1
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 PMCID: PMC11974651 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Tu S, Dong Y, Li C, Jiang M, Duan L, Zhang W, Chen X. Phosphatidylcholine Ameliorates Palmitic Acid-Induced Lipotoxicity by Facilitating Endoplasmic Reticulum and Mitochondria Contacts in Intervertebral Disc Degeneration. JOR Spine 2025; 8:e70062. [PMID: 40171442 PMCID: PMC11956213 DOI: 10.1002/jsp2.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 02/21/2025] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal disorder with substantial socioeconomic impacts. Despite its high prevalence, the pathogenesis of IDD remains unclear, and effective pharmacological interventions are lacking. This study aimed to investigate metabolic alterations in IDD and explore potential therapeutic targets by analyzing lipotoxicity-related mechanisms in nucleus pulposus (NP) cells. Methods Metabolomics and magnetic resonance spectroscopy were utilized to profile metabolic changes in NP tissues from advanced-stage IDD. Transcriptomics and metabolomics integration were performed to identify key regulatory pathways. In vitro experiments using human NP cells exposed to palmitic acid were conducted to evaluate endoplasmic reticulum (ER) stress, mitochondrial dysfunction, lipid droplet accumulation, and senescence. Phosphatidylcholine supplementation was tested for its ability to mitigate lipotoxicity, with ER-mitochondria interactions and mitochondrial oxidation capacity assessed as mechanistic endpoints. Results Our findings revealed an abnormal lipotoxic condition in NP cells from advanced-stage IDD. Furthermore, we identified abnormal accumulation of triglycerides and palmitic acid in NP cells from IDD. The palmitic acid accumulation resulted in endoplasmic reticulum stress, mitochondrial damage, lipid droplet accumulation, and senescence of NP cells. By integrating transcriptomics and metabolomics analyses, we discovered that phosphatidylcholine plays a role in regulating palmitic acid-induced lipotoxicity. Notably, phosphatidylcholine level was found to be low in the endoplasmic reticulum and mitochondria of advanced-stage NP cells. Phosphatidylcholine treatment alleviated palmitic acid-induced lipid droplet accumulation and senescence of NP cells by modulating ER-mitochondria contacts and mitochondrial oxidation capacity. Conclusion Phosphatidylcholine emerges as a potential therapeutic agent to counteract lipotoxic stress by modulating organelle interactions and mitochondrial function. These findings advance our understanding of IDD pathogenesis and provide a novel metabolic target for therapeutic development.
Collapse
Affiliation(s)
- Shuangshuang Tu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- College of Pharmacy, Anhui Xinhua UniversityHefeiChina
| | - Yijun Dong
- Department of OrthopedicsThe First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical UniversityHefeiChina
| | - Chuanfu Li
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Clinical College of Anhui Medical UniversityHefeiChina
| | - Mingxin Jiang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- School of Clinical MedicineAnhui University of Science and TechnologyHuainanChina
| | - Liqun Duan
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
3
|
Du Y, Duan C, Zhu X, Lyu M, Chen J, Wei Y, Hu Y. Visual Analysis of Research Hotspots and Trends on Mitochondria-Associated Membranes in the Past 20 Years-Focused on Neurodegenerative Diseases. Mol Neurobiol 2025; 62:7144-7159. [PMID: 39964584 DOI: 10.1007/s12035-025-04722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/22/2025] [Indexed: 05/15/2025]
Abstract
The interaction between mitochondria and the endoplasmic reticulum is mediated by mitochondria-associated endoplasmic reticulum membranes (MAMs), which play a crucial role in regulating intracellular signal transduction and molecular interactions. This study employs bibliometric analysis to examine the research progress on MAMS and identify research hotspots and trends. A total of 1406 publications on MAMs were collected from the Web of Science Core Collection. Software such as CiteSpace, VOSviewer, and Scimago Graphica were utilized in the bibliometric analysis process. This study conducted a bibliometric analysis of over 20 years of MAM research, identifying the countries, institutions, authors, journals, and publications involved in the field. The number of publications on MAMs has been increasing annually since 2010, exhibiting a steady upward trend. The main contributors to this field are the USA, China, and Italy, with the journal Frontiers in Cell and Developmental Biology publishing the most publications. Common keywords include "endoplasmic reticulum stress," "Ca2 + ," "mitofusin2," "oxidative stress," "apoptosis," "autophagy," and "Alzheimer's disease." We found that the role of MAMs in neurodegenerative diseases has aroused great interest among researchers. The associations between calcium homeostasis, autophagy, mitochondrial dysfunction, and cell death with MAMs are also considered research hotspots and show broad research prospects. In addition, changes in MAM-resident proteins, including the mitochondria-ER tethering complex, Mfn2, and Sig-1R, have been highlighted as prominent research directions. The findings provide a comprehensive overview of research on MAMs and valuable insights for researchers, which is helpful for exploring future directions and trends in this field.
Collapse
Affiliation(s)
- Yihang Du
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueping Zhu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meng Lyu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiafan Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wei
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Zhang Y, Ma P, Wang S, Chen S, Deng H. Restoring calcium crosstalk between ER and mitochondria promotes intestinal stem cell rejuvenation through autophagy in aged Drosophila. Nat Commun 2025; 16:4909. [PMID: 40425608 PMCID: PMC12116733 DOI: 10.1038/s41467-025-60196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
Breakdown of calcium network is closely associated with cellular aging. Previously, we found that cytosolic calcium (CytoCa2+) levels were elevated while mitochondrial calcium (MitoCa2+) levels were decreased and associated with metabolic shift in aged intestinal stem cells (ISCs) of Drosophila. How MitoCa2+ was decoupled from the intracellular calcium network and whether the reduction of MitoCa2+ drives ISC aging, however, remains unresolved. Here, we show that genetically restoring MitoCa2+ can reverse ISC functional decline and promote intestinal homeostasis by activating autophagy in aged flies. Further studies indicate that MitoCa2+ and Mitochondria-ER contacts (MERCs) form a positive feedback loop via IP3R to regulate autophagy independent of AMPK. Breakdown of this loop is responsible for MitoCa2+ reduction and ISC dysfunction in aged flies. Our results identify a regulatory module for autophagy initiation involving calcium crosstalk between the ER and mitochondria, providing a strategy to treat aging and age-related diseases.
Collapse
Affiliation(s)
- Yao Zhang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Peng Ma
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Saifei Wang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Shuxin Chen
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China
| | - Hansong Deng
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 20092, China.
| |
Collapse
|
5
|
Meng Y, Zhang J, Liu Y, Zhu Y, Lv H, Xia F, Guo Q, Shi Q, Qiu C, Wang J. The biomedical application of inorganic metal nanoparticles in aging and aging-associated diseases. J Adv Res 2025; 71:551-570. [PMID: 38821357 DOI: 10.1016/j.jare.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.
Collapse
Affiliation(s)
- Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Haining Lv
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiuyan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qianli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jigang Wang
- Department of Urology, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
6
|
Yang M, Qin X, Liu X. The effect of mitochondrial-associated endoplasmic reticulum membranes (MAMs) modulation: New insights into therapeutic targets for depression. Neurosci Biobehav Rev 2025; 172:106087. [PMID: 40031998 DOI: 10.1016/j.neubiorev.2025.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Depression is a prevalent mental disorder with high morbidity and mortality and its pathogenesis remains exactly unclarified. However, mitochondria and endoplasmic reticulum (ER) are two highly dynamic organelles that perform an indispensable role in the development of depression. Mitochondrial dysfunction and ER stress are recognized as vital pathological hallmarks in depression. The changes of intracellular activities such as mitochondrial dynamics, mitophagy, energy metabolism and ER stress are closely correlated with the progression of depression. Moreover, organelles interactions are conducive to homeostasis and cellular functions, and mitochondrial-associated endoplasmic reticulum membranes (MAMs) serve as signaling hubs of the two organelles and the coupling of the pathological progression. The main roles of MAMs are involved in metabolism, signal transduction, lipid transport, and maintenance of its structure and function. At present, accumulating studies elucidated that MAMs have gradually become a novel therapeutic target in treatment of depression. In the review, we focus on influence of mitochondria dysfunction and ER stress on depression. Furthermore, we discuss the underlying role of MAMs in depression and highlight natural products targeting MAMs as potential antidepressants to treat depression.
Collapse
Affiliation(s)
- Maohui Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Lavarti R, Alvarez-Diaz T, Marti K, Kar P, Raju RP. The context-dependent effect of cellular senescence: From embryogenesis and wound healing to aging. Ageing Res Rev 2025; 109:102760. [PMID: 40318767 DOI: 10.1016/j.arr.2025.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/20/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Aging is characterized by a steady loss of physiological integrity, leading to impaired function and increased vulnerability to death. Cell senescence is a biological process that progresses with aging and is believed to be a key driver of age-related diseases. Senescence, a hallmark of aging, also demonstrates its beneficial physiological aspects as an anti-cancer, pro-regenerative, homeostatic, and developmental mechanism. A transitory response in which the senescent cells are quickly formed and cleared may promote tissue regeneration and organismal fitness. At the same time, senescence-related secretory phenotypes associated with extended senescence can have devastating effects. The fact that the interaction between senescent cells and their surroundings is very context-dependent may also help to explain this seemingly opposing pleiotropic function. Further, mitochondrial dysfunction is an often-unappreciated hallmark of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. This review summarizes the mechanism of cellular senescence and the significance of acute senescence. We concisely introduced the context-dependent role of senescent cells and SASP, aspects of mitochondrial biology altered in the senescent cells, and their impact on the senescent phenotype. Finally, we conclude with recent therapeutic advancements targeting cellular senescence, focusing on acute injuries and age-associated diseases. Collectively, these insights provide a future roadmap for the role of senescence in organismal fitness and life span extension.
