1
|
Leitner M, Murigneux V, Etebari K, Asgari S. Wolbachia elevates host methyltransferase expression and alters the m 6A methylation landscape in Aedes aegypti mosquito cells. BMC Microbiol 2025; 25:164. [PMID: 40128692 PMCID: PMC11934717 DOI: 10.1186/s12866-025-03898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025] Open
Abstract
Wolbachia pipientis is an intracellular endosymbiotic bacterium that blocks the replication of several arboviruses in transinfected Aedes aegypti mosquitoes, yet its antiviral mechanism remains unknown. For the first time, we employed Nanopore direct RNA sequencing technology to investigate the impact of wAlbB strain of Wolbachia on the host's N6-methyladenosine (m6A) machinery and post-transcriptional modification landscape. Our study revealed that Wolbachia infection elevates the expression of genes involved in the mosquito's m6A methyltransferase complex. However, knocking down these m6A-related genes did not affect Wolbachia density. Nanopore sequencing identified 1,392 differentially modified m6A DRACH motifs on mosquito transcripts, with 776 showing increased and 616 showing decreased m6A levels due to Wolbachia. These m6A sites were predominantly enriched in coding sequences and 3'-untranslated regions. Gene Ontology analysis revealed that genes with reduced m6A levels were over-represented in functional GO terms associated with purine nucleotide binding functions critical in the post-transcriptional modification process of m6A. Differential gene expression analysis of the Nanopore data uncovered that a total of 643 protein-coding genes were significantly differentially expressed, 427 were downregulated, and 216 were upregulated. Several classical and non-classical immune-related genes were amongst the downregulated DEGs. Notably, it revealed a critical host factor, transmembrane protein 41B (TMEM41B), which is required for flavivirus infection, was upregulated and methylated in the presence of Wolbachia. Indeed, there is a strong correlation between gene expression being upregulated in genes with both increased and decreased levels of m6A modification, respectively. Our findings underscore Wolbachia's ability to modulate many intracellular aspects of its mosquito host by influencing post-transcriptional m6A modifications and gene expression, and it unveils a potential link behind its antiviral properties.
Collapse
Affiliation(s)
- Michael Leitner
- School of the Environment, The University of Queensland, Brisbane, Australia
| | - Valentine Murigneux
- QCIF Facility for Advanced Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Kayvan Etebari
- School of Agriculture and Food Sustainability, The University of Queensland, Brisbane, Australia
| | - Sassan Asgari
- School of the Environment, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Moretti R, Lim JT, Ferreira AGA, Ponti L, Giovanetti M, Yi CJ, Tewari P, Cholvi M, Crawford J, Gutierrez AP, Dobson SL, Ross PA. Exploiting Wolbachia as a Tool for Mosquito-Borne Disease Control: Pursuing Efficacy, Safety, and Sustainability. Pathogens 2025; 14:285. [PMID: 40137770 PMCID: PMC11944716 DOI: 10.3390/pathogens14030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the application of control measures, mosquito-borne diseases continue to pose a serious threat to human health. In this context, exploiting Wolbachia, a common symbiotic bacterium in insects, may offer effective solutions to suppress vectors or reduce their competence in transmitting several arboviruses. Many Wolbachia strains can induce conditional egg sterility, known as cytoplasmic incompatibility (CI), when infected males mate with females that do not harbor the same Wolbachia infection. Infected males can be mass-reared and then released to compete with wild males, reducing the likelihood of wild females encountering a fertile mate. Furthermore, certain Wolbachia strains can reduce the competence of mosquitoes to transmit several RNA viruses. Through CI, Wolbachia-infected individuals can spread within the population, leading to an increased frequency of mosquitoes with a reduced ability to transmit pathogens. Using artificial methods, Wolbachia can be horizontally transferred between species, allowing the establishment of various laboratory lines of mosquito vector species that, without any additional treatment, can produce sterilizing males or females with reduced vector competence, which can be used subsequently to replace wild populations. This manuscript reviews the current knowledge in this field, describing the different approaches and evaluating their efficacy, safety, and sustainability. Successes, challenges, and future perspectives are discussed in the context of the current spread of several arboviral diseases, the rise of insecticide resistance in mosquito populations, and the impact of climate change. In this context, we explore the necessity of coordinating efforts among all stakeholders to maximize disease control. We discuss how the involvement of diverse expertise-ranging from new biotechnologies to mechanistic modeling of eco-epidemiological interactions between hosts, vectors, Wolbachia, and pathogens-becomes increasingly crucial. This coordination is especially important in light of the added complexity introduced by Wolbachia and the ongoing challenges posed by global change.
Collapse
Affiliation(s)
- Riccardo Moretti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
| | - Jue Tao Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | | | - Luigi Ponti
- Casaccia Research Center, Department for Sustainability, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (R.M.); (L.P.)
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
| | - Marta Giovanetti
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, Brazil; (A.G.A.F.); (M.G.)
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Roma, Italy
| | - Chow Jo Yi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Pranav Tewari
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.T.L.); (C.J.Y.); (P.T.)
| | - Maria Cholvi
- Area of Parasitology, Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, Universitat de València, 46100 Valencia, Spain; (M.C.)
| | - Jacob Crawford
- Verily Life Sciences, South San Francisco, CA 94080, USA; (J.C.)
| | - Andrew Paul Gutierrez
- Center for the Analysis of Sustainable Agricultural Systems, Kensington, CA 94707, USA or (A.P.G.)
- Division of Ecosystem Science, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Stephen L. Dobson
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA or (S.L.D.)
- MosquitoMate, Inc., Lexington, KY 40502, USA
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 2052, Australia; (P.A.R.)
| |
Collapse
|
3
|
Wang G, Hussain M, Qi Z, Asgari S. Role of Vigilin and RACK1 in dengue virus- Aedes aegypti-Wolbachia interactions. mSphere 2025; 10:e0048224. [PMID: 39714171 PMCID: PMC11774047 DOI: 10.1128/msphere.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Vigilin is a large and evolutionary conserved RNA-binding protein (RBP), which can interact with RNA through its KH domain. Vigilin is, therefore, a multifunctional protein reported to be associated with RNA transport and metabolism, sterol metabolism, chromosome segregation, carcinogenesis, and heterochromatin-mediated gene silencing. The receptor for activated C kinase 1 (RACK1) is another highly conserved protein involved in many cellular pathways. Functional studies in human cells indicated that RACK1 interacts with Vigilin to promote dengue virus (DENV) replication. Both proteins are associated with the endoplasmic reticulum. Here, we investigated the significance of Vigilin and RACK1 homologs in Aedes aegypti mosquitoes concerning DENV replication and Wolbachia infection. We identified the homologs of the two genes in Ae. aegypti (AeVigilin and AeRACK1), which were upregulated in DENV-infected Aag2 cells and mosquitoes, and silencing them in Aag2 cells resulted in reduced DENV replication. Co-immunoprecipitation showed that AeRACK1 and AeVigilin interact in mosquito cells. Interestingly, we also found upregulation of both genes in a Wolbachia-infected cell line (Aag2.wAlbB). Furthermore, silencing AeVigilin and AeRACK1 in Aag2.wAlbB cells reduced DENV replication but increased Wolbachia density. However, we did not find a significant effect on DENV replication after silencing both genes in Ae. aegypti mosquitoes. Overall, our results support the involvement and significance of AeVigilin and AeRACK1 in DENV replication in Ae. aegypti.IMPORTANCEDengue virus (DENV), transmitted mainly by Aedes aegypti mosquitoes, poses significant health risks. Identifying factors involved in the virus replication in mosquitoes and human hosts is essential for devising control measures. In this study, we show that Vigilin and the receptor for activated C kinase 1 (RACK1), two proteins shown to play a role in the replication of DENV in human cells, are induced in mosquitoes and cell lines following DENV replication. Both proteins reside in the cytoplasm, where they interact similarly to human cells. Silencing the genes in mosquito cells significantly reduced virus replication. Furthermore, we found that both genes are induced in mosquito cells transinfected with Wolbachia, a bacterium that blocks DENV replication. The results help better understand the role of the common factors supporting DENV replication in mosquitoes and human cells.
Collapse
Affiliation(s)
- Guijie Wang
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Asselin A, Johnson K. The infectivity of virus particles from Wolbachia-infected Drosophila. BMC Microbiol 2025; 25:25. [PMID: 39819374 PMCID: PMC11737224 DOI: 10.1186/s12866-024-03722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025] Open
Abstract
Viruses transmitted by arthropods pose a huge risk to human health. Wolbachia is an endosymbiotic bacterium that infects various arthropods and can block the viral replication cycle of several medically important viruses. As such, it has been successfully implemented in vector control strategies against mosquito-borne diseases, including Dengue virus. Whilst the mechanisms behind Wolbachia-mediated viral blocking are not fully characterised, it was recently shown that viruses grown in the presence of Wolbachia in some Dipteran cell cultures are less infectious than those grown in the absence of Wolbachia. Here, we investigate the breadth of this mechanism by determining if Wolbachia reduces infectivity in a different system at a different scale. To do this, we looked at Wolbachia's impact on insect viruses from two diverse virus families within the whole organism Drosophila melanogaster. Drosophila C virus (DCV; Family Dicistroviridae) and Flock House virus (FHV; Famliy Nodaviridae) were grown in adult D. melanogaster flies with and without Wolbachia strain wMelPop. Measures of the physical characteristics, infectivity, pathogenicity, and replicative properties of progeny virus particles did not identify any impact of Wolbachia on either DCV or FHV. Therefore, there was no evidence that changes in infectivity contribute to Wolbachia-mediated viral blocking in this system. Overall, this is consistent with growing evidence that the mechanisms behind Wolbachia viral blocking are dependent on the unique tripartite interactions occurring between the host, the Wolbachia strain, and the infecting virus.
