1
|
Tarro S, Vahtera J, Pentti J, Niinikoski H, Raitakari O, Rönnemaa T, Viikari J, Pahkala K, Lagström H. Diet quality trajectories from infancy to young adulthood: The STRIP Study. J Nutr 2025:S0022-3166(25)00287-1. [PMID: 40368295 DOI: 10.1016/j.tjnut.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Stability in dietary habits has been observed during childhood and adolescence, but their stability from infancy to adulthood is less known. OBJECTIVES Our aim was to identify latent diet quality trajectories from age 1 to 18 years and to examine their association with diet quality at age 26. METHODS The study included 620 participants from the Special Turku Coronary Risk Factor Intervention Project (STRIP), initiated in infancy. Food and nutrient intake were assessed annually from age one to age 18, and again at age 26 using food records. A food-based diet score (range 0-33) was calculated to indicate diet quality. Group-based modelling was used to model trajectories of diet quality between the ages of 1 and 18 years. Logistic regression analysis examined associations of childhood sociodemographic characteristics with diet trajectories. Linear regression analyses investigated associations between the observed developmental diet quality trajectory groups and diet quality at age 26 years, adjusted for adulthood sociodemographic characteristics. RESULTS From age 1 to 18 years, five diet quality trajectory groups were identified: low (19% of participants), decreasing (25%), increasing (15%), intermediate (31%) and high (10%). Throughout the follow-up period, the diet score remained at 20-22 in the high group, and at 11-13 in the low diet quality trajectory group. The diet quality trajectory groups predicted diet quality at age 26 (p <0.001). The adjusted mean difference in adulthood diet score between the low and high trajectory groups was 3.6 (1.5-5.7). Notably, participants in the intervention group had higher scores than controls across all trajectories and throughout the entire follow-up period. CONCLUSIONS The study identified five distinct diet quality trajectory groups from infancy to adulthood, highlighting a clear difference between the highest and lowest diet quality groups. The findings suggest that dietary habits established in early childhood remain moderately stable into early adulthood.
Collapse
Affiliation(s)
- Saija Tarro
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Jussi Vahtera
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaana Pentti
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harri Niinikoski
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland; InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Katja Pahkala
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Hanna Lagström
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Nutrition and Food Research Center, Faculty of Medicine, University of Turku, Finland
| |
Collapse
|
2
|
Almer G, Enko D, Kartiosuo N, Niinikoski H, Lehtimäki T, Munukka E, Viikari J, Rönnemaa T, Rovio SP, Mykkänen J, Lagström H, Jula A, Herrmann M, Raitakari OT, Meinitzer A, Pahkala K. Association of Serum Trimethylamine-N-Oxide Concentration from Childhood to Early Adulthood with Age and Sex. Clin Chem 2024; 70:1162-1171. [PMID: 38906833 DOI: 10.1093/clinchem/hvae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Primary prevention is the cornerstone of cardiometabolic health. In the randomized, controlled Special Turku Coronary Risk Factor Intervention Project (STRIP), dietary counseling intervention was given to children from infancy to 20 years of age and a follow-up was completed at age 26 years. We investigated the associations of age, sex, gut microbiome, and dietary intervention with the gut metabolite and the cardiac biomarker trimethylamine-N-oxide (TMAO). METHODS Overall, 592 healthy participants (females 46%) from STRIP were investigated. Compared to the control group, the intervention group had received dietary counseling between ages 7 months and 20 years focused on low intakes of saturated fat and cholesterol and the promotion of fruit, vegetable, and whole-grain consumption. TMAO serum concentrations were measured by a liquid chromatography-tandem mass spectrometry method at ages 11, 13, 15, 17, 19, and 26 years. Microbiome composition was assessed using 16S rRNA gene sequencing at 26 years of age. RESULTS TMAO concentrations increased from age 11 to 26 years in both sexes. At all measurement time points, males showed significantly higher serum TMAO concentrations compared to females, but concentrations were similar between the intervention and control groups. A direct association between TMAO concentrations and reported fiber intake was found in females. Gut microbiome analysis did not reveal associations with TMAO. CONCLUSIONS TMAO concentration increased from childhood to early adulthood but was not affected by the given dietary intervention. In females, TMAO concentrations could be directly associated with higher fiber intake suggesting sex-specific differences in TMAO metabolism.
Collapse
Affiliation(s)
- Gunter Almer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Institute of Medical and Chemical Laboratory Diagnostics, General Hospital Hochsteiermark, Leoben, Austria
| | - Noora Kartiosuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Harri Niinikoski
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eveliina Munukka
- Microbiome Biobank, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Jula
- Department of Public Health Solutions, Institute for Health and Welfare, Turku, Finland
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku;Finland
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Repo O, Juonala M, Niinikoski H, Rovio S, Mykkänen J, Lagström H, Cheung CY, Yang D, Vaahtoranta-Lehtonen H, Jula A, Nevalainen J, Rönnemaa T, Viikari J, Raitakari O, Tapp R, Pahkala K. Randomized 20-year infancy-onset dietary intervention, life-long cardiovascular risk factors and retinal microvasculature. Eur Heart J 2024; 45:3072-3085. [PMID: 38995853 PMCID: PMC11365608 DOI: 10.1093/eurheartj/ehae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/01/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND AND AIMS Retinal microvasculature characteristics predict cardiovascular morbidity and mortality. This study investigated associations of lifelong cardiovascular risk factors and effects of dietary intervention on retinal microvasculature in young adulthood. METHODS The cohort is derived from the longitudinal Special Turku Coronary Risk Factor Intervention Project study. The Special Turku Coronary Risk Factor Intervention Project is a 20-year infancy-onset randomized controlled dietary intervention study with frequent study visits and follow-up extending to age 26 years. The dietary intervention aimed at a heart-healthy diet. Fundus photographs were taken at the 26-year follow-up, and microvascular measures [arteriolar and venular diameters, tortuosity (simple and curvature) and fractal dimensions] were derived (n = 486). Cumulative exposure as the area under the curve for cardiovascular risk factors and dietary components was determined for the longest available time period (e.g. from age 7 months to 26 years). RESULTS The dietary intervention had a favourable effect on retinal microvasculature resulting in less tortuous arterioles and venules and increased arteriolar fractal dimension in the intervention group when compared with the control group. The intervention effects were found even when controlled for the cumulative cardiovascular risk factors. Reduced lifelong cumulative intake of saturated fats, main target of the intervention, was also associated with less tortuous venules. Several lifelong cumulative risk factors were independently associated with the retinal microvascular measures, e.g. cumulative systolic blood pressure with narrower arterioles. CONCLUSIONS Infancy-onset 20-year dietary intervention had favourable effects on the retinal microvasculature in young adulthood. Several lifelong cumulative cardiovascular risk factors were independently associated with retinal microvascular structure.