Collapse
Affiliation(s)
- Rupa Lavarti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Tatiana Alvarez-Diaz
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kyarangelie Marti
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Parmita Kar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States.
| |
Collapse
|
8
|
Li T, Huang L, Guo C, Ren J, Chen X, Ke Y, Xun Z, Hu W, Qi Y, Wang H, Gong Z, Liang X, Xue X. Massage-Mimicking Nanosheets Mechanically Reorganize Inter-organelle Contacts to Restore Mitochondrial Functions in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413376. [PMID: 40223359 PMCID: PMC12120710 DOI: 10.1002/advs.202413376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Parkinson's disease (PD) is exacerbated by dysfunction of inter-organelle contact, which depends on cellular responses to the mechanical microenvironment and can be regulated by external mechanical forces. Delivering dynamic mechanical forces to neural cells proves challenging due to the skull. Inspired by the effects of massage; here PEGylated black phosphorus nanosheets (PEG-BPNS), known for their excellent biocompatibility, biodegradability, specific surface area, mechanical strength, and flexibility, are introduced, which are capable of adhering to neural cell membrane and generating mechanical stimulation with their lateral size of 200 nm, exhibiting therapeutic potential in a 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine-induced PD mouse model by regulating inter-organelle contacts. Specifically, it is found that 200 nm PEG-BPNS, acting as "NanoMassage," significantly increase plasma membrane tension, as evidenced by fluorescent lipid tension reporter fluorescence lifetime analysis. This mechanical force modulates actin reorganization, subsequently regulating the contacts between actin, mitochondria, and endoplasmic reticulum, further controlling mitochondrial fission and mitigating mitochondrial dysfunction in PD, exhibiting therapeutic efficacy via intranasal administration. These findings provide a noninvasive strategy for applying mechanical stimulation to deep brain areas and elucidate the mechanism of NanoMassage mediating inter-organelle contacts, suggesting the rational design of "NanoMassage" to remodel inter-organelle communications in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Tianqi Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Liwen Huang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
- Present address:
Department of ChemistryShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsState Key Laboratory of Molecular Engineering of Polymers and iChemFudan UniversityShanghai200438P. R. China
| | - Chenxiao Guo
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Jing Ren
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Xi Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Yachu Ke
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Zengyu Xun
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Wenzhuo Hu
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Yilin Qi
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| | - Heping Wang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
- Present address:
State Key Laboratory of Advanced Medical Materials and DevicesTianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineKey Laboratory of Radiopharmacokinetics for Innovative DrugsTianjin Institutes of Health ScienceInstitute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300192P. R. China
| | - Zhongying Gong
- Department of NeurologyTianjin First Central HospitalSchool of MedicineNankai UniversityTianjin300192P. R. China
| | - Xing‐Jie Liang
- Laboratory of Controllable NanopharmaceuticalsChinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing101408P. R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300350P. R. China
| |
Collapse
|
9
|
Hong W, Zeng X, Ma R, Tian Y, Miu H, Ran X, Song R, Luo Z, Ju D, Ma D, Ashrafizadeh M, Bhutia SK, Conde J, Sethi G, Huang H, Duan C. Age-associated reduction in ER-Mitochondrial contacts impairs mitochondrial lipid metabolism and autophagosome formation in the heart. Cell Death Differ 2025:10.1038/s41418-025-01511-w. [PMID: 40254645 DOI: 10.1038/s41418-025-01511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
The accumulation of dysfunctional giant mitochondria is a hallmark of aged cardiomyocytes. This study investigated the core mechanism underlying this phenomenon, focusing on the disruption of mitochondrial lipid metabolism and its effects on mitochondrial dynamics and autophagy, using both naturally aging mouse models and etoposide-induced cellular senescence models. In aged cardiomyocytes, a reduction in endoplasmic reticulum-mitochondrial (ER-Mito) contacts impairs lipid transport and leads to insufficient synthesis of mitochondrial phosphatidylethanolamine (PE). A deficiency in phosphatidylserine decarboxylase (PISD) further hinders the conversion of phosphatidylserine to PE within mitochondria, exacerbating the deficit of PE production. This PE shortage disrupts autophagosomal membrane formation, leading to impaired autophagic flux and the accumulation of damaged mitochondria. Modulating LACTB expression to enhance PISD activity and PE production helps maintain mitochondrial homeostasis and the integrity of aging cardiomyocytes. These findings highlight the disruption of mitochondrial lipid metabolism as a central mechanism driving the accumulation of dysfunctional giant mitochondria in aged cardiomyocytes and suggest that inhibiting LACTB expression could serve as a potential therapeutic strategy for mitigating cardiac aging and preserving mitochondrial function.
Collapse
Affiliation(s)
- Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, P.R. China
| | - Ruiyan Ma
- Department of Cardiovascular Surgery, Xinqiao Hospital, Army Medical University, Chongqing, P.R. China
| | - Yu Tian
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Huimin Miu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaoping Ran
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Rui Song
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zhenchun Luo
- Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing, P.R. China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Daqing Ma
- Perioperative and Systems Medicine Laboratory, Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, P.R. China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh, 769008, Odisha, India
| | - João Conde
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS | FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.
| |
Collapse
|
10
|
Liao J, Shao M, Zhou Z, Wang S, Lv Y, Lu Y, Yao F, Li W, Yang L. Correlation of organelle interactions in the development of non-alcoholic fatty liver disease. Front Immunol 2025; 16:1567743. [PMID: 40308615 PMCID: PMC12040704 DOI: 10.3389/fimmu.2025.1567743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Organelles, despite having distinct functions, interact with each other. Interactions between organelles typically occur at membrane contact sites (MCSs) to maintain cellular homeostasis, allowing the exchange of metabolites and other pieces of information required for normal cellular physiology. Imbalances in organelle interactions may lead to various pathological processes. Increasing evidence suggests that abnormalorganelle interactions contribute to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the key role of organelle interactions in NAFLD has not been fully evaluated and researched. In this review, we summarize the role of organelle interactions in NAFLD and emphasize their correlation with cellular calcium homeostasis, lipid transport, and mitochondrial dynamics.
Collapse
Affiliation(s)
- Jiabao Liao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Mengqiu Shao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ze Zhou
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - You Lv
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yanming Lu
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Fang Yao
- Department of Endocrinology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Wenting Li
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ling Yang
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
11
|
Yu W, Li Y, Li Y, Hu J, Wu J, Chen X, Huang Y, Shi X. Connexin43 Contributes to Alzheimer's Disease by Promoting the Mitochondria-Associated Membrane-Related Autophagy Inhibition. Mol Neurobiol 2025; 62:4319-4337. [PMID: 39438345 PMCID: PMC11880138 DOI: 10.1007/s12035-024-04536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
The perturbed structure and function of mitochondria-associated membranes (MAM), instead of the amyloid cascade, have been gradually proposed to play a basic role in the pathogenesis of Alzheimer's disease (AD). Notably, autophagy inhibition is one of the main mechanisms of MAM dysfunction and plays an important role in neuronal injury. However, the upstream molecular mechanism underlying the MAM dysfunctions remains elusive. Here, we defined an unexpected and critical role of connexin43 (Cx43) in regulating the MAM structure. The expression levels of Cx43 and mitofusin-2 (MFN2, the MAM biomarker) increase significantly in 9-month-old APPswe/PS1dE9 double-transgenic AD model mice, and there is an obvious colocalization relationship. Moreover, both AD mice and cells lacking Cx43 exhibit an evident reduction in the MAM contact sites, which subsequently promotes the conversion from microtubule-associated protein 1 light-chain 3B I (LC3B-I) to LC3B-II via inhibition mTOR-dependent pathway and then initiates the generation of autophagosomes. Autophagosome formation ultimately promotes β-amyloid (Aβ) clearance and attenuates Aβ-associated pathological changes in AD, mainly including astrogliosis and neuronal apoptosis. Our findings not only reveal a previously unrecognized effect of Cx43 on MAM upregulation but also highlight the major player of MAM-induced autophagy inhibition in Cx43-facilitated AD pathogenesis, providing a novel insight into the alternative therapeutic strategies for the early treatment of AD.
Collapse
Affiliation(s)
- Weiwei Yu
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Yunong Li
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Yao Li
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Jun Hu
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Jun Wu
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street Xicheng District, Beijing, 100034, China.
| | - Xin Shi
- Department of Neurology, Peking University Shenzhen Hospital, Futian District, 1120 Lianhua Road, Shenzhen, 518036, China.
| |
Collapse
|
12
|
Liu J, Liu Y, Gao C, Pan H, Huang P, Tan Y, Chen S. The ultrastructural and proteomic analysis of mitochondria-associated endoplasmic reticulum membrane in the midbrain of a Parkinson's disease mouse model. Aging Cell 2025; 24:e14436. [PMID: 39614648 PMCID: PMC11984660 DOI: 10.1111/acel.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024] Open
Abstract
Recent studies indicated that the dysregulation of mitochondria-associated endoplasmic reticulum membrane (MAM) could be a significant hub in the pathogenesis of Parkinson's disease (PD). However, little has been known about how MAM altered in PD. This study was aimed to observe morphological changes and analyze proteomic profiles of MAM in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models. In MPTP-treated mice, transmission electron microscopy was applied for MAM ultrastructural visualization. Nano ultra-high performance liquid chromatography-tandem mass spectrum and bioinformatic analysis were adopted to obtain underlying molecular data of MAM fractions. The loosened, shortened and reduced MAM tethering was found in substantia nigral neurons from MPTP-treated mice. In midbrain MAM proteomics, 158 differentially expressed proteins (DEPs) were identified between two groups. Specific DEPs were validated by western blot and exhibited significantly statistical changes, aligning with proteomic results. Bioinformatic analysis indicated that membrane, cytoplasm and cell projection were three major localizations for DEPs. Biological processes including metabolism, lipid transport, and immunological and apoptotic signaling pathways were greatly affected. For consensus MAM proteins, the enriched pathway analysis revealed the potential relationship between neurodegenerative diseases and MAM. Several biological processes such as peroxisome function and clathrin-mediated endocytosis, were clustered, which provided additional insights into the fundamental molecular pathways associated with MAM. In our study, we demonstrated disrupted ER-mitochondria contacts in an MPTP-induced PD mouse model. The underlying signatures of MAM were revealed by proteomics and bioinformatic analysis, providing valuable insights into its potential role in PD pathogenesis.