Collapse
Affiliation(s)
- Angelique Asselin
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| | - Karyn Johnson
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Hussain M, Qi Z, Asgari S. Interaction of the Wolbachia surface protein with a novel pro-viral protein from Aedes aegypti. mBio 2025; 16:e0148624. [PMID: 39576110 PMCID: PMC11708058 DOI: 10.1128/mbio.01486-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Dengue virus (DENV) and other flaviviruses are prevented from replicating in mosquitoes by Wolbachia. To date, several reports have appeared that highlight multiple molecular and cellular pathways involved in the blocking mechanism, which underlines the complicated nature of the mechanism. Here, we developed a hypothesis on whether Wolbachia proteins interact with pro-viral host proteins by using a unique approach to study the antiviral mechanism based on Wolbachia-host protein-protein interaction. We selected Wolbachia surface protein (WSP) for co-immunoprecipitation because of its abundance and possible secretion. We first confirmed WSP's secretion in mosquito cells and found two host proteins, Ae. aegypti serine-threonine kinase (STK) and synaptic vesicle membrane (SVM) protein VAT-1, and one Wolbachia protein (wGroEL) interacting with WSP. We examined the role of STK and SVM genes in relation to DENV replication in Ae. aegypti mosquitoes and mosquito cell lines with and without Wolbachia. In DENV-infected Aag2 cells, the expression of SVM and STK was significantly increased. However, although these genes were induced in Wolbachia-infected Aag2 cells, they were downregulated after DENV infection. Silencing of STK, but not SVM, reduced DENV replication in Aag2 cells and mosquitoes. Conversely, RNA activation of STK, by utilizing promoter induction via short activating oligos, resulted in higher DENV replication in Wolbachia-infected and uninfected cell lines. Overall, our findings suggest that STK is a pro-viral gene, and Wolbachia WSP binds to STK, possibly making it less accessible for DENV replication. IMPORTANCE Wolbachia is an endosymbiotic bacterium that blocks the replication of arboviruses in transinfected Aedes aegypti mosquitoes. In this study, we focused on identifying the potential interaction of Wolbachia proteins with the host pro-viral proteins. For this, we embarked on identifying the interacting proteins with a major Wolbachia protein, WSP, which is both structural and also secreted into the host cells. An Ae. aegypti STK was identified, which is induced in DENV and Wolbachia-infected cells. Silencing or induction of the gene led to reduced and increased DENV replication in vitro. Consistently, knocking down the gene in mosquitoes resulted in decreased virus replication. We hypothesize that WSP may sequester STK, which is pro-viral, contributing to Wolbachia virus blocking.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
da Moura AJF, Tomaz F, Melo T, Seixas G, Sousa CA, Pinto J. Vector competence of Culex quinquefasciatus from Santiago Island, Cape Verde, to West Nile Virus: exploring the potential effect of the vector native Wolbachia. Parasit Vectors 2024; 17:536. [PMID: 39716303 DOI: 10.1186/s13071-024-06609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/28/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Culex quinquefasciatus plays a crucial role as a vector of West Nile virus (WNV). This mosquito species is widely distributed in Cape Verde, being found in all inhabited islands of the archipelago. However, no data are currently available on the susceptibility of the local mosquito population to WNV. This study aimed to assess the vector competence of Cx. quinquefasciatus mosquitoes from Santiago Island, Cape Verde, for WNV and to explore the potential impact of its native Wolbachia on virus transmission. METHODS Wolbachia-infected and uninfected Cx. quinquefasciatus female mosquitoes were exposed to WNV lineage 1 PT6.39 strain using a Hemotek membrane feeding system. Mosquito samples, including the body, legs, wings and saliva, were collected at days 7, 14 and 21 post-infection (dpi) to assess WNV infection through one-step quantitative real-time PCR (RT-qPCR). RESULTS Culex quinquefasciatus from Cape Verde exhibited high susceptibility to the tested strain of WNV. Also, treated females without their native Wolbachia exhibited significantly higher WNV load in their bodies and greater dissemination rate at 7 dpi than their wild-type counterparts carrying Wolbachia. CONCLUSIONS The high susceptibility to WNV of Cx. quinquefasciatus from Cape Verde poses a potential risk for virus transmission in the archipelago. However, Wolbachia infection in this mosquito species seems to confer protection against WNV dissemination in the early stages of viral infection. Additional research is required to uncover the mechanisms driving this protection and its potential impact on WNV transmission.
Collapse
Affiliation(s)
- Aires Januário Fernandes da Moura
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
- Unidade de Ciências da Natureza da Vida e do Ambiente, Universidade Jean Piaget de Cabo Verde, Praia, Cape Verde.
| | - Filipe Tomaz
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Tiago Melo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Gonçalo Seixas
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Carla A Sousa
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| |
Collapse
|
7
|
Rajendran D, Vinayagam S, Sekar K, Bhowmick IP, Sattu K. Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies. MICROBIAL ECOLOGY 2024; 87:154. [PMID: 39681734 PMCID: PMC11649735 DOI: 10.1007/s00248-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/18/2024]
Abstract
Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.
Collapse
Affiliation(s)
- Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Ipsita Pal Bhowmick
- Department of Malariology, ICMR-RMRCNE Region, Dibrugarh, Assam, 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.
| |
Collapse
|
8
|
Montenegro D, Cortés-Cortés G, Balbuena-Alonso MG, Warner C, Camps M. Wolbachia-based emerging strategies for control of vector-transmitted disease. Acta Trop 2024; 260:107410. [PMID: 39349234 PMCID: PMC11637914 DOI: 10.1016/j.actatropica.2024.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Dengue fever is a mosquito-transmitted disease of great public health importance. Dengue lacks adequate vaccine protection and insecticide-based methods of mosquito control are proving increasingly ineffective. Here we review the emerging use of mosquitoes transinfected with the obligate intracellular bacterium Wolbachia pipientis for vector control. Wolbachia often induces cytoplasmic incompatibility in its mosquito hosts, resulting in infertile progeny between an infected male and an uninfected female. Wolbachia infection also suppresses the replication of pathogens in the mosquito, a process known as "pathogen blocking". Two strategies have emerged. The first one releases Wolbachia carriers (both male and female) to replace the wild mosquito population, a process driven by cytoplasmic incompatibility and that becomes irreversible once a threshold is reached. This suppresses disease transmission mainly by pathogen blocking and frequently requires a single intervention. The second strategy floods the field population with an exclusively male population of Wolbachia-carrying mosquitoes to generate infertile hybrid progeny. In this case, transmission suppression depends largely on decreasing the population density of mosquitoes driven by infertility and requires continued mosquito release. The efficacy of both Wolbachia-based approaches has been conclusively demonstrated by randomized and non-randomized studies of deployments across the world. However, results conducted in one setting cannot be directly or easily extrapolated to other settings because dengue incidence is highly affected by the conditions into which the mosquitoes are released. Compared to traditional vector control methods, Wolbachia-based approaches are much more environmentally friendly and can be effective in the medium/long term. On the flip side, they are much more complex and cost-intensive operations, requiring a substantial investment, infrastructure, trained personnel, coordination between agencies, and community engagement. Finally, we discuss recent evidence suggesting that the release of Wolbachia-transinfected mosquitoes has a moderate potential risk of spreading potentially dangerous genes in the environment.
Collapse
Affiliation(s)
- Diego Montenegro
- Corporación Innovation Hub, Monteria 230001, Colombia; Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Grupo de Investigación: Salud y Tecnología 4.0. Fundación Chilloa, Santa Marta 470001, Colombia
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - María Guadalupe Balbuena-Alonso
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA; Posgrado en Microbiología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, San Manuel, Puebla 72570, Mexico
| | - Caison Warner
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
9
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
10
|
Klimov PB, Hubert J, Erban T, Alejandra Perotti M, Braig HR, Flynt A, He Q, Cui Y. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q). Int J Parasitol 2024; 54:661-674. [PMID: 38992783 DOI: 10.1016/j.ijpara.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.
