1
|
Cao H, Tao Y, Jin R, Li P, Zhou H, Cheng J. Proteomics reveals the key transcription-related factors mediating obstructive nephropathy in pediatric patients and mice. Ren Fail 2025; 47:2443032. [PMID: 39743726 DOI: 10.1080/0886022x.2024.2443032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Obstructive nephropathy is one of the leading causes of kidney injury in infants and children. Increasing evidence has shown that transcription-related factors (TRFs), including transcription factors and cofactors, are associated with kidney diseases. However, a global landscape of dysregulated TRFs in pediatric patients with obstructive nephropathy is lacking. METHODS We mined the data from our previous proteomic study for the TRF profile in pediatric patients with obstructive nephropathy and unilateral ureteral obstruction (UUO) mice. Gene ontology (GO) analysis was performed to determine pathways that were enriched in the dysregulated TRFs. We then took advantage of kidney samples from patients and UUO mice to verify the selected TRFs by immunoblots. RESULTS The proteomes identified a total of 140 human TRFs with 28 upregulated and 1 downregulated, and 160 murine TRFs with 88 upregulated and 1 downregulated (fold change >2 or <0.5). These dysregulated TRFs were enriched in the inflammatory signalings, such as janus kinase/signal transducer and activator of transcription (JAK-STAT) and tumor necrosis factor (TNF) pathways. Of note, the transforming growth factor (TGF)-β signaling pathway, which is the master regulator of organ fibrosis, was enriched in both patients and mice. Cross-species analysis showed 16 key TRFs that might mediate obstructive nephropathy in patients and UUO mice. Moreover, we verified a significant dysregulation of three previously unexplored TRFs; prohibitin (PHB), regulatory factor X 1 (RFX1), and activity-dependent neuroprotector homeobox protein (ADNP), in patients and mice. CONCLUSIONS Our study uncovered key TRFs in the obstructed kidneys and provided additional molecular insights into obstructive nephropathy.
Collapse
Affiliation(s)
- Hualin Cao
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuandong Tao
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Ruyue Jin
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Pin Li
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Huixia Zhou
- Department of Pediatric Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China
| | - Jiwen Cheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Zhang B, Zhou Y, Xu X, Xu G, Wu Z, Wu Q, Zeng Q, Yang J, Lv T, Yang J. RBM39 promotes hepatocarcinogenesis by regulating RFX1's alternative splicing and subsequent activation of integrin signaling pathway. Oncogene 2025; 44:1488-1503. [PMID: 40033026 DOI: 10.1038/s41388-025-03327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/06/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Alternative splicing (AS) is crucial for tumor cells as it regulates protein expression and produces various protein isoforms, which can have diverse or even opposing roles in tumor growth and metastasis. Despite its significance, the role of AS and related splicing factors, particularly splicing-related messenger ribonucleoproteins (mRNPs), in hepatocarcinogenesis, is poorly understood. High-throughput transcriptome sequencing of HCC patients revealed that the spliceosome pathway might play a significant role in HCC development. Through the combined analysis of the three gene clusters, the splicing factor RBM39 was identified, which was highly expressed in HCC tumor tissues with prognostic value. Functional studies showed that silencing RBM39 inhibited cell proliferation, migration, and invasion via the integrin pathway. By performing RNA immunoprecipitation sequencing (RIP-seq), we found that RBM39 combined to RFX1 pre-mRNA and regulated alternative splicing of exon 2. Mechanistically, the exon 2 skipping in RFX1, influenced by high RBM39 expression in HCC cells, led to the production of an N-terminal truncated RFX1, which lost the transcriptional repression ability on oncogenic collagen genes. High RBM39 expression enhances the malignant capabilities of HCC cells by regulating the alternative splicing of RFX1 and subsequently activating the FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xi Xu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Gang Xu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiong Wu
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiwen Zeng
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jian Yang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Lv
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Jiayin Yang
- Department of Liver Transplantation Center & Laboratory of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Wu A, Wang Y, Mao R, Tan Z, Xu S, Long J, Wang Q, Zhao Z, Xie H, Deng Z, Li J, Chen M. Naturally-occurring carnosic acid as a promising therapeutic agent for skin inflammation via targeting STAT1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156442. [PMID: 39919329 DOI: 10.1016/j.phymed.2025.156442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Psoriasis and rosacea are prevalent chronic inflammatory skin disorders driven by aberrant interactions between skin-resident keratinocytes and immune cells. Natural products represent a largely untapped source of novel therapeutic agents for various diseases. This study aimed to identify an effective natural product for treating psoriasis and rosacea and to elucidate its underlying mechanism of action. METHODS Bioinformatics and network pharmacology approaches were employed to identify potential drug candidates for these conditions. Psoriasis-like and rosacea-like inflammation models were established in mice to assess the in vivo therapeutic effects of carnosic acid. In vitro experiments were performed to investigate the molecular mechanisms underlying carnosic acid's anti-inflammatory activity. RESULTS Through bioinformatics and network pharmacology, carnosic acid, a plant-derived phenolic diterpene, was identified as a promising candidate for these skin disorders. Functional assays demonstrated that carnosic acid effectively inhibited skin inflammation in both imiquimod-induced psoriasis and LL37-induced rosacea mouse models. Mechanistically, carnosic acid bound directly to STAT1, inhibiting its phosphorylation and subsequent transcriptional activation, which led to a reduction in the production of STAT1-mediated inflammatory factors in keratinocytes. Topical application of carnosic acid significantly alleviated clinical symptoms in both psoriasis and rosacea models. CONCLUSION These findings suggest that carnosic acid holds potential as a therapeutic agent for STAT1-mediated skin inflammation.
