed the effect of quercetin on miRNAs contributing to the induction or inhibition of apoptosis in cancers.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yanqing Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
- Department of Pharmacology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zatollah Asemi
- Department of Nutrition, Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
42
|
Zhang P, Liu H, Yu Y, Peng S, Zeng A, Song L. Terpenoids mediated cell apoptotsis in cervical cancer: Mechanisms, advances and prospects. Fitoterapia 2025; 180:106323. [PMID: 39631509 DOI: 10.1016/j.fitote.2024.106323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Cervical cancer remains one of the most common malignancies among women globally, causing hundreds of thousands of deaths annually. Despite widespread vaccination and screening programs, the incidence of cervical cancer remains high in developing countries. OBJECTIVE This review aims to systematically summarize the existing terpenoids effective in preventing cervical cancer, elucidate their potential mechanisms in the prophylaxis and treatment of cervical cancer, and assess the limitations of current studies. RESULTS Studies have shown that terpenoids can decrease the incidence of cervical cancer and promote apoptosis of cancer cells through various signaling pathways, including the PI3K/AKT pathway, the endoplasmic reticulum stress (ERS) pathway, and the mitochondria- and caspase-dependent cell death pathways. Furthermore, some terpenoids have been found to enhance the sensitivity to chemotherapy drugs, thus improving patients' quality of life. CONCLUSION Terpenoids play a significant role in inhibiting the progression of cervical cancer. However, due to their diversity and complex mechanisms of action, further research is necessary to investigate their specific targets and bioactivities to advance their clinical trials and applications.
Collapse
Affiliation(s)
- Peng Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Hong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yuan Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Shiyang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China.
| |
Collapse
|
43
|
Jhade SK, Kalidoss K, Pathak PK, Shrivastava R. Artemisinin's molecular symphony: illuminating pathways for cancer therapy. Mol Biol Rep 2024; 52:95. [PMID: 39739138 DOI: 10.1007/s11033-024-10202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Artemisinin (ART), a sesquiterpene lactone derived from the sweet wormwood plant (Artemisia annua), exhibits potent anti-malarial and anti-microbial properties, with emerging evidence suggesting its anticancer potential. This review delves into the molecular intricacies underlying ART's anticancer effects, elucidating its modulation of cell signaling pathways, induction of apoptosis and autophagy, and inhibition of angiogenesis crucial for cancer progression. Additionally, the review highlights ART's impact on oxidative stress and DNA damage within cancer cells, along with its potential synergistic effects with conventional cancer drugs to mitigate side effects. Despite notable strides, further elucidation of ART's mechanisms and clinical validation across diverse cancer types are necessary. Conclusively, this review provides a brief overview of the molecular foundation that makes ART a promising candidate for future cancer therapeutic strategies and emphasises the need for further research to fully comprehend the molecular complexity of ART-mediated cancer therapies.
Collapse
Affiliation(s)
- Sandeep Kumar Jhade
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Karthik Kalidoss
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Poonam Kumari Pathak
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India
| | - Rahul Shrivastava
- Metabolomics and Proteomics Laboratory, Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
44
|
Xia L, Li J, Pang Y, Xu M, Du Y, Chen M, Xu B, Qiu Y, Dong Z. Dihydroartemisinin promotes tau O-GlcNAcylation and improves cognitive function in hTau transgenic mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111105. [PMID: 39053763 DOI: 10.1016/j.pnpbp.2024.111105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Tauopathy is a collective term for several neurodegenerative diseases characterized by the intracellular accumulation of hyperphosphorylated microtubule-associated protein Tau (P-tau). Our recent report has revealed the neuroprotective effect of dihydroartemisinin (DHA) on mice overexpressing human Tau (hTau) in the hippocampus by enhancing O-linked-N-Acetylglucosaminylation (O-GlcNAcylation) modification. However, whether DHA can improve synaptic and cognitive function in hTau transgenic mice by specifically promoting Tau O-GlcNAcylation is still unclear. Here, we introduced hTau transgenic mice, a more optimal tauopathy model, to study the effect of DHA on Tau O-GlcNAcylation. We reported that DHA treatment alleviated the deficits of hippocampal CA1 LTP and spatial learning and memory in the Barnes maze and context fear conditioning tests in hTau transgenic mice. Mechanically, we revealed that DHA exerted a significant protective effect by upregulating Tau O-GlcNAcylation and attenuating Tau hyperphosphorylation. Through molecular docking, we found a stable binding between DHA and O-GlcNAc transferase (OGT). We further reported that DHA treatment had no effect on the expression of OGT, but it promoted OGT nuclear export, thereby enhancing OGT-mediated Tau O-GlcNAcylation. Taken together, these results indicate that DHA exerts neuroprotective effect by promoting cytoplasmic translocation of OGT and rebuilding the balance of Tau O-GlcNAcylation/phosphorylation, enhancing O-GlcNAcylation of Tau, suggesting that DHA may be a potential therapeutic agent against tauopathy.