Collapse
Affiliation(s)
- Pavel B Klimov
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA; Tyumen State University, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen, Russia.
| | - Jan Hubert
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia; Czech University of Life Science, Faculty of Microbiology Nutrient and Dietics, Prague, Czechia
| | - Tomas Erban
- Crop Research Institute, Department of Stored Product and Food Safety, Prague, Czechia
| | - M Alejandra Perotti
- University of Reading, Ecology and Evolutionary Biology Section, School of Biological Sciences, Reading RG6 6AS, United Kingdom
| | - Henk R Braig
- Institute and Museum of Natural Sciences, Faculty of Natural and Exact Sciences, National University of San Juan, San Juan, J5400 DNQ, Argentina
| | - Alex Flynt
- University of Southern Mississippi, School of Biological, Environmental, and Earth Sciences, Hattiesburg, MS, USA
| | - Qixin He
- Purdue University, Department of Biological Sciences, 915 W State St, West Lafayette, IN, USA.
| | - Yubao Cui
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University.Wuxi, PR Chin.
| |
Collapse
|
11
|
Lau MJ, Nie S, Ross PA, Endersby-Harshman NM, Hoffmann AA. Long-term impacts of egg quiescence and Wolbachia infection on lipid profiles in Aedes aegypti: Ovarian roles in lipid synthesis during reproduction. JOURNAL OF INSECT PHYSIOLOGY 2024; 157:104674. [PMID: 38997103 DOI: 10.1016/j.jinsphys.2024.104674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Wolbachia, an endosymbiotic bacterium, relies on nutrients from its host to complete its life cycle. The presence of Wolbachia strain wAlbB in the mosquito Aedes aegypti during egg or larval stages affects the host's development, leading to the absence of developed and visible ovaries in adult mosquito females. In this study, we investigated the impacts of egg quiescence and Wolbachia infection on lipid profiles of adult Ae. aegypti females, and discerned the role of ovaries in lipid synthesis in the reproductive process. The lipidomes of Wolbachia infected and uninfected female individuals at various developmental stages were quantitatively analyzed by LC-MS/MS. Lipidomic change patterns were systematically further investigated in wAlbB-infected fertile females and infertile females following blood feeding. Prolonged egg quiescence induced a shortage of acyl-carnitine (CAR) and potentially impacted some molecules of diacyl-phospholipid (diacyl-PL) and sphingolipid (SL) in young adult mosquitoes. After the first gonotrophic cycle, infertile females accumulated more CAR and lyso-phospholipid (lyso-PL) than fertile females. Then in the second gonotrophic cycle, the patterns of different lipid groups remained similar between fertile and infertile females. Only a small proportion of molecules of triglyceride (TG), phospholipid (lyso-PL and diacyl-PL) and ceramide (Cer) increased exclusively in fertile females from 0 h to 16 h post blood meal, suggesting that the generation or prescence of these lipids rely on ovaries. In addition, we found cardiolipins (CL) might be impacted by Wolbachia infection at the egg stage, and infected mosquitoes also showed distinct patterns between fertile and infertile females at their second gonotrophic cycle. Our study provides new insights into the long-term influence of Wolbachia on lipid profiles throughout various life stages of mosquitoes. Additionally, it suggests a role played by ovaries in lipid synthesis during mosquito reproduction.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Nancy M Endersby-Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Lefteri DA, Rainey SM, Murdochy SM, Sinkins SP. Bunyamwera Virus Infection of Wolbachia-Carrying Aedes aegypti Mosquitoes Reduces Wolbachia Density. Viruses 2024; 16:1336. [PMID: 39205310 PMCID: PMC11360823 DOI: 10.3390/v16081336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Wolbachia symbionts introduced into Aedes mosquitoes provide a highly effective dengue virus transmission control strategy, increasingly utilised in many countries in an attempt to reduce disease burden. Whilst highly effective against dengue and other positive-sense RNA viruses, it remains unclear how effective Wolbachia is against negative-sense RNA viruses. Therefore, the effect of Wolbachia on Bunyamwera virus (BUNV) infection in Aedes aegypti was investigated using wMel and wAlbB, two strains currently used in Wolbachia releases for dengue control, as well as wAu, a strain that typically persists at a high density and is an extremely efficient blocker of positive-sense viruses. Wolbachia was found to reduce BUNV infection in vitro but not in vivo. Instead, BUNV caused significant impacts on density of all three Wolbachia strains following infection of Ae. aegypti mosquitoes. The ability of Wolbachia to successfully persist within the mosquito and block virus transmission is partially dependent on its intracellular density. However, reduction in Wolbachia density was not observed in offspring of infected mothers. This could be due in part to a lack of transovarial transmission of BUNV observed. The results highlight the importance of understanding the complex interactions between multiple arboviruses, mosquitoes and Wolbachia in natural environments, the impact this can have on maintaining protection against diseases, and the necessity for monitoring Wolbachia prevalence at release sites.
Collapse
Affiliation(s)
| | | | | | - Steven P. Sinkins
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasgow, Glasgow G61 1QH, UK; (D.A.L.) (S.M.M.)
| |
Collapse
|
13
|
Mushtaq I, Sarwar MS, Munzoor I. A comprehensive review of Wolbachia-mediated mechanisms to control dengue virus transmission in Aedes aegypti through innate immune pathways. Front Immunol 2024; 15:1434003. [PMID: 39176079 PMCID: PMC11338905 DOI: 10.3389/fimmu.2024.1434003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024] Open
Abstract
The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.
Collapse
|
14
|
Behrmann LV, Meier K, Vollmer J, Chiedu CC, Schiefer A, Hoerauf A, Pfarr K. In vitro extracellular replication of Wolbachia endobacteria. Front Microbiol 2024; 15:1405287. [PMID: 39091298 PMCID: PMC11293327 DOI: 10.3389/fmicb.2024.1405287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Obligate intracellular endobacteria of the genus Wolbachia are widespread in arthropods and several filarial nematodes. Control programs for vector-borne diseases (dengue, Zika, malaria) and anti-filarial therapy with antibiotics are based on this important endosymbiont. Investigating Wolbachia, however, is impeded by the need for host cells. In this study, the requirements for Wolbachia wAlbB growth in a host cell-free in vitro culture system were characterized via qPCRs. A cell lysate fraction from Aedes albopictus C6/36 insect cells containing cell membranes and medium with fetal bovine serum were identified as requisite for cell-free replication of Wolbachia. Supplementation with the membrane fraction of insect cell lysate increased extracellular Wolbachia replication by 4.2-fold. Replication rates in the insect cell-free culture were lower compared to Wolbachia grown inside insect cells. However, the endobacteria were able to replicate for up to 12 days and to infect uninfected C6/36 cells. Cell-free Wolbachia treated with the lipid II biosynthesis inhibitor fosfomycin had an enlarged phenotype, seen previously for intracellular Wolbachia in C6/36 cells, indicating that the bacteria were unable to divide. In conclusion, we have developed a cell-free culture system in which Wolbachia replicate for up to 12 days, providing an in vitro tool to elucidate the biology of these endobacteria, e.g., cell division by using compounds that may not enter the C6/36 cells. A better understanding of Wolbachia biology, and in particular host-symbiont interactions, is key to the use of Wolbachia in vector control programs and to future drug development against filarial diseases.
Collapse
Affiliation(s)
- Lara Vanessa Behrmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kirstin Meier
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jennifer Vollmer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Chukwuebuka Chibuzo Chiedu
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Andrea Schiefer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
15
|
Mushtaq I, Sarwar MS, Chaudhry A, Shah SAH, Ahmad MM. Updates on traditional methods for combating malaria and emerging Wolbachia-based interventions. Front Cell Infect Microbiol 2024; 14:1330475. [PMID: 38716193 PMCID: PMC11074371 DOI: 10.3389/fcimb.2024.1330475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
The escalating challenge of malaria control necessitates innovative approaches that extend beyond traditional control strategies. This review explores the incorporation of traditional vector control techniques with emerging Wolbachia-based interventions. Wolbachia, a naturally occurring bacteria, offers a novel approach for combatting vector-borne diseases, including malaria, by reducing the mosquitoes' ability to transmit these diseases. The study explores the rationale for this integration, presenting various case studies and pilot projects that have exhibited significant success. Employing a multi-dimensional approach that includes community mobilization, environmental modifications, and new biological methods, the paper posits that integrated efforts could mark a turning point in the struggle against malaria. Our findings indicate that incorporating Wolbachia-based strategies into existing vector management programs not only is feasible but also heightens the efficacy of malaria control initiatives in different countries especially in Pakistan. The paper concludes that continued research and international collaboration are imperative for translating these promising methods from the laboratory to the field, thereby offering a more sustainable and effective malaria control strategy.
Collapse
|
16
|
Loterio RK, Monson EA, Templin R, de Bruyne JT, Flores HA, Mackenzie JM, Ramm G, Helbig KJ, Simmons CP, Fraser JE. Antiviral Wolbachia strains associate with Aedes aegypti endoplasmic reticulum membranes and induce lipid droplet formation to restrict dengue virus replication. mBio 2024; 15:e0249523. [PMID: 38132636 PMCID: PMC10865983 DOI: 10.1128/mbio.02495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.