Collapse
Affiliation(s)
- Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yi Liu
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of MedicineZhejiang UniversityHangzhouPeople's Republic of China
| | - Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Hong Pan
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople's Republic of China
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS)Shanghai Tech UniversityShanghaiPeople's Republic of China
| |
Collapse
|
13
|
Gou H, Wang T, Chen Y, Zhou Y, Li J, Xu Y. Role of Pink1 in Regulating Osteoclast Differentiation during Periodontitis. J Dent Res 2025:220345251315723. [PMID: 40075549 DOI: 10.1177/00220345251315723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Periodontitis has recently been recognized as an inflammatory disease caused by oxidative stress, with mitochondrial dysfunction being a key factor leading to oxidative stress. PTEN-induced kinase 1 (PINK1) is an essential protein for mitochondrial quality control, which protects cells from oxidative stress by inducing mitophagy to degrade damaged mitochondria, but its role in periodontitis has not been elucidated. This study aimed to explore the contribution and underlying mechanisms of Pink1 in regulating the differentiation and function of osteoclasts during periodontitis. Here we observed a significant downregulation of PINK1 expression in periodontitis-affected tissues. Then we constructed a periodontitis model in mice with fluorescently labeled mononuclear/macrophages, and the results showed that as the modeling time extended, the alveolar bone destruction gradually worsened and was accompanied by gradually decreased Pink1 expression in osteoclasts and a significantly increased osteoclast number. In vitro experiments further demonstrated a negative correlation between Pink1 and osteoclast differentiation. In addition, alveolar bone destruction in the Pink1 knockout mice was significantly more advanced than that in the littermate wild type mice after ligature-induced periodontitis and enhanced osteoclastogenesis and bone-resorptive capacity in vitro. RNA-sequencing analysis and in vitro validation revealed that the absence of Pink1 led to a decrease in oxidative phosphorylation levels and an enhancement of calcium-mediated signaling, specifically the calcineurin-NFATc1 pathway, via an intracellular calcium source. Further mechanistic studies found that the deficiency of Pink1 inhibited mitophagy but strengthened mitochondrial-endoplasmic reticulum coupling, which, by promoting the interaction of Mfn2-IP3R-VDAC1 proteins, increased the concentration of mitochondrial calcium ions, thereby triggering more active osteoclast differentiation. The aforementioned process can be reversed by the IP3R channel inhibitor Bcl-XL. These findings unveiled that Pink1 was involved in osteoclast differentiation by regulating mitochondrial calcium transport mediated by mitochondria-associated endoplasmic reticulum membranes, providing a new theoretical basis for the pathogenesis and treatment of periodontitis.
Collapse
Affiliation(s)
- H Gou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - T Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Chen
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Zhou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - J Li
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Y Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
14
|
Chen C, Dai G, Fan M, Wang X, Niu K, Gao W. Mitochondria-associated endoplasmic reticulum membranes and myocardial ischemia: from molecular mechanisms to therapeutic strategies. J Transl Med 2025; 23:277. [PMID: 40050915 PMCID: PMC11884070 DOI: 10.1186/s12967-025-06262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Myocardial ischemia has the highest disease burden among all cardiovascular diseases making it a significant challenge to the global public health. It can result in myocardial cell damage and death due to impaired mitochondrial and endoplasmic reticulum (ER) functions. These two organelles are important regulators of cell death. In recent years, research has shifted from isolated studies of individual organelles to a more integrative approach, with a particular focus on their membrane contact sites-Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs). These dynamic microdomains play a crucial role in regulating material exchange and signal transduction between the endoplasmic reticulum and mitochondria. This review comprehensively describes the intricate structure of MAMs and their multifaceted roles in cellular pathophysiological processes. Particular focus was directed at the far-reaching effects of MAMs in regulating key pathological events including calcium homeostasis, mitochondrial dysfunction, ER stress, oxidative stress, and autophagy in ischemic heart disease (IHD). The potential treatment targets and regulatory mechanisms of MAMs were discussed and summarized, providing novel research directions and treatment approaches for improving myocardial ischemia-related diseases.
Collapse
Affiliation(s)
- Chen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guohua Dai
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Maoxia Fan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xingmeng Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaibin Niu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wulin Gao
- Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
15
|
de Rezende VL, de Aguiar da Costa M, Martins CD, Mathias K, Gonçalves CL, Barichello T, Petronilho F. Systemic Rejuvenating Interventions: Perspectives on Neuroinflammation and Blood-Brain Barrier Integrity. Neurochem Res 2025; 50:112. [PMID: 40035979 DOI: 10.1007/s11064-025-04361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
The aging process results in structural, functional, and immunological changes in the brain, which contribute to cognitive decline and increase vulnerability to neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke-related complications. Aging leads to cognitive changes and also affect executive functions. Additionally, it causes neurogenic and neurochemical alterations, such as a decline in dopamine and acetylcholine levels, which also impact cognitive performance. The chronic inflammation caused by aging contributes to the impairment of the blood-brain barrier (BBB), contributing to the infiltration of immune cells and exacerbating neuronal damage. Therefore, rejuvenating therapies such as heterochronic parabiosis, cerebrospinal fluid (CSF) administration, plasma, platelet-rich plasma (PRP), and stem cell therapy have shown potential to reverse these changes, offering new perspectives in the treatment of age-related neurological diseases. This review focuses on highlighting the effects of rejuvenating interventions on neuroinflammation and the BBB.
Collapse
Affiliation(s)
- Victória Linden de Rezende
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Maiara de Aguiar da Costa
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Carla Damasio Martins
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Laboratory of Immunoparasitology, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, Mcgovern Medical School, The University of Texas Health Science Center at Houston (Uthealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil.
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
16
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
17
|
Kasi A, Steidl W, Kumar V. Endoplasmic Reticulum-Mitochondria Crosstalk in Fuchs Endothelial Corneal Dystrophy: Current Status and Future Prospects. Int J Mol Sci 2025; 26:894. [PMID: 39940664 PMCID: PMC11817211 DOI: 10.3390/ijms26030894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a progressive and debilitating disorder of the corneal endothelium (CE) that affects approximately 4% of individuals over the age of 40. Despite the burden of the disease, the pathogenesis of FECD remains poorly understood, and treatment options are limited, highlighting the need for deeper investigation into its underlying molecular mechanisms. Over the past decade, studies have indicated independent contributions of endoplasmic reticulum (ER) and mitochondrial stress to the pathogenesis of FECD. However, there are limited studies suggesting ER-mitochondria crosstalk in FECD. Recently, our lab established the role of chronic ER stress in inducing mitochondrial dysfunction for corneal endothelial cells (CEnCs), indicating the existence of ER-mitochondria crosstalk in FECD. This paper aims to provide a comprehensive overview of the current understanding of how ER and mitochondrial stress contribute to FECD pathogenesis. The paper also reviews the literature on the mechanisms of ER-mitochondria crosstalk in other diseases relevant to FECD.
Collapse
Affiliation(s)
- Anisha Kasi
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; (A.K.); (W.S.)
| | - William Steidl
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; (A.K.); (W.S.)
| | - Varun Kumar
- Eye and Vision Research Institute, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA; (A.K.); (W.S.)
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Yip JMX, Chiang GSH, Lee ICJ, Lehming-Teo R, Dai K, Dongol L, Wang LYT, Teo D, Seah GT, Lehming N. Mitochondria and the Repurposing of Diabetes Drugs for Off-Label Health Benefits. Int J Mol Sci 2025; 26:364. [PMID: 39796218 PMCID: PMC11719901 DOI: 10.3390/ijms26010364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
This review describes our current understanding of the role of the mitochondria in the repurposing of the anti-diabetes drugs metformin, gliclazide, GLP-1 receptor agonists, and SGLT2 inhibitors for additional clinical benefits regarding unhealthy aging, long COVID, mental neurogenerative disorders, and obesity. Metformin, the most prominent of these diabetes drugs, has been called the "Drug of Miracles and Wonders," as clinical trials have found it to be beneficial for human patients suffering from these maladies. To promote viral replication in all infected human cells, SARS-CoV-2 stimulates the infected liver cells to produce glucose and to export it into the blood stream, which can cause diabetes in long COVID patients, and metformin, which reduces the levels of glucose in the blood, was shown to cut the incidence rate of long COVID in half for all patients recovering from SARS-CoV-2. Metformin leads to the phosphorylation of the AMP-activated protein kinase AMPK, which accelerates the import of glucose into cells via the glucose transporter GLUT4 and switches the cells to the starvation mode, counteracting the virus. Diabetes drugs also stimulate the unfolded protein response and thus mitophagy, which is beneficial for healthy aging and mental health. Diabetes drugs were also found to mimic exercise and help to reduce body weight.
Collapse
Affiliation(s)
- Joyce Mei Xin Yip
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Grace Shu Hui Chiang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
| | - Ian Chong Jin Lee
- NUS High School of Mathematics and Science, Singapore 129957, Singapore
| | - Rachel Lehming-Teo
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Kexin Dai
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Lokeysh Dongol
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| | - Laureen Yi-Ting Wang
- Well Programme, Alexandra Hospital, National University Health System, Singapore 159964, Singapore; (G.S.H.C.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore 119074, Singapore
- Division of Cardiology, Department of Medicine, Alexandra Hospital, National University Health System, Singapore 159964, Singapore
| | - Denise Teo
- Chi Longevity, Camden Medical Centre #10-04, 1 Orchard Blvd, Singapore 248649, Singapore
| | - Geok Teng Seah
- Clifford Dispensary, 77 Robinson Rd #06-02, Singapore 068896, Singapore
| | - Norbert Lehming
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore (R.L.-T.)
| |
Collapse
|
19
|
Hossain MK, Chae HJ. Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease. Neurochem Int 2025; 182:105905. [PMID: 39566580 DOI: 10.1016/j.neuint.2024.105905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca2+ homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.