Collapse
Affiliation(s)
- Aike Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rui Mao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Yang Z, Yuan Y, Niu Y, Zuo D, Liu W, Li K, Shi Y, Qiu Z, Li K, Lin Z, Zhong C, Huang Z, He W, Guan X, Yuan Y, Zeng W, Qiu J, Li B. Regulatory factor X1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by transcriptional regulation of BECN1. Cell Oncol (Dordr) 2025; 48:505-522. [PMID: 39652303 PMCID: PMC11996997 DOI: 10.1007/s13402-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Sorafenib is a commonly used first-line kinase-targeted drug for advanced hepatocellular carcinoma (HCC) patients suffering from limited efficacy. Emerging evidence indicates that sorafenib exerts anti-cancer activity through the induction of ferroptosis in HCC cells, but the underlying mechanism is still unclear. METHODS The whole transcriptome sequencing and bioinformatics analysis were used to screen for target genes. The expression and subcellular localization of regulatory factor X1 (RFX1) were determined through immunohistochemistry, immunofluorescence, PCR and western blot analyses. The impact of RFX1 on HCC cell growth was assessed using CCK8, colony formation assays, cell death assays, and animal experiments. Glutathione measurement, iron assay and lipid peroxidation detection assays were performed to investigate ferroptosis of HCC cells. The regulatory mechanism of RFX1 in HCC was investigated by sgRFX1, co-IP, ChIP and luciferase experiments. Immunohistochemical and survival analyses were performed to examine the prognostic significance of RFX1 in HCC. RESULTS In this study, we found that RFX1 promote ferroptosis in HCC cells. Further, we showed that sorafenib induces cell death through RFX1-mediated ferroptosis in HCC cells. The enhancing effect of RFX1 on HCC cell ferroptosis is largely dependent on inhibition of cystine/glutamate antiporter (system Xc-) activity through the BECN-SLC7A11 axis, where RFX1 directly binds to the promoter region of BECN1 and upregulates BECN1 expression. In addition, a STAT3-RFX1-BECN1 signalling loop was found to promote RFX1 expression in HCC cells. CONCLUSIONS Our study reveals a novel mechanism underlying sorafenib-induced HCC cell death.
Collapse
Affiliation(s)
- Zhiwen Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenwu Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Kai Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yunxing Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Keren Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Xinyuan Guan
- Department of Clinical Oncology, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Weian Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| |
Collapse
|
5
|
Liu J, Zhao J, Zhang YL, Zhang C, Yang GD, Tian WS, Zhou BH, Wang HW. Underlying Mechanism of Fluoride Inhibits Colonic Gland Cells Proliferation by Inducing an Inflammation Response. Biol Trace Elem Res 2025; 203:973-985. [PMID: 38995434 DOI: 10.1007/s12011-024-04212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/25/2024] [Indexed: 07/13/2024]
Abstract
The integrity of colonic gland cells is a prerequisite for normal colonic function and maintenance. To evaluate the underlying injury mechanisms in colonic gland cells induced by excessive fluoride (F), forty-eight female Kunming mice were randomly allocated into four groups and treated with different concentrations of NaF (0, 25, 50, and 100 mg F-/L) for 70 days. As a result, the integrity of the colonic mucosa and the cell layer was seriously damaged after F treatment, as manifested by atrophy of the colonic glands, colonic cell surface collapse, breakage of microvilli, and mitochondrial vacuolization. Alcian blue and periodic acid Schiff staining revealed that F decreased the number of goblet cells and glycoprotein secretion. Furthermore, F increased the protein expression of TLR4, NF-κB, and ERK1/2 and decreased IL-6, interfered with NF-κB signaling, following induced colonic gland cells inflammation. The accumulation of F inhibited proliferation via the JAK/STAT signaling pathway, as characterized by decreased mRNA and protein expression of JAK, STAT3, STAT5, PCNA, and Ki67 in colon tissue. Additionally, the expression of CDK4 was up-regulated by increased F concentration. In conclusion, excessive F triggered colonic inflammation and inhibited colonic gland cell proliferation via regulation of the NF-κB and JAK/STAT signaling pathways, leading to histopathology and barrier damage in the colon. The results explain the damaging effect of the F-induced inflammatory response on the colon from the perspective of cell proliferation and provide a new idea for explaining the potential mechanism of F-induced intestinal damage.