Collapse
Affiliation(s)
- Robson K. Loterio
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ebony A. Monson
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Rachel Templin
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | | | - Heather A. Flores
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georg Ramm
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Karla J. Helbig
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Cameron P. Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- World Mosquito Program, Monash University, Clayton, Australia
| | - Johanna E. Fraser
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
17
|
Rainey SM, Lefteri DA, Darby C, Kohl A, Merits A, Sinkins SP. Evidence of Differences in Cellular Regulation of Wolbachia-Mediated Viral Inhibition between Alphaviruses and Flaviviruses. Viruses 2024; 16:115. [PMID: 38257815 PMCID: PMC10818798 DOI: 10.3390/v16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
The intracellular bacterium Wolbachia is increasingly being utilised in control programs to limit the spread of arboviruses by Aedes mosquitoes. Achieving a better understanding of how Wolbachia strains can reduce viral replication/spread could be important for the long-term success of such programs. Previous studies have indicated that for some strains of Wolbachia, perturbations in lipid metabolism and cholesterol storage are vital in Wolbachia-mediated antiviral activity against the flaviviruses dengue and Zika; however, it has not yet been examined whether arboviruses in the alphavirus group are affected in the same way. Here, using the reporters for the alphavirus Semliki Forest virus (SFV) in Aedes albopictus cells, we found that Wolbachia strains wMel, wAu and wAlbB blocked viral replication/translation early in infection and that storage of cholesterol in lipid droplets is not key to this inhibition. Another alphavirus, o'nyong nyong virus (ONNV), was tested in both Aedes albopictus cells and in vivo in stable, transinfected Aedes aegypti mosquito lines. The strains wMel, wAu and wAlbB show strong antiviral activity against ONNV both in vitro and in vivo. Again, 2-hydroxypropyl-β-cyclodextrin (2HPCD) was not able to rescue ONNV replication in cell lines, suggesting that the release of stored cholesterol caused by wMel is not able to rescue blockage of ONNV. Taken together, this study shows that alphaviruses appear to be inhibited early in replication/translation and that there may be differences in how alphaviruses are inhibited by Wolbachia in comparison to flaviviruses.
Collapse
Affiliation(s)
- Stephanie M. Rainey
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| | - Daniella A. Lefteri
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| | - Christie Darby
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| | - Alain Kohl
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
- Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia;
| | - Steven P. Sinkins
- MRC-University of Glasgow-Centre for Virus Research, Garscube Campus, University of Glasogw, Glasgow G61 1QH, UK; (D.A.L.); (A.K.)
| |
Collapse
|
18
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
19
|
Serbus LR. A Light in the Dark: Uncovering Wolbachia-Host Interactions Using Fluorescence Imaging. Methods Mol Biol 2024; 2739:349-373. [PMID: 38006562 DOI: 10.1007/978-1-0716-3553-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The success of microbial endosymbionts, which reside naturally within a eukaryotic "host" organism, requires effective microbial interaction with, and manipulation of, the host cells. Fluorescence microscopy has played a key role in elucidating the molecular mechanisms of endosymbiosis. For 30 years, fluorescence analyses have been a cornerstone in studies of endosymbiotic Wolbachia bacteria, focused on host colonization, maternal transmission, reproductive parasitism, horizontal gene transfer, viral suppression, and metabolic interactions in arthropods and nematodes. Fluorescence-based studies stand to continue informing Wolbachia-host interactions in increasingly detailed and innovative ways.
Collapse
Affiliation(s)
- Laura Renee Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA.
| |
Collapse
|
20
|
Edwards B, Ghedin E, Voronin D. Wolbachia interferes with Zika virus replication by hijacking cholesterol metabolism in mosquito cells. Microbiol Spectr 2023; 11:e0218023. [PMID: 37811984 PMCID: PMC10715073 DOI: 10.1128/spectrum.02180-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Arthropod-borne viruses are emerging pathogens that are spread widely by mosquitos. Zika virus is an arbovirus that can infect humans and be transmitted from an infected mother to the fetus, potentially leading to microcephaly in infants. One promising strategy to prevent disease caused by arboviruses is to target the insect vector population. Recent field studies have shown that mosquito populations infected with Wolbachia bacteria suppress arbovirus replication and transmission. Here, we describe how intracellular bacteria redirect resources within their host cells and suppress Zika virus replication at the cellular level. Understanding the mechanism behind Wolbachia-induced interference of arbovirus replication could help advance strategies to control arbovirus pathogens in insect vectors and human populations.
Collapse
Affiliation(s)
- Brent Edwards
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elodie Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Denis Voronin
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Pascar J, Middleton H, Dorus S. Aedes aegypti microbiome composition covaries with the density of Wolbachia infection. MICROBIOME 2023; 11:255. [PMID: 37978413 PMCID: PMC10655336 DOI: 10.1186/s40168-023-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Wolbachia is a widespread bacterial endosymbiont that can inhibit vector competency when stably transinfected into the mosquito, Aedes aegypti, a primary vector of the dengue virus (DENV) and other arboviruses. Although a complete mechanistic understanding of pathogen blocking is lacking, it is likely to involve host immunity induction and resource competition between Wolbachia and DENV, both of which may be impacted by microbiome composition. The potential impact of Wolbachia transinfection on host fitness is also of importance given the widespread release of mosquitos infected with the Drosophila melanogaster strain of Wolbachia (wMel) in wild populations. Here, population-level genomic data from Ae. aegypti was surveyed to establish the relationship between the density of wMel infection and the composition of the host microbiome. RESULTS Analysis of genomic data from 172 Ae. aegypti females across six populations resulted in an expanded and quantitatively refined, species-level characterization of the bacterial, archaeal, and fungal microbiome. This included 844 species of bacteria across 23 phyla, of which 54 species were found to be ubiquitous microbiome members across these populations. The density of wMel infection was highly variable between individuals and negatively correlated with microbiome diversity. Network analyses revealed wMel as a hub comprised solely of negative interactions with other bacterial species. This contrasted with the large and highly interconnected network of other microbiome species that may represent members of the midgut microbiome community in this population. CONCLUSION Our bioinformatic survey provided a species-level characterization of Ae. aegypti microbiome composition and variation. wMel load varied substantially across populations and individuals and, importantly, wMel was a major hub of a negative interactions across the microbiome. These interactions may be an inherent consequence of heightened pathogen blocking in densely infected individuals or, alternatively, may result from antagonistic Wolbachia-incompatible bacteria that could impede the efficacy of wMel as a biological control agent in future applications. The relationship between wMel infection variation and the microbiome warrants further investigation in the context of developing wMel as a multivalent control agent against other arboviruses. Video Abstract.
Collapse
Affiliation(s)
- Jane Pascar
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Henry Middleton
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
22
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
23
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
24
|
Minwuyelet A, Petronio GP, Yewhalaw D, Sciarretta A, Magnifico I, Nicolosi D, Di Marco R, Atenafu G. Symbiotic Wolbachia in mosquitoes and its role in reducing the transmission of mosquito-borne diseases: updates and prospects. Front Microbiol 2023; 14:1267832. [PMID: 37901801 PMCID: PMC10612335 DOI: 10.3389/fmicb.2023.1267832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, chikungunya, Zika fever, and filariasis have the greatest health and economic impact. These mosquito-borne diseases are a major cause of morbidity and mortality in tropical and sub-tropical areas. Due to the lack of effective vector containment strategies, the prevalence and severity of these diseases are increasing in endemic regions. Nowadays, mosquito infection by the endosymbiotic Wolbachia represents a promising new bio-control strategy. Wild-infected mosquitoes had been developing cytoplasmic incompatibility (CI), phenotypic alterations, and nutrition competition with pathogens. These reduce adult vector lifespan, interfere with reproduction, inhibit other pathogen growth in the vector, and increase insecticide susceptibility of the vector. Wild, uninfected mosquitoes can also establish stable infections through trans-infection and have the advantage of adaptability through pathogen defense, thereby selectively infecting uninfected mosquitoes and spreading to the entire population. This review aimed to evaluate the role of the Wolbachia symbiont with the mosquitoes (Aedes, Anopheles, and Culex) in reducing mosquito-borne diseases. Global databases such as PubMed, Web of Sciences, Scopus, and pro-Quest were accessed to search for potentially relevant articles. We used keywords: Wolbachia, Anopheles, Aedes, Culex, and mosquito were used alone or in combination during the literature search. Data were extracted from 56 articles' texts, figures, and tables of the included article.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| | | | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Andrea Sciarretta
- Department of Agriculture, Environment and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Daria Nicolosi
- Department of Pharmaceutical and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Getnet Atenafu
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
25
|
Boehm EC, Jaeger AS, Ries HJ, Castañeda D, Weiler AM, Valencia CC, Weger-Lucarelli J, Ebel GD, O’Connor SL, Friedrich TC, Zamanian M, Aliota MT. Wolbachia-mediated resistance to Zika virus infection in Aedes aegypti is dominated by diverse transcriptional regulation and weak evolutionary pressures. PLoS Negl Trop Dis 2023; 17:e0011674. [PMID: 37782672 PMCID: PMC10569609 DOI: 10.1371/journal.pntd.0011674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/12/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible Aedes aegypti populations with mosquitoes that have been colonized by the intracellular bacterium Wolbachia and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in Ae. aegypti infected with the wMel strain of Wolbachia that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without Wolbachia revealed that the influence of wMel on mosquito gene transcription is multifactorial. Importantly, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of Wolbachia on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in Wolbachia-infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of Wolbachia. Together, these findings suggest that there is no clear transcriptional profile associated with Wolbachia-mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system.