Collapse
Affiliation(s)
| | - Han Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
20
|
Yang M, Luo S, Chen W, He L, Liu D, Wang X, Xiao L, Sun L. Mitochondrial Unfolded Protein Response (mtUPR) and Diseases. Curr Med Chem 2025; 32:1674-1684. [PMID: 37608662 DOI: 10.2174/0929867331666230822095924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023]
Abstract
Mitochondria are the energy factories of cells, and their functions are closely related to cell homeostasis. The mitochondrial unfolded protein response (mtUPR) is a newly discovered mechanism for regulating mitochondrial homeostasis. When unfolded/ misfolded proteins accumulate in mitochondria, the mitochondria release signals that regulate the transcription of certain proteins in the nucleus, thereby inducing the correct folding or degradation of proteins in mitochondria. Many studies have also shown that an abnormality of mtUPR is closely related to the occurrence and development of diseases. Here, we summarized the pathways regulating mtUPR signaling and reviewed the research progress on mtUPR in diseases. Finally, we summarized the currently identified agonists and inhibitors of the mtUPR and discussed the potential of the mtUPR as a therapeutic target for diseases.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, Chinaa
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Xie W, Deng L, Zhang X, Huang X, Ding J, Liu W, Tang SY. Myricetin Alleviates Silica-Mediated Lung Fibrosis via PPARγ-PGC-1α Loop and Suppressing Mitochondrial Senescence in Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27737-27749. [PMID: 39586772 DOI: 10.1021/acs.jafc.4c04887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE Long-term inhalation of silica dust particles leads to lung tissue fibrosis, resulting in impaired gas exchange and increased mortality. Silica inhalation triggers the aging of epithelial cells (AECs), which is a key contributor to the development of pulmonary fibrosis. Myricetin, a flavonoid compound extracted from Myrica genus plants, possesses various biological activities, including antioxidant and immunomodulatory effects. However, the mechanisms underlying myricetin's ability to counter senescence and fibrosis need to be further studied. EXPERIMENTAL APPROACH In vivo, the antifibrotic and anti-senescence effects of myricetin were evaluated using a silica-induced pulmonary fibrosis mouse model. To further elucidate the mechanisms by which myricetin counteracts silica-induced senescence, in vitro experiments were conducted using AECs. RESULTS Our studies revealed that myricetin treatment alleviated silica-induced mortality, improved lung function, and reduced the severity of pulmonary fibrosis in mice. Immunofluorescence analysis suggests its potential in mitigating senescence of AECs. Under laboratory conditions, myricetin intervened in the cellular senescence pathway induced by silica dust by modulating mitochondrial function. It acted through the PPARγ-PGC1α axis, effectively reducing silica-induced mitochondrial oxidative stress in AECs, promoting mitophagy, and maintaining mitochondrial dynamics. However, the efficacy of myricetin was reversed under PPARγ siRNA intervention. Additionally, myricetin exhibited an enhancing effect on PPARγ and autophagy in animal models. Treatment with PPARγ and PGC-1α siRNA elucidated the role of myricetin in promoting the formation of a positive feedback loop between PPARγ and PGC-1α. Additionally, the PPARγ inhibitor GW9662 verified the in vivo effects of myricetin. CONCLUSIONS Myricetin activates PPARγ, forming a PPARγ-PGC-1α loop, which promotes mitophagy and maintains mitochondrial dynamics. This alleviates epithelial cell senescence induced by silica exposure, consequently mitigating silica-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Weixi Xie
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Lang Deng
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Xiaohua Zhang
- Occupational Disease Department, Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha 410000 Hunan, China
| | - Xiaoting Huang
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - JinFeng Ding
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, Changsha 410000 Hunan, China
- The School of Nursing, Ningxia Medical University, Yinchuan 750000 Ningxia, China
| |
Collapse
|
22
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
23
|
Singh M, Ali H, Renuka Jyothi S, Kaur I, Kumar S, Sharma N, Siva Prasad GV, Pramanik A, Hassan Almalki W, Imran M. Tau proteins and senescent Cells: Targeting aging pathways in Alzheimer's disease. Brain Res 2024; 1844:149165. [PMID: 39155034 DOI: 10.1016/j.brainres.2024.149165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by abnormal accumulation of tau proteins and amyloid-β, leading to neuronal death and cognitive impairment. Recent studies have implicated aging pathways, including dysregulation of tau and cellular senescence in AD pathogenesis. In AD brains, tau protein, which normally stabilizes microtubules, becomes hyperphosphorylated and forms insoluble neurofibrillary tangles. These tau aggregates impair neuronal function and are propagated across the brain's neurocircuitry. Meanwhile, the number of senescent cells accumulating in the aging brain is rising, releasing a pro-inflammatory SASP responsible for neuroinflammation and neurodegeneration. This review explores potential therapeutic interventions for AD targeting tau protein and senescent cells, and tau -directed compounds, senolytics, eliminating senescent cells, and agents that modulate the SASP-senomodulators. Ultimately, a combined approach that incorporates tau-directed medications and targeted senescent cell-based therapies holds promise for reducing the harmful impact of AD's shared aging pathways.
Collapse
Affiliation(s)
- Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs NMIMS University, Shirpur campus, Maharastra India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Irwanjot Kaur
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Naveen Sharma
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
24
|
Xian T, Liu Y, Ye Y, Peng B, Huang J, Liang L, Zhang J, Wu H, Lin Z. Human salivary histatin 1 regulating IP3R1/GRP75/VDAC1 mediated mitochondrial-associated endoplasmic reticulum membranes (MAMs) inhibits cell senescence for diabetic wound repair. Free Radic Biol Med 2024; 225:164-180. [PMID: 39343182 DOI: 10.1016/j.freeradbiomed.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
RATIONALE Difficulty in skin wound healing is a concern for diabetic patients across the world. Impaired mitochondrial dysfunction and aging-related vascular dysfunction in human umbilical vein endothelial cells (HUVECs) caused by oxidative stress are major impediments to diabetic wound healing. However, research on skin repair at the mechanistic level by improving mitochondrial function and inhibiting oxidative stress-induced HUVEC senescence remains lacking. METHODS AND RESULTS Human saliva effectively inhibits the natural aging of HUVECs through immunodepletion experiments. Histatin 1 (Hst1), a short peptide comprising 38 amino acids, is the primary component of human saliva that prevents HUVEC aging. Based on in vitro findings, Hst1 decreased staining for senescence-associated β-galactosidase activity and expression of mediators of senescence signaling, including p53, p21, and p16. Mechanistically, HUVEC senescence is associated with Hst1-modulated nuclear factor Nrf2 signaling as Hst1 induces ERK-mediated Nrf2 nuclear translocation through NADPH oxidase-dependent ROS regulation, reinforced Nrf2 antioxidant response, and suppressed oxidative stress. RNA sequencing identified that the mitochondrial-related gene set was enriched in the Hst1 group. Coimmunoprecipitation indicated that Hst1 delayed hydrogen peroxide-induced HUVEC senescence by inhibiting mitochondria-associated endoplasmic reticulum (ER) membrane formation mediated by inositol 1,4,5-trisphosphate receptor 1-glucose-regulated protein 75-voltage-dependent anion channel 1 (VDAC1) complex interactions. Furthermore, in aging HUVECs, Hst1 treatment or VDAC1 silencing with small interfering RNA hindered calcium (Ca2+) transfer from the ER to the mitochondria, thereby ameliorating mitochondrial Ca2+ overload and restoring mitochondrial function. In an in vivo mouse model of diabetes mellitus skin defects, Hst1 facilitated wound healing by stimulating the new blood vessel formation and impeding the expression of senescent biomarkers. CONCLUSIONS This study proposes a theoretical solution that Hst1 can restore mitochondrial function by inhibiting oxidative stress or cellular senescence, thereby promoting angiogenesis and diabetic wound repair.
Collapse
Affiliation(s)
- Tinghui Xian
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong, 510632, China.
| | - Yi Liu
- Department of Oral Implantology, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongsheng Ye
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China; Department of Orthopedics, Dongguan Hospital of Traditional Chinese Medicine, Dongcheng District, Dongguan, Guangdong, 523000, China
| | - Bohua Peng
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jie Huang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Lin Liang
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Jiaqing Zhang
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Jinan University, 601 West Huangpu Avenue, Guangzhou, Guangdong, 510632, China
| | - Hao Wu
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| | - Zhen Lin
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, No. 613 11 West Huangpu Avenue, Tianhe District, Guangzhou, Guangdong, 510630, China
| |
Collapse
|
25
|
Qi LFR, Liu Y, Liu S, Xiang L, Liu Z, Liu Q, Zhao JQ, Xu X. Phillyrin promotes autophagosome formation in A53T-αSyn-induced Parkinson's disease model via modulation of REEP1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155952. [PMID: 39178680 DOI: 10.1016/j.phymed.2024.155952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 08/10/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The preservation of autophagosome formation presents a promising strategy for tackling neurological disorders, such as Parkinson's disease (PD). Mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) serve not only as a focal point linked to various neurological disorders but also play a crucial role in supporting the biogenesis of autophagosomes. PURPOSE This investigation aimed to elucidate the neuroprotective properties of phillyrin against PD and its underlying mechanisms in promoting autophagosome formation. METHODS ER and mitochondria co-localization was assessed via fluorescent staining. Annexin V-fluorescein isothiocyanate (FITC) fluorescence was employed to quantify accessible cardiolipin (CL) on mitochondrial surfaces. The levels of CL within the MAM fraction of SH-SY5Y cells were evaluated using a CL probe assay kit. Monodansylcadaverine staining was utilized to detect autophagosome formation in SH-SY5Y cells. In an A53T-alpha-synuclein (αSyn)-induced PD mouse model, the anti-PD properties of phillyrin were assessed using open field, pole climbing, and rotarod tests, as well as immunohistochemistry staining of TH+ neurons in the brain sections. RESULTS In A53T-αSyn-treated SH-SY5Y cells, phillyrin facilitated autophagosome formation by suppressing CL externalization and restoring MAM integrity. Phillyrin enhanced the localization of receptor expression-enhancing protein 1 (REEP1) within MAM and mitochondria, bolstering MAM formation. Increased REEP1 levels in mitochondria, attributed to phillyrin, enhanced the interaction between REEP1 and NDPK-D, thereby reducing CL externalization. Furthermore, phillyrin exhibited a dose-dependent enhancement of motor function in mice, accompanied by an increase in the abundance of dopaminergic neurons within the substantia nigra. CONCLUSIONS These findings illuminate phillyrin's ability to enhance MAM formation through upregulation of REEP1 expression within MAM, while concurrently attenuating CL externalization via the REEP1-NDPK-D interaction. These mechanisms bolster autophagosome biogenesis, offering resilience against A53T-αSyn-induced PD. Thus, our study advances the understanding of phillyrin's complex mechanisms and underscores its potential as a therapeutic approach for PD, opening new avenues in natural product pharmacology.