Collapse
Affiliation(s)
- Oskari Repo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Markus Juonala
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Harri Niinikoski
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Suvi Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Juha Mykkänen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
- Research Services, Turku University Hospital, Turku, Finland
| | - Carol Y Cheung
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dawei Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | - Antti Jula
- Department of Chronic Disease Prevention, Institute for Health and Welfare, Turku, Finland
| | - Jaakko Nevalainen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Robyn Tapp
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Research Institute for Health and Wellbeing, Coventry University, Coventry, United Kingdom
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
4
|
Heiskanen MA, Aatsinki A, Hakonen P, Kartiosuo N, Munukka E, Lahti L, Keskitalo A, Huovinen P, Niinikoski H, Viikari J, Rönnemaa T, Lagström H, Jula A, Raitakari O, Rovio SP, Pahkala K. Association of Long-Term Habitual Dietary Fiber Intake since Infancy with Gut Microbiota Composition in Young Adulthood. J Nutr 2024; 154:744-754. [PMID: 38219864 DOI: 10.1016/j.tjnut.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Dietary fiber is an important health-promoting component of the diet, which is fermented by the gut microbes that produce metabolites beneficial for the host's health. OBJECTIVES We studied the associations of habitual long-term fiber intake from infancy with gut microbiota composition in young adulthood by leveraging data from the Special Turku Coronary Risk Factor Intervention Project, an infancy-onset 20-y dietary counseling study. METHODS Fiber intake was assessed annually using food diaries from infancy ≤ age 20 y. At age 26 y, the first postintervention follow-up study was conducted including food diaries and fecal sample collection (N = 357). Cumulative dietary fiber intake was assessed as the area under the curve for energy-adjusted fiber intake throughout the study (age 0-26 y). Gut microbiota was profiled using 16S ribosomal ribonucleic acid amplicon sequencing. The primary outcomes were 1) α diversity expressed as the observed richness and Shannon index, 2) β diversity using Bray-Curtis dissimilarity scores, and 3) differential abundance of each microbial taxa with respect to the cumulative energy-adjusted dietary fiber intake. RESULTS Higher cumulative dietary fiber intake was associated with decreased Shannon index (β = -0.019 per unit change in cumulative fiber intake, P = 0.008). Overall microbial community composition was related to the amount of fiber consumed (permutational analysis of variation R2 = 0.005, P = 0.024). The only genus that was increased with higher cumulative fiber intake was butyrate-producing Butyrivibrio (log2 fold-change per unit change in cumulative fiber intake 0.40, adjusted P = 0.023), whereas some other known butyrate producers such as Faecalibacterium and Subdoligranulum were decreased with higher cumulative fiber intake. CONCLUSIONS As early-life nutritional exposures may affect the lifetime microbiota composition and disease risk, this study adds novel information on the associations of long-term dietary fiber intake with the gut microbiota. This trial was registered at clinicaltrials.gov as NCT00223600.
Collapse
Affiliation(s)
- Marja A Heiskanen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Anna Aatsinki
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Petra Hakonen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Noora Kartiosuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Eveliina Munukka
- Turku Clinical Microbiome Biobank, Department of Clinical Microbiology, Turku University Hospital, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Leo Lahti
- Department of Computing, Faculty of Technology, University of Turku, Turku, Finland
| | - Anniina Keskitalo
- Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Pentti Huovinen
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Harri Niinikoski
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Pediatrics, University of Turku, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
| | - Antti Jula
- Department of Public Health Solutions, Institute for Health and Welfare, Turku, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Lehtovirta M, Pahkala K, Rovio SP, Magnussen CG, Laitinen TT, Niinikoski H, Lagström H, Viikari JSA, Rönnemaa T, Jula A, Ala-Korpela M, Raitakari OT. Association of tobacco smoke exposure with metabolic profile from childhood to early adulthood: the Special Turku Coronary Risk Factor Intervention Project. Eur J Prev Cardiol 2024; 31:103-115. [PMID: 37655930 DOI: 10.1093/eurjpc/zwad285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023]
Abstract
AIMS To investigate the associations between passive tobacco smoke exposure and daily smoking with a comprehensive metabolic profile, measured repeatedly from childhood to adulthood. METHODS AND RESULTS Study cohort was derived from the Special Turku Coronary Risk Factor Intervention Project (STRIP). Smoking status was obtained by questionnaire, while serum cotinine concentrations were measured using gas chromatography. Metabolic measures were quantified by nuclear magnetic resonance metabolomics at 9 (n = 539), 11 (n = 536), 13 (n = 525), 15 (n = 488), 17 (n = 455), and 19 (n = 409) years. Association of passive tobacco smoke exposure with metabolic profile compared participants who reported less-than-weekly smoking and had serum cotinine concentration <1 ng/mL (no exposure) with those whose cotinine concentration was ≥10 ng/mL (passive tobacco smoke exposure). Associations of daily smoking with metabolic profile in adolescence were analysed by comparing participants reporting daily smoking with those reporting no tobacco use and having serum cotinine concentrations <1 ng/mL. Passive tobacco smoke exposure was directly associated with the serum ratio of monounsaturated fatty acids to total fatty acids [β = 0.34 standard deviation (SD), (0.17-0.51), P < 0.0001] and inversely associated with the serum ratios of polyunsaturated fatty acids. Exposure to passive tobacco smoke was directly associated with very-low-density lipoprotein particle size [β = 0.28 SD, (0.12-0.45), P = 0.001] and inversely associated with HDL particle size {β = -0.21 SD, [-0.34 to -0.07], P = 0.003}. Daily smokers exhibited a similar metabolic profile to those exposed to passive tobacco smoke. These results persisted after adjusting for body mass index, STRIP study group allocation, dietary target score, pubertal status, and parental socio-economic status. CONCLUSION Both passive and active tobacco smoke exposures during childhood and adolescence are detrimentally associated with circulating metabolic measures indicative of increased cardio-metabolic risk.
Collapse
Affiliation(s)
- Miia Lehtovirta
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Paavo Nurmi Centre, Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Costan G Magnussen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Tomi T Laitinen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Paavo Nurmi Centre, Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Harri Niinikoski
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
| | - Jorma S A Viikari
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland
| | - Tapani Rönnemaa
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Medicine, University of Turku, Turku, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, Institute for Health and Welfare, Turku, Finland
| | - Mika Ala-Korpela
- Systems Epidemiology, Research Unit of Population Health, Faculty of Medicine, University of Oulu & Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Kiinamyllynkatu 10, Turku FI-20520, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
6
|
Humphries SE, Ramaswami U, Hopper N. Should Familial Hypercholesterolaemia Be Included in the UK Newborn Whole Genome Sequencing Programme? Curr Atheroscler Rep 2023; 25:1083-1091. [PMID: 38060059 DOI: 10.1007/s11883-023-01177-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW The UK National Health Service (NHS) has recently announced a Newborn Genomes Programme (NGP) to identify infants with treatable inherited disorders using whole genome sequencing (WGS). Here, we address, for familial hypercholesterolaemia (FH), the four principles that must be met for the inclusion of a disorder in the NGP. RECENT FINDINGS Principle A: There is strong evidence that the genetic variants causing FH can be reliably detected. Principle B: A high proportion of individuals who carry an FH-causing variant are likely to develop early heart disease if left undiagnosed and not offered appropriate treatment. Principle C: Early intervention has been shown to lead to substantially improved outcomes in children with FH. Principle D: The recommended interventions are equitably accessible for all. FH meets all the Wilson and Jungner criteria for inclusion in a screening programme, and it also meets all four principles and therefore should be included in the Newborn Genomes Programme.
