1
|
Katona M, Jeles K, Takács P, Csoma E. DNA and seroprevalence study of MW and STL polyomaviruses. J Med Virol 2024; 96:e29860. [PMID: 39145597 DOI: 10.1002/jmv.29860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
The clinical importance and the pathogenesis of the MW and STL polyomaviruses (PyVs) remain unclear. Our aim was to study the seroprevalence of MWPyV and STLPyV, and to examine the prevalence of viral DNA in respiratory samples and secondary lymphoid tissues. In total, 618 serum samples (0.8-90 years) were analyzed for seroprevalence. For the DNA prevalence study, 146 patients (2.5-37.5 years) were sampled for adenoids (n = 100), tonsils (n = 100), throat swabs (n = 146), and middle ear discharge (n = 15) in study Group 1. In Group 2, we analyzed 1130 nasopharyngeal samples from patients (0.8-92 years) tested for SARS-CoV-2 infection. The adult seropositivity was 54% for MWPyV, and 81.2% for STLPyV. Both seroprevalence rates increased with age; however, the majority of STLPyV primary infections appeared to occur in children. MWPyV was detected in 2.7%-4.9% of respiratory samples, and in a middle ear discharge. STLPyV DNA prevalence was 1.4%-3.4% in swab samples, and it was detected in an adenoid and in a middle ear discharge. The prevalence of both viruses was significantly higher in the children. Noncoding control regions of both viruses and the complete genomes of STLPyV were sequenced. MWPyV and STLPyV are widespread viruses, and respiratory transmission may be possible.
Collapse
Affiliation(s)
- Melinda Katona
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Jeles
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Takács
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Zhou X, Zhu C, Li H. BK polyomavirus: latency, reactivation, diseases and tumorigenesis. Front Cell Infect Microbiol 2023; 13:1263983. [PMID: 37771695 PMCID: PMC10525381 DOI: 10.3389/fcimb.2023.1263983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The identification of the first human polyomavirus BK (BKV) has been over half century, The previous epidemiological and phylogenetic studies suggest that BKV prevailed and co-evolved with humans, leading to high seroprevalence all over the world. In general, BKV stays latent and symptomless reactivation in healthy individuals. BKV has been mainly interlinked with BKV-associated nephropathy (BKVAN) in kidney-transplant recipients and hemorrhagic cystitis (HC) in hematopoietic stem cell transplant recipients (HSCTRs). However, the mechanisms underlying BKV latency and reactivation are not fully understood and lack of extensive debate. As Merkel cell polyomavirus (MCV) was identified as a pathogenic agent of malignant cutaneous cancer Merkel cell carcinoma (MCC) since 2008, linking BKV to tumorigenesis of urologic tumors raised concerns in the scientific community. In this review, we mainly focus on advances of mechanisms of BKV latency and reactivation, and BKV-associated diseases or tumorigenesis with systematical review of formerly published papers following the PRISMA guidelines. The potential tumorigenesis of BKV in two major types of cancers, head and neck cancer and urologic cancer, was systematically updated and discussed in depth. Besides, BKV may also play an infectious role contributing to HIV-associated salivary gland disease (HIVSGD) presentation. As more evidence indicates the key role of BKV in potential tumorigenesis, it is important to pay more attention on its etiology and pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Engineering Research Center for Translational Cancer Technology, Nanchang, China
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| | - Chunlong Zhu
- Clinical Laboratory, Third Hospital of Nanchang, Nanchang, China
| | - Hui Li
- Jiangxi Provincial Health Commission Key Laboratory of Pathogenic Diagnosis and Genomics of Emerging Infectious Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, China
| |
Collapse
|
3
|
Moens U, Prezioso C, Pietropaolo V. Functional Domains of the Early Proteins and Experimental and Epidemiological Studies Suggest a Role for the Novel Human Polyomaviruses in Cancer. Front Microbiol 2022; 13:834368. [PMID: 35250950 PMCID: PMC8894888 DOI: 10.3389/fmicb.2022.834368] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
As their name indicates, polyomaviruses (PyVs) can induce tumors. Mouse PyV, hamster PyV and raccoon PyV have been shown to cause tumors in their natural host. During the last 30 years, 15 PyVs have been isolated from humans. From these, Merkel cell PyV is classified as a Group 2A carcinogenic pathogen (probably carcinogenic to humans), whereas BKPyV and JCPyV are class 2B (possibly carcinogenic to humans) by the International Agency for Research on Cancer. Although the other PyVs recently detected in humans (referred to here as novel HPyV; nHPyV) share many common features with PyVs, including the viral oncoproteins large tumor antigen and small tumor antigen, as their role in cancer is questioned. This review discusses whether the nHPyVs may play a role in cancer based on predicted and experimentally proven functions of their early proteins in oncogenic processes. The functional domains that mediate the oncogenic properties of early proteins of known PyVs, that can cause cancer in their natural host or animal models, have been well characterized and we examined whether these functional domains are conserved in the early proteins of the nHPyVs and presented experimental evidence that these conserved domains are functional. Furthermore, we reviewed the literature describing the detection of nHPyV in human tumors.