Collapse
Affiliation(s)
- Jing Liu
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Yu-Ling Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Cai Zhang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Guo-Dong Yang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Wei-Shun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Bian-Hua Zhou
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, Henan University of Science and Technology, Luoyang, Henan, 471000, People's Republic of China.
| |
Collapse
|
6
|
Amer H, Kampan NC, Itsiopoulos C, Flanagan KL, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Modulation in Ovarian Cancer Necessitates a Targeted Strategy: From the Approved to Emerging Therapies. Cancers (Basel) 2024; 16:4187. [PMID: 39766086 PMCID: PMC11674514 DOI: 10.3390/cancers16244187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in treatments, ovarian cancer (OC) remains one of the most prevalent and lethal gynecological cancers in women. The frequent detection at the advanced stages has contributed to low survival rates, resistance to various treatments, and disease recurrence. Thus, a more effective approach is warranted to combat OC. The cytokine Interleukin-6 (IL6) has been implicated in various stages of OC development. High IL6 levels are also correlated with a lower survival rate in OC patients. In this current review, we summarized the pivotal roles of IL6 in OC, including the initiation, development, invasion, metastasis, and drug resistance mechanisms. This article systematically highlights how targeting IL6 improves OC outcomes by altering various cancer processes and reports the ongoing clinical trials that would further shape the IL6-based targeted therapies. This review also suggests how combining IL6-targeted therapies with other therapeutic strategies could further enhance their efficacy to combat OC.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Apriliana E. R. Kartikasari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| |
Collapse
|
7
|
Chen Z, Cao J, Xiao Z, Yang Z, Cheng Y, Duan J, Zhou T, Xu F. HDC downregulation induced by chronic stress promotes ovarian cancer progression via the IL-6/STAT3/S100A9 pathway. Front Pharmacol 2024; 15:1485885. [PMID: 39720595 PMCID: PMC11666360 DOI: 10.3389/fphar.2024.1485885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024] Open
Abstract
Objective This study aimed to investigate the underlying mechanism of chronic stress promoting ovarian cancer growth comorbid with depression and evaluate the potential role of histamine (HIS) in treating this comorbidity. Methods Chronic unpredictable mild stress (CUMS) was used to establish a comorbid mouse model of ovarian cancer and depression. The behavioral phenotypes were assessed using the sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), and open field test (OFT). Ovarian cancer growth was monitored by tracking the tumor volume and weight. Histidine decarboxylase (HDC) expression in the tumor tissue was analyzed using Western blot and qRT-PCR techniques. The serum levels of inflammatory factors (IL-6 and IL-17A), stress hormones (norepinephrine, NE and cortisol, and COR), histamine, and 5-hydroxytryptamine (5-HT) were detected by enzyme-linked immunosorbent assay (ELISA). In vitro experiments were conducted to explore the direct impacts of stress hormones on A2780 and ES-2 ovarian cancer cell lines, as well as the modulation of these effects by histamine. HDC knockdown and overexpression approaches were used to study its regulatory role in the IL-6/STAT3/S100A9 signaling pathway. Results Chronic stress not only induced depressive behaviors but also accelerated ovarian cancer growth in mice by downregulating HDC expression in tumors, whereas exogenous HIS treatment alleviated depressive symptoms, suppressed cancer growth, and countered the decreased levels of HIS and increased levels of IL-6, IL-17A, NE, COR, and 5-HT induced by CUMS. Furthermore, HIS positively modulated the immune response by increasing the populations of CD3+T and CD8+ T cells and reducing IL-17A secretion. In vitro experiments revealed that stress hormones downregulated HDC expression, consequently promoting cancer cell proliferation, migration, and invasion via the IL-6/STAT3/S100A9 pathway. Knockdown of HDC activated this pathway, whereas HDC overexpression inhibited its activation. Conclusion Chronic stress leads to the downregulation of HDC expression, thereby facilitating the progression of ovarian cancer through the IL-6/STAT3/S100A9 pathway. HIS might serve as a potential molecule for treating the comorbidities of ovarian cancer and depression.