Collapse
Affiliation(s)
- Steve E Humphries
- Centre for Cardiovascular Genetics, Rayne Building, 5 University Street, University College London, London, United Kingdom, WC1E 6JJ
| | - Uma Ramaswami
- Lysosomal Disorders Unit, Royal Free London NHS Foundation Trust, Royal Free Hospital, London, United Kingdom, NW3 2QG.
| | - Neil Hopper
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland Royal Hospital, Sunderland, United Kingdom
| |
Collapse
|
7
|
Suorsa K, Leskinen T, Rovio S, Niinikoski H, Pentti J, Nevalainen J, Heinonen OJ, Lagström H, Jula A, Viikari J, Rönnemaa T, Raitakari O, Stenholm S, Pahkala K. Weekday and weekend physical activity patterns and their correlates among young adults. Scand J Med Sci Sports 2023; 33:2573-2584. [PMID: 37632161 DOI: 10.1111/sms.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Accelerometers enable assessment of within and between day variation in physical activity. The main aim was to examine weekday and weekend physical activity patterns among young adults. Additionally, correlates of the physical activity patterns were examined. METHODS Overall 325 adults (mean age 26.0 years, standard deviation 0.03) from the Special Turku Coronary Risk Factor Intervention Project used a wrist-worn ActiGraph accelerometer continuously for 1 week. Physical activity patterns over weekdays and weekends were identified by using the group-based trajectory modeling. Adolescent leisure time physical activity (LTPA) and sociodemographic characteristics (sex, marital and family status, education, work status, occupation, and health consciousness) were examined as possible correlates of physical activity patterns using multinomial regression analysis. RESULTS Five patterns were identified: consistently low activity (45%), active on weekday evenings and weekends (32%), consistently moderate activity (11%), active on weekdays (7%), and consistently high activity (5%). Low adolescent LTPA was associated with consistently low activity pattern in young adulthood. Women were more likely than men to belong in the more physically active groups (all other groups except active on weekdays, odds ratios between 2.26 and 6.17). Those in the active on weekdays group had lower education, were more often in the working life and in manual occupations than those in the consistently low activity group. CONCLUSIONS Marked heterogeneity in physical activity patterns across the week was observed among young adults. Especially history of physical activity, sex, education, work status, and occupation were associated with different physical activity patterns.
Collapse
Affiliation(s)
- Kristin Suorsa
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Tuija Leskinen
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Suvi Rovio
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Harri Niinikoski
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Jaana Pentti
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaakko Nevalainen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Olli J Heinonen
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Hanna Lagström
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Olli Raitakari
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Sari Stenholm
- Department of Public Health, Turku University Hospital, University of Turku, Turku, Finland
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
| | - Katja Pahkala
- Centre for Population Health Research, Turku University Hospital, University of Turku, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Ning N, Zhang Y, Liu Q, Zhou W, He Y, Liu Y, Jin L, Ma Y. American Heart Association's new 'Life's Essential 8' score in association with cardiovascular disease: a national cross-sectional analysis. Public Health 2023; 225:336-342. [PMID: 37976656 DOI: 10.1016/j.puhe.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE The American Heart Association (AHA) has recently updated and enhanced the quantification of cardiovascular health by using the Life's Essential 8 (LE8) score. We intended to examine the correlation between cardiovascular health status, as measured by the new LE8 score, and cardiovascular disease (CVD) in US adults. STUDY DESIGN National cross-sectional study. METHODS A total of 24,730 individuals without pregnancy and with complete data from 2007 to 2018 enrolled in the study. The overall LE8 score was divided into low, moderate, and high groups. Multivariate logistic regressions were used to assess the odds ratios (ORs) and 95% confidence intervals (CIs) for the associations between the LE8 score and the presence of CVD. RESULTS Overall, the high LE8 group had a younger age (20-59 years, 82.95%) and more females (60.09%) compared to the low LE8 group. Moderate and high LE8 correlated negatively with the presence of CVD (moderate, OR: 0.46, 95% CI: 0.39-0.54; high, OR: 0.26, 95% CI: 0.21-0.33). One standard deviation increment in the LE8 score correlated significantly with lower odds of CVD (OR: 0.64; 95% CI: 0.60-0.69). Further stratification analysis also detected a significant relationship between the new LE8 score and CVD, and the result was enhanced among the young and women (P-interaction<0.001). CONCLUSIONS Higher LE8 score correlated with lower odds of CVD, especially among the young and women.
Collapse
Affiliation(s)
- N Ning
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| | - Y Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Q Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| | - W Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| | - Y He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Y Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| | - L Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, No.1163 Xinmin Street, Changchun, Jilin, 130021, China.
| | - Y Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning Province, PR China.
| |
Collapse
|
9
|
Kök Şan C, Gökçay GF. Nutritional aspects of commercial infant and toddler food products sold in Turkey. Nutr Health 2023:2601060231194652. [PMID: 37574810 DOI: 10.1177/02601060231194652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background: In recent years, there has been an increase in the variety and consumption of commercial infant and toddler food products. Aim: The aim of this study is to evaluate the nutritional profiles of commercial infant and toddler food products sold in Turkey. Methods: A cross-sectional survey of the nutritional composition of products available at in-store and online supermarkets in Turkey was derived from the nutritional information panel on the product label or information provided on manufacturer websites in March 2023. The targeted age group, package type, serving size, ingredients list, and nutrition information (energy [kcal], protein [g], total fat [g], carbohydrate [g], dietary fiber [g], total sugar [g], and sodium [mg] per 100 g) were recorded. Results: Of the 189 products identified, more than 90% (n = 47) of the first foods were fruit-based, while 2% (n = 4) contained only vegetables. Almost half of the products (n = 89, 49%) contained added sugar or sweeteners, 41 (22%) had added sugar, and 1 in 3 products (n = 68, 36%) had sugar from fruit-based sources. One in 10 products (n = 18, 9.5%) contained added salt while 40% of the products (n = 76) were above the WHO Europe sodium standards. Almost half of the products (n = 6, 46%) targeting the 12 months older age group were pureed foods using squeeze pouch packaging. Conclusions: The majority of commercial infant and toddler food products did not adhere to nutrition guidelines. There is a need for stronger composition standards for commercial infant and toddler food products by reducing sugar and sodium content, reducing the use of fruits and sweet vegetables, and increasing the variety of products containing different types of vegetables.
Collapse
Affiliation(s)
- Cansu Kök Şan
- Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gülden F Gökçay
- Department of Pediatrics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
10
|
Radovanovic M, Jankovic J, Mandic-Rajcevic S, Dumic I, Hanna RD, Nordstrom CW. Ideal Cardiovascular Health and Risk of Cardiovascular Events or Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. J Clin Med 2023; 12:4417. [PMID: 37445451 DOI: 10.3390/jcm12134417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of morbidity and mortality worldwide, hence significant efforts have been made to establish behavior and risk factors associated with CVD. The American Heart Association proposed a 7-metric tool to promote ideal cardiovascular health (CVH). Recent data demonstrated that a higher number of ideal CVH metrics was associated with a lower risk of CVD, stroke, and mortality. Our study aimed to perform a systematic review and meta-analysis of prospective studies investigating the association of ideal CVH metrics and CVD, stroke, and cardiovascular mortality (CVM) in the general population. Medline and Scopus databases were searched from January 2010 to June 2022 for prospective studies reporting CVH metrics and outcomes on composite-CVD, coronary heart disease, myocardial infarction, stroke, and CVM. Each CVH metrics group was compared to another. Twenty-two studies totaling 3,240,660 adults (57.8% men) were analyzed. The follow-up duration was 12.0 ± 7.2 years. Our analysis confirmed that a higher number of ideal CVH metrics led to lower risk for CVD and CVM (statistically significant for composite-CVD, stroke, and CVM; p < 0.05). Conclusion: Even modest improvements in CVH are associated with CV-morbidity and mortality benefits, providing a strong public health message about the importance of a healthier lifestyle.