Collapse
Affiliation(s)
- Ugo Moens
- Faculty of Health Sciences, Department of Medical Biology, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ugo Moens,
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Roma, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
- Valeria Pietropaolo,
| |
Collapse
|
4
|
Genetic Diversity of the Noncoding Control Region of the Novel Human Polyomaviruses. Viruses 2020; 12:v12121406. [PMID: 33297530 PMCID: PMC7762344 DOI: 10.3390/v12121406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
The genomes of polyomaviruses are characterized by their tripartite organization with an early region, a late region and a noncoding control region (NCCR). The early region encodes proteins involved in replication and transcription of the viral genome, while expression of the late region generates the capsid proteins. Transcription regulatory sequences for expression of the early and late genes, as well as the origin of replication are encompassed in the NCCR. Cell tropism of polyomaviruses not only depends on the appropriate receptors on the host cell, but cell-specific expression of the viral genes is also governed by the NCCR. Thus far, 15 polyomaviruses have been isolated from humans, though it remains to be established whether all of them are genuine human polyomaviruses (HPyVs). The sequences of the NCCR of these HPyVs show high genetic variability and have been best studied in the human polyomaviruses BK and JC. Rearranged NCCRs in BKPyV and JCPyV, the first HPyVs to be discovered approximately 30 years ago, have been associated with the pathogenic properties of these viruses in nephropathy and progressive multifocal leukoencephalopathy, respectively. Since 2007, thirteen novel PyVs have been isolated from humans: KIPyV, WUPyV, MCPyV, HPyV6, HPyV7, TSPyV, HPyV9, HPyV10, STLPyV, HPyV12, NJPyV, LIPyV and QPyV. This review describes all NCCR variants of the new HPyVs that have been reported in the literature and discusses the possible consequences of NCCR diversity in terms of promoter strength, putative transcription factor binding sites and possible association with diseases.
Collapse
|
5
|
Zhou X, Nakashima K, Ito M, Zhang X, Sakai S, Feng C, Sun H, Chen H, Li TC, Suzuki T. Prevalence and viral loads of polyomaviruses BKPyV, JCPyV, MCPyV, TSPyV and NJPyV and hepatitis viruses HBV, HCV and HEV in HIV-infected patients in China. Sci Rep 2020; 10:17066. [PMID: 33051567 PMCID: PMC7555828 DOI: 10.1038/s41598-020-74244-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
Human polyomaviruses (PyVs) and hepatitis viruses are often more prevalent or persistent in human immunodeficiency virus (HIV)-infected persons and the associated diseases are more abundant than in immunocompetent individuals. Here, we evaluated seroreactivities and viral loads of human PyVs and hepatitis viruses in HIV/AIDS patients and the general population in China in the combination antiretroviral therapy (cART) era. A total of 810 HIV-1-infected patients and age- and sex-matched HIV-negative individuals were enrolled to assess seroprevalence of PyVs BKPyV, JCPyV, MCPyV, TSPyV, and NJPyV and hepatitis viruses HBV, HCV, and HEV. 583 (72%) patients received cART, and among them, 31.2% had undetectable HIV RNA. While no significant difference was observed in prevalence of anti-PyV antibodies between HIV-positive and -negative groups, serum DNA positivity and DNA copy level of MCPyV were higher in the HIV-positive group. Among HIV-infected patients, BKPyV DNA positivity was significantly higher in patients with CD4 + cell counts < 200 cells/mm3 compared to those with CD4 + cell counts > 500 cells/mm3, suggesting possible reactivation caused by HIV-induced immune suppression. Higher HBV and HCV seropositivities but not HEV seropositivity were also observed in the HIV-positive group. Further correlation analyses demonstrated that HBV and HEV are potential risk factors for increased prevalence of PyV infection.