Collapse
Affiliation(s)
- Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mingliang Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Mulan Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Boqing Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yiqiong Qiu
- Clinical Laboratory of Changshou District Hospital of Traditional Chinese Medicine, Chongqing 401220, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
45
|
Lai HC, Weng JC, Huang HC, Ho JX, Kuo CL, Cheng JC, Huang ST. Solanum torvum induces ferroptosis to suppress hepatocellular carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118670. [PMID: 39117020 DOI: 10.1016/j.jep.2024.118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum torvum Sw. (ST) is used to clear heat toxins, promote blood circulation, and alleviate blood stasis. Therefore, this plant has traditionally been used as an ethnomedicine for common cold, chronic gastritis, and tumors. AIM OF THE STUDY This study aimed to elucidate the mechanism by which ST induces ferroptosis in hepatocellular carcinoma (HCC), the combination effect with lenvatinib, and the impact on lenvatinib-resistant cells. MATERIALS AND METHODS Cell viability assays were performed using different hepatoma cell lines treated with ST. Lipid peroxidation and iron assays were performed using flow cytometry. Molecules involved in the ferroptosis pathway were detected by Western blotting. Finally, a lenvatinib-resistant cell line was established to evaluate the antiproliferative effects of ST. RESULTS ST ethanol extract inhibited the growth of various hepatoma cell lines. A significant reduction in glutathione peroxidase 4 (GPX4) expression was observed following ST treatment, which was accompanied by increased lipid peroxidation and Fe2+ accumulation. ST induced ferroptosis mainly through heme oxygenase-1 (HO-1) expression. HO-1 knockdown reduced ST-induced lipid peroxidation and reversed GPX4 suppression. Acyl-CoA synthetase long-chain family member 4 (ACSL4) also participated in ST-induced ferroptosis. ST and lenvatinib combination showed an additive effect, and ST retained its potential anti-HCC efficacy in a lenvatinib-resistant cell line. CONCLUSION This study demonstrated that the ethanol extract of ST inhibits hepatoma cell growth by inducing ferroptosis. ST displayed an additive effect with lenvatinib in Hep 3B cells and showed remarkable anti-HCC activity in lenvatinib-resistant Hep 3B cells. Collectively, the study shows that ST might have the potential to reduce lenvatinib use in clinical practice and salvage cases of lenvatinib resistance.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jui-Chun Weng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hui-Chi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Jin-Xuan Ho
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan.
| | - Sheng-Teng Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
46
|
Zhang W, Wen W, Tan R, Zhang M, Zhong T, Wang J, Chen H, Fang X. Ferroptosis: Potential therapeutic targets and prognostic predictions for acute myeloid leukemia (Review). Oncol Lett 2024; 28:574. [PMID: 39397802 PMCID: PMC11467844 DOI: 10.3892/ol.2024.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 10/15/2024] Open
Abstract
Ferroptosis is a relatively recently discovered type of regulated cell death that is induced by iron-dependent lipid peroxidation. The key contributing factors to ferroptosis are the loss of glutathione peroxidase 4 which is required for reversing lipid peroxidation, the buildup of redox-active iron and the oxidation of phospholipids containing polyunsaturated fatty acids. Ferroptosis has been associated with a number of diseases, including cancers such as hepatocellular carcinoma, breast cancer, acute renal damage and neurological disorders such as Alzheimer's disease and Alzheimer's disease, and there may be an association between ferroptosis and acute myeloid leukemia (AML). The present review aims to describe the primary regulatory pathways of ferroptosis, and the relationship between ferroptosis and the occurrence and development of AML. Furthermore, the present review comprehensively summarizes the latest advances in the treatment and prognosis of ferroptosis in AML.
