1
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, White K, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL induces cytokine production via the NFkB2 pathway promoting neutrophil chemotaxis and neutrophil-mediated immune-suppression in triple negative breast cancer cells. Cancer Lett 2025; 620:217692. [PMID: 40187604 DOI: 10.1016/j.canlet.2025.217692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown mechanisms modulating TRAIL activity in patients. We hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. RNAseq analysis of MDA-MB-231 cells along with validation in additional cell lines demonstrated that TRAIL induced cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, TRAIL dependent induction of the cytokines was predominantly mediated by death receptor 5, caspase-8 and the non-canonical NFKB2 pathway. These cytokines produced by TRAIL-treated TNBC cells enhanced chemotaxis of normal human donor isolated neutrophils. Using TNBC xenograft models, TRAIL induced activation of NFkB2 pathway, cytokine production and increased neutrophil recruitment into the tumors. Moreover, preincubation of neutrophils in supernatants from TRAIL-treated TNBC cells significantly impaired neutrophil function as measured by reduced respiratory burst and cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies showed that these neutrophils suppress T cell proliferation and augment Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and neutrophil-mediated immune suppression.
Collapse
Affiliation(s)
- Manjari Kundu
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yoshimi E Greer
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexei Lobanov
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Lisa Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Renee N Donahue
- Center for Immuno-Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Yeap Ng
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Shashi Ratnayake
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Karley White
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Donna Voeller
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah Weltz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Qingrong Chen
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maggie Cam
- Center for Cancer Research Collaborative Bioinformatics Resource (CCBR), NCI, NIH, Bethesda, MD, USA
| | - Daoud Meerzaman
- Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), NCI, NIH, Rockville, MD, USA
| | - David A Wink
- Cancer Innovation Laboratory, Center for Cancer Research (CCR), NCI, NIH, Frederick, MD, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Stanley Lipkowitz
- Women's Malignancies Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Nishide M, Nishimura K, Matsushita H, Kawada S, Shimagami H, Metsugi S, Kato Y, Kawasaki T, Tsujimoto K, Edahiro R, Shirai Y, Itotagawa E, Naito M, Yamamoto Y, Matsukawa K, Omiya R, Okada Y, Hattori K, Narazaki M, Kumanogoh A. Neutrophil single-cell analysis identifies a type II interferon-related subset for predicting relapse of autoimmune small vessel vasculitis. Nat Commun 2025; 16:3581. [PMID: 40274824 DOI: 10.1038/s41467-025-58550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/26/2025] [Indexed: 04/26/2025] Open
Abstract
To identify the dynamics of neutrophil autoimmunity, here we focus on anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and perform single-cell transcriptome and surface proteome analyses on peripheral white blood cells from patients with new-onset microscopic polyangiitis (MPA). Compared with controls, two neutrophil populations, immature neutrophils and neutrophils with type II interferon signature genes (Neu_T2ISG), are increased in patients with MPA. Trajectory and cell-cell interaction analyses identify Neu_T2ISG as a subset that differentiates from mature neutrophils upon stimulation with IFN-γ and TNF, which synergize to induce myeloperoxidase and Fcγ receptors expression on the neutrophil cell surface and promote ANCA-induced neutrophil extracellular trap formation. Case-by-case analysis indicates that patients with a high proportion of the Neu_T2ISG subset are associated with persistent vasculitis symptoms. A larger cohort analysis shows that serum IFN-γ levels at disease onset correlate with susceptibility to disease relapse. Our findings thus identify neutrophil diversity at the single cell level and implicate a biomarker for predicting relapse in small vessel vasculitis.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Kei Nishimura
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Hiroaki Matsushita
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Shoji Kawada
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shoichi Metsugi
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Takahiro Kawasaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kohei Tsujimoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eri Itotagawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuji Yamamoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuki Matsukawa
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ryusuke Omiya
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
- Statistical Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kunihiro Hattori
- Joint Research Chair of Innovative Drug Discovery in Immunology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Research Division, Chugai Pharmaceutical Co. Ltd, Yokohama, Kanagawa, Japan
| | - Masashi Narazaki
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
3
|
Ledderose C, Valsami EA, Elevado M, Stevenson A, Abutabikh R, Curatolo J, Junger WG. Adenosine accumulation in the blood of newborn mice weakens antimicrobial host defenses. J Leukoc Biol 2025; 117:qiaf003. [PMID: 39824218 DOI: 10.1093/jleuko/qiaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/30/2024] [Accepted: 01/16/2025] [Indexed: 01/20/2025] Open
Abstract
Pediatric intensive care patients are particularly susceptible to severe bacterial infections because of ineffective neutrophil responses. The reasons why neutrophils of newborns are less responsive than those of adults are not clear. Because adenosine triphosphate and adenosine tightly regulate neutrophils, we studied whether the adenosine triphosphate and adenosine levels in the blood of newborn mice could impair the function of their neutrophils. We observed significant changes in plasma adenosine triphosphate and adenosine levels throughout the lifespan of mice. Adenosine levels in newborns were significantly higher than in older mice, while adenosine triphosphate levels were significantly lower. These changes were particularly striking in newborn and juvenile mice with adenosine triphosphate and adenosine levels of about 80 and 600 nM in newborns vs 130 and 190 nM in juveniles, respectively. The ratios of the adenosine triphosphate vs adenosine levels of newborns were (with 0.2) significantly lower than those of juveniles (1.4) and adults (0.5). These low adenosine triphosphate/adenosine ratios correlated with significantly weakened neutrophil activation responses following in vitro stimulation with a formyl peptide receptor agonist and a markedly higher morbidity and mortality rate of newborns following bacterial infection. We found that enhanced adenosine monophosphate hydrolysis via CD73, a lack of adenosine breakdown by adenosine deaminase, and reduced adenosine uptake by nucleoside transporters are responsible for the low adenosine triphosphate/adenosine ratios in blood of newborn mice. We conclude that the extracellular adenosine accumulation in newborn mice impairs inflammatory responses and reduces the ability of neutrophils to mount effective antimicrobial defenses against bacterial infections.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, University of California, San Diego Health, 9452 Medical Center Drive, La Jolla, CA 92037, United States
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Eleftheria-Angeliki Valsami
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Mark Elevado
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Ava Stevenson
- Department of Surgery, University of California, San Diego Health, 9452 Medical Center Drive, La Jolla, CA 92037, United States
| | - Reem Abutabikh
- Department of Surgery, University of California, San Diego Health, 9452 Medical Center Drive, La Jolla, CA 92037, United States
| | - Julian Curatolo
- Department of Surgery, University of California, San Diego Health, 9452 Medical Center Drive, La Jolla, CA 92037, United States
| | - Wolfgang G Junger
- Department of Surgery, University of California, San Diego Health, 9452 Medical Center Drive, La Jolla, CA 92037, United States
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| |
Collapse
|
4
|
Lamb ER, Glomski IJ, Harper TA, Solga MD, Criss AK. High-dimensional spectral flow cytometry of activation and phagocytosis by peripheral human polymorphonuclear leukocytes. J Leukoc Biol 2025; 117:qiaf025. [PMID: 40036255 DOI: 10.1093/jleuko/qiaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are terminally differentiated phagocytes with pivotal roles in infection, inflammation, tissue injury, and resolution. PMNs display a breadth of responses to diverse endogenous and exogenous stimuli, making understanding of these innate immune responders vital yet challenging to achieve. Here, we report a 22-color spectral flow cytometry panel to profile primary human PMNs for surface marker expression of activation, degranulation, phagocytosis, migration, chemotaxis, and interaction with fluorescently labeled cargo. We demonstrate the surface marker response of PMNs to phorbol ester stimulation compared with untreated controls in an adherent PMN model with additional analysis of intra- and inter-subject variability. PMNs challenged with the Gram-negative bacterial pathogen Neisseria gonorrhoeae revealed infectious dose-dependent changes in surface marker expression in bulk, population-level analysis. Imaging flow cytometry complemented spectral cytometry, demonstrating that fluorescence signal from labeled bacteria corresponded with bacterial burden on a per-cell basis. Spectral flow cytometry subsequently identified surface markers, which varied with direct PMN-bacterium association as well as those which varied in the presence of bacteria but without phagocytosis. This spectral panel protocol highlights best practices for efficient customization and is compatible with downstream approaches such as spectral cell sorting and single-cell RNA-sequencing for applicability to diverse research questions in the field of PMN biology.
Collapse
Affiliation(s)
- Evan R Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Box 800734, Charlottesville, VA 22908-0734, United States
| | - Ian J Glomski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Box 800734, Charlottesville, VA 22908-0734, United States
| | - Taylor A Harper
- Flow Cytometry Core Facility, University of Virginia School of Medicine, Box 800741, Charlottesville, VA 22908-0741, United States
| | - Michael D Solga
- Flow Cytometry Core Facility, University of Virginia School of Medicine, Box 800741, Charlottesville, VA 22908-0741, United States
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Box 800734, Charlottesville, VA 22908-0734, United States
| |
Collapse
|
5
|
Shirley S, Ichise H, Di Natale V, Jin J, Wu C, Zou R, Zhang W, Fang Y, Zhang Y, Chen M, Peng S, Basu U, Que J, Huang Y. A vasculature-resident innate lymphoid cell population in mouse lungs. Nat Commun 2025; 16:3718. [PMID: 40253407 PMCID: PMC12009297 DOI: 10.1038/s41467-025-58982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
Tissue-resident immune cells such as innate lymphoid cells (ILC) are known to reside in the parenchymal compartments of tissues and modulate local immune protection. Here we use intravascular cell labeling, parabiosis and multiplex 3D imaging to identify a population of group 3 ILCs in mice that are present within the intravascular space of lung blood vessels (vILC3). vILC3s are distributed broadly in alveolar capillary beds from which inhaled pathogens enter the lung parenchyma. By contrast, conventional ILC3s in tissue parenchyma are enriched in lymphoid clusters in proximity to large veins. In a mouse model of pneumonia, Pseudomonas aeruginosa infection results in rapid vILC3 expansion and production of chemokines including CCL4. Blocking CCL4 in vivo attenuates neutrophil recruitment to the lung at the early stage of infection, resulting in prolonged inflammation and delayed bacterial clearance. Our findings thus define the intravascular space as a site of ILC residence in mice, and reveal a unique immune cell population that interfaces with tissue alarmins and the circulating immune system for timely host defense.
Collapse
Affiliation(s)
- Simon Shirley
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Hiroshi Ichise
- Lymphocyte Biology Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Vincenzo Di Natale
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Jiacheng Jin
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Christine Wu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Raymond Zou
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Wanwei Zhang
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Yinshan Fang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, USA
| | - Yingyu Zhang
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Miao Chen
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sophia Peng
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Uttiya Basu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Jianwen Que
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, USA.
| | - Yuefeng Huang
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Wu J, Song J, Ge Y, Hou S, Chang Y, Chen X, Nie Z, Guo L, Yin J. PRIM1 enhances colorectal cancer liver metastasis via promoting neutrophil recruitment and formation of neutrophil extracellular trap. Cell Signal 2025; 132:111822. [PMID: 40250692 DOI: 10.1016/j.cellsig.2025.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Despite advances in treatment, liver metastasis remains the predominant pattern of distant spread for colorectal cancer (CRC) and a major cause of cancer-related mortality. DNA Primase Subunit 1 (PRIM1) has been reported to play important roles in cancer progression. This study investigated the role of PRIM1 in CRC liver metastasis, focusing on its influence on neutrophil recruitment and the formation of neutrophil extracellular traps (NETs). In this study, PRIM1 was upregulated in liver metastasis tumor tissues. CCK-8 and Transwell assays showed that the proliferation, migration and invasion of CRC cells were promoted with the ablation of PRIM1 and inhibited with PRIM1 overexpression. For in vivo investigation, we observed that PRIM1 ablation reduced the number and size of metastasis nodules of MC38 cells. Importantly, PRIM1 depletion obviously reduced the percentage of Ly6G+ neutrophils in liver. In contrast, overexpression of PRIM1 reversed these effects. Besides, depletion of neutrophils by anti-Ly6G antibody in mice notably attenuated liver metastasis burden induced by the upregulation of PRIM1. Western blot and immunohistochemistry assays revealed that three chemokines CXCL8, C-GSF and CXCL2 were confirmed to be upregulated with PRIM1 overexpression. Furthermore, PRIM1 overexpression reduced the formation of NETs. These results suggested that PRIM1 could facilitate the liver metastasis of CRC via recruiting neutrophils and NET formation. In conclusion, our novel findings highlighted the important role of PRIM1 in neutrophil recruitment and CRC metastasis and provided new perspectives and potential targets for future research and treatment for CRC.
Collapse
Affiliation(s)
- Ju Wu
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Jianhui Song
- Department of General Surgery, Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Yuzhuang Ge
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Shuangshuang Hou
- Department of General Surgery, Fuyang Normal University Second Affiliated Hospital, Fuyang 236000, China
| | - Yaoyuan Chang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Xi Chen
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China
| | - Zhequn Nie
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China.