Collapse
Affiliation(s)
- Xianfeng Zhou
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, China.,Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Kenji Nakashima
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Xiaoling Zhang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, China
| | - Satoshi Sakai
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.,Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Changhua Feng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, China
| | - Huabao Sun
- Department of Clinical Laboratory, Affiliated Infectious Diseases Hospital of Nanchang University, Nanchang, 330002, China
| | - Haiying Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, China
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, 208-0011, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan.
| |
Collapse
|
6
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
7
|
Abstract
Virus attachment to cell surface receptors is critical for productive infection. In this study, we have used a structure-based approach to investigate the cell surface recognition event for New Jersey polyomavirus (NJPyV) and human polyomavirus 12 (HPyV12). These viruses belong to the polyomavirus family, whose members target different tissues and hosts, including mammals, birds, fish, and invertebrates. Polyomaviruses are nonenveloped viruses, and the receptor-binding site is located in their capsid protein VP1. The NJPyV capsid features a novel sialic acid-binding site that is shifted in comparison to other structurally characterized polyomaviruses but shared with a closely related simian virus. In contrast, HPyV12 VP1 engages terminal sialic acids in a manner similar to the human Trichodysplasia spinulosa-associated polyomavirus. Our structure-based phylogenetic analysis highlights that even distantly related avian polyomaviruses possess the same exposed sialic acid-binding site. These findings complement phylogenetic models of host-virus codivergence and may also reflect past host-switching events. Asymptomatic infections with polyomaviruses in humans are common, but these small viruses can cause severe diseases in immunocompromised hosts. New Jersey polyomavirus (NJPyV) was identified via a muscle biopsy in an organ transplant recipient with systemic vasculitis, myositis, and retinal blindness, and human polyomavirus 12 (HPyV12) was detected in human liver tissue. The evolutionary origins and potential diseases are not well understood for either virus. In order to define their receptor engagement strategies, we first used nuclear magnetic resonance (NMR) spectroscopy to establish that the major capsid proteins (VP1) of both viruses bind to sialic acid in solution. We then solved crystal structures of NJPyV and HPyV12 VP1 alone and in complex with sialylated glycans. NJPyV employs a novel binding site for a α2,3-linked sialic acid, whereas HPyV12 engages terminal α2,3- or α2,6-linked sialic acids in an exposed site similar to that found in Trichodysplasia spinulosa-associated polyomavirus (TSPyV). Gangliosides or glycoproteins, featuring in mammals usually terminal sialic acids, are therefore receptor candidates for both viruses. Structural analyses show that the sialic acid-binding site of NJPyV is conserved in chimpanzee polyomavirus (ChPyV) and that the sialic acid-binding site of HPyV12 is widely used across the entire polyomavirus family, including mammalian and avian polyomaviruses. A comparison with other polyomavirus-receptor complex structures shows that their capsids have evolved to generate several physically distinct virus-specific receptor-binding sites that can all specifically engage sialylated glycans through a limited number of contacts. Small changes in each site may have enabled host-switching events during the evolution of polyomaviruses.