Collapse
Affiliation(s)
- Zhicong Chen
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Jinming Cao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Zhijun Xiao
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zhen Yang
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Yuanchi Cheng
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Jingjing Duan
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Ting Zhou
- Sixth People’s Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Feng Xu
- Fengxian Hospital, School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| |
Collapse
|
8
|
Wang B, Zhang B, Wu M, Xu T. Unlocking therapeutic potential: Targeting lymphocyte activation Gene-3 (LAG-3) with fibrinogen-like protein 1 (FGL1) in systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100249. [PMID: 39228513 PMCID: PMC11369448 DOI: 10.1016/j.jtauto.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disorder that affects multiple systems. In the treatment of this condition, the focus primarily revolves around inflammation suppression and immunosuppression. Consequently, targeted therapy has emerged as a prevailing approach. Currently, the quest for highly sensitive and specifically effective targets has gained significant momentum in the context of SLE treatment. Lymphocyte activation gene-3 (LAG-3) stands out as a crucial inhibitory receptor that binds to pMHC-II, thereby effectively dampening autoimmune responses. Fibrinogen-like protein 1 (FGL1) serves as the principal immunosuppressive ligand for LAG-3, and their combined action demonstrates a potent immunosuppressive effect. This intricate mechanism paves the way for potential SLE treatment by targeting LAG-3 with FGL1. This work provides a comprehensive summary of LAG-3's role in the pathogenesis of SLE and elucidates the feasibility of leveraging FGL1 as a therapeutic approach for SLE management. It introduces a novel therapeutic target and opens up new avenues of therapeutic consideration in the clinical context of SLE treatment.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Biqing Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
9
|
Wang X, Sheng Y, Guan J, Zhang F, Lou C. Sanmiao wan alleviates inflammation and exhibits hypouricemic effect in an acute gouty arthritis rat model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117764. [PMID: 38219882 DOI: 10.1016/j.jep.2024.117764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanmiao wan (SMW), a classical traditional Chinese medicine (TCM) formula, has been employed to treat gouty diseases in clinic as early as Yuan dynasty. It shows remarkably therapeutic effects in acute gouty arthritis (GA). However, the potential mechanisms of SMW are still not fully revealed. AIM OF THE STUDY The objective of this project is to evaluate the pharmacological effects and possible mechanisms of SMW in a rat model of acute GA. MATERIALS AND METHODS Monosodium urate (MSU) suspension was injected into the ankle joint of rats to establish acute GA model. The inflammation was evaluated by measuring the posterior ankle diameter. The pathological status of synovial tissue was assessed by hematoxylin eosin (HE), Masson, and picrosirius red staining. The level of IL-6 was measured using ELISA kit. The levels of blood urea nitrogen (BUN), creatinine (CR), UA (uric acid), and xanthine oxidase (XOD) in the serum were measured using standard diagnostic kits. The percentage of Th17 cells in blood samples was performed using flow cytometry. Moreover, RT-qPCR was performed to examine the mRNA level of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, immunofluorescence was carried out to assess the expression of STAT3 in the synovial tissue. RESULTS SMW effectively alleviated the inflammation and improved the pathological status of the ankle joint in rats with acute GA. It significantly suppressed the release of proinflammatory cytokine (IL-6). Meanwhile, the levels of UA, BUN, and CR were markedly reduced after SMW treatment. A remarkable reduction of XOD activity was observed in the study. Importantly, SMW treatment significantly reduced the frequency of Th17 cells, decreased the mRNA levels of RANK, RORγt, RANKL, and STAT3 in the synovial tissue. Furthermore, the suppression of STAT3 was also demonstrated using immunofluorescence in SMW-treated group. CONCLUSION SMW showed significant anti-inflammatory and hypouricemic effects in a rat model of GA. It is an effective TCM formula for GA therapy.
Collapse
Affiliation(s)
- Xiaoqian Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Fengling Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| | - Chenghua Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
10
|
Yang S, Min X, Hu L, Zheng M, Lu S, Zhao M, Jia S. RFX1 regulates foam cell formation and atherosclerosis by mediating CD36 expression. Int Immunopharmacol 2024; 130:111751. [PMID: 38402833 DOI: 10.1016/j.intimp.2024.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND AND AIMS Atherosclerosis (AS) is a continuously low-grade inflammatory disease, and monocyte-derived macrophages play a vital role in AS pathogenesis. Regulatory factor X1 (RFX1) has been reported to participate in differentiation of various cells. Our previous report showed that RFX1 expression in CD14+ monocytes from AS patients was decreased and closely related to AS development. Macrophages mostly derive from monocytes and play an important role in AS plaque formation and stability. However, the functions of RFX1 in the formation of macrophage-derived foam cells and consequent AS development are unclear. METHODS We explored the effects of RFX1 on oxidation low lipoprotein (ox-LDL)-stimulated foam cell formation and CD36 expression by increasing or silencing Rfx1 expression in mouse peritoneal macrophages (PMAs). The ApoE-/-Rfx1f/f or ApoE-/-Rfx1f/f Lyz2-Cre mice fed a high-fat diet for 24 weeks were used to further examine the effect of RFX1 on AS pathogenesis. We then performed dual luciferase reporter assays to study the regulation of RFX1 for CD36 transcription. RESULTS Our results demonstrate that RFX1 expression was significantly reduced in ox-LDL induced foam cells and negatively correlated with lipid uptake in macrophages. Besides, Rfx1 deficiency in myeloid cells aggravated atherosclerotic lesions in ApoE-/- mice. Mechanistically, RFX1 inhibited CD36 expression by directly regulating CD36 transcription in macrophages. CONCLUSIONS The reduction of RFX1 expression in macrophages is a vital determinant for foam cell formation and the initiation of AS, proving a potential novel approach for the treatment of AS disease.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Xiaoli Min
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Longyuan Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Shuang Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Department of Pharmacy, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
11
|
Zhang Y, Maskan Bermudez N, Sa B, Maderal AD, Jimenez JJ. Epigenetic mechanisms driving the pathogenesis of systemic lupus erythematosus, systemic sclerosis and dermatomyositis. Exp Dermatol 2024; 33:e14986. [PMID: 38059632 DOI: 10.1111/exd.14986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Autoimmune connective tissue disorders, including systemic lupus erythematosus, systemic sclerosis (SSc) and dermatomyositis (DM), often manifest with debilitating cutaneous lesions and can result in systemic organ damage that may be life-threatening. Despite recent therapeutic advancements, many patients still experience low rates of sustained remission and significant treatment toxicity. While genetic predisposition plays a role in these connective tissue disorders, the relatively low concordance rates among monozygotic twins (ranging from approximately 4% for SSc to about 11%-50% for SLE) have prompted increased scrutiny of the epigenetic factors contributing to these diseases. In this review, we explore some seminal studies and key findings to provide a comprehensive understanding of how dysregulated epigenetic mechanisms can contribute to the development of SLE, SSc and DM.