Collapse
Affiliation(s)
- Li-Feng-Rong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Yuci Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Xiang
- Department of Translational Medicine Research Institute, Jiangsu Yifengrong Biotechnology Co., Ltd., Nanjing, Jiangsu, China
| | - Zhiyuan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingling Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China.
| |
Collapse
|
26
|
Li LG, Zhang D, Huang Q, Yan M, Chen NN, Yang Y, Xiao RC, Liu H, Han N, Qureshi AM, Hu J, Leng F, Hui YJ. Mitochondrial disruption resulting from Cepharanthine-mediated TOM inhibition triggers ferroptosis in colorectal cancer cells. J Cancer Res Clin Oncol 2024; 150:460. [PMID: 39402386 PMCID: PMC11478973 DOI: 10.1007/s00432-024-05974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Chemotherapy for colorectal cancer (CRC) urgently needs low-toxicity and highly effective phytomedicine. Cepharanthine (Cep) shown to have multiple anti-tumor effects, including colorectal cancer, whose pivotal mechanisms are not fully understood. Herein, the present work aims to reveal the impact of Cep on the mitochondrial and anti-injury functions of CRC cells. METHODS The TOM70/20 expression was screened by bioinformatic databases. SW480 cells were utilized as the colorectal cancer cell model. The expression of TOM70/20 and the downstream molecules were measured by western blots (WB). The ferroptosis was analyzed using Transmission electron microscopy (TEM), C11-BODIPY, PGSK, and DCFH-DA probes, wherein the detection was performed by flow cytometry and laser confocal microscopy. The anti-cancer efficacy was conducted by CCK-8 and Annexin-V/PI assay. The rescue experiments were carried out using Fer-1 and TOM70 plasmid transfection. RESULTS Bioinformatic data identified TOM20 and TOM70 were highly expressed in colorectal cancer, which could be down-regulated by Cep. Further findings disclosed that Cep treatment destroyed the mitochondria and inactivated the NRF2 signaling pathway, an essential pathway for resistance to ferroptosis, thereby promoting reactive oxygen species (ROS) generation in CRC cells. As a result, prominent ferroptosis could be observed in CRC cells in response to Cep, which thereby led to the reduced cell viability of cancer cells. On the contrary, recovery of TOM70 dampened the Cep-elicited mitochondria damage, ferroptosis, and anti-cancer efficacy. CONCLUSION In summary, Cep-mediated TOM inhibition inactivates the NRF2 signaling pathway, thereby triggering ferroptosis and achieving an anti-colorectal cancer effect. The current study provides an innovative chemotherapeutic approach for colorectal cancer with phytomedicine.
Collapse
Affiliation(s)
- Liu-Gen Li
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Di Zhang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Qi Huang
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Min Yan
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Nan-Nan Chen
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Yan Yang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Rong-Cheng Xiao
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Hui Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Ning Han
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Abdul Moiz Qureshi
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China
| | - Jun Hu
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Fan Leng
- Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin Road No. 30, Shiyan, 442000, Hubei, China
| | - Yuan-Jian Hui
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin South Road No. 32, Shiyan, 442000, Hubei, China.
| |
Collapse
|
27
|
Zeng H, Liu Y, Liu X, Li J, Lu L, Xue C, Wu X, Zhang X, Zheng Z, Lu G. Interplay of α-Synuclein Oligomers and Endoplasmic Reticulum Stress in Parkinson'S Disease: Insights into Cellular Dysfunctions. Inflammation 2024:10.1007/s10753-024-02156-6. [PMID: 39382817 DOI: 10.1007/s10753-024-02156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Oligomeric forms of α-synuclein (α-syn) are critical in the formation of α-synuclein fibrils, exhibiting neurotoxic properties that are pivotal in the pathogenesis of Parkinson's disease (PD). A salient feature of this pathology is the disruption of the protein folding capacity of the endoplasmic reticulum (ER), leading to a perturbation in the ER's protein quality control mechanisms. The accumulation of unfolded or misfolded proteins instigates ER stress. However, the onset of ER stress and the consequent activation of the Unfolded Protein Response (UPR) and Endoplasmic Reticulum-Associated Degradation (ERAD) pathways do not merely culminate in apoptosis when they fail to restore cellular homeostasis. More critically, this condition initiates a cascade of reactions involving ER-related structures and organelles, resulting in multifaceted cellular damage and, potentially, a feedback loop that precipitates neuroinflammation. In this review, we elucidate the interplay between UPR and ERAD, as well as the intricate crosstalk among the ER and other organelles such as mitochondria, lysosomes, and the Golgi apparatus, underscoring their roles in the neurodegenerative process.
Collapse
Affiliation(s)
- Hui Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Ye Liu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinjie Liu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jianwei Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lixuan Lu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Cheng Xue
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiao Wu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xinran Zhang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zijian Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Key Laboratory of Rare Neurological Diseases of Jiangxi Provincial Health Commission, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
28
|
Zhao F, Cui Z, Wang P, Zhao Z, Zhu K, Bai Y, Jin X, Wang L, Lu L. GRP75-dependent mitochondria-ER contacts ensure cell survival during early mouse thymocyte development. Dev Cell 2024; 59:2643-2658.e7. [PMID: 38981469 DOI: 10.1016/j.devcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Mitochondria and endoplasmic reticulum contacts (MERCs) control multiple cellular processes, including cell survival and differentiation. Based on the observations that MERCs were specifically enriched in the CD4-CD8- double-negative (DN) stage, we studied their role in early mouse thymocyte development. We found that T cell-specific knockout of Hspa9, which encodes GRP75, a protein that mediates MERC formation by assembling the IP3R-GRP75-VDAC complex, impaired DN3 thymocyte viability and resulted in thymocyte developmental arrest at the DN3-DN4 transition. Mechanistically, GRP75 deficiency induced mitochondrial stress, releasing mitochondrial DNA (mtDNA) into the cytosol and triggering the type I interferon (IFN-I) response. The IFN-I pathway contributed to both the impairment of cell survival and DN3-DN4 transition blockage, while increased lipid peroxidation (LPO) played a major role downstream of IFN-I. Thus, our study identifies the essential role of GRP75-dependent MERCs in early thymocyte development and the governing facts of cell survival and differentiation in the DN stage.
Collapse
Affiliation(s)
- Fan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zejin Cui
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Zhishan Zhao
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Kaixiang Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yadan Bai
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lie Wang
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China; Bone Marrow Transplantation Center and Institute of Immunology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Institute of Immunology and Department of Rheumatology at Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
29
|
Luo JS, Zhai WH, Ding LL, Zhang XJ, Han J, Ning JQ, Chen XM, Jiang WC, Yan RY, Chen MJ. MAMs and Mitochondrial Quality Control: Overview and Their Role in Alzheimer's Disease. Neurochem Res 2024; 49:2682-2698. [PMID: 39002091 DOI: 10.1007/s11064-024-04205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) represents the most widespread neurodegenerative disorder, distinguished by a gradual onset and slow progression, presenting a substantial challenge to global public health. The mitochondrial-associated membrane (MAMs) functions as a crucial center for signal transduction and material transport between mitochondria and the endoplasmic reticulum, playing a pivotal role in various pathological mechanisms of AD. The dysregulation of mitochondrial quality control systems is considered a fundamental factor in the development of AD, leading to mitochondrial dysfunction and subsequent neurodegenerative events. Recent studies have emphasized the role of MAMs in regulating mitochondrial quality control. This review will delve into the molecular mechanisms underlying the imbalance in mitochondrial quality control in AD and provide a comprehensive overview of the role of MAMs in regulating mitochondrial quality control.
Collapse
Affiliation(s)
- Jian-Sheng Luo
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Hu Zhai
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ling-Ling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
| | - Xian-Jie Zhang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia Han
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Jia-Qi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xue-Meng Chen
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Wen-Cai Jiang
- Department of Anesthesiology, Deyang People's Hospital, Deyang, 618000, China
| | - Ru-Yu Yan
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Meng-Jie Chen
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| |
Collapse
|
30
|
Pang M, Yu L, Li X, Lu C, Xiao C, Liu Y. A promising anti-tumor targeting on ERMMDs mediated abnormal lipid metabolism in tumor cells. Cell Death Dis 2024; 15:562. [PMID: 39098929 PMCID: PMC11298533 DOI: 10.1038/s41419-024-06956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The investigation of aberrations in lipid metabolism within tumor has become a burgeoning field of study that has garnered significant attention in recent years. Lipids can serve as a potent source of highly energetic fuel to support the rapid growth of neoplasia, in where the ER-mitochondrial membrane domains (ERMMDs) provide an interactive network for facilitating communication between ER and mitochondria as well as their intermembrane space and adjunctive proteins. In this review, we discuss fatty acids (FAs) anabolic and catabolic metabolism, as well as how CPT1A-VDAC-ACSL clusters on ERMMDs participate in FAs transport, with a major focus on ERMMDs mediated collaborative loop of FAO, Ca2+ transmission in TCA cycle and OXPHOS process. Here, we present a comprehensive perspective on the regulation of aberrant lipid metabolism through ERMMDs conducted tumor physiology might be a promising and potential target for tumor starvation therapy.
Collapse
Affiliation(s)
- Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
31
|
Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist 2024; 30:440-457. [PMID: 36597577 DOI: 10.1177/10738584221139761] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid β and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.
Collapse
Affiliation(s)
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Seman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
32
|
Bertino F, Mukherjee D, Bonora M, Bagowski C, Nardelli J, Metani L, Zanin Venturini DI, Chianese D, Santander N, Salaroglio IC, Hentschel A, Quarta E, Genova T, McKinney AA, Allocco AL, Fiorito V, Petrillo S, Ammirata G, De Giorgio F, Dennis E, Allington G, Maier F, Shoukier M, Gloning KP, Munaron L, Mussano F, Salsano E, Pareyson D, di Rocco M, Altruda F, Panagiotakos G, Kahle KT, Gressens P, Riganti C, Pinton PP, Roos A, Arnold T, Tolosano E, Chiabrando D. Dysregulation of FLVCR1a-dependent mitochondrial calcium handling in neural progenitors causes congenital hydrocephalus. Cell Rep Med 2024; 5:101647. [PMID: 39019006 PMCID: PMC11293339 DOI: 10.1016/j.xcrm.2024.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/20/2024] [Accepted: 06/16/2024] [Indexed: 07/19/2024]
Abstract
Congenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice. Mechanistically, our data reveal that the full-length isoform encoded by the FLVCR1 gene, FLVCR1a, interacts with the IP3R3-VDAC complex located on mitochondria-associated membranes (MAMs) that controls mitochondrial calcium handling. Loss of Flvcr1a in mouse neural progenitor cells (NPCs) affects mitochondrial calcium levels and energy metabolism, leading to defective cortical neurogenesis and brain ventricle enlargement. These data point to defective NPCs calcium handling and metabolic activity as one of the pathogenetic mechanisms driving CH.