Collapse
Affiliation(s)
- Milan Radovanovic
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Janko Jankovic
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Centre-School of Public Health and Health Management, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Stefan Mandic-Rajcevic
- Institute of Social Medicine, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Centre-School of Public Health and Health Management, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Igor Dumic
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Richard D Hanna
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Cardiology, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Charles W Nordstrom
- Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| |
Collapse
|
11
|
Ioachimescu OC. From Seven Sweethearts to Life Begins at Eight Thirty: A Journey From Life's Simple 7 to Life's Essential 8 and Beyond. J Am Heart Assoc 2022; 11:e027658. [PMID: 36259614 DOI: 10.1161/jaha.122.027658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Octavian C Ioachimescu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine School of Medicine, Emory University Atlanta GA.,Atlanta Veteran Affairs Health Care System Sleep Medicine Center Decatur GA
| |
Collapse
|
12
|
Lloyd-Jones DM, Allen NB, Anderson CAM, Black T, Brewer LC, Foraker RE, Grandner MA, Lavretsky H, Perak AM, Sharma G, Rosamond W. Life's Essential 8: Updating and Enhancing the American Heart Association's Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022; 146:e18-e43. [PMID: 35766027 PMCID: PMC10503546 DOI: 10.1161/cir.0000000000001078] [Citation(s) in RCA: 1220] [Impact Index Per Article: 406.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In 2010, the American Heart Association defined a novel construct of cardiovascular health to promote a paradigm shift from a focus solely on disease treatment to one inclusive of positive health promotion and preservation across the life course in populations and individuals. Extensive subsequent evidence has provided insights into strengths and limitations of the original approach to defining and quantifying cardiovascular health. In response, the American Heart Association convened a writing group to recommend enhancements and updates. The definition and quantification of each of the original metrics (Life's Simple 7) were evaluated for responsiveness to interindividual variation and intraindividual change. New metrics were considered, and the age spectrum was expanded to include the entire life course. The foundational contexts of social determinants of health and psychological health were addressed as crucial factors in optimizing and preserving cardiovascular health. This presidential advisory introduces an enhanced approach to assessing cardiovascular health: Life's Essential 8. The components of Life's Essential 8 include diet (updated), physical activity, nicotine exposure (updated), sleep health (new), body mass index, blood lipids (updated), blood glucose (updated), and blood pressure. Each metric has a new scoring algorithm ranging from 0 to 100 points, allowing generation of a new composite cardiovascular health score (the unweighted average of all components) that also varies from 0 to 100 points. Methods for implementing cardiovascular health assessment and longitudinal monitoring are discussed, as are potential data sources and tools to promote widespread adoption in policy, public health, clinical, institutional, and community settings.
Collapse
|
13
|
Rovio SP, Salo H, Niinikoski H, Lagström H, Salo P, Viikari JSA, Rönnemaa T, Jula A, Raitakari OT, Pahkala K. Dietary Intervention in Infancy and Cognitive Function in Young Adulthood: The Special Turku Coronary Risk Factor Intervention Project. J Pediatr 2022; 246:184-190.e1. [PMID: 35367245 DOI: 10.1016/j.jpeds.2022.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Consumption of saturated fatty acids (SAFAs), polyunsaturated fatty acids (PUFAs), cholesterol, and fiber have been linked with cognitive function in adults. We evaluated these associations from childhood by leveraging data from the Special Turku Coronary Risk Factor Intervention Project (STRIP). STUDY DESIGN STRIP recruited children aged 5 months and randomly assigned them into intervention/control groups. The intervention introduced a heart-healthy diet, characterized mainly by low consumption of SAFAs and cholesterol, through counseling at least biannually between age 7 months and 20 years. Diet was assessed repeatedly using food diaries. Six years after the end of the intervention phase, at age 26 years, the participants were invited to the first postintervention follow-up, which included cognitive testing that covered learning and memory, verbal memory, short-term working memory, reaction time, information processing, and cognitive flexibility and inhibitory control. We studied the associations of the STRIP intervention and the consumptions of SAFAs, PUFAs, cholesterol, and fiber within these cognitive domains. RESULTS Participants in the STRIP intervention group had better cognitive flexibility and inhibitory control and were better able to manage conflicting information and ignore task-irrelevant information (0.18 SD higher in the intervention group, adjusted for sex and socioeconomic status). No associations were observed with the dietary components studied. CONCLUSIONS The infancy-onset STRIP intervention, which promoted a heart-healthy diet, was favorably associated with cognitive flexibility and inhibitory control at age 26 years. No associations were found for the intervention targets studied, indicating that these specific dietary components did not underlie the observed effect of the intervention.
Collapse
Affiliation(s)
- Suvi P Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Henri Salo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Harri Niinikoski
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Pediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Public Health, University of Turku and Turku University Hospital, Turku, Finland
| | - Pia Salo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma S A Viikari
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, Turku, Finland; Division of Medicine, Turku University Hospital, Turku, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, Institute for Health and Welfare, Turku, Finland
| | - Olli T Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Paavo Nurmi Center and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| |
Collapse
|
14
|
Keskitalo A, Munukka E, Aatsinki A, Saleem W, Kartiosuo N, Lahti L, Huovinen P, Elo LL, Pietilä S, Rovio SP, Niinikoski H, Viikari J, Rönnemaa T, Lagström H, Jula A, Raitakari O, Pahkala K. An Infancy-Onset 20-Year Dietary Counselling Intervention and Gut Microbiota Composition in Adulthood. Nutrients 2022; 14:2667. [PMID: 35807848 PMCID: PMC9268486 DOI: 10.3390/nu14132667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
The randomized controlled Special Turku Coronary Risk Factor Intervention Project (STRIP) has completed a 20-year infancy-onset dietary counselling intervention to reduce exposure to atherosclerotic cardiovascular disease risk factors via promotion of a heart-healthy diet. The counselling on, e.g., low intake of saturated fat and cholesterol and promotion of fruit, vegetable, and whole-grain consumption has affected the dietary characteristics of the intervention participants. By leveraging this unique cohort, we further investigated whether this long-term dietary intervention affected the gut microbiota bacterial profile six years after the intervention ceased. Our sub-study comprised 357 individuals aged 26 years (intervention n = 174, control n = 183), whose gut microbiota were profiled using 16S rRNA amplicon sequencing. We observed no differences in microbiota profiles between the intervention and control groups. However, out of the 77 detected microbial genera, the Veillonella genus was more abundant in the intervention group compared to the controls (log2 fold-change 1.58, p < 0.001) after adjusting for multiple comparison. In addition, an association between the study group and overall gut microbiota profile was found only in males. The subtle differences in gut microbiota abundances observed in this unique intervention setting suggest that long-term dietary counselling reflecting dietary guidelines may be associated with alterations in gut microbiota.
Collapse
Affiliation(s)
- Anniina Keskitalo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland;
| | - Eveliina Munukka
- Microbiome Biobank, Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
| | - Anna Aatsinki
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
| | - Wisam Saleem
- Department of Computing, Faculty of Technology, University of Turku, 20520 Turku, Finland; (W.S.); (L.L.)
| | - Noora Kartiosuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Mathematics and Statistics, University of Turku, 20520 Turku, Finland
| | - Leo Lahti
- Department of Computing, Faculty of Technology, University of Turku, 20520 Turku, Finland; (W.S.); (L.L.)
| | - Pentti Huovinen
- Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland;
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
| | - Laura L. Elo
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland;
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland;
| | - Suvi P. Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
| | - Harri Niinikoski
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Physiology/Department of Pediatrics, University of Turku, 20520 Turku, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku, 20520 Turku, Finland; (J.V.); (T.R.)
- Division of Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Tapani Rönnemaa
- Department of Medicine, University of Turku, 20520 Turku, Finland; (J.V.); (T.R.)
- Division of Medicine, Turku University Hospital, 20520 Turku, Finland
| | - Hanna Lagström
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Public Health, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Antti Jula
- Department of Public Health Solutions, Institute for Health and Welfare, 20520 Turku, Finland;
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, 20520 Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (A.K.); (N.K.); (S.P.R.); (H.N.); (O.R.)
- Centre for Population Health Research, University of Turku and Turku University Hospital, 20520 Turku, Finland; (A.A.); (H.L.)