Collapse
Affiliation(s)
- Emma C. Boehm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Hunter J. Ries
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Corina C. Valencia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - James Weger-Lucarelli
- Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Gregory D. Ebel
- Colorado State University, Fort Collins, Colorado, United States of America
| | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| |
Collapse
|
26
|
Katak RDM, Cintra AM, Burini BC, Marinotti O, Souza-Neto JA, Rocha EM. Biotechnological Potential of Microorganisms for Mosquito Population Control and Reduction in Vector Competence. INSECTS 2023; 14:718. [PMID: 37754686 PMCID: PMC10532289 DOI: 10.3390/insects14090718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/11/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Mosquitoes transmit pathogens that cause human diseases such as malaria, dengue fever, chikungunya, yellow fever, Zika fever, and filariasis. Biotechnological approaches using microorganisms have a significant potential to control mosquito populations and reduce their vector competence, making them alternatives to synthetic insecticides. Ongoing research has identified many microorganisms that can be used effectively to control mosquito populations and disease transmission. However, the successful implementation of these newly proposed approaches requires a thorough understanding of the multipronged microorganism-mosquito-pathogen-environment interactions. Although much has been achieved in discovering new entomopathogenic microorganisms, antipathogen compounds, and their mechanisms of action, only a few have been turned into viable products for mosquito control. There is a discrepancy between the number of microorganisms with the potential for the development of new insecticides and/or antipathogen products and the actual available products, highlighting the need for investments in the intersection of basic research and biotechnology.
Collapse
Affiliation(s)
- Ricardo de Melo Katak
- Malaria and Dengue Laboratory, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus 69060-001, AM, Brazil;
| | - Amanda Montezano Cintra
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Bianca Correa Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA;
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, IN 47405, USA;
| | - Jayme A. Souza-Neto
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| | - Elerson Matos Rocha
- Multiuser Central Laboratory, Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil; (A.M.C.); (J.A.S.-N.)
| |
Collapse
|
27
|
Rainey SM, Geoghegan V, Lefteri DA, Ant TH, Martinez J, McNamara CJ, Kamel W, de Laurent ZR, Castello A, Sinkins SP. Differences in proteome perturbations caused by the Wolbachia strain wAu suggest multiple mechanisms of Wolbachia-mediated antiviral activity. Sci Rep 2023; 13:11737. [PMID: 37474590 PMCID: PMC10359319 DOI: 10.1038/s41598-023-38127-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
Some strains of the inherited bacterium Wolbachia have been shown to be effective at reducing the transmission of dengue virus (DENV) and other RNA viruses by Aedes aegypti in both laboratory and field settings and are being deployed for DENV control. The degree of virus inhibition varies between Wolbachia strains. Density and tissue tropism can contribute to these differences but there are also indications that this is not the only factor involved: for example, strains wAu and wAlbA are maintained at similar intracellular densities but only wAu produces strong DENV inhibition. We previously reported perturbations in lipid transport dynamics, including sequestration of cholesterol in lipid droplets, with strains wMel/wMelPop in Ae. aegypti. To further investigate the cellular basis underlying these differences, proteomic analysis of midguts was carried out on Ae. aegypti lines carrying strains wAu and wAlbA: with the hypothesis that differences in perturbations may underline Wolbachia-mediated antiviral activity. Surprisingly, wAu-carrying midguts not only showed distinct proteome perturbations when compared to non-Wolbachia carrying and wAlbA-carrying midguts but also wMel-carrying midguts. There are changes in RNA processing pathways and upregulation of a specific set of RNA-binding proteins in the wAu-carrying line, including genes with known antiviral activity. Lipid transport and metabolism proteome changes also differ between strains, and we show that strain wAu does not produce the same cholesterol sequestration phenotype as wMel. Moreover, in contrast to wMel, wAu antiviral activity was not rescued by cyclodextrin treatment. Together these results suggest that wAu could show unique features in its inhibition of arboviruses compared to previously characterized Wolbachia strains.
Collapse
Affiliation(s)
| | - Vincent Geoghegan
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
- The University of York, York, UK
| | | | - Thomas H Ant
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | - Julien Martinez
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | | | - Wael Kamel
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | | | - Alfredo Castello
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK
| | - Steven P Sinkins
- MRC-University of Glasgow-Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
28
|
Boehm EC, Jaeger AS, Ries HJ, Castañeda D, Weiler AM, Valencia CC, Weger-Lucarelli J, Ebel GD, O’Connor SL, Friedrich TC, Zamanian M, Aliota MT. Wolbachia -mediated resistance to Zika virus infection in Aedes aegypti is dominated by diverse transcriptional regulation and weak evolutionary pressures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546271. [PMID: 37425681 PMCID: PMC10327090 DOI: 10.1101/2023.06.26.546271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A promising candidate for arbovirus control and prevention relies on replacing arbovirus-susceptible Aedes aegypti populations with mosquitoes that have been colonized by the intracellular bacterium Wolbachia and thus have a reduced capacity to transmit arboviruses. This reduced capacity to transmit arboviruses is mediated through a phenomenon referred to as pathogen blocking. Pathogen blocking has primarily been proposed as a tool to control dengue virus (DENV) transmission, however it works against a range of viruses, including Zika virus (ZIKV). Despite years of research, the molecular mechanisms underlying pathogen blocking still need to be better understood. Here, we used RNA-seq to characterize mosquito gene transcription dynamics in Ae. aegypti infected with the w Mel strain of Wolbachia that are being released by the World Mosquito Program in Medellín, Colombia. Comparative analyses using ZIKV-infected, uninfected tissues, and mosquitoes without Wolbachia revealed that the influence of w Mel on mosquito gene transcription is multifactorial. Importantly, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to pathogen blocking. Therefore, to understand the influence of Wolbachia on within-host ZIKV evolution, we characterized the genetic diversity of molecularly barcoded ZIKV virus populations replicating in Wolbachia -infected mosquitoes and found that within-host ZIKV evolution was subject to weak purifying selection and, unexpectedly, loose anatomical bottlenecks in the presence and absence of Wolbachia . Together, these findings suggest that there is no clear transcriptional profile associated with Wolbachia -mediated ZIKV restriction, and that there is no evidence for ZIKV escape from this restriction in our system. Author Summary When Wolbachia bacteria infect Aedes aegypti mosquitoes, they dramatically reduce the mosquitoes' susceptibility to infection with a range of arthropod-borne viruses, including Zika virus (ZIKV). Although this pathogen-blocking effect has been widely recognized, its mechanisms remain unclear. Furthermore, because Wolbachia limits, but does not completely prevent, replication of ZIKV and other viruses in coinfected mosquitoes, there is a possibility that these viruses could evolve resistance to Wolbachia -mediated blocking. Here, we use host transcriptomics and viral genome sequencing to examine the mechanisms of ZIKV pathogen blocking by Wolbachia and viral evolutionary dynamics in Ae. aegypti mosquitoes. We find complex transcriptome patterns that do not suggest a single clear mechanism for pathogen blocking. We also find no evidence that Wolbachia exerts detectable selective pressures on ZIKV in coinfected mosquitoes. Together our data suggest that it may be difficult for ZIKV to evolve Wolbachia resistance, perhaps due to the complexity of the pathogen blockade mechanism.
Collapse
Affiliation(s)
- Emma C. Boehm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Hunter J. Ries
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Corina C. Valencia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
| | | | | | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, United States
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| |
Collapse
|
29
|
Pujhari S, Hughes GL, Pakpour N, Suzuki Y, Rasgon JL. Wolbachia-induced inhibition of O'nyong nyong virus in Anopheles mosquitoes is mediated by Toll signaling and modulated by cholesterol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543096. [PMID: 37397989 PMCID: PMC10312510 DOI: 10.1101/2023.05.31.543096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Enhanced host immunity and competition for metabolic resources are two main competing hypotheses for the mechanism of Wolbachia-mediated pathogen inhibition in arthropods. Using an Anopheles mosquito - somatic Wolbachia infection - O'nyong nyong virus (ONNV) model, we demonstrate that the mechanism underpinning Wolbachia-mediated virus inhibition is up-regulation of the Toll innate immune pathway. However, the viral inhibitory properties of Wolbachia were abolished by cholesterol supplementation. This result was due to Wolbachia-dependent cholesterol-mediated suppression of Toll signaling rather than competition for cholesterol between Wolbachia and virus. The inhibitory effect of cholesterol was specific to Wolbachia-infected Anopheles mosquitoes and cells. These data indicate that both Wolbachia and cholesterol influence Toll immune signaling in Anopheles mosquitoes in a complex manner and provide a functional link between the host immunity and metabolic competition hypotheses for explaining Wolbachia-mediated pathogen interference in mosquitoes. In addition, these results provide a mechanistic understanding of the mode of action of Wolbachia-induced pathogen blocking in Anophelines, which is critical to evaluate the long-term efficacy of control strategies for malaria and Anopheles-transmitted arboviruses.