Collapse
Affiliation(s)
- Francesca Bertino
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Dibyanti Mukherjee
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Christoph Bagowski
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | | | - Livia Metani
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Diletta Isabella Zanin Venturini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Diego Chianese
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Iris Chiara Salaroglio
- Department of Oncology, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Elisa Quarta
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Arpana Arjun McKinney
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Departments of Psychiatry and Neuroscience, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Seaver Center for Autism Research and Treatment, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Lucia Allocco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Giorgia Ammirata
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Francesco De Giorgio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felicitas Maier
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | - Moneef Shoukier
- Prenatal Medicine Munich, Department of Molecular Genetics, Munich, Germany
| | | | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR Dental School, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Ettore Salsano
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Maja di Rocco
- Department of Pediatrics, Unit of Rare Diseases, Giannina Gaslini Institute, Genoa, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Georgia Panagiotakos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Departments of Psychiatry and Neuroscience, Institute for Regenerative Medicine, Black Family Stem Cell Institute, Seaver Center for Autism Research and Treatment, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristopher T Kahle
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Department of Pediatrics, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Center for Hydrocephalus and Neurodevelopmental Disorders, Massachusetts General Hospital, Boston, MA, USA
| | - Pierre Gressens
- Université Paris Cité, Inserm, NeuroDiderot, 75019 Paris, France
| | - Chiara Riganti
- Department of Oncology, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Paolo P Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45147 Essen, Germany; Brain and Mind Research Institute, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada; Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Thomas Arnold
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy.
| |
Collapse
|
33
|
Bejaoui M, Oliva Mizushima AK, Ngoc Linh T, Arimura T, Tominaga K, Isoda H. Triethylene Glycol Squalene Improves Hair Regeneration by Maintaining the Inductive Capacity of Human Dermal Papilla Cells and Preventing Premature Aging. ACS Pharmacol Transl Sci 2024; 7:2006-2022. [PMID: 39022356 PMCID: PMC11249624 DOI: 10.1021/acsptsci.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
De novo hair follicle (HF) regeneration, achieved through the replenishment of the dermal papilla (DP), acknowledged as the principal orchestrator of the hair growth cycle, is emerging as a prospective therapeutic intervention for alopecia. Nonetheless, multiple attempts have shown that these cells lose key inductive properties when cultured in a two-dimensional (2D) monolayer, leading to precocious senescence engendered by oxidative stress and inflammatory processes. Consequently, the three-dimensional (3D) spheroid technique is presently widely employed for DP cell culture. Nevertheless, substantiating the regenerative potential of these cells within the hair follicle (HF) milieu remains a challenge. In this current study, we aim to find a new approach to activate the inductive properties of DP cells. This involves the application of hair-growth-stimulating agents that not only exhibit concurrent protective efficacy against the aging process but also induce HF regeneration. To achieve this objective, we initially synthesized a novel highly amphiphilic derivative derived from squalene (SQ), named triethylene glycol squalene (Tri-SQ). Squalene itself is a potent antioxidant and anti-inflammatory compound traditionally employed as a drug carrier for alopecia treatment. However, its application is limited due to its low solubility. Subsequently, we applied this newly synthesized derivative to DP cells. The data obtained demonstrated that the derivative exhibits robust antioxidant and anti-inflammatory activities while concurrently promoting the expression of genes associated with hair growth. Moreover, to further assess the hair regrowth inductive properties of DP cells, we cultured the cells and treated them with Tri-SQ within a 3D spheroid system. Subsequently, these treated cells were injected into the previously depilated dorsal area of six-week-old male C57BL/6 mice. Results revealed that 20 days postinjection, a complete regrowth of hair in the previously hairless area, particularly evident in the case of 3D spheroids treated with the derivative, was observed. Additionally, histological and molecular analyses demonstrated an upregulation of markers associated with hair growth and a concurrent decrease in aging hallmarks, specifically in the 3D spheroids treated with the compound. In summary, our approach, which involves the treatment of Tri-SQ combined with a 3D spheroid system, exhibited a notably robust stimulating effect. This effect was observed in the induction of inductive properties in DP cells, leading to HF regeneration, and concurrently, it demonstrated an inhibitory effect on cellular and follicular aging.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
| | - Aprill Kee Oliva Mizushima
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
| | - Tran Ngoc Linh
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Takashi Arimura
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Kenichi Tominaga
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
| | - Hiroko Isoda
- Open
Innovation Laboratory for Food and Medicinal Resource Engineering
(FoodMed-OIL), National Institute of Advanced
Industrial Science and Technology (AIST), Tsukuba City 305-8568, Japan
- Alliance
for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba City 305-0006, Japan
- Research
and Development Center for Tailor-Made QOL Program, University of Tsukuba, Tsukuba
City 305-0006, Japan
- Faculty
of Life and Environmental Sciences, University
of Tsukuba, Tsukuba City 305-0006, Japan
| |
Collapse
|
34
|
Mesa D, Barbieri E, Raimondi A, Freddi S, Miloro G, Jendrisek G, Caldieri G, Quarto M, Schiano Lomoriello I, Malabarba MG, Bresci A, Manetti F, Vernuccio F, Abdo H, Scita G, Lanzetti L, Polli D, Tacchetti C, Pinton P, Bonora M, Di Fiore PP, Sigismund S. A tripartite organelle platform links growth factor receptor signaling to mitochondrial metabolism. Nat Commun 2024; 15:5119. [PMID: 38879572 PMCID: PMC11180189 DOI: 10.1038/s41467-024-49543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.
Collapse
Affiliation(s)
- Deborah Mesa
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Andrea Raimondi
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Stefano Freddi
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Gorana Jendrisek
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Micaela Quarto
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Irene Schiano Lomoriello
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Grazia Malabarba
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Milan, Italy
| | | | | | - Hind Abdo
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Scita
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
- IFOM, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Milan, Italy
- CNR Institute for Photonics and Nanotechnology (CNR-IFN), Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, IRCCS San Raffaele Hospital Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Pier Paolo Di Fiore
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| | - Sara Sigismund
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
35
|
Chen C, Dong X, Zhang W, Chang X, Gao W. Dialogue between mitochondria and endoplasmic reticulum-potential therapeutic targets for age-related cardiovascular diseases. Front Pharmacol 2024; 15:1389202. [PMID: 38939842 PMCID: PMC11208709 DOI: 10.3389/fphar.2024.1389202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) act as physical membrane contact sites facilitating material exchange and signal transmission between mitochondria and endoplasmic reticulum (ER), thereby regulating processes such as Ca2+/lipid transport, mitochondrial dynamics, autophagy, ER stress, inflammation, and apoptosis, among other pathological mechanisms. Emerging evidence underscores the pivotal role of MAMs in cardiovascular diseases (CVDs), particularly in aging-related pathologies. Aging significantly influences the structure and function of the heart and the arterial system, possibly due to the accumulation of reactive oxygen species (ROS) resulting from reduced antioxidant capacity and the age-related decline in organelle function, including mitochondria. Therefore, this paper begins by describing the composition, structure, and function of MAMs, followed by an exploration of the degenerative changes in MAMs and the cardiovascular system during aging. Subsequently, it discusses the regulatory pathways and approaches targeting MAMs in aging-related CVDs, to provide novel treatment strategies for managing CVDs in aging populations.
Collapse
Affiliation(s)
- Chen Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueyan Dong
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wang Zhang
- Shandong Provincial Mental Health Center, Jinan, China
| | - Xing Chang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wulin Gao
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
36
|
Zhao Y, Shen W, Zhang M, Guo M, Dou Y, Han S, Yu J, Cui M, Zhao Y. DDAH-1 maintains endoplasmic reticulum-mitochondria contacts and protects dopaminergic neurons in Parkinson's disease. Cell Death Dis 2024; 15:399. [PMID: 38849335 PMCID: PMC11161642 DOI: 10.1038/s41419-024-06772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
The loss of dopaminergic neurons in the substantia nigra is a hallmark of pathology in Parkinson's disease (PD). Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is the critical enzyme responsible for the degradation of asymmetric dimethylarginine (ADMA) which inhibits nitric oxide (NO) synthase and has been implicated in neurodegeneration. Mitochondrial dysfunction, particularly in the mitochondria-associated endoplasmic reticulum membrane (MAM), plays a critical role in this process, although the specific molecular target has not yet been determined. This study aims to examine the involvement of DDAH-1 in the nigrostriatal dopaminergic pathway and PD pathogenesis. The distribution of DDAH-1 in the brain and its colocalization with dopaminergic neurons were observed. The loss of dopaminergic neurons and aggravated locomotor disability after rotenone (ROT) injection were showed in the DDAH-1 knockout rat. L-arginine (ARG) and NO donors were employed to elucidate the role of NO respectively. In vitro, we investigated the effects of DDAH-1 knockdown or overexpression on cell viability and mitochondrial functions, as well as modulation of ADMA/NO levels using ADMA or ARG. MAM formation was assessed by the Mitofusin2 oligomerization and the mitochondrial ubiquitin ligase (MITOL) phosphorylation. We found that DDAH-1 downregulation resulted in enhanced cell death and mitochondrial dysfunctions, accompanied by elevated ADMA and reduced NO levels. However, the recovered NO level after the ARG supplement failed to exhibit a protective effect on mitochondrial functions and partially restored cell viability. DDAH-1 overexpression prevented ROT toxicity, while ADMA treatment attenuated these protective effects. The declines of MAM formation in ROT-treated cells were exacerbated by DDAH-1 downregulation via reduced MITOL phosphorylation, which was reversed by DDAH-1 overexpression. Together, the abundant expression of DDAH-1 in nigral dopaminergic neurons may exert neuroprotective effects by maintaining MAM formation and mitochondrial function probably via ADMA, indicating the therapeutic potential of targeting DDAH-1 for PD.