- Paavo Nurmi Centre & Unit for Health and Physical Activity, University of Turku, 20520 Turku, Finland
| |
Collapse
|
15
|
The effects of an 8-year individualised lifestyle intervention on food consumption and nutrient intake from childhood to adolescence: the PANIC Study. J Nutr Sci 2022; 11:e40. [PMID: 35720174 PMCID: PMC9171599 DOI: 10.1017/jns.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/15/2022] Open
Abstract
We aimed to investigate the effects of a long-term, individualised, family-based lifestyle intervention on food consumption and nutrient intake from childhood to adolescence. We conducted an 8-year diet and physical activity intervention study in a population sample of children aged 7–9 years at baseline in 2007–2009. We allocated the participants to the intervention group (n 306) and the control group (n 198). We assessed diet by 4-d food records at baseline, 2-year follow-up and 8-year follow-up. We analysed the data using linear mixed-effects models adjusted for age at baseline and sex. The consumption of vegetables and vegetable oil-based spreads (fat ≥60 %) increased in the intervention group but did not change in the control group (P < 0⋅001 for time×group interaction). The consumption of fruits and berries increased in the intervention group but decreased in the control group (P = 0⋅036). The consumption of high-fat cheese (P = 0⋅029), butter-based spreads (P = 0⋅001) and salty snacks (P = 0⋅028) increased less, and the consumption of low-fat cheese (P = 0⋅004) increased more in the intervention group than in the control group. Saturated fat intake (P = 0⋅001) increased less, and the intakes of dietary fibre (P = 0⋅003), vitamin D (P = 0⋅042) and vitamin E (P = 0⋅027) increased more in the intervention group than in the control group. The intakes of vitamin C (P < 0⋅001) and folate (P = 0⋅001) increased in the intervention group but decreased in the control group. To conclude, individualised, family-based lifestyle intervention altered food choices towards more recommended diet and resulted in enhanced diet quality from childhood to adolescence.
Collapse
|
16
|
Ronto R, Saberi G, Leila Robbers GM, Godrich S, Lawrence M, Somerset S, Fanzo J, Chau JY. Identifying effective interventions to promote consumption of protein-rich foods from lower ecological footprint sources: A systematic literature review. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000209. [PMID: 36962370 PMCID: PMC10021177 DOI: 10.1371/journal.pgph.0000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/23/2022] [Indexed: 11/18/2022]
Abstract
Addressing overconsumption of protein-rich foods from high ecological footprint sources can have positive impacts on health such as reduction of non-communicable disease risk and protecting the natural environment. With the increased attention towards development of ecologically sustainable diets, this systematic review aimed to critically review literature on effectiveness of those interventions aiming to promote protein-rich foods from lower ecological footprint sources. Five electronic databases (Medline, Web of Science, Scopus, Embase and Global Health) were searched for articles published up to January 2021. Quantitative studies were eligible for inclusion if they reported on actual or intended consumption of protein-rich animal-derived and/or plant-based foods; purchase, or selection of meat/plant-based diet in real or virtual environments. We assessed 140 full-text articles for eligibility of which 51 were included in this review. The results were narratively synthesised. Included studies were categorised into individual level behaviour change interventions (n = 33) which included education, counselling and self-monitoring, and micro-environmental/structural behaviour change interventions (n = 18) which included menu manipulation, choice architecture and multicomponent approaches. Half of individual level interventions (52%) aimed to reduce red/processed meat intake among people with current/past chronic conditions which reduced meat intake in the short term. The majority of micro-environmental studies focused on increasing plant-based diet in dining facilities, leading to positive dietary changes. These findings point to a clear gap in the current evidence base for interventions that promote plant-based diet in the general population.
Collapse
Affiliation(s)
- Rimante Ronto
- Department of Health Sciences, Macquarie University, Sydney, Australia
| | - Golsa Saberi
- Department of Health Sciences, Macquarie University, Sydney, Australia
| | | | - Stephanie Godrich
- School of Medicine and Health Sciences, Edith Cowan University, Perth, Australia
| | - Mark Lawrence
- Institute for Physical Activity and Nutrition, Deakin University, Melbourne, Australia
| | - Shawn Somerset
- Faculty of Health, University of Canberra, Canberra, Australia
| | - Jessica Fanzo
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Josephine Y. Chau
- Department of Health Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
17
|
Abstract
Cardiovascular diseases caused by atherosclerosis do not typically manifest before middle age; however, the disease process begins early in life. Preclinical atherosclerosis can be quantified with imaging methods in healthy populations long before clinical manifestations present. Cohort studies have shown that childhood exposure to risk factors, such as dyslipidaemia, elevated blood pressure and tobacco smoking, are associated with adult preclinical atherosclerotic phenotypes. Importantly, these long-term effects are substantially reduced if the individual becomes free from the risk factor by adulthood. As participants in the cohorts continue to age and clinical end points accrue, the strongest evidence linking exposure to risk factors in early life with cardiovascular outcomes has begun to emerge. Although science has deciphered the natural course of atherosclerosis, discovered its causal risk factors and developed effective means to intervene, we are still faced with an ongoing global pandemic of atherosclerotic diseases. In general, atherosclerosis goes undetected for too long, and preventive measures, if initiated at all, are inadequate and/or come too late. In this Review, we give an overview of the available literature suggesting the importance of initiating the prevention of atherosclerosis in early life and provide a summary of the major paediatric programmes for the prevention of atherosclerotic disease. We also highlight the limitations of current knowledge and indicate areas for future research.
Collapse
|
18
|
Stea TH, Holvik K, Bryntesen CS, Myhre JB. Changes in food habits amongst Norwegian adolescents in 2016 and 2019 according to gender and socioeconomic status. Food Nutr Res 2021; 65:6262. [PMID: 35140558 PMCID: PMC8788659 DOI: 10.29219/fnr.v65.6262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/14/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Background Monitoring dietary habits is important in order to identify risk groups and as a basis for targeted public health initiatives. Objective To study trends in consumption of selected foods and beverages from 2016 to 2019 amongst Norwegian adolescents according to gender and parental education. Design Repeated cross-sectional study amongst 25,996 adolescents, aged 14–17 years old. Consumption of selected food and beverages was measured by an online food frequency questionnaire and general linear models were applied to estimate changes in dietary habits. Results Between 2016 and 2019, we observed a reduced frequency of consumption of vegetables (from 4.7 to 4.4 times/week), fruit and berries (from 4.4 to 4.2 times/week), whole-grain bread (from 5.1 to 4.2 times/week), and fish (from 2.3 to 1.6 times/week). During this time period, we also observed a reduced frequency of consumption of salty snacks (from 2.1 to 1.9 times/week), sweets (from 2.3 to 2.0 times/week), sugar-sweetened beverages (from 2.8 to 2.6 times/week), and artificially sweetened beverages (from 2.2 to 1.5 times/week). In girls, there was a decrease in the reported frequency of consumption of fruit and berries (−4%, vs. no change in boys). The decrease in consumption frequency of whole-grain bread was larger in girls than in boys (−19% vs. −14%). Further, a 17% decrease in consumption of sweets was observed amongst adolescents with no or only one parent having college/university education compared to a 13% decrease in adolescents whose both parents had college/university education. Conclusion Our results showed a decrease in frequency of consumption of selected healthy and unhealthy food and beverages amongst adolescents between 2016 and 2019. The gender gap in consumption of fruit and berries and whole-grain bread seemed to decrease during this time period, and the socio-economic gap in consumption of sweets seemed to disappear.