Collapse
|
8
|
Mazzoni E, Pellegrinelli E, Mazziotta C, Lanzillotti C, Rotondo JC, Bononi I, Iaquinta MR, Manfrini M, Vesce F, Tognon M, Martini F. Mother-to-child transmission of oncogenic polyomaviruses BKPyV, JCPyV and SV40. J Infect 2020; 80:563-570. [PMID: 32097686 DOI: 10.1016/j.jinf.2020.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Polyomavirus (PyV) infections have been associated with different diseases. BK (BKPyV), JC (JCPyV) and simian virus 40 (SV40) are the three main PyVs whose primary infection occurs early in life. Their vertical transmission was investigated in this study. METHODS PyV sequences were analyzed by the digital droplet PCR in blood, serum, placenta, amniotic fluid, vaginal smear from two independent cohorts of pregnant females and umbilical cord blood (UCB) samples. IgG antibodies against the three PyVs were investigated by indirect E.L.I.S.As with viral mimotopes. RESULTS DNAs from blood, vaginal smear and placenta tested BKPyV-, JCPyV- and SV40-positive with a distinct prevalence, while amniotic fluids were all PyVs-negative. A prevalence of 3%, 7%, and 3% for BKPyV, JCPyV and SV40 DNA sequences, respectively, was obtained in UCBs. Serum IgG antibodies from pregnant females reached an overall prevalence of 62%, 42% and 17% for BKPyV, JCPyV and SV40, respectively. Sera from newborns (UCB) tested IgG-positive with a prevalence of 10% for BKPyV/JCPyV and 3% for SV40. CONCLUSIONS In this investigation, PyV vertical transmission was revealed by detecting PyV DNA sequences and IgG antibodies in samples from females and their offspring suggesting a potential risk of diseases in newborns.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Elena Pellegrinelli
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Maria Rosa Iaquinta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Marco Manfrini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy; Biostatistic Unit, GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Fortunato Vesce
- Section of Gynecology and Obstetrics, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| |
Collapse
|
9
|
Zhou X, Bai H, Kataoka M, Ito M, Muramatsu M, Suzuki T, Li TC. Characterization of the self-assembly of New Jersey polyomavirus VP1 into virus-like particles and the virus seroprevalence in Japan. Sci Rep 2019; 9:13085. [PMID: 31511622 PMCID: PMC6739320 DOI: 10.1038/s41598-019-49541-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/24/2019] [Indexed: 12/26/2022] Open
Abstract
New Jersey polyomavirus (NJPyV) was discovered in 2014 in a pancreatic transplant recipient’s vascular endothelial cells. Here, in the recombinant baculovirus system, VP1 protein of NJPyV expressed in insect cells was processed. The protein self-assembled into virus-like particles (NJPyV-LPs) in a cell-type-dependent manner, and the particles were then released into the culture media. Spherical ~50-nm-dia. NJPyV-LPs of uniform size with morphology resembling that of the native particles of polyomaviruses were purified from the fraction at 1.33 g/cm3 in supernatants of VP1-expressing Sf9 cells. We investigated the antigenic properties of purified NJPyV-LPs and performed a VLP-based enzyme immunoassay to determine the age-specific prevalence of NJPyV infection in a general Japanese population aged 1–70 years. The overall seropositivity rate of anti-NJPyV antibodies was only 1.8%. This might be explained by the low circulation of NJPyV in Japan. This is the first report of a large-scale serological survey of NJPyV in Asia (n = 1,050).
Collapse
Affiliation(s)
- Xianfeng Zhou
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan.,Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, 208-0011, Japan.,The Collaboration Unit for Field Epidemiology of the State Key Laboratory for Infectious Disease Prevention and Control, Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, 330038, P.R. China
| | - Huimin Bai
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, Inner Mongolia, 014060, P.R. China
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan.
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Musashi-murayama, Tokyo, 208-0011, Japan.