Collapse
Affiliation(s)
- Sujit Pujhari
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Grant L Hughes
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Yasutsugu Suzuki
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Jason L Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
30
|
Bruner-Montero G, Jiggins FM. Wolbachia protects Drosophila melanogaster against two naturally occurring and virulent viral pathogens. Sci Rep 2023; 13:8518. [PMID: 37231093 PMCID: PMC10212958 DOI: 10.1038/s41598-023-35726-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Wolbachia is a common endosymbiont that can protect insects against viral pathogens. However, whether the antiviral effects of Wolbachia have a significant effect on fitness remains unclear. We have investigated the interaction between Drosophila melanogaster, Wolbachia and two viruses that we recently isolated from wild flies, La Jolla virus (LJV; Iflaviridae) and Newfield virus (NFV; Permutotetraviridae). Flies infected with these viruses have increased mortality rates, and NFV partially sterilizes females. These effects on fitness were reduced in Wolbachia-infected flies, and this was associated with reduced viral titres. However, Wolbachia alone also reduces survival, and under our experimental conditions these costs of the symbiont can outweigh the benefits of antiviral protection. In contrast, protection against the sterilizing effect of NFV leads to a net benefit of Wolbachia infection after exposure to the virus. These results support the hypothesis that Wolbachia is an important defense against the natural pathogens of D. melanogaster. Furthermore, by reducing the cost of Wolbachia infection, the antiviral effects of Wolbachia may aid its invasion into populations and help explain why it is so common in nature.
Collapse
Affiliation(s)
- Gaspar Bruner-Montero
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
- Coiba Scientific Station, City of Knowledge, 0843-03081, Clayton, Panama.
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
31
|
Ant TH, Mancini MV, McNamara CJ, Rainey SM, Sinkins SP. Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health 2023; 117:245-258. [PMID: 36205550 PMCID: PMC10081064 DOI: 10.1080/20477724.2022.2117939] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Abstract
Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.
Collapse
Affiliation(s)
- Thomas H Ant
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Vittoria Mancini
- Centre for Virus Research, University of Glasgow, Glasgow, UK
- Polo d’Innovazione di Genomica, Genetica e Biologia, Terni, Italy
| | | | | | | |
Collapse
|
32
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
33
|
Wimalasiri-Yapa BMCR, Huang B, Ross PA, Hoffmann AA, Ritchie SA, Frentiu FD, Warrilow D, van den Hurk AF. Differences in gene expression in field populations of Wolbachia-infected Aedes aegypti mosquitoes with varying release histories in northern Australia. PLoS Negl Trop Dis 2023; 17:e0011222. [PMID: 36989319 PMCID: PMC10085034 DOI: 10.1371/journal.pntd.0011222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/10/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.
Collapse
Affiliation(s)
- B M C Randika Wimalasiri-Yapa
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Open University of Sri Lanka, Nugegoda, Colombo, Sri Lanka
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Scott A Ritchie
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Francesca D Frentiu
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, Queensland, Australia
| |
Collapse
|
34
|
Lau MJ, Nie S, Yang Q, Harshman LG, Mao C, Williamson NA, Hoffmann AA. Lipidomic Profiling Reveals Concerted Temporal Patterns of Functionally Related Lipids in Aedes aegypti Females Following Blood Feeding. Metabolites 2023; 13:421. [PMID: 36984861 PMCID: PMC10051423 DOI: 10.3390/metabo13030421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
We conducted a lipidomic analysis of the whole body of female Aedes aegypti mosquitoes at different time points over the course of feeding and reproduction. There were temporal biphasic increases of more than 80% of lipids identified at the time of feeding and from 16 h to 30 h post blood meal (PBM). During these two increases, the abundance of many lipids dropped while body weight remained stable, probably reflecting blood lipid digestion and the synthesis of vitellogenin in this period. A concerted temporal pattern was particularly strong at the second peak for membrane and signalling lipids such as phosphatidylethanolamine (PE), phosphatidylinositol (PI), cardiolipin (CL), hexosylceramide (HexCer) and lyso-phosphatidic acid (LPA). Lyso-glycerophospholipids showed three distinct change patterns that are functionally related: Lyso-PE and Lyso-phosphatidylcholine (LPC), which are membrane lipids, showed little change; LPA, a signalling lipid, showed a significant increase from 16 to 30 h PBM; Lyso-PI, a bioactive lipid, and both lyso-phosphatidylglycerol (LPG) and lyso-phosphatidylserine (LPS), which are bacterial membrane lipids, showed one significant increase from the time of feeding to 16 h post blood meal. The result of our study on the anautogenous insect Ae. aegypti point to specific lipids likely to be important in the reproductive process with a role in the formation and growth of ovarian follicles.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Shuai Nie
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Lawrence G. Harshman
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, NY 11794, USA
| | - Nicholas A. Williamson
- Mass Spectrometry and Proteomics Facility, Bio21 Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
35
|
Hussain M, Etebari K, Asgari S. Analysing inhibition of dengue virus in Wolbachia-infected mosquito cells following the removal of Wolbachia. Virology 2023; 581:48-55. [PMID: 36889142 DOI: 10.1016/j.virol.2023.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Wolbachia pipientis is known to block replication of positive sense RNA viruses. Previously, we created an Aedes aegypti Aag2 cell line (Aag2.wAlbB) transinfected with the wAlbB strain of Wolbachia and a matching tetracycline-cured Aag2.tet cell line. While dengue virus (DENV) was blocked in Aag2.wAlbB cells, we found significant inhibition of DENV in Aag2.tet cells. RNA-Seq analysis of the cells confirmed removal of Wolbachia and lack of expression of Wolbachia genes that could have been due to lateral gene transfer in Aag2.tet cells. However, we noticed a substantial increase in the abundance of phasi charoen-like virus (PCLV) in Aag2.tet cells. When RNAi was used to reduce the PCLV levels, DENV replication was significantly increased. Further, we found significant changes in the expression of antiviral and proviral genes in Aag2.tet cells. Overall, the results reveal an antagonistic interaction between DENV and PCLV and how PCLV-induced changes could contribute to DENV inhibition.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
36
|
Thi Hue Kien D, Edenborough K, da Silva Goncalves D, Thuy Vi T, Casagrande E, Thi Le Duyen H, Thi Long V, Thi Dui L, Thi Tuyet Nhu V, Thi Giang N, Thi Xuan Trang H, Lee E, Donovan-Banfield I, Thi Thuy Van H, Minh Nguyet N, Thanh Phong N, Van Vinh Chau N, Wills B, Yacoub S, Flores H, Simmons C. Genome evolution of dengue virus serotype 1 under selection by Wolbachia pipientis in Aedes aegypti mosquitoes. Virus Evol 2023; 9:vead016. [PMID: 37744653 PMCID: PMC10517695 DOI: 10.1093/ve/vead016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 09/26/2023] Open
Abstract
The introgression of antiviral strains of Wolbachia into Aedes aegypti mosquito populations is a public health intervention for the control of dengue. Plausibly, dengue virus (DENV) could evolve to bypass the antiviral effects of Wolbachia and undermine this approach. Here, we established a serial-passage system to investigate the evolution of DENV in Ae. aegypti mosquitoes infected with the wMel strain of Wolbachia. Using this system, we report on virus genetic outcomes after twenty passages of serotype 1 of DENV (DENV-1). An amino acid substitution, E203K, in the DENV-1 envelope protein was more frequently detected in the consensus sequence of virus populations passaged in wMel-infected Ae. aegypti than wild-type counterparts. Positive selection at residue 203 was reproducible; it occurred in passaged virus populations from independent DENV-1-infected patients and also in a second, independent experimental system. In wild-type mosquitoes and human cells, the 203K variant was rapidly replaced by the progenitor sequence. These findings provide proof of concept that wMel-associated selection of virus populations can occur in experimental conditions. Field-based studies are needed to explore whether wMel imparts selective pressure on DENV evolution in locations where wMel is established.
Collapse
Affiliation(s)
| | - Kathryn Edenborough
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Daniela da Silva Goncalves
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Tran Thuy Vi
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Etiene Casagrande
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Le Duyen
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vo Thi Long
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Le Thi Dui
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Vu Thi Tuyet Nhu
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Giang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Huynh Thi Xuan Trang
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Elvina Lee
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - I’ah Donovan-Banfield
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Huynh Thi Thuy Van
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | | | - Nguyen Thanh Phong
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Nguyen Van Vinh Chau
- Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam
| | - Bridget Wills
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - Heather Flores
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Cameron Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Oxford University Clinical Research Unit, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| |
Collapse
|
37
|
Prigot-Maurice C, Lheraud B, Guéritault S, Beltran-Bech S, Cordaux R, Peccoud J, Braquart-Varnier C. Investigating Wolbachia symbiont-mediated host protection against a bacterial pathogen using a natural Wolbachia nuclear insert. J Invertebr Pathol 2023; 197:107893. [PMID: 36754115 DOI: 10.1016/j.jip.2023.107893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France.
| | - Baptiste Lheraud
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Samuel Guéritault
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Sophie Beltran-Bech
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Richard Cordaux
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Jean Peccoud
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| |
Collapse
|
38
|
Abstract
Wolbachia pipientis is an incredibly widespread bacterial symbiont of insects, present in an estimated 25 to 52% of species worldwide. Wolbachia is faithfully maternally transmitted both in a laboratory setting and in the wild. In an established infection, Wolbachia is primarily intracellular, residing within host-derived vacuoles that are associated with the endoplasmic reticulum. However, Wolbachia also frequently transfers between host species, requiring an extracellular stage to its life cycle. Indeed, Wolbachia has been moved between insect species for the precise goal of controlling populations. The use of Wolbachia in this application requires that we better understand how it initiates and establishes new infections. Here, we designed a novel method for live tracking Wolbachia cells during infection using a combination of stains and microscopy. We show that live Wolbachia cells are taken up by host cells at a much faster rate than dead Wolbachia cells, indicating that Wolbachia bacteria play a role in their own uptake and that Wolbachia colonization is not just a passive process. We also show that the host actin cytoskeleton must be intact for this to occur and that drugs that disrupt the actin cytoskeleton effectively abrogate Wolbachia uptake. The development of this live infection assay will assist in future efforts to characterize Wolbachia factors used during host infection.