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
| | - Jiajun Yin
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Dalian University, Dalian, China.
| |
Collapse
|
7
|
Irakli K, Ekaterina K, Mladen K. The immunosuppressive role of neutrophils in infectious and oncological conditions: A study of chemokine receptor CXCR3 and human neutrophil lipocalin levels. BMC Res Notes 2025; 18:148. [PMID: 40200380 PMCID: PMC11980113 DOI: 10.1186/s13104-025-07229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Neutrophils are key players in the innate immune system, responsible for rapid responses to infections through mechanisms such as phagocytosis and the release of reactive oxygen species (ROS). Beyond their role in host defense, neutrophils also contribute to the pathogenesis of various diseases, including infections, metabolic disorders, autoimmune diseases, and cancer. Understanding the immunosuppressive role of neutrophils, particularly through markers like human neutrophil lipocalin (HNL) and the chemokine receptor CXCR3, is crucial for developing targeted therapeutic strategies. MATERIALS AND METHODS This study involved 200 participants divided into four groups: 50 patients with acute respiratory infection, 50 COVID-19 recovered patients, 50 oncology patients, and 50 healthy donors as controls. Peripheral blood samples were collected and analyzed using enzyme-linked immunoassay (ELISA) to quantify levels of HNL and CXCR3. Data were analyzed using SPSS version 25.0, employing descriptive statistics, the Shapiro-Wilk test for normality, one-way ANOVA for normally distributed variables, and the Kruskal-Wallis test for non-normally distributed variables. Post-hoc comparisons were conducted using Tukey's HSD and Dunn's tests. RESULTS CXCR3 levels were stable across groups, with no significant differences found. Acute respiratory infection patients had an average CXCR3 level of 150 ± 20 pg/ml, while COVID-19 recovered patients had slightly lower levels at 140 ± 18 pg/ml. Oncology patients had elevated CXCR3 levels at 160 ± 22 pg/ml, similar to healthy donors at 150 ± 19 pg/ml. HNL levels varied more, with COVID-19 recovered patients showing notably lower levels (100 ± 12 ng/ml) compared to other groups. Oncology patients exhibited higher HNL levels, especially those with prostate cancer (150 ± 20 ng/ml). CONCLUSION The findings highlight the consistent expression of CXCR3 across various conditions, making it a reliable marker for immune response assessment. The distinct HNL profiles, particularly the lower levels in COVID-19 recovered patients and higher levels in prostate cancer patients, suggest unique neutrophil activities and immune responses. These insights into neutrophil-mediated immunosuppression and inflammation could inform the development of targeted therapies for infections, cancer, and autoimmune diseases. Further research is needed to elucidate the specific mechanisms underlying neutrophil-induced immunosuppression.
Collapse
Affiliation(s)
- Khuntsaria Irakli
- Petre Shotadze Tbilisi Medical Academy, Ketevan Tsamebuli avenue 51/2, Tbilisi, 0144, Georgia
| | - Kldiashvili Ekaterina
- Petre Shotadze Tbilisi Medical Academy, Ketevan Tsamebuli avenue 51/2, Tbilisi, 0144, Georgia.
| | - Krajacic Mladen
- Petre Shotadze Tbilisi Medical Academy, Ketevan Tsamebuli avenue 51/2, Tbilisi, 0144, Georgia
- University of Zagreb, Ul. Radoslava Cimermana 88, Zagreb, 10000, Croatia
| |
Collapse
|
8
|
Wu Y, Dahlgren C, Forsman H, Sundqvist M. LTB 4 is converted into a potent human neutrophil NADPH oxidase activator via a receptor transactivation mechanism in which the BLT 1 receptor activates the free fatty acid receptor 2. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102680. [PMID: 40199055 DOI: 10.1016/j.plefa.2025.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
The endogenous neutrophil chemoattractant leukotriene B4 (LTB4) is a biased signalling agonist that potently increases the intracellular concentration of free calcium ions ([Ca2+]i), but alone is a weak activator of the neutrophil superoxide anion (O2-)-generating NADPH oxidase. However, in this study we show that an allosteric modulator of the free fatty acid 2 receptor (FFA2R) converts LTB4 into a potent NADPH oxidase activating agonist. While an allosteric modulation of FFA2R was required for LTB4 receptor 1 (BLT1R)-mediated activation of the NADPH oxidase, the LTB4-induced increase in [Ca2+]i was not affected by the modulator. Thus, the biased BLT1R signalling pattern was altered in the presence of the allosteric FFA2R modulator, being biased with a preference towards the signals that activate the NADPH oxidase relative to an increase in [Ca2+]i. Both BLT1R and FFA2R belong to the family of G protein-coupled receptors (GPCRs), and our results show that a communication between the activated BLT1R and the allosterically modulated FFA2Rs generates signals that induce NADPH oxidase activity. This is consistent with a previously described receptor transactivation (crosstalk) model whereby the function of one neutrophil GPCR can be regulated by receptor downstream signals generated by another GPCR. Furthermore, the finding that an allosteric FFA2R modulator sensitises not only the response induced by orthosteric FFA2R agonists but also the response induced by LTB4, violates the receptor restriction properties that normally define the selectivity of allosteric GPCR modulators.
Collapse
Affiliation(s)
- Yanling Wu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
9
|
Kewalramani N, Machahua C, Marti TM, Zandbergen C, Chortarea S, Beretta-Piccoli J, von Garnier C, Dorn P, Fytianos K, Funke-Chambour M. Heme-induced lung injury in human precision cut lung slices: a new model for acute lung injury. Respir Res 2025; 26:124. [PMID: 40176049 PMCID: PMC11966866 DOI: 10.1186/s12931-025-03191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/11/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) causes high mortality and has no specific pharmacological treatment. Scarcity of drugs against ARDS is in part due to the lack of models for ARDS. As raised serum heme levels are associated with higher mortality in patients with ARDS, we hypothesised that circulating heme contributes to ARDS pathology and can induce lung injury resembling human disease. We aimed to develop a new model for acute lung injury and ARDS research with heme-induced injury in human precision cut lung slices (PCLS). METHODS We analysed heme and its degrading enzymes along with inflammatory cytokines in patients with coronavirus disease 2019 (COVID-19) and ARDS compared to healthy adult subjects. In PCLS, we studied effects of heme on cell survival, membrane integrity, the transcriptome by gene expression and the proteome by protein expression analysis or ELISA. We also tested synergistical effects with lipopolysaccharide (LPS) on cell survival in addition to heme to simulate bacterial infection. RESULTS Patients with COVID-19 and ARDS had increased serum levels of heme and heme oxygenase 1 (HO-1) compared to controls. In PCLS, heme induced cell death in a dose-dependent manner, stimulated pro-inflammatory and injury signals and triggered changes to the extracellular matrix (ECM). Comparative analyses of the lung transcriptomic and proteomic signatures revealed 27 common markers (log2 fold change greater than 1, at adjusted (adj) p-value < 0.05 significant), most of which were inflammatory. Similar inflammatory cytokines were raised in blood from patients with COVID-19 and ARDS compared to controls. LPS did not increase cytotoxicity in addition to heme. CONCLUSION Heme induced inflammatory cytokine release and cell death in human PCLS, resembling the patterns observed in blood samples from patients with COVID-19 and ARDS. Thus, heme-stimulated PCLS represent a novel ex vivo model for mechanistic studies for acute lung injury and ARDS.
Collapse
Affiliation(s)
- Namrata Kewalramani
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Carlos Machahua
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cas Zandbergen
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | - Savvina Chortarea
- CSL Behring, Research, CSL Biologics Research Center, Bern, Switzerland
| | | | - Christophe von Garnier
- Division of Pulmonology, Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, 1011, Lausanne, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Manuela Funke-Chambour
- Department for Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Akenroye A, Boyce JA, Kita H. Targeting alarmins in asthma: From bench to clinic. J Allergy Clin Immunol 2025; 155:1133-1148. [PMID: 39855362 DOI: 10.1016/j.jaci.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Over the past 2 decades, mechanistic studies of allergic and type 2 (T2)-mediated airway inflammation have led to multiple approved therapies for the treatment of moderate-to-severe asthma. The approval and availability of these monoclonal antibodies targeting IgE, a T2 cytokine (IL-5) and/or cytokine receptors (IL-5Rα, IL-4Rα) has been central to the progresses made in the management of moderate-to-severe asthma over this period. However, there are persistent gaps in clinician's ability to provide precise care, given that many patients with T2-high asthma do not respond to IgE- or T2 cytokine-targeting therapies and that patients with T2-low asthma have few therapeutic options. The new frontier of precision medicine in asthma, as well as in other allergic diseases, includes the targeting of epithelium-derived cytokines known as alarmins, including thymic stromal lymphopoietin, IL-25, IL-33, and their receptors. The effects of these alarmins, which can act upstream of immune cells, involve both the innate and adaptive systems and hold potential for the treatment of both T2-high and -low disease. Tezepelumab, an anti-thymic stromal lymphopoietin antibody, has already been approved for the treatment of severe asthma. In this review, we discuss our current understanding of alarmin biology with a primary focus on allergic airway diseases. We link the mechanistic corollaries to the clinical implications and advances in drug development targeting alarmins, with a particular focus on currently approved treatments, those under study, and future potential targets in alarmin signaling pathways.
Collapse
Affiliation(s)
- Ayobami Akenroye
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| | - Joshua A Boyce
- Jeff and Penny Vinik Immunology Center, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, the Department of Medicine, and the Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn
| |
Collapse
|
11
|
Cai XY, Zheng CX, Guo H, Fan SY, Huang XY, Chen J, Liu JX, Gao YR, Liu AQ, Liu JN, Zhang XH, Ma C, Wang H, Fu F, Peng P, Xu HK, Sui BD, Xuan K, Jin Y. Inflammation-triggered Gli1 + stem cells engage with extracellular vesicles to prime aberrant neutrophils to exacerbate periodontal immunopathology. Cell Mol Immunol 2025; 22:371-389. [PMID: 40016585 PMCID: PMC11955562 DOI: 10.1038/s41423-025-01271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Periodontitis is a prevalent and progressive detrimental disease characterized by chronic inflammation, and the immunopathological mechanisms are not yet fully understood. Mesenchymal stem cells (MSCs) play crucial roles as immunoregulators and maintain tissue homeostasis and regeneration, but their in vivo function in immunopathology and periodontal tissue deterioration is still unclear. Here, we utilized multiple transgenic mouse models to specifically mark, ablate and modulate Gli1+ cells, a critical and representative subset of MSCs in the periodontium, to explore their specific role in periodontal immunopathology. We revealed that Gli1+ cells, upon challenge with an inflammatory microenvironment, significantly induce rapid trafficking and aberrant activation of neutrophils, thus exacerbating alveolar bone destruction. Mechanistically, extracellular vesicles (EVs) released by Gli1+ cells act as crucial immune regulators in periodontal tissue, mediating the recruitment and activation of neutrophils through increased neutrophil generation of reactive oxygen species and stimulation of nuclear factor kappa-B signaling. Furthermore, we discovered that CXC motif chemokine ligand 1 (CXCL1) is exposed on the surface of EVs derived from inflammation-challenged Gli1+ cells to prime aberrant neutrophils via the CXCL1-CXC motif chemokine receptor 2 (CXCR2) axis. Importantly, specific inhibition of EV release from Gli1+ cells or pharmacological therapy with GANT61 ameliorates periodontal inflammation and alveolar bone loss. Collectively, our findings identify previously unrecognized roles of Gli1+ cells in orchestrating infiltration and promoting aberrant activation of neutrophils under inflammation, which provides pathological insights and potential therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Xin-Yue Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Si-Yuan Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Yao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yu-Ru Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - An-Qi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jia-Ning Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chao Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fei Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Peng Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao-Kun Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
12
|
Wang X, Liao Y, Wang R, Lu Y, Wang Y, Xin Y, Kuang D, Lao X, Xu J, Zhou Z, Hu K. Tribbles Pseudokinase 3 Converts Sorafenib Therapy to Neutrophil-Mediated Lung Metastasis in Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413682. [PMID: 39932456 PMCID: PMC11967757 DOI: 10.1002/advs.202413682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/17/2025] [Indexed: 04/05/2025]
Abstract
Rapid development of resistance to sorafenib and subsequent hyperprogression in patients with advanced hepatocellular carcinoma (HCC) pose significant challenges, with the underlying mechanisms still largely unknown. Herein, sorafenib-induced TRIB3 is identified as a liver-specific determinant driving secondary resistance to sorafenib by facilitating the accumulation of protumorigenic neutrophils within tumors. Mechanistically, TRIB3, triggered by the sorafenib-elicited ROS-ER stress axis, operates in an NF-κB-dependent manner to upregulate CXCR1/2 ligands, subsequently promoting neutrophil recruitment into tumors. These enriched neutrophils enhance epithelial-mesenchymal transition processes in malignant cells through the oncostatin M-STAT3 pathway, thereby repurposing the therapeutic efficacy of sorafenib away from anti-angiogenesis and toward lung metastasis. Clinically, elevated TRIB3 expression indicates inferior survival and unfavorable clinical efficacy of sorafenib in HCC patients. Correspondingly, strategies that either inhibiting TRIB3 upregulation or blocking its downstream signaling successfully augment the therapeutic efficacy of sorafenib and prevent sorafenib-induced hyperprogression in vivo. The study thus identifies a pivotal mechanism of sorafenib resistance in HCC, centered on the TRIB3-mediated recruitment of protumorigenic neutrophils and subsequent disease hyperprogression.