Collapse
Affiliation(s)
- Yusheng Zhang
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Narges Maskan Bermudez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brianna Sa
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Andrea D Maderal
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Joaquin J Jimenez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
12
|
Xia L, Wu T, Chen L, Mei P, Liu L, Li R, Shu M, Huan Z, Wu C, Fang B. Silicon-Based Biomaterials Modulate the Adaptive Immune Response of T Lymphocytes to Promote Osteogenesis/Angiogenesis via Epigenetic Regulation. Adv Healthc Mater 2023; 12:e2302054. [PMID: 37842937 DOI: 10.1002/adhm.202302054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Silicon (Si)-based biomaterials are widely applied for bone regeneration. However, the underlying mechanisms of the materials function remain largely unknown. T lymphocyte-mediated adaptive immune response plays a vital role in the process of bone regeneration. In the current study, mesoporous silica (MS) is used as a model material of Si-based biomaterials. It shows that the supernatant of CD4+ T lymphocytes pretreated with MS extract significantly promotes the vascularized bone regeneration. The potential mechanism is closely related to the fact that MS extract can reduce the expression of regulatory factor X-1 (RFX-1) in CD4+ T lymphocytes. This may result in the overexpression of interleukin-17A (IL-17A) by boosting histone H3 acetylation and lowering DNA methylation and H3K9 trimethylation. Importantly, the in vivo experiments further reveal that MS particles significantly enhance bone regeneration with improved angiogenesis in the critical-sized calvarial defect mouse model accompanied by upregulation of IL-17A in peripheral blood and the proportion of Th17 cells. This study suggests that modulation of the adaptive immune response of T lymphocytes by silicate-based biomaterials plays an important role for bone regeneration.
Collapse
Affiliation(s)
- Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Tingting Wu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Mei
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengmeng Shu
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Zhiguang Huan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
13
|
Yang S, Du P, Cui H, Zheng M, He W, Gao X, Hu Z, Jia S, Lu Q, Zhao M. Regulatory factor X1 induces macrophage M1 polarization by promoting DNA demethylation in autoimmune inflammation. JCI Insight 2023; 8:e165546. [PMID: 37733446 PMCID: PMC10619507 DOI: 10.1172/jci.insight.165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Abnormal macrophage polarization is generally present in autoimmune diseases. Overwhelming M1 macrophage activation promotes the continuous progression of inflammation, which is one of the reasons for the development of autoimmune diseases. However, the underlying mechanism is still unclear. Here we explore the function of Regulatory factor X1 (RFX1) in macrophage polarization by constructing colitis and lupus-like mouse models. Both in vivo and in vitro experiments confirmed that RFX1 can promote M1 and inhibit M2 macrophage polarization. Furthermore, we found that RFX1 promoted DNA demethylation of macrophage polarization-related genes by increasing APOBEC3A/Apobec3 expression. We identified a potential RFX1 inhibitor, adenosine diphosphate (ADP), providing a potential strategy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Shuang Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Pei Du
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Haobo Cui
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Meiling Zheng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Wei He
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofei Gao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Zhi Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
| | - Sujie Jia
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Central South University, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
14
|
Huang Y, Liu D, Chen M, Xu S, Peng Q, Zhu Y, Long J, Liu T, Deng Z, Xie H, Li J, Liu F, Xiao W. TLR7 promotes skin inflammation via activating NFκB-mTORC1 axis in rosacea. PeerJ 2023; 11:e15976. [PMID: 37780385 PMCID: PMC10540772 DOI: 10.7717/peerj.15976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disease originated from damaged skin barrier and innate/adaptive immune dysregulation. Toll-like receptors (TLRs) sense injured skin and initiate downstream inflammatory and immune responses, whose role in rosacea is not fully understood. Here, via RNA-sequencing analysis, we found that the TLR signaling pathway is the top-ranked signaling pathway enriched in rosacea skin lesions, in which TLR7 is highlighted and positively correlated with the inflammation severity of disease. In LL37-induced rosacea-like mouse models, silencing TLR7 prevented the development of rosacea-like skin inflammation. Specifically, we demonstrated that overexpressing TLR7 in keratinocytes stimulates rapamycin-sensitive mTOR complex 1 (mTORC1) pathway via NFκB signaling. Ultimately, TLR7/NFκ B/mTORC1 axis promotes the production of cytokines and chemokines, leading to the migration of CD4+T cells, which are infiltrated in the lesional skin of rosacea. Our report reveals the crucial role of TLR7 in rosacea pathogenesis and indicatesa promising candidate for rosacea treatments.