Collapse
Affiliation(s)
- Tonje H. Stea
- Department of Health and Nursing Science, University of Agder, Kristiansand, Norway
- Department of Child and Adolescence Mental Health, Sørlandet Hospital, Kristiansand, Norway
- Tonje H. Stea, Department of Health and Nursing Sciences, Faculty of Health and Sport, University of Agder, Service Box 422, NO-4604 Kristiansand, Norway.
| | - Kristin Holvik
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | | | | |
Collapse
|
19
|
Fiorentino R, Chiarelli F. Treatment of Dyslipidaemia in Children. Biomedicines 2021; 9:1078. [PMID: 34572264 PMCID: PMC8470054 DOI: 10.3390/biomedicines9091078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 01/14/2023] Open
Abstract
Childhood dyslipidaemia is one of the main traditional cardiovascular risk factors that initiate and exacerbate the atherosclerotic process. Healthcare providers may play a key role in the management of children with lipid abnormalities; however, they have to properly evaluate the normal lipid values and know the available treatment options in children and adolescents. Current guidelines recommend healthy behaviours as the first-line treatment for childhood dyslipidaemia. The therapeutic lifestyle changes should focus on dietary modifications, daily physical activity, reduction in body weight and tobacco smoking cessation. Parents play a key role in promoting their children's healthy habits. In children with more severe forms of lipid abnormalities and in those who do not benefit from healthy behaviours, pharmacological therapy should be considered. Safe and effective medications are already available for children and adolescents. Statins represent the first-line pharmacological option, while ezetimibe and bile acid sequestrants are usually used as second-line drugs. Despite their limited use in children, other lipid-lowering agents (already approved for adults) are currently available or under study for certain categories of paediatric patients (e.g., familial hypercholesterolemia). Further studies are needed to evaluate the long-term efficacy, safety and tolerability of novel lipid-lowering drugs, especially in children.
Collapse
|
20
|
Energy, Sugars, Iron, and Vitamin B12 Content of Commercial Infant Food Pouches and Other Commercial Infant Foods on the New Zealand Market. Nutrients 2021; 13:nu13020657. [PMID: 33670442 PMCID: PMC7922386 DOI: 10.3390/nu13020657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
There has been an important shift in the New Zealand infant food market over the past decade, with the majority of complementary foods now sold in “pouches”. Along with the increasing market share of commercial infant food pouches internationally, there have been growing concerns about their nutritional quality. However, research examining the nutritional quality of these pouches compared to other forms of commercial infant foods in New Zealand has not been undertaken. Nor have any studies reported the free sugars or added sugars content of these foods. To address this knowledge gap, a cross-sectional survey of infant foods sold in New Zealand supermarkets was conducted in 2019–2020. Recipes and nutrient lines were developed for the 266 foods identified (133 food pouches). The energy, iron, vitamin B12, total sugars, free sugars, and added sugars content of infant food pouches and other forms of commercial infant foods per 100 g were compared, both within food groups and by age group. Infant food pouches contained similar median amounts of energy, iron, and vitamin B12 to other forms of commercial infant foods but contained considerably more total sugars (8.4 g/100 g vs. 2.3 g/100 g). However, median free sugars and added sugars content was very low across all food groups except for “dairy” and “sweet snacks”. All “dry cereals” were fortified with iron whereas none of the infant food pouches were. Therefore, consuming food pouches to the exclusion of other commercial infant foods may place infants at risk of iron deficiency if they do not receive sufficient iron from other sources.
Collapse
|
21
|
Lehtovirta M, Matthews LA, Laitinen TT, Nuotio J, Niinikoski H, Rovio SP, Lagström H, Viikari JSA, Rönnemaa T, Jula A, Ala-Korpela M, Raitakari OT, Pahkala K. Achievement of the Targets of the 20-Year Infancy-Onset Dietary Intervention-Association with Metabolic Profile from Childhood to Adulthood. Nutrients 2021; 13:nu13020533. [PMID: 33562015 PMCID: PMC7915301 DOI: 10.3390/nu13020533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
The Special Turku Coronary Risk Factor Intervention Project (STRIP) is a prospective infancy-onset randomized dietary intervention trial targeting dietary fat quality and cholesterol intake, and favoring consumption of vegetables, fruit, and whole-grains. Diet (food records) and circulating metabolites were studied at six time points between the ages of 9-19 years (n = 549-338). Dietary targets for this study were defined as (1) the ratio of saturated fat (SAFA) to monounsaturated and polyunsaturated fatty acids (MUFA + PUFA) < 1:2, (2) intake of SAFA < 10% of total energy intake, (3) fiber intake ≥ 80th age-specific percentile, and (4) sucrose intake ≤ 20th age-specific percentile. Metabolic biomarkers were quantified by high-throughput nuclear magnetic resonance metabolomics. Better adherence to the dietary targets, regardless of study group allocation, was assoiated with higher serum proportion of PUFAs, lower serum proportion of SAFAs, and a higher degree of unsaturation of fatty acids. Achieving ≥ 1 dietary target resulted in higher low-density lipoprotein (LDL) particle size, lower circulating LDL subclass lipid concentrations, and lower circulating lipid concentrations in medium and small high-density lipoprotein subclasses compared to meeting 0 targets. Attaining more dietary targets (≥2) was associated with a tendency to lower lipid concentrations of intermediate-density lipoprotein and very low-density lipoprotein subclasses. Thus, adherence to dietary targets is favorably associated with multiple circulating fatty acids and lipoprotein subclass lipid concentrations, indicative of better cardio-metabolic health.
Collapse
Affiliation(s)
- Miia Lehtovirta
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (L.A.M.); (T.T.L.); (J.N.); (S.P.R.); (O.T.R.); (K.P.)
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
- Correspondence: ; Tel.: +358-2333-7552
| | - Laurie A. Matthews
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (L.A.M.); (T.T.L.); (J.N.); (S.P.R.); (O.T.R.); (K.P.)
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
| | - Tomi T. Laitinen
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (L.A.M.); (T.T.L.); (J.N.); (S.P.R.); (O.T.R.); (K.P.)
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
- Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, 20520 Turku, Finland
| | - Joel Nuotio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (L.A.M.); (T.T.L.); (J.N.); (S.P.R.); (O.T.R.); (K.P.)
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
- Heart Center, Turku University Hospital, University of Turku, 20520 Turku, Finland
| | - Harri Niinikoski
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, University of Turku, 20520 Turku, Finland;
| | - Suvi P. Rovio
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (L.A.M.); (T.T.L.); (J.N.); (S.P.R.); (O.T.R.); (K.P.)
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
| | - Hanna Lagström
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
- Department of Public Health, Turku University Hospital, University of Turku, 20520 Turku, Finland
| | - Jorma S. A. Viikari
- Division of Medicine, Department of Medicine, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.S.A.V.); (T.R.)
| | - Tapani Rönnemaa
- Division of Medicine, Department of Medicine, Turku University Hospital, University of Turku, 20520 Turku, Finland; (J.S.A.V.); (T.R.)
| | - Antti Jula
- Department of Chronic Disease Prevention, Institute for Health and Welfare, 20750 Turku, Finland;
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu & Biocenter Oulu, 90014 Oulu, Finland;
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (L.A.M.); (T.T.L.); (J.N.); (S.P.R.); (O.T.R.); (K.P.)
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, 20520 Turku, Finland
| | - Katja Pahkala
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland; (L.A.M.); (T.T.L.); (J.N.); (S.P.R.); (O.T.R.); (K.P.)