Collapse
Affiliation(s)
- Yichen Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Weiwei Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minjie Zhang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Guo
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yunxiao Dou
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sida Han
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jintai Yu
- Department of Neurology, Huashan Hospital, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yanxin Zhao
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Hinton AO, N'jai AU, Vue Z, Wanjalla C. Connection Between HIV and Mitochondria in Cardiovascular Disease and Implications for Treatments. Circ Res 2024; 134:1581-1606. [PMID: 38781302 PMCID: PMC11122810 DOI: 10.1161/circresaha.124.324296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
HIV infection and antiretroviral therapy alter mitochondrial function, which can progressively lead to mitochondrial damage and accelerated aging. The interaction between persistent HIV reservoirs and mitochondria may provide insight into the relatively high rates of cardiovascular disease and mortality in persons living with HIV. In this review, we explore the intricate relationship between HIV and mitochondrial function, highlighting the potential for novel therapeutic strategies in the context of cardiovascular diseases. We reflect on mitochondrial dynamics, mitochondrial DNA, and mitochondrial antiviral signaling protein in the context of HIV. Furthermore, we summarize how toxicities related to early antiretroviral therapy and current highly active antiretroviral therapy can contribute to mitochondrial dysregulation, chronic inflammation, and poor clinical outcomes. There is a need to understand the mechanisms and develop new targeted therapies. We further consider current and potential future therapies for HIV and their interplay with mitochondria. We reflect on the next-generation antiretroviral therapies and HIV cure due to the direct and indirect effects of HIV persistence, associated comorbidities, coinfections, and the advancement of interdisciplinary research fields. This includes exploring novel and creative approaches to target mitochondria for therapeutic intervention.
Collapse
Affiliation(s)
- Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Alhaji U N'jai
- Biological Sciences, Fourah Bay College and College of Medicine and Allied Health Sciences (COMAHS), University of Sierra Leone, Freetown, Sierra Leone and Koinadugu College, Kabala (A.U.N.)
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN (A.O.H., Z.V.)
| | - Celestine Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (C.W.)
| |
Collapse
|
38
|
Zhang C, Liu B, Sheng J, Wang J, Zhu W, Xie C, Zhou X, Zhang Y, Meng Q, Li Y. Potential targets for the treatment of MI: GRP75-mediated Ca 2+ transfer in MAM. Eur J Pharmacol 2024; 971:176530. [PMID: 38527700 DOI: 10.1016/j.ejphar.2024.176530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
After myocardial infarction (MI), there is a notable disruption in cellular calcium ion homeostasis and mitochondrial function, which is believed to be intricately linked to endoplasmic reticulum (ER) stress. This research endeavors to elucidate the involvement of glucose regulated protein 75 (GRP75) in post-MI calcium ion homeostasis and mitochondrial function. In MI rats, symptoms of myocardial injury were accompanied by an increase in the activation of ER stress. Moreover, in oxygen-glucose deprivation (OGD)-induced cardiomyocytes, it was confirmed that inhibiting ER stress exacerbated intracellular Ca2+ disruption and cell apoptosis. Concurrently, the co-localization of GRP75 with IP3R and VDAC1 increased under ER stress in cardiomyocytes. In OGD-induced cardiomyocytes, knockdown of GRP75 not only reduced the Ca2+ levels in both the ER and mitochondria and improved the ultrastructure of cardiomyocytes, but it also increased the number of contact points between the ER and mitochondria, reducing mitochondria associated endoplasmic reticulum membrane (MAM) formation, and decreased cell apoptosis. Significantly, knockdown of GRP75 did not affect the protein expression of PERK and hypoxia-inducible factor 1α (HIF-1α). Transcriptome analysis of cardiomyocytes revealed that knockdown of GRP75 mainly influenced the molecular functions of sialyltransferase and IP3R, as well as the biosynthesis of glycosphingolipids and lactate metabolism. The complex interaction between the ER and mitochondria, driven by the GRP75 and its associated IP3R1-GRP75-VDAC1 complex, is crucial for calcium homeostasis and cardiomyocyte's adaptive response to ER stress. Modulating GRP75 could offer a strategy to regulate calcium dynamics, diminish glycolysis, and thereby mitigate cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Chenyan Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bowen Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiaxing Sheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijie Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Xie
- School of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuxin Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
39
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
40
|
Li HM, Wang C, Liu Q, Tong Z, Song B, Wei W, Teng C. Correlation between Mitochondria-Associated Endoplasmic Reticulum Membrane-Related Genes and Cellular Senescence-Related Genes in Osteoarthritis. ACS OMEGA 2024; 9:19169-19181. [PMID: 38708239 PMCID: PMC11064197 DOI: 10.1021/acsomega.3c10316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The role of mitochondria-associated endoplasmic reticulum membrane (MAM) formation in the development of osteoarthritis (OA) is yet unclear. METHODS A mix of bioinformatics methods and in vitro experimental methodologies was used to study and corroborate the role of MAM-related genes and cellular senescence-related genes in the development of OA. The Gene Expression Omnibus database was used to obtain the microarray information that is relevant to the OA. Several bioinformatic methods were employed to carry out function enrichment analysis and protein-protein correlation analysis, build the correlation regulatory network, and investigate potential relationships between MAM-related genes and cellular senescence-related genes in OA. These methods also served to identify the MAM-related and OA-related genes (MAM-OARGs). RESULTS For the additional functional enrichment analysis, a total of 13 MAM-OARGs were detected. The correlation regulatory network was also created. Hub MAM-OARGs were shown to have a strong correlation with genes relevant to cellular senescence in OA. Results of in vitro experiments further demonstrated a positive correlation between MAM-OARGs (PTPN1 and ITPR1) and cellular senescence-related and OA-related genes. CONCLUSIONS As a result, our findings can offer new insights into the investigations of MAM-related genes and cellular senescence-related genes, which could be linked to the OA as well as brand-new potential treatment targets.
Collapse
Affiliation(s)
| | | | - Qixue Liu
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Zhicheng Tong
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Binghua Song
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Wei Wei
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| | - Chong Teng
- Department of Orthopedics,
The Fourth Affiliated Hospital of School of Medicine, and International
School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang 322000, PR China
| |
Collapse
|
41
|
Ding Y, Liu N, Zhang D, Guo L, Shang Q, Liu Y, Ren G, Ma X. Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases. Front Pharmacol 2024; 15:1398381. [PMID: 38694924 PMCID: PMC11061472 DOI: 10.3389/fphar.2024.1398381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide. In 2022, the CVDs contributed to 19.8 million deaths globally, accounting for one-third of all global deaths. With an aging population and changing lifestyles, CVDs pose a major threat to human health. Mitochondria-associated endoplasmic reticulum membranes (MAMs) are communication platforms between cellular organelles and regulate cellular physiological functions, including apoptosis, autophagy, and programmed necrosis. Further research has shown that MAMs play a critical role in the pathogenesis of CVDs, including myocardial ischemia and reperfusion injury, heart failure, pulmonary hypertension, and coronary atherosclerosis. This suggests that MAMs could be an important therapeutic target for managing CVDs. The goal of this study is to summarize the protein complex of MAMs, discuss its role in the pathological mechanisms of CVDs in terms of its functions such as Ca2+ transport, apoptotic signaling, and lipid metabolism, and suggest the possibility of MAMs as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yanqiu Ding
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijun Guo
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Shang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yicheng Liu
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaocan Ren
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Phua QH, Ng SY, Soh BS. Mitochondria: A Potential Rejuvenation Tool against Aging. Aging Dis 2024; 15:503-516. [PMID: 37815912 PMCID: PMC10917551 DOI: 10.14336/ad.2023.0712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 10/12/2023] Open
Abstract
Aging is a complex physiological process encompassing both physical and cognitive decline over time. This intricate process is governed by a multitude of hallmarks and pathways, which collectively contribute to the emergence of numerous age-related diseases. In response to the remarkable increase in human life expectancy, there has been a substantial rise in research focusing on the development of anti-aging therapies and pharmacological interventions. Mitochondrial dysfunction, a critical factor in the aging process, significantly impacts overall cellular health. In this extensive review, we will explore the contemporary landscape of anti-aging strategies, placing particular emphasis on the promising potential of mitotherapy as a ground-breaking approach to counteract the aging process. Moreover, we will investigate the successful application of mitochondrial transplantation in both animal models and clinical trials, emphasizing its translational potential. Finally, we will discuss the inherent challenges and future possibilities of mitotherapy within the realm of aging research and intervention.
Collapse
Affiliation(s)
- Qian Hua Phua
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore.
| | - Shi Yan Ng
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- National University of Singapore, Yong Loo Lin School of Medicine (Department of Physiology), Singapore.
- National Neuroscience Institute, Singapore.
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Fang W, Xie S, Deng W. Ferroptosis mechanisms and regulations in cardiovascular diseases in the past, present, and future. Cell Biol Toxicol 2024; 40:17. [PMID: 38509409 PMCID: PMC10955039 DOI: 10.1007/s10565-024-09853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Cardiovascular diseases (CVDs) are the main diseases that endanger human health, and their risk factors contribute to high morbidity and a high rate of hospitalization. Cell death is the most important pathophysiology in CVDs. As one of the cell death mechanisms, ferroptosis is a new form of regulated cell death (RCD) that broadly participates in CVDs (such as myocardial infarction, heart transplantation, atherosclerosis, heart failure, ischaemia/reperfusion (I/R) injury, atrial fibrillation, cardiomyopathy (radiation-induced cardiomyopathy, diabetes cardiomyopathy, sepsis-induced cardiac injury, doxorubicin-induced cardiac injury, iron overload cardiomyopathy, and hypertrophic cardiomyopathy), and pulmonary arterial hypertension), involving in iron regulation, metabolic mechanism and lipid peroxidation. This article reviews recent research on the mechanism and regulation of ferroptosis and its relationship with the occurrence and treatment of CVDs, aiming to provide new ideas and treatment targets for the clinical diagnosis and treatment of CVDs by clarifying the latest progress in CVDs research.
Collapse
Affiliation(s)
- Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
44
|
Song Y, Geng W, Zhu D, Liang H, Du Z, Tong B, Wang K, Li S, Gao Y, Feng X, Liao Z, Mei R, Yang C. SYNJ2BP ameliorates intervertebral disc degeneration by facilitating mitochondria-associated endoplasmic reticulum membrane formation and mitochondrial Zn 2+ homeostasis. Free Radic Biol Med 2024; 212:220-233. [PMID: 38158052 DOI: 10.1016/j.freeradbiomed.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.