Collapse
Affiliation(s)
- Yaqun Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Da Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Jia W, Liang S, Lin W, Li S, Yuan J, Jin M, Nie S, Zhang Y, Zhai X, Zhou L, Ling C, Cheng B, Ling C. Hypoxia-induced exosomes facilitate lung pre-metastatic niche formation in hepatocellular carcinoma through the miR-4508-RFX1-IL17A-p38 MAPK-NF-κB pathway. Int J Biol Sci 2023; 19:4744-4762. [PMID: 37781522 PMCID: PMC10539707 DOI: 10.7150/ijbs.86767] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Hypoxia plays an important role in the lung metastasis of hepatocellular carcinoma (HCC). However, the process by which hypoxia promotes the formation of a pre-metastatic niche (PMN) and its underlying mechanism remain unclear. Methods: Exosomes derived from normoxic and hypoxic HCC cells were collected to induce fibroblast activation in vitro and PMN formation in vivo. The micro RNA (miR) profiles of the exosomes were sequenced to identify differentially expressed miRNAs. Gain- and loss-of-function analyses were performed to investigate miR-4508 function. Dual-luciferase, western blotting, and real-time reverse transcription-PCR analyses were used to identify the direct targets of miR-4508 and its downstream signaling pathways. To demonstrate the roles of hypoxic tumor-derived exosomes (H-TDEs) and miR-4508 in the lung metastasis of liver cancer, H22 tumor cells were injected through the tail vein of mice. Blood plasma-derived exosomes from patients with HCC who underwent transarterial chemoembolization (TACE) were applied to determine clinical correlations. Results: We demonstrated that H-TDEs activated lung fibroblasts and facilitated PMN formation, thereby promoting lung metastasis in mice. Screening for upregulated exosomal miRNAs revealed that miR-4508 and its target, regulatory factor X1 (RFX1), were involved in H-TDE-induced lung PMN formation. Moreover, miR-4508 was significantly upregulated in plasma exosomes derived from patients with HCC after TACE. We confirmed that the p38 MAPK-NF-κB signaling pathway is involved in RFX1 knockdown-induced fibroblast activation and PMN formation. In addition, IL17A, a downstream target of RFX1, was identified as a link between RFX1 knockdown and p38 MAPK activation in fibroblasts. Conclusion: Hypoxia enhances the release of TDEs enriched with miR-4508, thereby promoting lung PMN formation by targeting the RFX1-IL17A-p38 MAPK-NF-κB pathway. These findings highlight a novel mechanism underlying hypoxia-induced pulmonary metastasis of HCC.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wanfu Lin
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Jiaying Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shuchang Nie
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China
| | - Ya'ni Zhang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China
| | - Xiaofeng Zhai
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China
| | - Liping Zhou
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
16
|
Deng Z, Chen M, Zhao Z, Xiao W, Liu T, Peng Q, Wu Z, Xu S, Shi W, Jian D, Wang B, Liu F, Tang Y, Huang Y, Zhang Y, Wang Q, Sun L, Xie H, Zhang G, Li J. Whole genome sequencing identifies genetic variants associated with neurogenic inflammation in rosacea. Nat Commun 2023; 14:3958. [PMID: 37402769 DOI: 10.1038/s41467-023-39761-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/28/2023] [Indexed: 07/06/2023] Open
Abstract
Rosacea is a chronic inflammatory skin disorder with high incidence rate. Although genetic predisposition to rosacea is suggested by existing evidence, the genetic basis remains largely unknown. Here we present the integrated results of whole genome sequencing (WGS) in 3 large rosacea families and whole exome sequencing (WES) in 49 additional validation families. We identify single rare deleterious variants of LRRC4, SH3PXD2A and SLC26A8 in large families, respectively. The relevance of SH3PXD2A, SLC26A8 and LRR family genes in rosacea predisposition is underscored by presence of additional variants in independent families. Gene ontology analysis suggests that these genes encode proteins taking part in neural synaptic processes and cell adhesion. In vitro functional analysis shows that mutations in LRRC4, SH3PXD2A and SLC26A8 induce the production of vasoactive neuropeptides in human neural cells. In a mouse model recapitulating a recurrent Lrrc4 mutation from human patients, we find rosacea-like skin inflammation, underpinned by excessive vasoactive intestinal peptide (VIP) release by peripheral neurons. These findings strongly support familial inheritance and neurogenic inflammation in rosacea development and provide mechanistic insight into the etiopathogenesis of the condition.