- Centre for Population Health Research, Turku University Hospital, University of Turku, 20520 Turku, Finland;
- Paavo Nurmi Centre, Sports & Exercise Medicine Unit, Department of Physical Activity and Health, University of Turku, 20520 Turku, Finland
| |
Collapse
|
22
|
Laitinen TT, Nuotio J, Niinikoski H, Juonala M, Rovio SP, Viikari JSA, Rönnemaa T, Magnussen CG, Sabin M, Burgner D, Jokinen E, Lagström H, Jula A, Simell O, Raitakari OT, Pahkala K. Attainment of Targets of the 20-Year Infancy-Onset Dietary Intervention and Blood Pressure Across Childhood and Young Adulthood: The Special Turku Coronary Risk Factor Intervention Project (STRIP). Hypertension 2020; 76:1572-1579. [PMID: 32921196 DOI: 10.1161/hypertensionaha.120.15075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined whether success in achieving the key targets of an infancy-onset 20-year dietary intervention was associated with blood pressure (BP) from infancy to young adulthood. In the prospective randomized STRIP (Special Turku Coronary Risk Factor Intervention Project; n=877 children), dietary counseling was provided biannually based on the Nordic Nutrition Recommendations primarily to improve the quality of dietary fat in children's diets and secondarily to promote intake of vegetables, fruits, and whole grains. Dietary data and BP were accrued annually from the age of 13 months to 20 years. The dietary targets for fat quality were defined as the ratio of saturated fatty acids to monounsaturated and polyunsaturated fatty acids <1:2 and intake of saturated fatty acids <10 E%, dietary fiber intake in the top age-specific quintile, and dietary sucrose intake as being in the lowest age-specific quintile. Attaining a higher number of the dietary targets was associated with lower systolic BP (mean [SE] systolic BP, 107.3 [0.3], 107.6 [0.3], 106.8 [0.3], and 106.7 [0.5] mm Hg in participants meeting 0, 1, 2, and 3 to 4 targets, respectively; P=0.03) and diastolic BP (mean [SE] diastolic BP, 60.4 [0.2], 60.5 [0.2], 59.9 [0.2], and 59.9 [0.3] mm Hg; P=0.02). When the lowest age-specific quintile of dietary cholesterol was added as an additional target, the association with systolic BP remained significant (P=0.047), but the association with diastolic BP attenuated (P=0.13). Achieving the key targets of an infancy-onset 20-year dietary intervention, reflecting dietary guidelines, was favorably albeit modestly associated with systolic and diastolic BP from infancy to young adulthood. Registration- URL: https://www.clinicaltrials.gov; Unique identifier: NCT00223600.
Collapse
Affiliation(s)
- Tomi T Laitinen
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (T.T.L., J.N., S.P.R., C.G.M., O.T.R., K.P.), University of Turku, Finland.,Sports and Exercise Medicine Unit, Department of Physical Activity and Health, Paavo Nurmi Centre (T.T.L., K.P.), University of Turku, Finland.,Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland.,Murdoch Children's Research Institute (T.T.L., J.N., M.S., D.B.), The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Joel Nuotio
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (T.T.L., J.N., S.P.R., C.G.M., O.T.R., K.P.), University of Turku, Finland.,Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland.,Heart Center (J.N.), Turku University Hospital, University of Turku, Finland.,Murdoch Children's Research Institute (T.T.L., J.N., M.S., D.B.), The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Harri Niinikoski
- Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland.,Department of Paediatrics and Adolescent Medicine (H.N., O.S.), Turku University Hospital, University of Turku, Finland
| | - Markus Juonala
- Department of Medicine (M.J., J.S.A.V., T.R.), University of Turku, Finland.,Division of Medicine, Turku University Hospital, Finland (M.J., J.S.A.V., T.R.)
| | - Suvi P Rovio
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (T.T.L., J.N., S.P.R., C.G.M., O.T.R., K.P.), University of Turku, Finland.,Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland
| | - Jorma S A Viikari
- Department of Medicine (M.J., J.S.A.V., T.R.), University of Turku, Finland.,Division of Medicine, Turku University Hospital, Finland (M.J., J.S.A.V., T.R.)
| | - Tapani Rönnemaa
- Department of Medicine (M.J., J.S.A.V., T.R.), University of Turku, Finland.,Division of Medicine, Turku University Hospital, Finland (M.J., J.S.A.V., T.R.)
| | - Costan G Magnussen
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (T.T.L., J.N., S.P.R., C.G.M., O.T.R., K.P.), University of Turku, Finland.,Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland.,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (C.G.M.)
| | - Matthew Sabin
- Murdoch Children's Research Institute (T.T.L., J.N., M.S., D.B.), The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Endocrinology (M.S.), The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia (M.S., D.B.)
| | - David Burgner
- Murdoch Children's Research Institute (T.T.L., J.N., M.S., D.B.), The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia (M.S., D.B.).,Department of Paediatrics, Monash University, Clayton, Victoria, Australia (D.B.)
| | - Eero Jokinen
- Department of Pediatric Cardiology, Hospital for Children and Adolescents, University of Helsinki, Finland (E.J.)
| | - Hanna Lagström
- Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland.,Department of Public Health (H.L.), Turku University Hospital, University of Turku, Finland
| | - Antti Jula
- Department of Chronic Disease Prevention, Institute for Health and Welfare, Turku, Finland (A.J.)
| | - Olli Simell
- Department of Paediatrics and Adolescent Medicine (H.N., O.S.), Turku University Hospital, University of Turku, Finland
| | - Olli T Raitakari
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (T.T.L., J.N., S.P.R., C.G.M., O.T.R., K.P.), University of Turku, Finland.,Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland.,Department of Public Health (H.L.), Turku University Hospital, University of Turku, Finland
| | - Katja Pahkala
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (T.T.L., J.N., S.P.R., C.G.M., O.T.R., K.P.), University of Turku, Finland.,Sports and Exercise Medicine Unit, Department of Physical Activity and Health, Paavo Nurmi Centre (T.T.L., K.P.), University of Turku, Finland.,Centre for Population Health Research (T.T.L., J.N., H.N., S.P.R., C.G.M., H.L., O.T.R., K.P.), Turku University Hospital, University of Turku, Finland
| |
Collapse
|
23
|
Hodder RK, O'Brien KM, Tzelepis F, Wyse RJ, Wolfenden L. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst Rev 2020; 5:CD008552. [PMID: 32449203 PMCID: PMC7273132 DOI: 10.1002/14651858.cd008552.pub7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future non-communicable diseases, including cardiovascular disease. Testing the effects of interventions to increase consumption of fruit and vegetables, including those focused on specific child-feeding strategies or broader multicomponent interventions targeting the home or childcare environment is required to assess the potential to reduce this disease burden. OBJECTIVES To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and two clinical trials registries to identify eligible trials on 25 January 2020. We searched Proquest Dissertations and Theses in November 2019. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included trials to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risks of bias of included trials; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures. We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. MAIN RESULTS We included 80 trials with 218 trial arms and 12,965 participants. Fifty trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Fifteen trials examined the impact of parent nutrition education only in increasing child fruit and vegetable intake. Fourteen trials examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. Two trials examined the effect of a nutrition education intervention delivered to children in increasing child fruit and vegetable intake. One trial examined the impact of a child-focused mindfulness intervention in increasing vegetable intake. We judged 23 of the 80 included trials as free from high risks of bias across all domains. Performance, detection and attrition bias were the most common domains judged at high risk of bias for the remaining trials. There is low-quality evidence that child-feeding practices versus no intervention may have a small positive effect on child vegetable consumption, equivalent to an increase of 5.30 grams as-desired consumption of vegetables (SMD 0.50, 95% CI 0.29 to 0.71; 19 trials, 2140 participants; mean post-intervention follow-up = 8.3 weeks). Multicomponent interventions versus no intervention has a small effect on child consumption of fruit and vegetables (SMD 0.32, 95% CI 0.09 to 0.55; 9 trials, 2961 participants; moderate-quality evidence; mean post-intervention follow-up = 5.4 weeks), equivalent to an increase of 0.34 cups of fruit and vegetables a day. It is uncertain whether there are any short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.13, 95% CI -0.02 to 0.28; 11 trials, 3050 participants; very low-quality evidence; mean post-intervention follow-up = 13.2 weeks). We were unable to pool child nutrition education interventions in meta-analysis; both trials reported a