Collapse
Affiliation(s)
- Wenlu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Wen Wen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Meirui Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Tantan Zhong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haiping Chen
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
47
|
Lu Y, Xie X, Luo L. Ferroptosis crosstalk in anti-tumor immunotherapy: molecular mechanisms, tumor microenvironment, application prospects. Apoptosis 2024; 29:1914-1943. [PMID: 39008197 DOI: 10.1007/s10495-024-01997-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Immunotherapies for cancer, specifically immune checkpoint inhibition (ICI), have shown potential in reactivating the body's immune response against tumors. However, there are challenges to overcome in addressing drug resistance and improving the effectiveness of these treatments. Recent research has highlighted the relationship between ferroptosis and the immune system within immune cells and the tumor microenvironment (TME), suggesting that combining targeted ferroptosis with immunotherapy could enhance anti-tumor effects. This review explores the potential of using immunotherapy to target ferroptosis either alone or in conjunction with other therapies like immune checkpoint blockade (ICB) therapy, radiotherapy, and nanomedicine synergistic treatments. It also delves into the roles of different immune cell types in promoting anti-tumor immune responses through ferroptosis. Together, these findings provide a comprehensive understanding of synergistic immunotherapy focused on ferroptosis and offer innovative strategies for cancer treatment.
Collapse
Affiliation(s)
- Yining Lu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoting Xie
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
48
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, Zhang B, Xiao W. Broadening horizons: the multifaceted role of ferroptosis in breast cancer. Front Immunol 2024; 15:1455741. [PMID: 39664391 PMCID: PMC11631881 DOI: 10.3389/fimmu.2024.1455741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024] Open
Abstract
Breast cancer poses a serious threat to women's health globally. Current radiotherapy and chemotherapy regimens can induce drug-resistance effects in cancer tissues, such as anti-apoptosis, anti-pyroptosis, and anti-necroptosis, leading to poor clinical outcomes in the treatment of breast cancer. Ferroptosis is a novel programmed cell death modality characterized by iron overload, excessive generation of reactive oxygen species, and membrane lipid peroxidation. The occurrence of ferroptosis results from the imbalance between intracellular peroxidation mechanisms (executive system) and antioxidant mechanisms (defensive system), specifically involving iron metabolism pathways, amino acid metabolism pathways, and lipid metabolism pathways. In recent years, it has been found that ferroptosis is associated with the progression of various diseases, including tumors, hypertension, diabetes, and Alzheimer's disease. Studies have confirmed that triggering ferroptosis in breast cancer cells can significantly inhibit cancer cell proliferation and invasion, and improve cancer cell sensitivity to radiotherapy and chemotherapy, making induction of ferroptosis a potential strategy for the treatment of breast cancer. This paper reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including signaling pathways such as GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, and GCH1-BH4) in breast cancer disease, the latest research progress, and summarizes the research on ferroptosis in breast cancer disease within the framework of metabolism, reactive oxygen biology, and iron biology. The key regulatory factors and mechanisms of ferroptosis in breast cancer disease, as well as important concepts and significant open questions in the field of ferroptosis and related natural compounds, are introduced. It is hoped that future research will make further breakthroughs in the regulatory mechanisms of ferroptosis and the use of ferroptosis in treating breast cancer cells. Meanwhile, natural compounds may also become a new direction for potential drug development targeting ferroptosis in breast cancer treatment. This provides a theoretical basis and opens up a new pathway for research and the development of drugs for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wang Xiang
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, United States
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
| | - Kailin Yang
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yexing Yan
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic Laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | | | - Wei Xiao
- Department of Rheumatology, The First People’s Hospital Changde City, Changde, Hunan, China
| |
Collapse
|
49
|