Collapse
Affiliation(s)
- Xu‐Yan Wang
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment (No. 2021B1212040004)Zhuhai Institute of Translational MedicineZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Yuan Liao
- Department of Laboratory MedicineThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Rui‐Qi Wang
- Department of PharmacyZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Yi‐Tong Lu
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Ying‐Zhe Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Yu‐Qi Xin
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Dong‐Ming Kuang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiang‐Ming Lao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Junying Xu
- Department of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxi214023China
| | - Zhi‐Ling Zhou
- Department of PharmacyZhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University)Zhuhai519000China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| |
Collapse
|
13
|
Rodrigues-Braz D, Bonnet C, Zhu L, Yesilirmak N, Gélizé E, Jonet L, Jaisser F, Bourges JL, Behar-Cohen F, Zhao M. Mineralocorticoid receptor antagonism improves corneal integrity in a rat model of limbal stem cell deficiency. Biomed Pharmacother 2025; 185:117979. [PMID: 40080998 DOI: 10.1016/j.biopha.2025.117979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/27/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
Limbal stem cell deficiency (LSCD) is a sight-threatening condition caused by the loss and/or dysfunction of limbal stem cells (LSCs), which are essential for corneal epithelial regeneration and homeostasis and are critical for maintaining corneal transparency. We have previously shown that specific inactivation of the endothelial mineralocorticoid receptor (MR) inhibits corneal neovascularization (CN) and that MR antagonists (MRA) improve corneal epithelial wound healing. This study investigated the therapeutic potential of MRA in LSCD and their mechanisms of action. Using a rat model of LSCD, systemic administration of spironolactone (SPL) or a more specific MRA, eplerenone, similarly reduced CN and corneal oedema, demonstrating MR-specific effects. SPL further limited inflammation, enhanced the corneal epithelial barrier, reduced corneal conjunctivalization and promoted nerve regeneration, highlighting its potential to improve corneal integrity. Transcriptomic analysis revealed that SPL upregulated genes associated with LSC maintenance (Tp63, Wnt6), corneal epithelial differentiation (Vdr, Fermt1, Ehf) and nerve regeneration (Sprr1a, Anxa1), while downregulating genes associated with angiogenesis (Kdr, Scube2), inflammation (Ccl2, Cxcl1) and fibrosis (Fbln1, Snai1). Conversely, transgenic rats overexpressing human NR3C2 encoding MR showed corneal epithelial irregularities and dysregulation of genes related to extracellular matrix remodeling and fibrosis (Matn3, Serpine2, Fmod, Bgn, Ddr2), angiogenesis (Nrp2, Scube1) and limbal cell function (Ifitm3). These findings demonstrate that activation of the MR pathway disrupts limbal and corneal homeostasis and that SPL effectively modulates critical mechanisms in LSCD, offering promising therapeutic potential to reduce CN and improve corneal epithelial barrier integrity.
Collapse
Affiliation(s)
- Daniela Rodrigues-Braz
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Clémence Bonnet
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| | - Linxin Zhu
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Nilufer Yesilirmak
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Department of Ophthalmology, Ankara Yildirim Beyazit University, Ankara, Turkey.
| | - Emmanuelle Gélizé
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| | - Jean-Louis Bourges
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Ophthalmopole, AP-HP, Cochin Hospital, Paris, France.
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France; Ophthalmopole, AP-HP, Cochin Hospital, Paris, France.
| | - Min Zhao
- Centre de Recherche des Cordeliers, Inserm, Université Paris Cité, Sorbonne Université, Paris, France.
| |
Collapse
|
14
|
Huang Z, Mo C, Li L, Hou Q, Pan Y, Zhu G, Qiu F, Zou Q, Yang J. Identification of novel neutrophil-extracellular-traps-related genes as biomarkers for breast cancer prognosis and immunotherapy. Transl Cancer Res 2025; 14:1737-1752. [PMID: 40224973 PMCID: PMC11985209 DOI: 10.21037/tcr-24-1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/22/2025] [Indexed: 04/15/2025]
Abstract
Background Breast cancer (BC) ranks as one of the most prevalent malignancies among women globally. This study aimed to explore the involvement of neutrophil extracellular traps (NETs)-related genes (NETRGs) in BC pathogenesis, highlighting the critical role of NETs. Methods Differentially expressed NETRGs (DE-NETRGs) were identified by intersecting BC vs. control differentially expressed genes (DEGs) with the NETRG gene set from The Cancer Genome Atlas breast cancer (TCGA-BRCA) and GSE42568 datasets. Functional analysis elucidated their biological roles. Prognostic biomarkers were selected using least absolute shrinkage and selection operator (LASSO) and Cox regression, generating a predictive model, of which its prognostic predictive ability was evaluated through the Kaplan-Meier (KM) survival curve and receiver operating characteristic (ROC) curve, and verified it in the test set and the validation set. Subsequently, the clinicopathological features were incorporated into the risk model for Cox independent prognostic analysis, and a nomogram was constructed to verify the predictive performance of the model. Finally, the mechanism of action of the biomarkers in BC was explored through immune infiltration, immunotherapy, and drug sensitivity. The biomarker expression validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Functional analysis revealed 37 DE-NETRGs associated with leukocyte migration and the Interleukin (IL)-17 signaling pathway. Four biomarkers [F2RL2, AZU1, IL33, neutrophil elastase (ELANE)] were used to construct the prognostic model and it was validated by the test set and the validation set. The KM curve showed significant differences in prognosis between the high- and low-risk group, while the ROC curve showed that the model had good predictive performance. Radiation, age, tumor stage, pathologic N, and risk scores were identified as independent prognostic factors. Subgroups based on risk scores exhibited distinct immune cell infiltration patterns, with the risk score positively correlated with M0 macrophages and resting mast cells. The high-risk group demonstrated lower Tumor Immune Dysfunction and Exclusion (TIDE) scores. Drug sensitivity varied between risk subgroups, and qRT-PCR confirmed the expression of ELANE and IL33. Conclusions This study has reported four biomarkers related to BC prognosis, namely F2RL2, AZU1, IL33, and ELANE. Our study has offered new potential biomarkers for prognosis and has identified therapeutic targets for the treatment and prognosis prediction in BC patients.
Collapse
Affiliation(s)
- Zhen Huang
- Graduate School of Jinan University, Guangzhou, China
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Chongde Mo
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lihui Li
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qiyan Hou
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yinhua Pan
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Guiyue Zhu
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Fangyu Qiu
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Quanqing Zou
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Graduate School of Jinan University, Guangzhou, China
- Department of Breast Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region and Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, China
| |
Collapse
|
15
|
Liang C, Wang Z, Mai Y, Li J, Dai Q, Yuan Y, Wang M, Liu Y, Zhang W, Li Y, Lu X, Lin Z, Mao T. Mendelian randomization study of circulating leukocytes counts reveals causal associations with inflammatory bowel disease. Medicine (Baltimore) 2025; 104:e41969. [PMID: 40153772 PMCID: PMC11957634 DOI: 10.1097/md.0000000000041969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/07/2025] [Indexed: 03/30/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent IBD, whose cause involves the interaction between genetic and environmental factors. Although there is a recognized link between immune response and IBD, the causal relationship between circulating immune cell counts and IBD remains controversial. This study aimed to elucidate the causal relationship between genetically predicted circulating immune cell counts and IBD. We conducted a bidirectional 2-sample Mendelian randomization (MR) study using aggregated statistics from genome-wide association studies. The causal relationship between 5 circulating leukocytes cells (monocytes, lymphocytes, eosinophils, basophils and neutrophils) counts and IBD, including ulcerative colitis (UC) and Crohn disease (CD) was analyzed. Horizontal pleiotropy test and heterogeneity test were used to ensure the stability of the results. Our findings indicated that monocytes, lymphocytes, eosinophils, and basophils count were not significantly associated with IBD, however, elevated circulating neutrophils count was significantly associated with higher risk of IBD [odds ratio (OR) = 1.0017; 95% confidence interval (CI) = 1.0004-1.003; P = .009] and UC [OR = 2.465; 95% CI = 1.236-4.916; P = .01]. In addition, we also found that IBD [OR: 12.07; 95% CI = 1.909-76.316; P = .008] and CD [OR = 1.014; 95% CI = 1.004-1.023; P = .005] were significantly associated with higher circulating neutrophils count in reverse MR. This MR study provides genetic evidence for the causal relationship between the genetically predicted increase in circulating neutrophils count and the risk of IBD (UC and CD). This finding stresses the need for further exploring physiological functions of neutrophils in order to develop effective strategies against IBD.
Collapse
Affiliation(s)
- Chengtao Liang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Zhibin Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yuhe Mai
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Qiuhong Dai
- Qinhuangdao Hospital of Traditional Chinese Medicine, Qinhuangdao, PR China
| | - Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yuyue Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Zhengdao Lin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| |
Collapse
|
16
|
Giblin SP, McKenna S, Matthews S, Sriskandan S, Pease JE. The N-terminal ELR + motif of the neutrophil attractant CXCL8 confers susceptibility to degradation by the Group A streptococcal protease, SpyCEP. J Biol Chem 2025; 301:108448. [PMID: 40147770 DOI: 10.1016/j.jbc.2025.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus or GAS) is a major human pathogen for which an effective vaccine is highly desirable. Invasive S. pyogenes strains evade the host immune response in part by producing a cell envelope protease, SpyCEP. This neutralizes chemokines containing an N-terminal Glu-Leu-Arg motif (ELR+ chemokines) by cleavage at a distal C-terminal site within the chemokine. SpyCEP is a component of several S. pyogenes vaccines, yet the molecular determinants underlying substrate selectivity are poorly understood. We hypothesized that chemokine recognition and cleavage is a multistep process involving distinct domains of both substrate and enzyme. We generated a panel of recombinant CXCL8 variants where domains of the chemokine were exchanged or mutated. Chemokine degradation by SpyCEP was assessed by SDS-PAGE, Western blot, and ELISA. Extension of the CXCL8 N-terminus was found to inhibit chemokine cleavage. Reciprocal exchanges of the N-termini of CXCL8 with that of the ELR- chemokine CXCL4 resulted in the generation of loss of function and gain of function substrates. This suggested a key role for the ELR motif in substrate recognition, which was supported directly by alanine substitution of the ELR motif of CXCL8, impairing the parameters, KM, Vmax, and Kcat in kinetic assays with SpyCEP. Collectively, our findings identify the N-terminal ELR motif as a major determinant for recognition by SpyCEP and expose a vulnerability in the mechanism by which the protease recognises its substrates. This likely presents potential avenues for therapeutic intervention via targeted vaccine design and small molecule inhibition.
Collapse
Affiliation(s)
- Sean Patrick Giblin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sophie McKenna
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, London, United Kingdom; Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Shiranee Sriskandan
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom; Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - James Edward Pease
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
17
|
Oggero S, Voisin MB, Picco F, Huerta MÁ, Cecconello C, Burgoyne T, Perretti M, Malcangio M. Activation of proresolving macrophages in dorsal root ganglia attenuates persistent arthritis pain. Proc Natl Acad Sci U S A 2025; 122:e2416343122. [PMID: 40063821 PMCID: PMC11929478 DOI: 10.1073/pnas.2416343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Pain independent of disease activity is frequently reported by rheumatoid arthritis patients and remains undertreated. Preclinical evidence suggests that imbalance of neuroimmune proresolving interactions within dorsal root ganglia (DRG) rather than at the site of inflammation plays mechanistic roles in persistent arthritis pain. Here, we inhibited production of proresolving lipid mediators by silencing 12/15-lipoxygenase expression in CX3CR1+ monocyte/macrophages conditional knockout (cKO) mice. In an arthritis model, hind paw mechanical hypersensitivity is exacerbated in male and female cKO mice in association with DRG infiltration of neutrophils, which migrate in response to leukotriene B4 released by macrophages through 5-lipoxygenase conversion of arachidonic acid provided by neuron-derived vesicles. Neutrophils apoptosis promotes primary macrophage efferocytosis which is defective in cKO macrophages. In wild-type (WT) and cKO mice, intrathecal injection of MerTK activating antibody, attenuates persistent hypersensitivity and polarizes DRG macrophages toward a proresolving phenotype with production of antinociceptive lipoxin A4. Thus, we delineate a neuron-macrophage-neutrophil bidirectional circuit that can be exploited to reduce persistent arthritis pain.