positive intervention effect on child consumption of fruit and vegetables (low-quality evidence). Very few trials reported long-term effectiveness (6 trials), cost effectiveness (1 trial) or unintended adverse consequences of interventions (2 trials), limiting our ability to assess these outcomes. Trials reported receiving governmental or charitable funds, except for four trials reporting industry funding. AUTHORS' CONCLUSIONS Despite identifying 80 eligible trials of various intervention approaches, the evidence for how to increase children's fruit and vegetable consumption remains limited in terms of quality of evidence and magnitude of effect. Of the types of interventions identified, there was moderate-quality evidence that multicomponent interventions probably lead to, and low-quality evidence that child-feeding practice may lead to, only small increases in fruit and vegetable consumption in children aged five years and under. It is uncertain whether parent nutrition education or child nutrition education interventions alone are effective in increasing fruit and vegetable consumption in children aged five years and under. Our confidence in effect estimates for all intervention approaches, with the exception of multicomponent interventions, is limited on the basis of the very low to low-quality evidence. Long-term follow-up of at least 12 months is required and future research should adopt more rigorous methods to advance the field. This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Rebecca K Hodder
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Kate M O'Brien
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Flora Tzelepis
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Rebecca J Wyse
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| | - Luke Wolfenden
- Hunter New England Population Health, Hunter New England Local Health District, Wallsend, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute, New Lambton, Australia
- Priority Research Centre in Health and Behaviour, University of Newcastle, Callaghan, Australia
| |
Collapse
|
24
|
Effects of 20-year infancy-onset dietary counselling on cardiometabolic risk factors in the Special Turku Coronary Risk Factor Intervention Project (STRIP): 6-year post-intervention follow-up. THE LANCET CHILD & ADOLESCENT HEALTH 2020; 4:359-369. [DOI: 10.1016/s2352-4642(20)30059-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 11/20/2022]
|
25
|
Hodder RK, O'Brien KM, Stacey FG, Tzelepis F, Wyse RJ, Bartlem KM, Sutherland R, James EL, Barnes C, Wolfenden L. Interventions for increasing fruit and vegetable consumption in children aged five years and under. Cochrane Database Syst Rev 2019; 2019:CD008552. [PMID: 31697869 PMCID: PMC6837849 DOI: 10.1002/14651858.cd008552.pub6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Insufficient consumption of fruits and vegetables in childhood increases the risk of future non-communicable diseases, including cardiovascular disease. Interventions to increase consumption of fruit and vegetables, such as those focused on specific child-feeding strategies and parent nutrition education interventions in early childhood may therefore be an effective strategy in reducing this disease burden. OBJECTIVES To assess the effectiveness, cost effectiveness and associated adverse events of interventions designed to increase the consumption of fruit, vegetables or both amongst children aged five years and under. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase and two clinical trials registries to identify eligible trials on 25 August 2019. We searched Proquest Dissertations and Theses in May 2019. We reviewed reference lists of included trials and handsearched three international nutrition journals. We contacted authors of included trials to identify further potentially relevant trials. SELECTION CRITERIA We included randomised controlled trials, including cluster-randomised controlled trials and cross-over trials, of any intervention primarily targeting consumption of fruit, vegetables or both among children aged five years and under, and incorporating a dietary or biochemical assessment of fruit or vegetable consumption. Two review authors independently screened titles and abstracts of identified papers; a third review author resolved disagreements. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed the risks of bias of included trials; a third review author resolved disagreements. Due to unexplained heterogeneity, we used random-effects models in meta-analyses for the primary review outcomes where we identified sufficient trials. We calculated standardised mean differences (SMDs) to account for the heterogeneity of fruit and vegetable consumption measures. We conducted assessments of risks of bias and evaluated the quality of evidence (GRADE approach) using Cochrane procedures. MAIN RESULTS We included 78 trials with 214 trial arms and 13,746 participants. Forty-eight trials examined the impact of child-feeding practices (e.g. repeated food exposure) in increasing child vegetable intake. Fifteen trials examined the impact of parent nutrition education in increasing child fruit and vegetable intake. Fourteen trials examined the impact of multicomponent interventions (e.g. parent nutrition education and preschool policy changes) in increasing child fruit and vegetable intake. Two trials examined the effect of a nutrition education intervention delivered to children in increasing child fruit and vegetable intake. One trial examined the impact of a child-focused mindfulness intervention in increasing vegetable intake. We judged 20 of the 78 included trials as free from high risks of bias across all domains. Performance, detection and attrition bias were the most common domains judged at high risk of bias for the remaining trials. There is very low-quality evidence that child-feeding practices versus no intervention may have a small positive effect on child vegetable consumption equivalent to an increase of 4.45 g as-desired consumption of vegetables (SMD 0.42, 95% CI 0.23 to 0.60; 18 trials, 2004 participants; mean post-intervention follow-up = 8.2 weeks). Multicomponent interventions versus no intervention has a small effect on child consumption of fruit and vegetables (SMD 0.34, 95% CI 0.10 to 0.57; 9 trials, 3022 participants; moderate-quality evidence; mean post-intervention follow-up = 5.4 weeks), equivalent to an increase of 0.36 cups of fruit and vegetables per day. It is uncertain whether there are any short-term differences in child consumption of fruit and vegetables in meta-analyses of trials examining parent nutrition education versus no intervention (SMD 0.12, 95% CI -0.03 to 0.28; 11 trials, 3078 participants; very low-quality evidence; mean post-intervention follow-up = 13.2 weeks). We were unable to pool child nutrition education interventions in meta-analysis; both trials reported a positive intervention effect on child consumption of fruit and vegetables (low-quality evidence). Very few trials reported long-term effectiveness (6 trials), cost effectiveness (1 trial) and unintended adverse consequences of interventions (2 trials), limiting their assessment. Trials reported receiving governmental or charitable funds, except for four trials reporting industry funding. AUTHORS' CONCLUSIONS Despite identifying 78 eligible trials of various intervention approaches, the evidence for how to increase children's fruit and vegetable consumption remains limited. There was very low-quality evidence that child-feeding practice may lead to, and moderate-quality evidence that multicomponent interventions probably lead to small increases in fruit and vegetable consumption in children aged five years and younger. It is uncertain whether parent nutrition education interventions are effective in increasing fruit and vegetable consumption in children aged five years and younger. Given that the quality of the evidence is very low or low, future research will likely change estimates and conclusions. Long-term follow-up of at least 12 months is required and future research should adopt more rigorous methods to advance the field. This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Rebecca K Hodder
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Kate M O'Brien
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Fiona G Stacey
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
- University of NewcastlePriority Research Centre in Physical Activity and NutritionCallaghanAustralia
| | - Flora Tzelepis
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Rebecca J Wyse
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Kate M Bartlem
- University of NewcastleSchool of PsychologyUniversity DriveCallaghanNew South WalesAustralia2308
| | - Rachel Sutherland
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Erica L James
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
| | - Courtney Barnes
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | - Luke Wolfenden
- Hunter New England Local Health DistrictHunter New England Population HealthLocked Bag 10WallsendAustralia2287
- University of NewcastleSchool of Medicine and Public HealthCallaghanAustralia
- Hunter Medical Research InstituteNew LambtonAustralia
- University of NewcastlePriority Research Centre in Health and BehaviourCallaghanAustralia
| | | |
Collapse
|