Xu X, Wang Y, Yan D, Ren C, Cai Y, Liao S, Kong L, Han C. Enhanced Fe(II)-artemisinin-mediated chemodynamic therapy with efficient Fe(III)/Fe(II) conversion circulation for cancer treatment. Biomater Sci 2024; 12:5856-5869. [PMID: 39422664 DOI: 10.1039/d4bm01095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Existing strategies to investigate the antitumor effects of artemisinin and its derivatives (ART) are inadequate. Both free Fe(II) and heme in mitochondria have been proposed to be ART activators. However, the two impact factors have been considered separately or have not been thoroughly investigated. Here, the designed ART-based novel nanosystem with transferrin-modified hollow mesoporous silica nanoparticles as drug-delivery carriers is loaded with a functional artemisinin derivative (Cou-DHA), glucose oxidase, and perfluoropentane inside the cavity, which can enhance synergistic Fe(II)-ART-mediated chemodynamic therapy (CDT). Under the action of H2O2 generated by starvation therapy, the Fenton reaction occurs with Fe(III) in transferrin converted into free Fe(II). Remarkably, this report is the first to provide Fe(II) to ART actively and efficiently by combining starvation therapy and Fenton reaction-based CDT. Importantly, mitochondria-targeted Cou-DHA delivers ART into the mitochondria to sensitize the anticancer effects of ART with the supplied Fe(II) to realize Fe(II)-ART-mediated CDT. The ART-based novel nanosystem developed in our work thus has great potential for exploitation in advanced cancer therapies.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, PR China
| | - Yun Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, Center for Analysis and Testing, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Dan Yan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, Center for Analysis and Testing, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Chunling Ren
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, Center for Analysis and Testing, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Yuqian Cai
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, Center for Analysis and Testing, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Shanting Liao
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, PR China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, Center for Analysis and Testing, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, Center for Analysis and Testing, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing 211198, China
| |
Collapse
|
50
|
Liu S, Zhang L, Ding K, Zeng B, Li B, Zhou J, Li J, Wang J, Zhang H, Sun R, Su X. S. glabra exerts anti-lung cancer effects by inducing ferroptosis and anticancer immunity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155981. [PMID: 39260134 DOI: 10.1016/j.phymed.2024.155981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Sarcandra glabra (S. glabra), a traditional Chinese medicine (TCM), has demonstrated significant anticancer activity; however, the underlying mechanisms have not yet been fully elucidated. PURPOSE This study aimed to investigate the effects of S. glabra on lung cancer and to explore its underlying mechanisms. METHODS The chemical profile of S. glabra was analyzed via ultrahigh-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). The effects of S. glabra on the viability, proliferation, apoptosis, migration, and invasion of lung cancer cells were assessed via CCK8, colony formation, flow cytometry, scratch, and Transwell assays. In vivo anticancer activity was evaluated in an LLC mouse model. Proteomic analysis was performed to identify key molecules and pathways in S. glabra-treated LLC cells. The expression of ferroptotic proteins and associated cellular events were examined via western blotting, ROS production, iron accumulation, and lipid peroxidation assays. Immune modulation in tumor-bearing mice was evaluated by detecting immune cells and cytokines in the peripheral blood and tumor tissue. RESULTS Our analysis quantified 1997 chemical markers in S. glabra aqueous extracts. S. glabra inhibited the viability and proliferation of lung cancer cells and induced cell cycle arrest and apoptosis. Scratch and Transwell assays demonstrated that S. glabra suppressed the migration and invasion of lung cancer cells. Oral administration of S. glabra significantly inhibited tumor growth in LLC tumor-bearing mice. Proteomic analysis revealed that S. glabra upregulated the expression of the HMOX1 protein and activated the ferroptosis pathway. Consistent with these findings, we found that S. glabra triggered ferroptosis in lung cancer cells, as evidenced by the upregulation of HMOX1, downregulation of GPX4 and ferritin light chain proteins, iron accumulation, increased ROS production, and lipid peroxidation. Furthermore, S. glabra demonstrated immunostimulatory properties in LLC tumor-bearing mice, leading to increased populations of immune cells (NK cells) and elevated cytokine levels (IL-2). CONCLUSION This study is the first to demonstrate that S. glabra induces ferroptosis in lung cancer cells by regulating HMOX1, GPX4, and FTL. These findings provide a robust scientific basis for the clinical application of S. glabra in lung cancer treatment.
Collapse
Affiliation(s)
- Songyu Liu
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lu Zhang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Kai Ding
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Bin Zeng
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Bo Li
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Jinyi Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Jv Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Junliang Wang
- Scientific Research and Experimental Center, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Ruifen Sun
- School of Nursing, Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Xiaosan Su
- Scientific Research and Experimental Center, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|