Collapse
Affiliation(s)
- Silvia Oggero
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Francesca Picco
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Miguel Á. Huerta
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
- Department of Pharmacology, University of Granada, Granada18016, Spain
| | - Chiara Cecconello
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Thomas Burgoyne
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, LondonEC1V 9EL, United Kingdom
- Pediatric Respiratory Medicine, Royal Brompton Hospital, Guy’s and St Thomas’ National Health System Foundation Trust, LondonSW3 6NP, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Marzia Malcangio
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| |
Collapse
|
18
|
Song Z, Clemens RA, Zhang Y, Chen J, Wang Y, Dinauer MC, Meng S. Investigating pulmonary neutrophil responses to inflammation in mice via flow cytometry. J Leukoc Biol 2025; 117:qiae189. [PMID: 39212489 DOI: 10.1093/jleuko/qiae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Neutrophils play a crucial role in maintaining lung health by defending against infections and participating in inflammation processes. Here we describe a detailed protocol for evaluating pulmonary neutrophil phenotype using a murine model of sterile inflammation induced by the fungal cell wall particle zymosan. We provide step-by-step instructions for the isolation of single cells from both lung tissues and airspaces, followed by comprehensive staining techniques for both cell surface markers and intracellular components. This protocol facilitates the sorting and detailed characterization of lung neutrophils via flow cytometry, making it suitable for downstream applications such as mRNA extraction, single-cell sequencing, and analysis of neutrophil heterogeneity. We also identify and discuss essential considerations for conducting successful neutrophil flow cytometry experiments. This work is aimed at researchers exploring the intricate functions of neutrophils in the lung under physiological and pathological conditions with the aid of flow cytometry.
Collapse
Affiliation(s)
- Zhimin Song
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, No. 195, Dongfeng West Road, Guangzhou, Guangdong 510180, China
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Regina A Clemens
- Departments of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
| | - Yun Zhang
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Jingjing Chen
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Yaofeng Wang
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| | - Mary C Dinauer
- Departments of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
- Departments of Pathology and Immunology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave, PO Box 8208, St. Louis, MO 63110, United States
| | - Shu Meng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, No. 195, Dongfeng West Road, Guangzhou, Guangdong 510180, China
- Department of Basic Science Research, Guangzhou National Laboratory, No. 9, Xing Dao Huan Bei Road, Guangzhou International Bio Island, Haizhu District, Guangzhou, Guangdong 510005, China
| |
Collapse
|
19
|
Chen S, Wu A, Shen X, Kong J, Huang Y. Disrupting the dangerous alliance: Dual anti-inflammatory and anticoagulant strategy targets platelet-neutrophil crosstalk in sepsis. J Control Release 2025; 379:814-831. [PMID: 39848591 DOI: 10.1016/j.jconrel.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Sepsis is a life-threatening disease characterized by excessive systemic inflammation and coagulopathy. Platelets and neutrophils form a "dangerous alliance" through crosstalk, promoting the inflammatory cytokine storm and coagulation disorders during sepsis. Platelet-neutrophil crosstalk leads to the formation of platelet-neutrophil complexes (PNCs), which are the central "protagonists" of this "dangerous alliance." These PNCs further enhance the crosstalk between platelets and neutrophils, amplifying immune and coagulation responses through positive feedback loops. Although some targeted therapies have been reported recently, they primarily focus on inducing neutrophil apoptosis or degrading existing neutrophil extracellular traps (NETs). Limited strategies are available for targeting platelets and suppressing sepsis-associated PNCs. Herein, we propose a two-pronged approach to intercept platelet-neutrophil crosstalk by simultaneously targeting drugs to both platelets and neutrophils of the "dangerous alliance." This strategy not only effectively alleviates inflammation induced by platelet-neutrophil crosstalk but also reduces PNC formation, thereby dismantling the structural scaffold of microthrombi. In a sepsis mouse model, this approach significantly decreased markers of platelet-neutrophil crosstalk, reduced the cytokine storm, and lowered the risk of thrombosis. Moreover, it alleviated organ damage caused by PNC infiltration and prolonged the survival of septic mice. Overall, this work combines anti-inflammatory and anticoagulant therapies to effectively disrupt the "dangerous alliance" between platelets and neutrophils, offering a promising strategy for treating sepsis.
Collapse
Affiliation(s)
- Sa Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Aijia Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinxia Kong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China..
| |
Collapse
|
20
|
Ye T, Wu Z, Liu X, Wu J, Fu Q, Cao J, Zhang D, Shi P. Engineered mesenchymal stromal cells with bispecific polyvalent peptides suppress excessive neutrophil infiltration and boost therapy. SCIENCE ADVANCES 2025; 11:eadt7387. [PMID: 40053594 PMCID: PMC11887798 DOI: 10.1126/sciadv.adt7387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
Excessive neutrophil infiltration can exacerbate inflammation and tissue damage, contributing to conditions like autoimmune disorders and liver diseases. Mesenchymal stromal cells (MSCs) share homing mechanisms with neutrophils, showing promise for treating such diseases. However, ex vivo expanded MSCs often suffer from reduced homing efficiency due to the loss of essential ligands. Here, we engineer MSCs with P-selectin and E-selectin targeting peptides, assembling them into bispecific polyvalent structures using DNA self-assembly technology. This modification allows engineered MSCs to compete with chemotactic neutrophils for selectin binding sites on endothelial cells. In a mouse model of acute liver failure, engineered MSCs effectively home to the damaged liver and substantially inhibit excessive neutrophil infiltration. The combination of inhibiting neutrophil infiltration and the MSCs' inherent therapeutic properties lead to superior therapeutic outcomes. Single-cell RNA sequencing reveals that engineered MSCs elevate the levels of Marco_macrophage, which have neutrophil-inhibitory effects. Our study offers a perspective for advancing MSC-based therapies in tissue repair.
Collapse
Affiliation(s)
- Tenghui Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Zixin Wu
- Department of General Surgery, Guangzhou Digestive Disease Center, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xi Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jiamin Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Qin Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery), Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
21
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
22
|
Chen Q, Yu Y, Tong L, Weiss RM, Wei SG. Targeted delivery of TAPI-1 via biomimetic nanoparticles ameliorates post-infarct left ventricle function and remodeling. Cardiovasc Res 2025:cvaf039. [PMID: 40038918 DOI: 10.1093/cvr/cvaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/21/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
AIMS The potential of nanoparticles as effective drug delivery tools for treating failing hearts in heart failure remains a challenge. Leveraging the rapid infiltration of neutrophils into infarcted hearts after myocardial infarction (MI), we developed a nanoparticle platform engineered with neutrophil-membrane proteins for the targeted delivery of TAPI-1, a TACE/ADAM17 inhibitor, to the inflamed myocardium, aiming to treat cardiac dysfunction and remodeling in rats with MI. METHODS AND RESULTS Neutrophil-mimic liposomal nanoparticles (Neu-LNPs) were constructed by integrating synthesized liposomal nanoparticles with LPS-stimulated neutrophil membrane fragments and then loaded with TAPI-1. MI rats were treated with TAPI-1 delivered via Neu-LNPs for 4 weeks. Left ventricular function was assessed by echocardiography and cardiac fibrosis was evaluated post-treatment. The novel Neu-LNPs maintained typical nanoparticle features, but with increased biocompatibility. Neu-LNPs demonstrated improved targeting ability and cellular internalization, facilitated by LFA1/Mac1/ICAM-1 interaction. Neu-LNPs displayed higher accumulation and cellular uptake by macrophages and cardiomyocytes in infarcted hearts post-MI, with a sustained duration. Treatments with TAPI-1-Neu-LNPs demonstrated greater protection against myocardial injury and cardiac dysfunction in MI rats compared to untargeted TAPI-1, along with reduced cardiac collagen deposition and expression of fibrosis biomarkers as well as altered immune cell compositions within the hearts. CONCLUSIONS Targeted treatment with TACE/ADAM17 inhibitor delivered via biomimetic nanoparticles exhibited pronounced advantages in improving left ventricle function, mitigating cardiac remodeling, and reducing inflammatory responses within the infarcted hearts. This study underscores the effectiveness of Neu-LNPs as a drug delivery strategy to enhance therapeutic efficacy in clinical settings.
Collapse
Affiliation(s)
- Qing Chen
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Yang Yu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Lei Tong
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
| | - Robert M Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
- Veteran affairs Center, Iowa City, IA 52246, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, U.S.A
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242
- Veteran affairs Center, Iowa City, IA 52246, USA
| |
Collapse
|
23
|
Fang X, Mo C, Zheng L, Gao F, Xue FS, Zheng X. Transfusion-Related Acute Lung Injury: from Mechanistic Insights to Therapeutic Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413364. [PMID: 39836498 PMCID: PMC11923913 DOI: 10.1002/advs.202413364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/08/2024] [Indexed: 01/23/2025]
Abstract
Transfusion-related acute lung injury (TRALI) is a potentially lethal complication of blood transfusions, characterized by the rapid onset of pulmonary edema and hypoxemia within six hours post-transfusion. As one of the primary causes of transfusion-related mortality, TRALI carries a significant mortality rate of 6-12%. However, effective treatment strategies for TRALI are currently lacking, underscoring the urgent need for a comprehensive and in-depth understanding of its pathogenesis. This comprehensive review provides an updated and detailed analysis of the current landscape of TRALI, including its clinical presentation, pathogenetic hypotheses, animal models, cellular mechanisms, signaling pathways, and potential therapeutic targets. By highlighting the critical roles of these pathways and therapies, this review offers valuable insights to inform the development of preventative and therapeutic strategies and to guide future research efforts aimed at addressing this life-threatening condition.
Collapse
Affiliation(s)
- Xiaobin Fang
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Zheng
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fei Gao
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Fu-Shan Xue
- Department of Anesthesiology/Critical Care Medicine, Fuzhou University Affiliated Provincial Hospital, School of Medicine, Fuzhou University, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University & Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Key Laboratory of Critical Medicine, Fujian Provincial Co-constructed Laboratory of "Belt and Road,", Fuzhou, Fujian, China
| |
Collapse
|
24
|
Silva PH, Peñaloza HF, Cordero J, Kalergis AM, Barrera NP, Bueno SM. Clustering analyses of murine bone marrow-derived neutrophils reveal a phenotypic heterogeneity that can respond differentially to stimulation. Heliyon 2025; 11:e42227. [PMID: 40040995 PMCID: PMC11876930 DOI: 10.1016/j.heliyon.2025.e42227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Neutrophils are granulocytic cells produced in the bone marrow from a granulocytic progenitor cell. During infection, the production of chemokines and cytokines induces the recruitment of neutrophils to the infected tissue to promote the clearance of microbial pathogens. Several studies have shown that different subpopulations of neutrophils can be identified during infection. However, no previous studies evaluated subpopulations of neutrophils purified from the bone marrow (BM), which are typically used to study the biology of these cells based on the assumption that the neutrophil population is homogeneous. In the present study, responses of purified BM-derived neutrophils to various stimuli such as PMA, LPS, and Streptococcus pneumoniae were evaluated using flow cytometry and bh-SNE analyses. Further, neutrophil population heterogeneity was assessed by clustering analyses. Our data suggest that purified BM-derived neutrophils were not a homogeneous cell population and were clustered into 12 subsets, each displaying a unique marker profile, where CD11b and CD62L emerged as pivotal markers for neutrophil function. Importantly, the subsets responded differentially to each stimulus, suggesting a nuanced activation pattern. Changes in biomarker expression were analyzed via Ingenuity Pathway Analysis (IPA) to unravel functional implications of the identified clusters, revealing subsets associated with different neutrophil functions, such as "Migration of neutrophils" or "Phagocytosis in neutrophils". This study contributes to understanding the diversity of purified BM-derived neutrophils and the implications of using these cellular preparations to raise conclusions about the functionality of these cells in various infection models.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Hernán F. Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Cordero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330023, Chile
| | - Nelson P. Barrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| |
Collapse
|
25
|
Fang L, Song Y, Chen J, Ding Y. The dual role of neutrophils in sepsis-associated liver injury. Front Immunol 2025; 16:1538282. [PMID: 40092997 PMCID: PMC11906405 DOI: 10.3389/fimmu.2025.1538282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Sepsis is often accompanied by liver injury and is associated with an increase in the number of circulating and hepatic neutrophils. In sepsis-associated liver injury, neutrophils exhibit phenotypic heterogeneity and perform both pro- and anti-inflammatory functions. Moreover, neutrophil dysfunction and neutrophil-associated immunosuppression are also involved in the pathogenesis of sepsis. Given the complex functionality of this cell type, the aim of this review was to describe the possible mechanistic role of neutrophils in sepsis-associated liver injury, with a brief introduction to neutrophil recruitment and subsequent discussion of the potential contributions of neutrophils to different subtypes of sepsis-associated liver injury.