Collapse
|
39
|
Conway MJ, Haslitt DP, Swarts BM. Targeting Aedes aegypti Metabolism with Next-Generation Insecticides. Viruses 2023; 15:469. [PMID: 36851683 PMCID: PMC9964334 DOI: 10.3390/v15020469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV), zika virus (ZIKV), and other emerging infectious diseases of concern. A key disease mitigation strategy is vector control, which relies heavily on the use of insecticides. The development of insecticide resistance poses a major threat to public health worldwide. Unfortunately, there is a limited number of chemical compounds available for vector control, and these chemicals can have off-target effects that harm invertebrate and vertebrate species. Fundamental basic science research is needed to identify novel molecular targets that can be exploited for vector control. Next-generation insecticides will have unique mechanisms of action that can be used in combination to limit selection of insecticide resistance. Further, molecular targets will be species-specific and limit off-target effects. Studies have shown that mosquitoes rely on key nutrients during multiple life cycle stages. Targeting metabolic pathways is a promising direction that can deprive mosquitoes of nutrition and interfere with development. Metabolic pathways are also important for the virus life cycle. Here, we review studies that reveal the importance of dietary and stored nutrients during mosquito development and infection and suggest strategies to identify next-generation insecticides with a focus on trehalase inhibitors.
Collapse
Affiliation(s)
- Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Douglas P. Haslitt
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Benjamin M. Swarts
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
- Biochemistry, Cell, and Molecular Biology Graduate Programs, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
40
|
Hussain M, Zhang G, Leitner M, Hedges LM, Asgari S. Wolbachia RNase HI contributes to virus blocking in the mosquito Aedes aegypti. iScience 2022; 26:105836. [PMID: 36636344 PMCID: PMC9830209 DOI: 10.1016/j.isci.2022.105836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The endosymbiotic bacterium Wolbachia pipientis blocks replication of several arboviruses in transinfected Aedes aegypti mosquitoes. However, the mechanism of virus blocking remains poorly understood. Here, we characterized an RNase HI gene from Wolbachia, which is rapidly induced in response to dengue virus (DENV) infection. Knocking down w RNase HI using antisense RNA in Wolbachia-transinfected mosquito cell lines and A. aegypti mosquitoes led to increased DENV replication. Furthermore, overexpression of wRNase HI, in the absence of Wolbachia, led to reduced replication of a positive sense RNA virus, but had no effect on a negative sense RNA virus, a familiar scenario in Wolbachia-infected cells. Altogether, our results provide compelling evidence for the missing link between early Wolbachia-mediated virus blocking and degradation of viral RNA. These findings and the successful pioneered knockdown of Wolbachia genes using antisense RNA in cell line and mosquitoes enable new ways to manipulate and study the complex endosymbiont-host interactions.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guangmei Zhang
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael Leitner
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lauren M. Hedges
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia,Corresponding author
| |
Collapse
|
41
|
Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, Du Y, Xing D, Li C, Zhao T, Jiang Y, Dong Y, Guo X, Zhao T. Wolbachia infection in field-collected Aedes aegypti in Yunnan Province, southwestern China. Front Cell Infect Microbiol 2022; 12:1082809. [PMID: 36530420 PMCID: PMC9748079 DOI: 10.3389/fcimb.2022.1082809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China. Methods A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied. Results 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%. Conclusions Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - XiaoXia Guo
- *Correspondence: XiaoXia Guo, ; TongYan Zhao,
| | | |
Collapse
|
42
|
Martinez J, Ross PA, Gu X, Ant TH, Murdochy SM, Tong L, da Silva Filipe A, Hoffmann AA, Sinkins SP. Genomic and Phenotypic Comparisons Reveal Distinct Variants of Wolbachia Strain wAlbB. Appl Environ Microbiol 2022; 88:e0141222. [PMID: 36318064 PMCID: PMC9680635 DOI: 10.1128/aem.01412-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
The intracellular bacterium Wolbachia inhibits virus replication and is being harnessed around the world to fight mosquito-borne diseases through releases of mosquitoes carrying the symbiont. Wolbachia strains vary in their ability to invade mosquito populations and suppress viruses in part due to differences in their density within the insect and associated fitness costs. Using whole-genome sequencing, we demonstrate the existence of two variants in wAlbB, a Wolbachia strain being released in natural populations of Aedes aegypti mosquitoes. The two variants display striking differences in genome architecture and gene content. Differences in the presence/absence of 52 genes between variants include genes located in prophage regions and others potentially involved in controlling the symbiont's density. Importantly, we show that these genetic differences correlate with variation in wAlbB density and its tolerance to heat stress, suggesting that different wAlbB variants may be better suited for field deployment depending on local environmental conditions. Finally, we found that the wAlbB genome remained stable following its introduction in a Malaysian mosquito population. Our results highlight the need for further genomic and phenotypic characterization of Wolbachia strains in order to inform ongoing Wolbachia-based programs and improve the selection of optimal strains in future field interventions. IMPORTANCE Dengue is a viral disease transmitted by Aedes mosquitoes that threatens around half of the world population. Recent advances in dengue control involve the introduction of Wolbachia bacterial symbionts with antiviral properties into mosquito populations, which can lead to dramatic decreases in the incidence of the disease. In light of these promising results, there is a crucial need to better understand the factors affecting the success of such strategies, in particular the choice of Wolbachia strain for field releases and the potential for evolutionary changes. Here, we characterized two variants of a Wolbachia strain used for dengue control that differ at the genomic level and in their ability to replicate within the mosquito. We also found no evidence for the evolution of the symbiont within the 2 years following its deployment in Malaysia. Our results have implications for current and future Wolbachia-based health interventions.
Collapse
Affiliation(s)
- Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Xinyue Gu
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Thomas H. Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Shivan M. Murdochy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute, the University of Melbourne, Parkville, VIC, Australia
| | - Steven P. Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
43
|
Wolbachia inhibits ovarian formation and increases blood feeding rate in female Aedes aegypti. PLoS Negl Trop Dis 2022; 16:e0010913. [DOI: 10.1371/journal.pntd.0010913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/23/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia, a gram-negative endosymbiotic bacterium widespread in arthropods, is well-known for changing the reproduction of its host in ways that increase its rate of spread, but there are also costs to hosts that can reduce this. Here we investigated a novel reproductive alteration of Wolbachia wAlbB on its host Aedes aegypti, using studies on mosquito life history traits, ovarian dissection, as well as gene expression assays. We found that an extended period of the larval stage as well as the egg stage (as previously shown) can increase the proportion of Wolbachia-infected females that become infertile; an effect which was not observed in uninfected females. Infertile females had incomplete ovarian formation and also showed a higher frequency of blood feeding following a prior blood meal, indicating that they do not enter a complete gonotrophic cycle. Treatments leading to infertility also decreased the expression of genes related to reproduction, especially the vitellogenin receptor gene whose product regulates the uptake of vitellogenin (Vg) into ovaries. Our results demonstrate effects associated with the development of infertility in wAlbB-infected Ae. aegypti females with implications for Wolbachia releases. The results also have implications for the evolution of Wolbachia infections in novel hosts.