Collapse
Affiliation(s)
- Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, Hunan, China
| | - Lunquan Sun
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Hinshaw DC, Benavides GA, Metge BJ, Swain CA, Kammerud SC, Alsheikh HA, Elhamamsy A, Chen D, Darley-Usmar V, Rathmell JC, Welner RS, Samant RS, Shevde LA. Hedgehog Signaling Regulates Treg to Th17 Conversion Through Metabolic Rewiring in Breast Cancer. Cancer Immunol Res 2023; 11:687-702. [PMID: 37058110 PMCID: PMC10159910 DOI: 10.1158/2326-6066.cir-22-0426] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 04/15/2023]
Abstract
The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney A. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C. Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert S. Welner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
18
|
Yi X, Huang C, Huang C, Zhao M, Lu Q. Fecal microbiota from MRL/lpr mice exacerbates pristane-induced lupus. Arthritis Res Ther 2023; 25:42. [PMID: 36927795 PMCID: PMC10018936 DOI: 10.1186/s13075-023-03022-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The roles of gut microbiota in the pathogenesis of SLE have been receiving much attention during recent years. However, it remains unknown how fecal microbiota transplantation (FMT) and microbial metabolites affect immune responses and lupus progression. METHODS We transferred fecal microbiota from MRL/lpr (Lpr) mice and MRL/Mpj (Mpj) mice or PBS to pristane-induced lupus mice and observed disease development. We also screened gut microbiota and metabolite spectrums of pristane-induced lupus mice with FMT via 16S rRNA sequencing, metagenomic sequencing, and metabolomics, followed by correlation analysis. RESULTS FMT from MRL/lpr mice promoted the pathogenesis of pristane-induced lupus and affected immune cell profiles in the intestine, particularly the plasma cells. The structure and composition of microbial communities in the gut of the FMT-Lpr mice were different from those of the FMT-Mpj mice and FMT-PBS mice. The abundances of specific microbes such as prevotella taxa were predominantly elevated in the gut microbiome of the FMT-Lpr mice, which were positively associated with functional pathways such as cyanoamino acid metabolism. Differential metabolites such as valine and L-isoleucine were identified with varied abundances among the three groups. The abundance alterations of the prevotella taxa may affect the phenotypic changes such as proteinuria levels in the pristane-induced lupus mice. CONCLUSION These findings further confirm that gut microbiota play an important role in the pathogenesis of lupus. Thus, altering the gut microbiome may provide a novel way to treat lupus.
Collapse
Affiliation(s)
- Xiaoqing Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, 410011, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, 410011, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, , Central South University, Changsha, 410011, China
| | - Cancan Huang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, 410011, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, 410011, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, , Central South University, Changsha, 410011, China
| | - Chuyi Huang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, 410011, China
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, 410011, China
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, , Central South University, Changsha, 410011, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, 410011, China.
- Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, 410011, China.
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, , Central South University, Changsha, 410011, China.
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, , Central South University, Changsha, 410011, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| |
Collapse
|
19
|
The critical importance of epigenetics in autoimmune-related skin diseases. Front Med 2023; 17:43-57. [PMID: 36811762 DOI: 10.1007/s11684-022-0980-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/05/2022] [Indexed: 02/24/2023]
Abstract
Autoimmune-related skin diseases are a group of disorders with diverse etiology and pathophysiology involved in autoimmunity. Genetics and environmental factors may contribute to the development of these autoimmune disorders. Although the etiology and pathogenesis of these disorders are poorly understood, environmental variables that induce aberrant epigenetic regulations may provide some insights. Epigenetics is the study of heritable mechanisms that regulate gene expression without changing DNA sequences. The most important epigenetic mechanisms are DNA methylation, histone modification, and noncoding RNAs. In this review, we discuss the most recent findings regarding the function of epigenetic mechanisms in autoimmune-related skin disorders, including systemic lupus erythematosus, bullous skin diseases, psoriasis, and systemic sclerosis. These findings will expand our understanding and highlight the possible clinical applications of precision epigenetics approaches.