Collapse
Affiliation(s)
- Lexin Fang
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu Song
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiangtao Chen
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yueping Ding
- Department of Intensive Care Unit, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Wang X, He S, Gong X, Lei S, Zhang Q, Xiong J, Liu Y. Neutrophils in colorectal cancer: mechanisms, prognostic value, and therapeutic implications. Front Immunol 2025; 16:1538635. [PMID: 40092983 PMCID: PMC11906667 DOI: 10.3389/fimmu.2025.1538635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Neutrophils, the most abundant myeloid cells in human peripheral blood, serve as the first defense line against infection and are also significantly involved in the initiation and progression of cancer. In colorectal cancer (CRC), neutrophils exhibit a dual function by promoting tumor events and exerting antitumor activity, which is related to the heterogeneity of neutrophils. The neutrophil extracellular traps (NETs), gut microbiota, and various cells within the tumor microenvironment (TME) are involved in shaping the heterogeneous function of neutrophils. This article provides an updated overview of the complex functions and underlying mechanisms of neutrophils in CRC and their pivotal role in guiding prognosis assessment and therapeutic strategies, aiming to offer novel insights into neutrophil-associated treatment approaches for CRC.
Collapse
Affiliation(s)
- Xingyue Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shukang He
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangmei Gong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shijun Lei
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqi Xiong
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Meloun A, León B. Beyond CCR7: dendritic cell migration in type 2 inflammation. Front Immunol 2025; 16:1558228. [PMID: 40093008 PMCID: PMC11906670 DOI: 10.3389/fimmu.2025.1558228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Conventional dendritic cells (cDCs) are crucial antigen-presenting cells that initiate and regulate T cell responses, thereby shaping immunity against pathogens, innocuous antigens, tumors, and self-antigens. The migration of cDCs from peripheral tissues to draining lymph nodes (dLNs) is essential for their function in immune surveillance. This migration allows cDCs to convey the conditions of peripheral tissues to antigen-specific T cells in the dLNs, facilitating effective immune responses. Migration is primarily mediated by chemokine receptor CCR7, which is upregulated in response to homeostatic and inflammatory cues, guiding cDCs to dLNs. However, during type 2 immune responses, such as those triggered by parasites or allergens, a paradox arises-cDCs exhibit robust migration to dLNs despite low CCR7 expression. This review discusses how type 2 inflammation relies on additional signaling pathways, including those induced by membrane-derived bioactive lipid mediators like eicosanoids, sphingolipids, and oxysterols, which cooperate with CCR7 to enhance cDC migration and T helper 2 (Th2) differentiation. We explore the potential regulatory mechanisms of cDC migration in type 2 immunity, offering insights into the differential control of cDC trafficking in diverse immune contexts and its impact on immune responses.
Collapse
Affiliation(s)
- Audrey Meloun
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beatriz León
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Kaur G, Lamb T, Tjitropranoto A, Rahman I. Single-cell transcriptomics identifies a dampened neutrophil function and accentuated T-cell cytotoxicity in tobacco flavored e-cigarette exposed mouse lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638715. [PMID: 40027777 PMCID: PMC11870523 DOI: 10.1101/2025.02.17.638715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
E-cigarettes (e-cigs) are a public health concern for young adults due to their popularity and evidence for increased oxidative stress and immunotoxicity. Yet an extensive study defining the cell-specific immune changes upon exposure to flavored e-cigs remains elusive. To understand the immunological lung landscape upon acute nose-only exposure of C57BL/6J to flavored e-cig aerosols we performed single-cell RNA sequencing (scRNA seq). scRNA profiles of 71,725 cells were generated from control and treatment groups (n=2/sex/group). A distinct phenotype of Ly6G-neutrophils was identified in lungs exposed to tobacco flavored e-cig aerosol which demonstrated dampened IL-1 mediated and pattern recognition signaling as compared to air controls. Differential gene expression analyses identified dysregulation of T-cell mediated pro-inflammation ( Cct7 , Cct8 ) and stress-response signals ( Neurl3 , Stap1 , Cirbp and Htr2c) in the lungs of mice exposed to e-cig aerosols, with pronounced effects for tobacco flavor. Flow cytometry analyses and cytokine/chemokine assessments within the lungs corroborated the scRNA seq data, demonstrating a significant increase in T-cell percentages and levels of T-cell associated cytokine/chemokines in the lungs of tobacco-flavored aerosol exposed mice. Increased levels of Klra4 and Klra8 expression also suggest an enhanced natural killer (NK) cell activity in this mouse group. Overall, this is a pilot study identifying increase in the percentages of Ly6G-neutrophils that may be responsible for dampened innate immune responses and heightened T-cell cytotoxicity in lungs of tobacco-flavored e-cig aerosol exposed mice. In addition, we provide preliminary evidence for sex-specific changes in the transcriptional landscape of mouse lungs upon exposure to e-cig aerosol, an area that warrants further study.
Collapse
|
29
|
Rasquel-Oliveira FS, Ribeiro JM, Martelossi-Cebinelli G, Costa FB, Nakazato G, Casagrande R, Verri WA. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025; 14:185. [PMID: 40005560 PMCID: PMC11858194 DOI: 10.3390/pathogens14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium of significant clinical importance, known for its versatility and ability to cause a wide array of infections, such as osteoarticular, pulmonary, cardiovascular, device-related, and hospital-acquired infections. This review describes the most recent evidence of the pathogenic potential of S. aureus, which is commonly part of the human microbiota but can lead to severe infections. The prevalence of pathogenic S. aureus in hospital and community settings contributes to substantial morbidity and mortality, particularly in individuals with compromised immune systems. The immunopathogenesis of S. aureus infections involves intricate interactions with the host immune and non-immune cells, characterized by various virulence factors that facilitate adherence, invasion, and evasion of the host's defenses. This review highlights the complexity of S. aureus infections, ranging from mild to life-threatening conditions, and underscores the growing public health concern posed by multidrug-resistant strains, including methicillin-resistant S. aureus (MRSA). This article aims to provide an updated perspective on S. aureus-related infections, highlighting the main diseases linked to this pathogen, how the different cell types, virulence factors, and signaling molecules are involved in the immunopathogenesis, and the future perspectives to overcome the current challenges to treat the affected individuals.
Collapse
Affiliation(s)
- Fernanda S. Rasquel-Oliveira
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Jhonatan Macedo Ribeiro
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Fernanda Barbosa Costa
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil (G.N.)
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, Londrina State University, Londrina 86038-440, PR, Brazil
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Immunology, Parasitology and General Pathology, Center of Biological Sciences, Londrina State University, Londrina 86057-970, PR, Brazil; (F.S.R.-O.)
| |
Collapse
|
30
|
Fish A, Forster J, Malik V, Kulkarni A. Shear-Stress Initiates Signal Two of NLRP3 Inflammasome Activation in LPS-Primed Macrophages through Piezo1. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7363-7376. [PMID: 39836089 DOI: 10.1021/acsami.4c18845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation. We demonstrated that magnitudes of shear stress within 1.0 to 50 dyn/cm2 were able to induce ASC speck formation, while 50 dyn/cm2 was sufficient to induce significant calcium signaling, gasdermin-D cleavage, caspase-1 activity, and IL-1β secretion, all hallmarks of inflammasome activation. Utilizing NLRP3 and caspase-1 knockout iBMDMs, we demonstrated that the NLRP3 inflammasome was primarily activated as a result of shear stress exposure. Quantitative polymerase chain reaction (qPCR), ELISA, and a small molecule inhibitor study aided us in demonstrating that expression of Piezo1, NLRP3, gasdermin-D, IL-1β, and CCL2 secretion were all upregulated in iBMDMs treated with shear stress. This study provides a foundation for further understanding the interconnected pathogenesis of chronic inflammatory diseases and the ability of shear stress to play a role in their progression.
Collapse
Affiliation(s)
- Adam Fish
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - James Forster
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Vaishali Malik
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ashish Kulkarni
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
31
|
Cheng X, Shao P, Wang X, Jiang J, Chen J, Zhu J, Zhu W, Li Y, Zhang J, Chen J, Huang Z. Myeloid-Derived Suppressor Cell Accumulation Drives Intestinal Fibrosis through mCCL6/hCCL15 Chemokine-Mediated Fibroblast Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411711. [PMID: 39739231 PMCID: PMC11848553 DOI: 10.1002/advs.202411711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Indexed: 01/02/2025]
Abstract
Intestinal fibrosis, a severe complication of Crohn's disease (CD), is linked to chronic inflammation, but the precise mechanism by which immune-driven intestinal inflammation leads to fibrosis development is not fully understood. This study investigates the role of myeloid-derived suppressor cells (MDSCs) in intestinal fibrosis in CD patients and a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mouse model. Elevated MDSCs are observed in inflamed intestinal tissues prior to fibrosis and their sustained presence in fibrotic tissues of both CD patients and murine models. Depletion of MDSCs significantly reduces fibrosis, highlighting their key role in the fibrotic process. Mechanistically, MDSC-derived mCCL6 activates fibroblasts via the CCR1-MAPK signaling, and interventions targeting this axis, including neutralizing antibodies, a CCR1 antagonist, or fibroblast-specific Ccr1 knockout mice reduce fibrosis. In CD patients with stenosis, human CCL15, analogous to mCCL6, is found to be elevated in MDSCs and activated fibroblasts. Additionally, CXCR2 and CCR2 ligands are identified as key mediators of MDSC recruitment in intestinal fibrosis. Blocking MDSC recruitment with CXCR2 and CCR2 antagonists alleviates intestinal fibrosis. These findings suggest that strategies targeting MDSC recruitment and mCCL6/hCCL15 signaling could offer therapeutic benefits for intestinal fibrosis.
Collapse
Affiliation(s)
- Xiaohui Cheng
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Pingwen Shao
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - XinTong Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Juan Jiang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiahui Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jie Zhu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Weiming Zhu
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Yi Li
- Department of General SurgeryJinling HospitalSchool of MedicineNanjing UniversityNanjingJiangsu210002China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- State Key Laboratory of Analytical Chemistry for Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- NJU Xishan Institute of Applied BiotechnologyXishan DistrictWuxiJiangsu214101China
| |
Collapse
|
32
|
Ju JA, Thompson KN, Annis DA, Mull ML, Gilchrist DE, Moriarty A, Chang KT, Stemberger MB, Noto MJ, Vitolo MI, Martin SS. Tubulin-Based Microtentacles Aid in Heterotypic Clustering of Neutrophil-Differentiated HL-60 Cells and Breast Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409260. [PMID: 39696759 PMCID: PMC11809343 DOI: 10.1002/advs.202409260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Indexed: 12/20/2024]
Abstract
Circulating tumor cells (CTCs) travel through the vasculature to seed secondary sites and serve as direct precursors of metastatic outgrowth for many solid tumors. Heterotypic cell clusters form between CTCs and white blood cells (WBCs) and recent studies report that a majority of these WBCs are neutrophils in patient and mouse models. The lab discovered that CTCs produce tubulin-based protrusions, microtentacles (McTNs), which promote reattachment, retention in distant sites during metastasis and formation of tumor cell clusters. Neutrophil-CTC clusters help CTCs survive the harsh vascular environment to promote successful metastasis, however, the specific mechanism of this interaction is not fully understood. Utilizing TetherChip technology, it is found that primary and differentiated neutrophils produce McTNs composed of detyrosinated and acetylated α-tubulin and vimentin. Neutrophil McTNs aid in cluster formation, migration, and reattachment, which are suppressed with the tubulin-depolymerizing agent, Vinorelbine. Co-culturing differentiated neutrophils and tumor cells formed heterotypic clusters that enhanced migration. CTC-neutrophil clusters have higher metastatic efficiency, and by demonstrating that neutrophils form McTNs, a new possible mechanism for how neutrophils interact with tumor cells is revealed. These findings further support the idea that developing cluster-disrupting therapies can provide a new targeted strategy to reduce the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Julia A. Ju
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Keyata N. Thompson
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
| | - David A. Annis
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Epidemiology and Human GeneticsUniversity of Maryland Baltimore800 W. Baltimore St.BaltimoreMD21201USA
| | - Makenzy L. Mull
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Darin E. Gilchrist
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Aidan Moriarty
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Katarina T. Chang
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
| | - Megan B. Stemberger
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
| | - Michael J. Noto
- Division of Pulmonary, Critical Care, and Sleep MedicineDepartment of MedicineUniversity of Maryland School of Medicine22 S. Greene St.BaltimoreMD21201USA
| | - Michele I. Vitolo
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
- Department of Pharmacology and PhysiologyUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
| | - Stuart S. Martin
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer CenterUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- Graduate Program in Molecular MedicineUniversity of Maryland School of Medicine800 W. Baltimore St.BaltimoreMD21201USA
- Department of Pharmacology and PhysiologyUniversity of Maryland School of Medicine655 W. Baltimore St.BaltimoreMD21201USA
- United States Department of Veterans AffairsVA Maryland Health Care SystemBaltimoreMD21201USA
| |
Collapse
|
33
|
Wilton ZER, Jamus AN, Core SB, Frietze KM. Pathogenic and Protective Roles of Neutrophils in Chlamydia trachomatis Infection. Pathogens 2025; 14:112. [PMID: 40005489 PMCID: PMC11858174 DOI: 10.3390/pathogens14020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate intracellular pathogen that causes the most commonly diagnosed bacterial sexually transmitted infection (STI) and is a leading cause of preventable blindness globally. Ct infections can generate a strong pro-inflammatory immune response, leading to immune-mediated pathology in infected tissues. Neutrophils play an important role in mediating both pathology and protection during infection. Excessive neutrophil activation, migration, and survival are associated with host tissue damage during Chlamydia infections. In contrast, neutrophils also perform phagocytic killing of Chlamydia in the presence of IFN-γ and anti-Chlamydia antibodies. Neutrophil extracellular traps (NETs) and many neutrophil degranulation products have also demonstrated strong anti-Chlamydia functions. To counteract this neutrophil-mediated protection, Chlamydia has developed several evasion strategies. Various Chlamydia proteins can limit potentially protective neutrophil responses by directly targeting receptors present on the surface of neutrophils or neutrophil degranulation products. In this review, we provide a survey of current knowledge regarding the role of neutrophils in pathogenesis and protection, including the ways that Chlamydia circumvents neutrophil functions, and we propose critical areas for future research.