Collapse
Affiliation(s)
- Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Geng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingchao Zhu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhi Du
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bide Tong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Rongcheng Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
45
|
Yang T, Wan R, Tu W, Avvaru SN, Gao P. Aryl hydrocarbon receptor: Linking environment to aging process in elderly patients with asthma. Chin Med J (Engl) 2024; 137:382-393. [PMID: 38238253 PMCID: PMC10876263 DOI: 10.1097/cm9.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 02/12/2024] Open
Abstract
ABSTRACT Aging is a significant risk factor for various diseases, including asthma, and it often leads to poorer clinical outcomes, particularly in elderly individuals. It is recognized that age-related diseases are due to a time-dependent accumulation of cellular damage, resulting in a progressive decline in cellular and physiological functions and an increased susceptibility to chronic diseases. The effects of aging affect not only the elderly but also those of younger ages, posing significant challenges to global healthcare. Thus, understanding the molecular mechanisms associated with aging in different diseases is essential. One intriguing factor is the aryl hydrocarbon receptor (AhR), which serves as a cytoplasmic receptor and ligand-activated transcription factor and has been linked to the aging process. Here, we review the literature on several major hallmarks of aging, including mitochondrial dysfunction, cellular senescence, autophagy, mitophagy, epigenetic alterations, and microbiome disturbances. Moreover, we provide an overview of the impact of AhR on these hallmarks by mediating responses to environmental exposures, particularly in relation to the immune system. Furthermore, we explore how aging hallmarks affect clinical characteristics, inflammatory features, exacerbations, and the treatment of asthma. It is suggested that AhR signaling may potentially play a role in regulating asthma phenotypes in elderly populations as part of the aging process.
Collapse
Affiliation(s)
- Tianrui Yang
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Geriatric Medicine, The First People’s Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Rongjun Wan
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Tu
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, China
| | - Sai Nithin Avvaru
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| |
Collapse
|
46
|
Zhang QQ, Chen Q, Cao P, Shi CX, Zhang LY, Wang LW, Gong ZJ. AGK2 pre-treatment protects against thioacetamide-induced acute liver failure via regulating the MFN2-PERK axis and ferroptosis signaling pathway. Hepatobiliary Pancreat Dis Int 2024; 23:43-51. [PMID: 36966125 DOI: 10.1016/j.hbpd.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023]
Abstract
BACKGROUND Acute liver failure (ALF) is an unpredictable and life-threatening critical illness. The pathological characteristic of ALF is massive necrosis of hepatocytes and lots of inflammatory cells infiltration which may lead to multiple organ failure. METHODS Animals were divided into 3 groups, normal, thioacetamide (TAA, ALF model) and TAA + AGK2. Cultured L02 cells were divided into 5 groups, normal, TAA, TAA + mitofusin 2 (MFN2)-siRNA, TAA + AGK2, and TAA + AGK2 + MFN2-siRNA groups. The liver histology was evaluated with hematoxylin and eosin staining, inositol-requiring enzyme 1 (IRE1), activating transcription factor 6β (ATF6β), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylated-PERK (p-PERK). C/EBP homologous protein (CHOP), reactive oxygen species (ROS), MFN2 and glutathione peroxidase 4 (GPX4) were measured with Western blotting, and cell viability and liver chemistry were also measured. Mitochondria-associated endoplasmic reticulum membranes (MAMs) were measured by immunofluorescence. RESULTS The liver tissue in the ALF group had massive inflammatory cell infiltration and hepatocytes necrosis, which were reduced by AGK2 pre-treatment. In comparison to the normal group, apoptosis rate and levels of IRE1, ATF6β, p-PERK, CHOP, ROS and Fe2+ in the TAA-induced ALF model group were significantly increased, which were decreased by AGK2 pre-treatment. The levels of MFN2 and GPX4 were decreased in TAA-induced mice compared with the normal group, which were enhanced by AGK2 pre-treatment. Compared with the TAA-induced L02 cell, apoptosis rate and levels of IRE1, ATF6β, p-PERK, CHOP, ROS and Fe2+ were further increased and levels of MFN2 and GPX4 were decreased in the MFN2-siRNA group. AGK2 pre-treatment decreased the apoptosis rate and levels of IRE1, ATF6β, p-PERK, CHOP, ROS and Fe2+ and enhanced the protein expression of MFN2 and GPX4 in MFN2-siRNA treated L02 cell. Immunofluorescence observation showed that level of MAMs was promoted in the AGK2 pre-treatment group when compared with the TAA-induced group in both mice and L02 cells. CONCLUSIONS The data suggested that AGK2 pre-treatment had hepatoprotective role in TAA-induced ALF via upregulating the expression of MFN2 and then inhibiting PERK and ferroptosis pathway in ALF.
Collapse
Affiliation(s)
- Qing-Qi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
47
|
Kim GH, Jeong HJ, Lee YJ, Park HY, Koo SK, Lim JH. Vitamin D ameliorates age-induced nonalcoholic fatty liver disease by increasing the mitochondrial contact site and cristae organizing system (MICOS) 60 level. Exp Mol Med 2024; 56:142-155. [PMID: 38172593 PMCID: PMC10834941 DOI: 10.1038/s12276-023-01125-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 08/27/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease. Despite intensive research, considerable information on NAFLD development remains elusive. In this study, we examined the effects of vitamin D on age-induced NAFLD, especially in connection with mitochondrial abnormalities. We observed the prevention of NAFLD in 22-month-old C57BL/6 mice fed a vitamin D3-supplemented (20,000 IU/kg) diet compared with mice fed a control (1000 IU/kg) diet. We evaluated whether vitamin D3 supplementation enhanced mitochondrial functions. We found that the level of mitochondrial contact site and cristae organizing system (MICOS) 60 (Mic60) level was reduced in aged mice, and this reduction was specifically restored by vitamin D3. In addition, depletion of Immt, the human gene encoding the Mic60 protein, induced changes in gene expression patterns that led to fat accumulation in both HepG2 and primary hepatocytes, and these alterations were effectively prevented by vitamin D3. In addition, silencing of the vitamin D receptor (VDR) decreased the Mic60 levels, which were recovered by vitamin D treatment. To assess whether VDR directly regulates Mic60 levels, we performed chromatin immunoprecipitation and reporter gene analysis. We discovered that VDR directly binds to the Immt 5' promoter region spanning positions -3157 to -2323 and thereby upregulates Mic60. Our study provides the first demonstration that a reduction in Mic60 levels due to aging may be one of the mechanisms underlying the development of aging-associated NAFLD. In addition, vitamin D3 could positively regulate Mic60 expression, and this may be one of the important mechanisms by which vitamin D could ameliorate age-induced NAFLD.
Collapse
Affiliation(s)
- Gyu Hee Kim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyeon-Ju Jeong
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Yoo Jeong Lee
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Hyeon Young Park
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Soo Kyung Koo
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea
| | - Joo Hyun Lim
- Division of Endocrine and Kidney Disease Research, Department of Chronic Disease Convergence Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
48
|
Kishi S, Nagasu H, Kidokoro K, Kashihara N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat Rev Nephrol 2024; 20:101-119. [PMID: 37857763 DOI: 10.1038/s41581-023-00775-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
Chronic kidney disease (CKD) is a major public health concern, underscoring a need to identify pathogenic mechanisms and potential therapeutic targets. Reactive oxygen species (ROS) are derivatives of oxygen molecules that are generated during aerobic metabolism and are involved in a variety of cellular functions that are governed by redox conditions. Low levels of ROS are required for diverse processes, including intracellular signal transduction, metabolism, immune and hypoxic responses, and transcriptional regulation. However, excess ROS can be pathological, and contribute to the development and progression of chronic diseases. Despite evidence linking elevated levels of ROS to CKD development and progression, the use of low-molecular-weight antioxidants to remove ROS has not been successful in preventing or slowing disease progression. More recent advances have enabled evaluation of the molecular interactions between specific ROS and their targets in redox signalling pathways. Such studies may pave the way for the development of sophisticated treatments that allow the selective control of specific ROS-mediated signalling pathways.
Collapse
Affiliation(s)
- Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, Japan.
| |
Collapse
|
49
|
Yao D, Chen E, Li Y, Wang K, Liao Z, Li M, Huang L. The role of endoplasmic reticulum stress, mitochondrial dysfunction and their crosstalk in intervertebral disc degeneration. Cell Signal 2024; 114:110986. [PMID: 38007189 DOI: 10.1016/j.cellsig.2023.110986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Low back pain (LBP) is a pervasive global health issue. Roughly 40% of LBP cases are attributed to intervertebral disc degeneration (IVDD). While the underlying mechanisms of IVDD remain incompletely understood, it has been confirmed that apoptosis and extracellular matrix (ECM) degradation caused by many factors such as inflammation, oxidative stress, calcium (Ca2+) homeostasis imbalance leads to IVDD. Endoplasmic reticulum (ER) stress and mitochondrial dysfunction are involved in these processes. The initiation of ER stress precipitates cell apoptosis, and is also related to inflammation, levels of oxidative stress, and Ca2+ homeostasis. Additionally, mitochondrial dynamics, antioxidative systems, disruption of Ca2+ homeostasis are closely associated with Reactive Oxygen Species (ROS) and inflammation, promoting cell apoptosis. However, numerous crosstalk exists between the ER and mitochondria, where they interact through inflammatory cytokines, signaling pathways, ROS, or key molecules such as CHOP, forming positive and negative feedback loops. Furthermore, the contact sites between the ER and mitochondria, known as mitochondria-associated membranes (MAM), facilitate direct signal transduction such as Ca2+ transfer. However, the current attention towards this issue is insufficient. Therefore, this review summarizes the impacts of ER stress and mitochondrial dysfunction on IVDD, along with the possibly potential crosstalk between them, aiming to unveil novel avenues for IVDD intervention.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.; Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China..
| |
Collapse
|
50
|
Qu S, Lin H, Pfeiffer N, Grus FH. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1624. [PMID: 38338904 PMCID: PMC10855900 DOI: 10.3390/ijms25031624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (S.Q.); (H.L.)
| |
Collapse
|