Collapse
|
44
|
The Involvement of Atlastin in Dengue Virus and Wolbachia Infection in Aedes aegypti and Its Regulation by aae-miR-989. Microbiol Spectr 2022; 10:e0225822. [PMID: 36165808 PMCID: PMC9603060 DOI: 10.1128/spectrum.02258-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER)-shaping atlastin proteins (ATLs) have been demonstrated to play a functional role during flavivirus replication in mammalian cells. For dengue virus (DENV), atlastin is required in the formation of the replication organelles and RNA replication, virion assembly, production of the infectious virus particles, and trafficking or directing the association of vesicle packets with furin. Here, we investigated the involvement of atlastin in DENV replication in the mosquito Aedes aegypti and explored the possibility of its manipulation by the endosymbiotic bacterium Wolbachia to interfere with DENV replication. Results showed the expression of Ae. aegypti atlastin gene (AaATL) was upregulated in DENV-infected Aag2 cells, and its silencing led to reduced DENV replication. Contrary to our assumption that AaATL could be downregulated by Wolbachia, we did not find evidence for that in Wolbachia-infected cell lines, but this was the case in mosquitoes. Further, silencing AaATL did not have any effect on Wolbachia density. Our results also suggest that aae-miR-989 miRNA negatively regulates AaATL. The oversupply of the miRNA mimic led to reduced DENV replication consistent with the positive role of AaATL in DENV replication. Overall, the results favor AaATL's involvement in DENV replication; however, there is no support that the protein is involved in Wolbachia-mediated DENV inhibition. In addition, the results contribute to discerning further possible overlapping functions of ATLs in mosquitoes and mammalian cells. IMPORTANCE Atlastin is a protein associated with the endoplasmic reticulum and has been shown to play a role in replication of flaviviruses in mammalian cells. This study aimed to investigate the role of mosquito Aedes aegypti atlastin (AaATL) in dengue virus replication and maintenance of Wolbachia, an endosymbiotic bacterium, in the mosquito. Our results suggest that AaATL facilitates dengue virus replication in mosquito cells, considering silencing the gene led to reductions in virus replication and virion production. Further, AaATL was found to be regulated by a mosquito microRNA, aae-miR-989. Despite an effect on dengue virus, AaATL silencing did not affect Wolbachia replication and maintenance in mosquito cells. The results shed light on the role of atlastins in mosquito-pathogen interactions and their overlapping roles in mosquito and mammalian cells.
Collapse
|
45
|
Marten AD, Tift CT, Tree MO, Bakke J, Conway MJ. Chronic depletion of vertebrate lipids in Aedes aegypti cells dysregulates lipid metabolism and inhibits innate immunity without altering dengue infectivity. PLoS Negl Trop Dis 2022; 16:e0010890. [PMID: 36279305 PMCID: PMC9632908 DOI: 10.1371/journal.pntd.0010890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Aedes aegypti is the primary vector of dengue virus (DENV) and other arboviruses. Previous literature suggests that vertebrate and invertebrate lipids and the nutritional status of mosquitoes modify virus infection. Here, we developed a vertebrate lipid-depleted Ae. aegypti cell line to investigate if chronic depletion of vertebrate lipids normally present in a blood meal and insect cell culture medium would impact cell growth and virus infection. Chronic depletion of vertebrate lipids reduced cell size and proliferation, although cells retained equivalent total intracellular lipids per cell by reducing lipolysis and modifying gene expression related to sugar and lipid metabolism. Downregulation of innate immunity genes was also observed. We hypothesized that chronic depletion of vertebrate lipids would impact virus infection; however, the same amount of DENV was produced per cell. This study reveals how Ae. aegypti cells adapt in the absence of vertebrate lipids, and how DENV can replicate equally well in cells that contain predominately vertebrate or invertebrate lipids. Aedes aegypti is a major threat to public health. Ae. aegypti is the primary vector of dengue virus types 1–4 (DENV 1–4), zika virus (ZIKV), chikungunya virus (CHIKV), and yellow fever virus (YFV). Ae. aegypti acquires arboviruses from a vertebrate host during blood feeding. Blood feeding introduces vertebrate-specific factors into the mosquito that may be important for both mosquito and virus. This study reveals that Ae. aegypti adapts to depletion of vertebrate lipids by inhibiting lipolysis and promoting de novo synthesis of invertebrate lipids, and that DENV can replicate equally well without high concentrations of cholesterol and other vertebrate lipid species. Understanding how disease vectors adapt to nutritional changes will identify novel strategies for vector control and disease mitigation.
Collapse
Affiliation(s)
- Andrew D. Marten
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Clara T. Tift
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Maya O. Tree
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Jesse Bakke
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
| | - Michael J. Conway
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, Michigan, United States of America
- * E-mail:
| |
Collapse
|
46
|
Mejia AJ, Jimenez L, Dutra HLC, Perera R, McGraw EA. Attempts to use breeding approaches in Aedes aegypti to create lines with distinct and stable relative Wolbachia densities. Heredity (Edinb) 2022; 129:215-224. [PMID: 35869302 PMCID: PMC9519544 DOI: 10.1038/s41437-022-00553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 01/16/2023] Open
Abstract
Wolbachia is an insect endosymbiont being used for biological control in the mosquito Aedes aegypti because it causes cytoplasmic incompatibility (CI) and limits viral replication of dengue, chikungunya, and Zika viruses. While the genetic mechanism of pathogen blocking (PB) is not fully understood, the strength of both CI and PB are positively correlated with Wolbachia densities in the host. Wolbachia densities are determined by a combination of Wolbachia strain and insect genotype, as well as interactions with the environment. We employed both artificial selection and inbreeding with the goal of creating lines of Ae. aegypti with heritable and distinct Wolbachia densities so that we might better dissect the mechanism underlying PB. We were unable to shift the mean relative Wolbachia density in Ae. aegypti lines by either strategy, with relative densities instead tending to cycle over a narrow range. In lieu of this, we used Wolbachia densities in mosquito legs as predictors of relative densities in the remaining individual's carcass. Because we worked with outbred mosquitoes, our findings indicate either a lack of genetic variation in the mosquito for controlling relative density, natural selection against extreme densities, or a predominance of environmental factors affecting densities. Our study reveals that there are moderating forces acting on relative Wolbachia densities that may help to stabilize density phenotypes post field release. We also show a means to accurately bin vector carcasses into high and low categories for non-DNA omics-based studies of Wolbachia-mediated traits.
Collapse
Affiliation(s)
- A. J. Mejia
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Department of Entomology, The Pennsylvania State University, University Park, PA 16802 USA
| | - L. Jimenez
- grid.1002.30000 0004 1936 7857School of Life Sciences, Monash University, Clayton, Vic 3800 Australia
| | - H. L. C. Dutra
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - R. Perera
- grid.47894.360000 0004 1936 8083Center for Vector-borne Infectious Diseases and Center for Metabolism of Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO USA
| | - E. A. McGraw
- grid.29857.310000 0001 2097 4281Center for Infectious Disease Dynamics & Biology, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
47
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
48
|
Kyritsis GA, Koskinioti P, Bourtzis K, Papadopoulos NT. Effect of Wolbachia Infection and Adult Food on the Sexual Signaling of Males of the Mediterranean Fruit Fly Ceratitis capitata. INSECTS 2022; 13:737. [PMID: 36005362 PMCID: PMC9409120 DOI: 10.3390/insects13080737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sexual signaling is a fundamental component of sexual behavior of Ceratitis capitata that highly determines males' mating success. Nutritional status and age are dominant factors known to affect males' signaling performance and define the female decision to accept a male as a sexual partner. Wolbachia pipientis, a widespread endosymbiotic bacterium of insects and other arthropods, exerts several biological effects on its hosts. However, the effects of Wolbachia infection on the sexual behavior of medfly and the interaction between Wolbachia infection and adult food remain unexplored. This study was conducted to determine the effects of Wolbachia on sexual signaling of protein-fed and protein-deprived males. Our findings demonstrate that: (a) Wolbachia infection reduced male sexual signaling rates in both food regimes; (b) the negative effect of Wolbachia infection was more pronounced on protein-fed than protein-deprived males, and it was higher at younger ages, indicating that the bacterium regulates male sexual maturity; (c) Wolbachia infection alters the daily pattern of sexual signaling; and (d) protein deprivation bears significant descent on sexual signaling frequency of the uninfected males, whereas no difference was observed for the Wolbachia-infected males. The impact of our findings on the implementation of Incompatible Insect Technique (IIT) or the combined SIT/IIT towards controlling insect pests is discussed.
Collapse
Affiliation(s)
- Georgios A. Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Panagiota Koskinioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| |
Collapse
|
49
|
Differential viral RNA methylation contributes to pathogen blocking in Wolbachia-colonized arthropods. PLoS Pathog 2022; 18:e1010393. [PMID: 35294495 PMCID: PMC8959158 DOI: 10.1371/journal.ppat.1010393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/28/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Arthropod endosymbiont Wolbachia pipientis is part of a global biocontrol strategy to reduce the replication of mosquito-borne RNA viruses such as alphaviruses. We previously demonstrated the importance of a host cytosine methyltransferase, DNMT2, in Drosophila and viral RNA as a cellular target during pathogen-blocking. Here we report a role for DNMT2 in Wolbachia-induced alphavirus inhibition in Aedes species. Expression of DNMT2 in mosquito tissues, including the salivary glands, is elevated upon virus infection. Notably, this is suppressed in Wolbachia-colonized animals, coincident with reduced virus replication and decreased infectivity of progeny virus. Ectopic expression of DNMT2 in cultured Aedes cells is proviral, increasing progeny virus infectivity, and this effect of DNMT2 on virus replication and infectivity is dependent on its methyltransferase activity. Finally, examining the effects of Wolbachia on modifications of viral RNA by LC-MS show a decrease in the amount of 5-methylcytosine modification consistent with the down-regulation of DNMT2 in Wolbachia colonized mosquito cells and animals. Collectively, our findings support the conclusion that disruption of 5-methylcytosine modification of viral RNA is a vital mechanism operative in pathogen blocking. These data also emphasize the essential role of epitranscriptomic modifications in regulating fundamental alphavirus replication and transmission processes.
Collapse
|
50
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|