Collapse
Affiliation(s)
| | | | | | - Kathryn M. Frietze
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences, Albuquerque, NM 87131, USA
| |
Collapse
|
34
|
Félix J, Matias A, Bartosch C. Cellular dynamics of cervical remodelling: insights from preterm and term labour. Arch Gynecol Obstet 2025:10.1007/s00404-024-07902-7. [PMID: 39831982 DOI: 10.1007/s00404-024-07902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Preterm birth remains a global health challenge with significant perinatal morbidity and mortality rates. Despite extensive research, the underlying mechanisms triggering preterm birth remain elusive, needing a deeper understanding of cervical cellular remodelling processes. PURPOSE This study aims to elucidate the cellular mechanisms underlying cervical remodelling in spontaneous preterm labour (PTL) compared to term labour (TL), focusing on the roles of inflammatory cells and fibroblasts. METHODS We conducted a prospective observational study from October 2018 to March 2021, at two hospitals. Participants were categorized into two groups: PTL (n = 14), TL (n = 14). A small set (n = 6) of preterm not in labour (PTnotL) was also included. Cervical biopsies were obtained and analysed for the density of fibroblasts and inflammatory cells (neutrophils and mononuclear cells) using digital image analysis. Statistical analysis was performed employing Mann-Whitney and Kruskal-Wallis tests. RESULTS There was no significant overall difference in global inflammatory cell density between PTL and TL (p = 0.154). However, a detailed analysis revealed significantly higher inflammation in the exocervix of PTL compared to TL, particularly involving neutrophils (p = 0.021) and mononuclear cells (p = 0.028). Neutrophils (p = 0.035), but not mononuclear cells (p = 0.111), were significantly decreased in PTnotL exocervix compared to PTL. No differences were found in inflammatory cell density in the endocervix. Fibroblast densities were similar across groups. CONCLUSIONS This study highlights the distinct cellular profiles in the cervix during preterm and term labour, with neutrophils playing a pivotal role in preterm labour. These findings may guide the development of targeted interventions to prevent preterm birth.
Collapse
Affiliation(s)
- Joana Félix
- Department of Obstetrics and Gynecology, Hospital Pedro Hispano, Rua Dr. Eduardo Torres, 4464-513, Senhora da Hora, Portugal.
| | - Alexandra Matias
- Department of Obstetrics and Gynecology, Hospital São João, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Carla Bartosch
- Department of Pathology, Instituto Português de Oncologia do Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Centro Hospitalar Universitário São João, Porto, Portugal
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| |
Collapse
|
35
|
Ng M, Cerezo-Wallis D, Ng LG, Hidalgo A. Adaptations of neutrophils in cancer. Immunity 2025; 58:40-58. [PMID: 39813993 DOI: 10.1016/j.immuni.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
There is a renewed interest in neutrophil biology, largely instigated by their prominence in cancer. From an immunologist's perspective, a conceptual breakthrough is the realization that prototypical inflammatory, cytotoxic leukocytes can be tamed to promote the survival and growth of other cells. This has sparked interest in defining the biological principles and molecular mechanisms driving the adaptation of neutrophils to cancer. Yet, many questions remain: is this adaptation mediated by reprogramming mature neutrophils inside the tumoral mass, or rather by rewiring granulopoiesis in the bone marrow? Why, in some instances, are neutrophils beneficial and in others detrimental to cancer? How many different functional programs can be induced in neutrophils by tumors, and is this dependent on the type of tumor? This review summarizes what we know about these questions and discusses therapeutic strategies based on our incipient knowledge of how neutrophils adapt to cancer.
Collapse
Affiliation(s)
- Melissa Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore.
| | - Daniela Cerezo-Wallis
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Lai Guan Ng
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Andres Hidalgo
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
36
|
Chen J, Zhou Y, Pang Y, Fu K, Luo Q, Sun L, Wu H, Lin Q, Su G, Chen X, Zhao L, Chen H. FAP-targeted radioligand therapy with 68Ga/ 177Lu-DOTA-2P(FAPI) 2 enhance immunogenicity and synergize with PD-L1 inhibitors for improved antitumor efficacy. J Immunother Cancer 2025; 13:e010212. [PMID: 39800373 PMCID: PMC11749305 DOI: 10.1136/jitc-2024-010212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Fibroblast activation protein (FAP)-targeted radioligand therapy, with immunomodulatory effects, has shown efficacy in both preclinical and clinical studies. We recently reported on a novel dimeric FAP-targeting radiopharmaceutical, 68Ga/177Lu-DOTA-2P(FAPI)2, which demonstrated increased tumor uptake and prolonged retention in various cancers. However, further exploration is required to understand the therapeutic efficacy and underlying mechanisms of combining 68Ga/177Lu-DOTA-2P(FAPI)2 radioligand therapy with PD-1/PD-L1 immunotherapy. METHODS Regarding the change in PD-L1 expression and DNA double-strand breaks induced by radiopharmaceuticals, CT26-FAP tumor cells were incubated with 68Ga and 177Lu labeled DOTA-2P(FAPI)2, respectively. Monotherapy with 68Ga-DOTA-2P(FAPI)2, 177Lu-DOTA-2P(FAPI)2, and PD-L1 immunotherapy as well as combination therapy (68Ga/177Lu-DOTA-2P(FAPI)2 and PD-L1 immunotherapy) were tested and evaluated to evaluate in vivo antitumor efficacy. Furthermore, immunohistochemical staining and single-cell RNA sequencing were used to analyze changes in the tumor microenvironment (TME) and elucidate the underlying mechanisms of action of this combination therapy. RESULTS Our findings indicated that FAP-targeting radiopharmaceuticals can induce DNA double-strand breaks and upregulate PD-L1 expression, with 177Lu-DOTA-2P(FAPI)2 proving to be more effective than 68Ga-DOTA-2P(FAPI)2. Both 68Ga-DOTA-2P(FAPI)2 and 177Lu-DOTA-2P(FAPI)2 radiopharmaceuticals significantly improved therapeutic outcomes when combined with anti-PD-L1 monoclonal antibody (αPD-L1 mAb). Notably, the combination of 177Lu-DOTA-2P(FAPI)2 with αPD-L1 mAb immunotherapy eliminated tumors in mouse models. Mice treated with this regimen not only exhibited exceptional responses to the initial immune checkpoint inhibitor therapy but also showed 100% tumor rejection on subsequent tumor cell re-inoculation. Further mechanistic studies have shown that 177Lu-DOTA-2P(FAPI)2 combined with αPD-L1 mAb can reprogram the TME, enhancing antitumor intercellular communication, which activates antitumor-related intercellular contacts such as FasL-Fas interactions between T cells and NK cells with tumor cells and increasing the proportion of infiltrating CD8+ T-cells while reducing regulatory T cells and inhibiting tumor progression. Our research also demonstrates that mature neutrophils play a role in enhancing the efficacy of the combined therapy, as shown in neutrophil-blocking experiments. CONCLUSIONS Our study robustly advocates for use of FAP-targeting radiopharmaceuticals, particularly 177Lu-DOTA-2P(FAPI)2, alongside immunotherapy in treating FAP-positive tumors. This combination therapy transforms the TME and enables a translatable approach to increasing the sensitivity to PD-1/PD-L1 immunotherapy, leading to improved complete remission rates and extended overall survival.
Collapse
Affiliation(s)
- Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yangfan Zhou
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Kaili Fu
- Department of Oncology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Qicong Luo
- Laboratory of Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Guoqiang Su
- Department of Colorectal Tumor Surgery, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
37
|
Li P, Lv X, Shen H, Fang J, Wei M, Liu X, Zhou F. Associated factors and prognostic implications of neutropenia in individuals with HIV/AIDS. Virol J 2025; 22:6. [PMID: 39789626 PMCID: PMC11721557 DOI: 10.1186/s12985-025-02624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Neutropenia frequently presents as a hematological manifestation among people living with HIV/AIDS (PLWHA). This study explores the factors associated with neutropenia in PLWHA and its prognostic significance. METHODS We conducted a retrospective case-control study of the clinical data from 780 cases of individuals living with HIV/AIDS, who were admitted to Zhongnan Hospital of Wuhan University over the period from January 2016 to September 2020. We categorized the patients into two different groups based on absolute neutrophil Count (ANC): neutropenia group (ANC < 2.0 × 109/L, 33.7%) and non-neutropenia group (ANC ≥ 2.0 × 109/L, 66.3%). We analyzed the co-infections, blood routine test, infection indicators, lymphocyte subpopulation, bone marrow cell cytology, bone marrow morphology in both groups. Additionally, we analyzed the prognosis of the patients. RESULTS The results of multifactorial logistic regression showed that increased C-reactive protein (CRP) (p<0.001, adjusted odds ratio [AOR] = 0.984, 95% CI:0.975-0.993), Monocyte (MONO) (p = 0.011, AOR = 0.091, 95% CI: 0.013-0.637), CD19+B lymphocytes (p = 0.008, AOR = 0.990, 95% CI: 0.983-0.997), Bone marrow granulocyte (p = 0.017, AOR = 0.936, 95% CI: 0.883-0.992) were protective factors for neutropenia in PLWHA. Kaplan-Meier survival curve analysis showed that Grade 2 neutropenia group (ANC<0.5 × 109/L) had a worse prognosis than Grade 1 neutropenia group (0.5 × 109/L ≤ ANC<2 × 109/L, p = 0.019) and non-neutropenia group (ANC ≥ 2.0 × 109/L, p = 0.008). Older age (p = 0.002), lower hemoglobin levels (p = 0.001), and a reduced proportion of bone marrow granulocytes (p = 0.002) were associated with a poorer prognosis in PLWHA. CONCLUSION HIV infection can lead to reduced neutrophil counts and damage to the immune system through multiple pathways. Severe neutropenia results in a worse prognosis, making timely diagnosis and treatment of neutropenia in this population essential.