| |
Collapse
|
10
|
Ciotti M, Prezioso C, Pietropaolo V. An Overview On Human Polyomaviruses Biology and Related Diseases. Future Virol 2019; 14:487-501. [DOI: 10.2217/fvl-2019-0050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Marco Ciotti
- Laboratory of Virology Polyclinic Tor Vergata Foundation Viale Oxford 81
Rome
00133
Italy
| | - Carla Prezioso
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| | - Valeria Pietropaolo
- Department of Public Health & Infectious Diseases ‘Sapienza’ University
Rome
00185
Italy
| |
Collapse
|
11
|
Liu P, Qiu Y, Xing C, Zhou JH, Yang WH, Wang Q, Li JY, Han X, Zhang YZ, Ge XY. Detection and genome characterization of two novel papillomaviruses and a novel polyomavirus in tree shrew (Tupaia belangeri chinensis) in China. Virol J 2019; 16:35. [PMID: 30885224 PMCID: PMC6423848 DOI: 10.1186/s12985-019-1141-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Papillomaviruses (PVs) and polyomaviruses (PyVs) infect diverse vertebrates including human and cause a broad spectrum of outcomes from asymptomatic infection to severe disease. There has been no PV and only one PyV detected in tree shrews, though the genomic properties of tree shrews are highly similar to those of the primates. Methods Swab and organ samples of tree shrews collected in the Yunnan Province of China, were tested by viral metagenomic analysis and random PCR to detect the presence of PVs and PyVs. By PCR amplification using specific primers, cloning, sequencing and assembling, genomes of two PVs and one PyV were identified in the samples. Results Two novel PVs and a novel PyV, named tree shrew papillomavirus 1 and 2 (TbelPV1 and TbelPV2) and polyomavirus 1 (TbelPyV1) were characterized in the Chinese tree shrew (Tupaia belangeri chinensis). The genomes of TbelPV1, TbelPV2, and TbelPyV1 are 7410 bp, 7526 bp, and 4982 bp in size, respectively. The TbelPV1 genome contains 7 putative open-reading frames (ORFs) coding for viral proteins E1, E2, E4, E6, E7, L1, and L2; the TbelPV2 genome contains 6 ORFs coding for viral proteins E1, E2, E6, E7, L1, and L2; and the TbelPyV1 genome codes for the typical small and large T antigens of PyV, as well as the VP1, VP2, and VP3 capsid proteins. Genomic comparison and phylogenetic analysis indicated that TbelPV1 and TbelPV2 represented 2 novel PV genera of Papillomaviridae, and TbelPyV1 represented a new species of genus Alphapolyomavirus. Our epidemiologic study indicated that TbelPV1 and TbelPV2 were both detected in oral swabs, while TbelPyV1 was detected in oral swabs and spleens. Conclusion Two novel PVs (TbelPV1 and TbelPV2) and a novel PyV (TbelPyV) were discovered in tree shrews and their genomes were characterized. TbelPV1, TbelPV2, and TbelPyV1 have the highest similarity to Human papillomavirus type 63, Ursus maritimus papillomavirus 1, and Human polyomavirus 9, respectively. TbelPV1 and TbelPV2 only showed oral tropism, while TbelPyV1 showed oral and spleen tropism. Electronic supplementary material The online version of this article (10.1186/s12985-019-1141-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Liu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ye Qiu
- College of Biology, Hunan University, Changsha, 410082, China
| | - Cheng Xing
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ji-Hua Zhou
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Wei-Hong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Qiong Wang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jin-Yan Li
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China
| | - Yun-Zhi Zhang
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, 671000, China.
| | - Xing-Yi Ge
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
12
|
Kamminga S, van der Meijden E, Feltkamp MCW, Zaaijer HL. Seroprevalence of fourteen human polyomaviruses determined in blood donors. PLoS One 2018; 13:e0206273. [PMID: 30352098 PMCID: PMC6198985 DOI: 10.1371/journal.pone.0206273] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022] Open
Abstract
The polyomavirus family currently includes thirteen human polyomavirus (HPyV) species. In immunocompromised and elderly persons HPyVs are known to cause disease, such as progressive multifocal leukoencephalopathy (JCPyV), haemorrhagic cystitis and nephropathy (BKPyV), Merkel cell carcinoma (MCPyV), and trichodysplasia spinulosa (TSPyV). Some recently discovered polyomaviruses are of still unknown prevalence and pathogenic potential. Because HPyVs infections persist and might be transferred by blood components to immunocompromised patients, we studied the seroprevalence of fourteen polyomaviruses in adult Dutch blood donors. For most polyomaviruses the observed seroprevalence was high (60–100%), sometimes slightly increasing or decreasing with age. Seroreactivity increased with age for JCPyV, HPyV6 and HPyV7 and decreased for BKPyV and TSPyV. The most recently identified polyomaviruses HPyV12, NJPyV and LIPyV showed low overall seroprevalence (~5%) and low seroreactivity, questioning their human tropism. Altogether, HPyV infections are common in Dutch blood donors, with an average of nine polyomaviruses per subject.
Collapse
Affiliation(s)
- Sergio Kamminga
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, the Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - Els van der Meijden
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariet C. W. Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans L. Zaaijer
- Department of Blood-borne Infections, Sanquin Research, Amsterdam, the Netherlands
| |
Collapse
|