Collapse
Affiliation(s)
- Pengpeng Li
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jiamin Fang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mingrui Wei
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoyan Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
38
|
Li J, Zhai X, Yu C. Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells. Front Immunol 2025; 15:1505755. [PMID: 39850888 PMCID: PMC11754049 DOI: 10.3389/fimmu.2024.1505755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells. Despite significant advances in both scientific and clinical research, SCI therapy still faces several challenges. These challenges primarily stem from our limited understanding of the spatial dynamics of immune cell distribution and the processes that regulate their interactions within the microenvironment following injury. Therefore, a comprehensive investigation into the spatial dynamics of immune cells following SCI is essential to uncover their mechanisms in neuroinflammation and repair, and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Jian Li
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China
| | - Xiaolei Zhai
- Department of Neurosurgery, Shuyang Hospital of Traditional Chinese Medicine, Affiliated Shuyang Hospital of Nanjing University of Chinese Medicine, Shuyang, China
| | - Chaochun Yu
- Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China
| |
Collapse
|
39
|
Solár P, Brázda V, Bareš M, Zamani A, EmamiAref P, Joukal A, Kubíčková L, Kročka E, Hašanová K, Joukal M. Inflammatory changes in the choroid plexus following subarachnoid hemorrhage: the role of innate immune receptors and inflammatory molecules. Front Cell Neurosci 2025; 18:1525415. [PMID: 39839349 PMCID: PMC11747387 DOI: 10.3389/fncel.2024.1525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The choroid plexus is located in the cerebral ventricles. It consists of a stromal core and a single layer of cuboidal epithelial cells that forms the blood-cerebrospinal barrier. The main function of the choroid plexus is to produce cerebrospinal fluid. Subarachnoid hemorrhage due to aneurysm rupture is a devastating type of hemorrhagic stroke. Following subarachnoid hemorrhage, blood and the blood degradation products that disperse into the cerebrospinal fluid come in direct contact with choroid plexus epithelial cells. The aim of the current study was to elucidate the pathophysiological cascades responsible for the inflammatory reaction that is seen in the choroid plexus following subarachnoid hemorrhage. Methods Subarachnoid hemorrhage was induced in rats by injecting non-heparinized autologous blood to the cisterna magna. Increased intracranial pressure following subarachnoid hemorrhage was modeled by using artificial cerebrospinal fluid instead of blood. Subarachnoid hemorrhage and artificial cerebrospinal fluid animals were left to survive for 1, 3, 7 and 14 days. Immunohistochemical staining of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β, CCR2 and CX3CR1 was performed on the cryostat sections of choroid plexus tissue. The level of TLR4, TLR9, FPR2, CCL2, TNFα, IL-1β was detected by measuring immunofluorescence intensity in randomly selected epithelial cells. The number of CCR2 and CX3CR1 positive cells per choroid plexus area was manually counted. Immunohistochemical changes were confirmed by Western blot analyses. Results Immunohistochemical methods and Western blot showed increased levels of TLR9 and a slight increase in TLR4 and FRP2 following both subarachnoid hemorrhage as well as the application of artificial cerebrospinal fluid over time, although the individual periods were different. The levels of TNFα and IL-1β increased, while CCL2 level decreased slightly. Accumulation of macrophages positive for CCR2 and CX3CR1 was found in all periods after subarachnoid hemorrhage as well as after the application of artificial cerebrospinal fluid. Discussion Our results suggest that the inflammation develops in the choroid plexus and blood-cerebrospinal fluid barrier in response to blood components as well as acutely increased intracranial pressure following subarachnoid hemorrhage. These pro-inflammatory changes include accumulation in the choroid plexus of pro-inflammatory cytokines, innate immune receptors, and monocyte-derived macrophages.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Neurosurgery, St. Anne’s University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Václav Brázda
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Martin Bareš
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alemeh Zamani
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Parisa EmamiAref
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Andrea Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Kubíčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Erik Kročka
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Klaudia Hašanová
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
40
|
Saulle I, Limanaqi F, Garziano M, Murno ML, Artusa V, Strizzi S, Giovarelli M, Schulte C, Aiello J, Clerici M, Vanetti C, Biasin M. Impact of endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) on neutrophil cellular functions. Front Cell Dev Biol 2025; 12:1506216. [PMID: 39839670 PMCID: PMC11747162 DOI: 10.3389/fcell.2024.1506216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Endoplasmic reticulum aminopeptidases 1 (ERAP1) and 2 (ERAP2) modulate a plethora of physiological processes for the maintenance of homeostasis in different cellular subsets at both intra and extracellular level. Materials and methods In this frame, the extracellular supplementation of recombinant human (rh) ERAP1 and ERAP2 (300 ng/ml) was used to mimic the effect of stressor-induced secretion of ERAPs on neutrophils isolated from 5 healthy subjects. In these cells following 3 h or 24 h rhERAP stimulation by Western Blot, RT-qPCR, Elisa, Confocal microscopy, transwell migration assay, Oxygraphy and Flow Cytometry we assessed: i) rhERAP internalization; ii) activation; iii) migration; iv) oxygen consumption rate; v) reactive oxygen species (ROS) accumulation; granule release; vi) phagocytosis; and vii) autophagy. Results We observed that following stimulation rhERAPs: i) were internalized by neutrophils; ii) triggered their activation as witnessed by increased percentage of MAC-1+CD66b+ expressing neutrophils, cytokine expression/release (IL-1β, IL-8, CCL2, TNFα, IFNγ, MIP-1β) and granule enzyme secretion (myeloperoxidase, Elastase); iii) increased neutrophil migration capacity; iv) increased autophagy and phagocytosis activity; v) reduced ROS accumulation and did not influence oxygen consumption rate. Conclusion Our study provides novel insights into the biological role of ERAPs, and indicates that extracellular ERAPs, contribute to shaping neutrophil homeostasis by promoting survival and tolerance in response to stress-related inflammation. This information could contribute to a better understanding of the biological bases governing immune responses, and to designing ERAP-based therapeutic protocols to control neutrophil-associated human diseases.
Collapse
Affiliation(s)
- Irma Saulle
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Fiona Limanaqi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Micaela Garziano
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Maria Luisa Murno
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Valentina Artusa
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
| | - Sergio Strizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Matteo Giovarelli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Carsten Schulte
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Jacopo Aiello
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mario Clerici
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milano, Italy
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Claudia Vanetti
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| | - Mara Biasin
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
41
|
Rynne J, Mosavie M, Masse MH, Ménard J, Battista MC, Maslove DM, Del Sorbo L, St-Arnaud C, DAragon F, Fox-Robichaud A, Charbonney E, Adhikari NKJ, Lamontagne F, Shankar-Hari M. Sepsis subtypes and differential treatment response to vitamin C: biological sub-study of the LOVIT trial. Intensive Care Med 2025; 51:82-93. [PMID: 39774855 DOI: 10.1007/s00134-024-07733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE We hypothesised that the biological heterogeneity of sepsis may highlight sepsis subtypes with differences in response to intravenous vitamin C treatment in the Lessening Organ Dysfunction with VITamin C (LOVIT) trial. Our aims were to identify sepsis subtypes and to test whether sepsis subtypes have differences in treatment effect to vitamin C and describe putative biological effects of vitamin C treatment. METHODS We measured biomarkers of inflammation, at baseline and at 7 days post-randomisation, in 457/863 (53.0%) of participants with plasma samples in the LOVIT trial. We used agglomerative hierarchical clustering on log10-transformed baseline data of 26 biomarkers to identify sepsis subtypes. We analysed differences in vitamin C treatment effect with regression models incorporating robust standard errors to report odds ratio and 95% confidence intervals (OR(95% CI)). All analyses were completed blinded to treatment allocation. RESULTS Our cohort included 233/429 (54.3%) allocated to vitamin C and 224/434 (51.6%) allocated to placebo. A three-subtype model best explained the variance in our data. Subtype-2 had the highest, and subtype-3 had the lowest levels of inflammatory response. In paired longitudinal samples, vitamin C did not have discernible anti-inflammatory effects, with anti-inflammatory effects related to time since randomisation and concomitant hydrocortisone treatment. The treatment effect estimates (OR (95% CI)) for subtype-1, subtype-2 and subtype-3 were 1.04 (0.63-1.73), 1.33 (0.53-3.36) and 1.95 (0.85-4.49), respectively (test of heterogeneity p = 0.002). CONCLUSION We report three sepsis subtypes based on inflammatory response profile. No subtype benefitted from vitamin C treatment in the LOVIT trial, with heterogeneity of treatment effect in the magnitude of harm. TRIAL REGISTRATION Funded by the Lotte and John Hecht Memorial Foundation; LOVIT ClinicalTrials.gov number, NCT03680274.
Collapse
Affiliation(s)
- J Rynne
- Centre for Inflammation Research, Institute For Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland, UK
| | - M Mosavie
- Centre for Inflammation Research, Institute For Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland, UK
| | - Marie-Hélène Masse
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Julie Ménard
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, Canada
| | - Marie-Claude Battista
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, Canada
- Kingston Health Sciences Center, Kingston, Canada
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, Toronto General Hospital, Toronto, Canada
| | - Charles St-Arnaud
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Frederick DAragon
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, Canada
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | | | - Emmanuel Charbonney
- Centre Hospitalier de L'Université de Montréal, University of Montreal, Montreal, Canada
| | - Neill K J Adhikari
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Canada.
- Interdepartmental Division of Critical Care Medicine and Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada.
| | - François Lamontagne
- Centre de Recherche du Centre Hospitalier, Universitaire de Sherbrooke, Sherbrooke, Canada.
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada.
| | - M Shankar-Hari
- Centre for Inflammation Research, Institute For Regeneration and Repair, University of Edinburgh, Edinburgh, Scotland, UK.
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
42
|
Du Y, Shuai R, Luo S, Jin Y, Xu F, Zhang J, Liu D, Feng L. Exploring the molecular mechanism of estrogen therapy effectiveness after TCRA in IUA patients at single-cell level. Biol Direct 2024; 19:142. [PMID: 39722036 DOI: 10.1186/s13062-024-00583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a common cause of clinically refractory infertility, and there exists significant heterogeneity in the treatment outcomes among IUA patients with the similar severity after transcervical resection of adhesion(TCRA). The underlying mechanism of different treatment outcomes occur remains elusive, and the precise contribution of various cell subtypes in this process remains uncertain. RESULTS Here, we performed single-cell transcriptome sequencing on 10 human endometrial samples to establish a single-cell atlas differences between patients who responded to estrogen therapy and those who did not. The results showed increased infiltration of immune cells such as monocyte macrophages, T cells, and natural killer (NK) cells in patients who did not respond to estrogen therapy. Our findings indicate that distinct fibroblast subsets are implicated in the modulation of the Wnt, Hippo, and Hedgehog signaling pathways, as evidenced by functional enrichment analyses. This may have implications for the therapeutic efficacy in patients with IUA. Furthermore, we delineated the markers and transcriptional status of different macrophage subsets and identified two cell clusters, CXCL10high and CCL4L2high macrophage subsets, which are intimately associated with inflammation and fibrosis. The state of fibrosis and inflammatory response in human endometrial tissues with disparate treatment outcomes is revealed, and providing evidence to clarify the underlying determinants of sensitivity to estrogen therapy. CONCLUSIONS We described the transcriptional status of different cell subtypes in the two groups of patients, providing new ideas for exploring the molecular mechanism of the difference in the effectiveness of estrogen therapy in patients, and providing theoretical basis for providing precise and individualized treatment plans for IUA patients.
Collapse
Affiliation(s)
- Yue Du
- Department of Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ruzhen Shuai
- Department of Obstetrics and Gynecology, Gansu Provincial Hospital, Lanzhou, Gansu, 730000, China
| | - Sang Luo
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yiran Jin
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Fengjuan Xu
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jingyi Zhang
- The First School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Dan Liu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Key Laboratory of Ministry of Education for Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Limin Feng
- Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
43
|
Zhao J, Wu D, Liu J, Zhang Y, Li C, Zhao W, Cao P, Wu S, Li M, Li W, Liu Y, Huang Y, Cao Y, Sun Y, Yang E, Ji N, Yang J, Chen J. Disease-specific suppressive granulocytes participate in glioma progression. Cell Rep 2024; 43:115014. [PMID: 39630582 DOI: 10.1016/j.celrep.2024.115014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma represents one of the most aggressive cancers, characterized by severely limited therapeutic options. Despite extensive investigations into this brain malignancy, cellular and molecular components governing its immunosuppressive microenvironment remain incompletely understood. Here, we identify a distinct neutrophil subpopulation, termed disease-specific suppressive granulocytes (DSSGs), present in human glioblastoma and lower-grade gliomas. DSSGs exhibit the concurrent expression of multiple immunosuppressive and immunomodulatory signals, and their abundance strongly correlates with glioma grades and poor clinical outcomes. Genetic disruption of neutrophil recruitment in immunocompetent mouse models of gliomas, achieved through Cxcl1 knockout in glioma cells or host-specific Cxcr2 deletion or diphtheria toxin A-mediated neutrophil depletion, can significantly enhance antitumor immunity and prolong survival. Further, we reveal that the skull bone marrow and meninges can be the primary sources of neutrophils and DSSGs in human and mouse glioma tumors. These findings demonstrate a critical mechanism underlying the establishment of the immunosuppressive microenvironment in gliomas.
Collapse
Affiliation(s)
- Jiarui Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Di Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Jiaqi Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunzhao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | | | - Penghui Cao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Shixuan Wu
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Mengyuan Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Wenlong Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingying Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Cao
- Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiwen Sun
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Jing Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Peking University Third Hospital Cancer Center, Beijing 100191, China.
| | - Jian Chen
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China; Chinese Institute for Brain Research, Beijing, Beijing 102206, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
44
|
Vandendriessche S, Mattos MS, Bialek EL, Schuermans S, Proost P, Marques PE. Complement activation drives the phagocytosis of necrotic cell debris and resolution of liver injury. Front Immunol 2024; 15:1512470. [PMID: 39759517 PMCID: PMC11696981 DOI: 10.3389/fimmu.2024.1512470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Cells die by necrosis due to excessive chemical or thermal stress, leading to plasma membrane rupture, release of intracellular components and severe inflammation. The clearance of necrotic cell debris is crucial for tissue recovery and injury resolution, however, the underlying mechanisms are still poorly understood, especially in vivo. This study examined the role of complement proteins in promoting clearance of necrotic cell debris by leukocytes and their influence on liver regeneration. We found that independently of the type of necrotic liver injury, either acetaminophen (APAP) overdose or thermal injury, complement proteins C1q and (i)C3b were deposited specifically on necrotic lesions via the activation of the classical pathway. Importantly, C3 deficiency led to a significant accumulation of necrotic debris and impairment of liver recovery in mice, which was attributed to decreased phagocytosis of debris by recruited neutrophils in vivo. Monocytes and macrophages also took part in debris clearance, although the necessity of C3 and CD11b was dependent on the specific type of necrotic liver injury. Using human neutrophils, we showed that absence of C3 or C1q caused a reduction in the volume of necrotic debris that is phagocytosed, indicating that complement promotes effective debris uptake in mice and humans. Moreover, internalization of opsonized debris induced the expression of pro-resolving genes in a C3-dependent manner, supporting the notion that debris clearance favors the resolution of inflammation. In summary, complement activation at injury sites is a pivotal event for necrotic debris clearance by phagocytes and determinant for efficient recovery from tissue injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
45
|
Adekoya TO, Smith N, Kothari P, Dacanay MA, Li Y, Richardson RM. CXCR1 Expression in MDA-PCa-2b Cell Upregulates ITM2A to Inhibit Tumor Growth. Cancers (Basel) 2024; 16:4138. [PMID: 39766038 PMCID: PMC11674668 DOI: 10.3390/cancers16244138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chemokines, along with their receptors, exert critical roles in tumor development and progression. In prostate cancer (PCa), interleukin-8 (IL-8/CXCL8) was shown to enhance angiogenesis, proliferation, and metastasis. CXCL8 activates two receptors, CXCR1 and CXCR2. While CXCR2 expression was shown to promote PCa growth and metastasis, the role of CXCR1 remains unclear. METHODS In this study, we stably expressed CXCR1 and, as control, CXCR2 in the androgen-dependent PCa cell line MDA-PCa-2b to evaluate the effect of CXCR1 in tumor development. RESULTS MDA-PCa-2b-CXCR1 cells showed decreased cell migration, protein kinase-B (AKT) activation, prostate-specific antigen (PSA) expression, cell proliferation, and tumor development in nude mice, relative to MDA-PCa-2b-Vec and MDA-PCa-2b-CXCR2 cells. MDA-PCa-2b-CXCR1 cells also displayed a significant transition to mesenchymal phenotypes as characterized by decreased E-cadherin expression and a corresponding increased level of N-cadherin and vimentin expression. RNA-seq and Western blot analysis revealed a significant increase in the tumor suppressor integral membrane protein 2A (ITM2A) expression in MDA-PCa-2b-CXCR1 compared to control cells. In prostate adenocarcinoma tissue, ITM2A expression was also shown to be downregulated relative to a normal prostate. Interestingly, the overexpression of ITM2A in MDA-PCa-2b cells (MDA-PCa-2b-ITM2A-GFP) inhibited tumor growth similar to that of MDA-PCa-2b-CXCR1. CONCLUSIONS Taken together, the data suggest that CXCR1 expression in MDA-PCa-2b cells may upregulate ITM2A to abrogate tumor development.
Collapse
Affiliation(s)
- Timothy O. Adekoya
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Nikia Smith
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Parag Kothari
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Monique A. Dacanay
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Ricardo M. Richardson
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
46
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
47
|
Liu W, Yang H, Xu Q, Lee J, Sun J, Xue S, Yang X, Sun X, Che C. Role of MYO1F in neutrophil and macrophage recruitment and pro-inflammatory cytokine production in Aspergillus fumigatus keratitis. Int Immunopharmacol 2024; 142:113094. [PMID: 39276460 DOI: 10.1016/j.intimp.2024.113094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Myosin 1f (Myo1f), an unconventional long-tailed class Ⅰ myosin, plays significant roles in immune cell motility and innate antifungal immunity. This study was aimed to assess the expression and role of Myo1f in Aspergillus fumigatus (AF) keratitis. METHODS Myo1f expression in the corneas of mice afflicted with AF keratitis and in AF keratitis-related cells was assessed using protein mass spectrometry, quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunofluorescence. Myo1f expression following pre-treatment with inhibitors of dendritic cell-associated C-type lectin-1 (Dectin-1), Toll-like receptor 4 (TLR-4), and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was also examined. In AF keratitis mouse models, Myo1f small interfering RNA (siRNA) was administered via subconjunctival injection to observe disease progression, inflammatory cell recruitment, and protein production using slit lamp examination, immunofluorescence, hematoxylin-eosin (HE) staining, and western blotting. RESULTS Myo1f expression was upregulated in both AF keratitis mouse models and AF keratitis-related cells. Dectin-1, TLR-4, and LOX-1 were found to be essential for the production of Myo1f in response to the infection with AF. In mice with AF keratitis, knockdown of Myo1f reduced disease severity, decreased the recruitment of neutrophils alongside macrophages to inflammatory areas, suppressed the myeloid differentiation factor 88 (MyD88)/ nuclear factor-kappaB (NF-κB) signaling pathway, and decreased the production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, along with IL-6. Additionally, Myo1f was associated with apoptosis and pyroptosis in mice with AF keratitis. CONCLUSIONS These findings demonstrated that Myo1f contributed to the recruitment of neutrophils and macrophages, the production of pro-inflammatory cytokines, and was associated with apoptosis and pyroptosis during AF keratitis.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hua Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jieun Lee
- Department of Ophthalmology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jintao Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Xue
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Sun
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
48
|
Lamb ER, Glomski IJ, Harper TA, Solga MD, Criss AK. High-dimensional spectral flow cytometry of activation and phagocytosis by peripheral human polymorphonuclear leukocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626241. [PMID: 39677791 PMCID: PMC11642744 DOI: 10.1101/2024.12.01.626241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Polymorphonuclear lymphocytes (PMNs) are terminally differentiated phagocytes with pivotal roles in infection, inflammation, tissue injury, and resolution. PMNs can display a breadth of responses to diverse endogenous and exogenous stimuli, making understanding of these innate immune responders vital yet challenging to achieve. Here, we report a 22-color spectral flow cytometry panel to profile primary human PMNs on population and single cell levels for surface marker expression of activation, degranulation, phagocytosis, migration, chemotaxis, and interaction with fluorescently labeled cargo. We demonstrate the surface protein response of PMNs to phorbol ester stimulation compared to untreated controls in an adherent PMN model with additional analysis of intra- and inter-subject variability. PMNs challenged with the Gram-negative bacterial pathogen Neisseria gonorrhoeae revealed infectious dose-dependent changes in surface marker expression in bulk, population-level analysis. Imaging flow cytometry complemented spectral cytometry, demonstrating that fluorescence signal from labeled bacteria corresponded with bacterial burden on a per-cell basis. Spectral flow cytometry subsequently identified surface markers which varied with direct PMN-bacterium association as well as those which varied in the presence of bacteria but without phagocytosis. This spectral panel protocol highlights best practices for efficient customization and is compatible with downstream approaches such as spectral cell sorting and single-cell RNA-sequencing for applicability to diverse research questions in the field of PMN biology.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ian J. Glomski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Taylor A. Harper
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
49
|
Das D, Thacker H, Priya K, Jain M, Singh S, Rai G. Complement component 5a receptor 1 and leukotriene B4 receptor 1 regulate neutrophil extracellular trap (NET) formation through Rap1a/B-Raf/ERK signaling pathway and their deficiency in term low birth weight newborns leads to deficient NETosis. Int Immunopharmacol 2024; 142:113165. [PMID: 39303536 DOI: 10.1016/j.intimp.2024.113165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) being one of the predominant activities of neutrophils has become its key defense mechanism owing to its extensive role in inflammation and infection. However, the mechanisms regulating NET formation or NETosis still remains to be better understood. Our earlier whole genome transcriptomic data revealed two G-protein couple receptors (GPCRs) - complement component 5a receptor 1 (C5aR1) and leukotriene B4 receptor 1 (LTB4R1) were downregulated in term low birth weight (tLBW) newborns with deficient NET formation abilities. Neutrophils employ C5aR1 and LTB4R1 for mediating their immune responses, inflammation and antimicrobial activity. Hence, this study was aimed to explore the role of two GPCRs, C5aR1 and LTB4R1 including their downstream signaling molecules in NETs induction and regulation. METHODS The validation of the transcriptomic data for C5aR1 and LTB4R1 was done using quantitative real time PCR. Pharmacological inhibition of C5aR1 and LTB4R1 using W-54011 and LY223982 on neutrophils of adults and newborns' was done to study their impact on NETosis. Extracellular DNA release, Reactive oxygen species (ROS) generation, expression of NET proteins, and signaling molecules downstream to C5aR1 and LTB4R1 were quantified using plate reader based assay, immunofluorescence, and western blotting. Myeloperoxidase (MPO)-DNA quantified by flow cytometry. Knockdown studies using siRNA against C5aR1 and LTB4R1 were done in HL-60 cells derived surrogate neutrophils and expression of downstream molecules of the two GPCRs, C5aR1 and LTB4R1 signaling axis along with NET proteins was quantified by western blotting. RESULTS The expression of C5aR1 and LTB4R1, extracellular DNA, ROS and NET associated proteins (NE, CitH3, PAD4 and MPO) was notably increased upon NET induction in healthy adults and normal birth weight (NBW) newborns' neutrophils. Pharmacological inhibition of these two GPCRs led to substantial reduction in NETosis, extracellular DNA, ROS generation, and expression of NET associated proteins like CitH3, NE, PAD4, MPO along with downstream signaling molecules Rap1a, B-Raf and pERK. Our observations suggest a precise role of C5aR1 and LTB4R1 on induction of NETs via Rap1a/B-Raf/ERK signaling axis. CONCLUSION The C5aR1 and LTB4R1 signaling via Rap1a/B-Raf/ERK axis acts as a signal-relay mechanism to regulate NET formation in neutrophils. Further, C5aR1 and LTB4R1 signaling cascade along with NET-associated proteins are remarkably downregulated in tLBW newborns' neutrophils leading to impaired NETosis in them. Therefore, C5aR1 and LTB4R1 and their signaling molecules could provide an effective therapeutic target for compromised NETosis like tLBW newborns.
Collapse
Affiliation(s)
- Doli Das
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Hiral Thacker
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Madhu Jain
- Department of Obstetrics & Gynecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Shambhavi Singh
- Dr. D. Y. Patil Medical College, Navi Mumbai, Maharashtra 400706, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
50
|
Cambier S, Beretta F, Nooyens A, Metzemaekers M, Pörtner N, Kaes J, de Carvalho AC, Cortesi EE, Beeckmans H, Hooft C, Gouwy M, Struyf S, Marques RE, Ceulemans LJ, Wauters J, Vanaudenaerde BM, Vos R, Proost P. Heterogeneous neutrophils in lung transplantation and proteolytic CXCL8 activation in COVID-19, influenza and lung transplant patient lungs. Cell Mol Life Sci 2024; 81:475. [PMID: 39625496 PMCID: PMC11615237 DOI: 10.1007/s00018-024-05500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/20/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024]
Abstract
Elevated neutrophil counts in broncho-alveolar lavage (BAL) fluids of lung transplant (LTx) patients with chronic lung allograft dysfunction (CLAD) are associated with disease pathology. However, phenotypical characteristics of these cells remained largely unknown. Moreover, despite enhanced levels of the most potent human neutrophil-attracting chemokine CXCL8 in BAL fluid, no discrimination had been made between natural NH2-terminally truncated CXCL8 proteoforms, which exhibit up to 30-fold differences in biological activity. Therefore, we aimed to characterize the neutrophil maturation and activation state, as well as proteolytic activation of CXCL8, in BAL fluids and peripheral blood of LTx patients with CLAD or infection and stable LTx recipients. Flow cytometry and microscopy revealed a high diversity in neutrophil maturity in blood and BAL fluid, ranging from immature band to hypersegmented aged cells. In contrast, the activation phenotype of neutrophils in BAL fluid was remarkably homogeneous. The highly potentiated NH2-terminally truncated proteoforms CXCL8(6-77), CXCL8(8-77) and CXCL8(9-77), but also the partially inactivated CXCL8(10-77), were detected in BAL fluids of CLAD and infected LTx patients, as well as in COVID-19 and influenza patient cohorts by tandem mass spectrometry. Moreover, the most potent proteoform CXCL8(9-77) specifically correlated with the neutrophil counts in the LTx BAL fluids. Finally, rapid proteolysis of CXCL8 in BAL fluids could be inhibited by a combination of serine and metalloprotease inhibitors. In conclusion, proteolytic activation of CXCL8 promotes neutrophilic inflammation in LTx patients. Therefore, application of protease inhibitors may hold pharmacological promise for reducing excessive neutrophil-mediated inflammation and collateral tissue damage in the lungs.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Fabio Beretta
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Amber Nooyens
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Noëmie Pörtner
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Janne Kaes
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ana Carolina de Carvalho
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Emanuela E Cortesi
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Hanne Beeckmans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Charlotte Hooft
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium
| | - Rafael E Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Laurens J Ceulemans
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Clinical Infectious and Inflammatory Disorders, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega - Herestraat 49, box 1042, Leuven, 3000, Belgium.
| |
Collapse
|