Collapse
|
20
|
Malviya V, Yshii L, Junius S, Garg AD, Humblet-Baron S, Schlenner SM. Regulatory T-cell stability and functional plasticity in health and disease. Immunol Cell Biol 2023; 101:112-129. [PMID: 36479949 DOI: 10.1111/imcb.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
FOXP3-expressing regulatory T cells (Treg ) are indispensable for immune homeostasis and tolerance, and in addition tissue-resident Treg have been found to perform noncanonical, tissue-specific functions. For optimal tolerogenic function during inflammatory disease, Treg are equipped with mechanisms that assure lineage stability. Treg lineage stability is closely linked to the installation and maintenance of a lineage-specific epigenetic landscape, specifically a Treg -specific DNA demethylation pattern. At the same time, for local and directed immune regulation Treg must possess a level of functional plasticity that requires them to partially acquire T helper cell (TH ) transcriptional programs-then referred to as TH -like Treg . Unleashing TH programs in Treg , however, is not without risk and may threaten the epigenetic stability of Treg with consequently pathogenic ex-Treg contributing to (auto-) inflammatory conditions. Here, we review how the Treg -stabilizing epigenetic landscape is installed and maintained, and further discuss the development, necessity and lineage instability risks of TH 1-, TH 2-, TH 17-like Treg and follicular Treg .
Collapse
Affiliation(s)
- Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Steffie Junius
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Mei X, Zhang B, Zhao M, Lu Q. An update on epigenetic regulation in autoimmune diseases. J Transl Autoimmun 2022; 5:100176. [PMID: 36544624 PMCID: PMC9762196 DOI: 10.1016/j.jtauto.2022.100176] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases (AIDs) generally manifest as chronic immune disorders characterized by significant heterogeneity and complex symptoms. The discordant incidence of AIDs between monozygotic twins guided people to attach importance to environmental factors. Epigenetics is one of the major ways to be influenced, some of them can even occur years before clinical diagnosis. With the advent of high-throughput omics times, the mysterious veil of epigenetic modification in AIDs has been gradually unraveled, and some progress has been made in utilizing it as indicators of diagnosis and disease activity. For example, the hypomethylated IFI44L promoter in diagnosing systematic lupus erythematosus (SLE). More recently, newly identified noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are also believed to be involved in the etiology of AIDs while the initial factor behind those epigenetic alterations can be diverse from metabolism to microbiota. Update and comprehensive insights into epigenetics in AIDs can help us understand the pathogenesis and further orchestrate it to benefit patients in the future. Therefore, we reviewed the latest epigenetic findings in SLE, rheumatoid arthritis (RA), Type 1 diabetes (T1D), systemic sclerosis (SSc) primarily from cellular levels.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Liu T, Xiao W, Chen M, Mao R, San X, Peng Q, Zhao Z, Wang Q, Xie H, Deng Z, Li J. Aberrant amino acid metabolism promotes neurovascular reactivity in rosacea. JCI Insight 2022; 7:161870. [PMID: 36219476 DOI: 10.1172/jci.insight.161870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
Rosacea is a chronic skin disorder characterized by abnormal neurovascular and inflammatory conditions on the central face. Despite increasing evidence suggesting that rosacea is associated with metabolic disorders, the role of metabolism in rosacea pathogenesis remains unknown. Here, via a targeted metabolomics approach, we characterized significantly altered metabolic signatures in patients with rosacea, especially for amino acid-related metabolic pathways. Among these, glutamic acid and aspartic acid were highlighted and positively correlated with the disease severity in patients with rosacea. We further demonstrated that glutamic acid and aspartic acid can facilitate the development of erythema and telangiectasia, typical features of rosacea, in the skin of mice. Mechanistically, glutamic acid and aspartic acid stimulated the production of vasodilation-related neuropeptides from peripheral neurons and keratinocytes and induced the release of nitric oxide from endothelial cells and keratinocytes. Interestingly, we provided evidence showing that doxycycline can improve the symptoms of patients with rosacea possibly by targeting the amino acid metabolic pathway. These findings reveal that abnormal amino acid metabolism promotes neurovascular reactivity in rosacea and raise the possibility of targeting dysregulated metabolism as a promising strategy for clinical treatment.
Collapse
Affiliation(s)
- Tangxiele Liu
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rui Mao
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xu San
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Wang
- Hunan Binsis Biotechnology Co., Ltd, Changsha, China
| | - Hongfu Xie
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology.,Hunan Key Laboratory of Aging Biology, and.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Xu L, Li Y, Ji J, Lai Y, Chen J, Ding T, Li H, Ding B, Ge W. The anti-inflammatory effects of Hedyotis diffusa Willd on SLE with STAT3 as a key target. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115597. [PMID: 35940466 DOI: 10.1016/j.jep.2022.115597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedyotis diffusa Willd, also named Scleromitrion diffusum (Willd.) R.J. Wang, is one medical herb, which has been traditionally used by the She nationality in China. And H. diffusa represents a beneficial effect on Systemic lupus erythematosus (SLE) treatment in clinic. AIM OF THE STUDY The underlying mechanisms of the protective effects of H. diffusa on SLE remain unclear. In this study, we treated MRL/lpr mice with H. diffusa water extract (HDW) to assess its therapeutic effects and verified its regulating signalling pathway through cytological experiments. MATERIALS AND METHODS In the present study, the constituents of HDW were analysed through ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and SCIEX OS software. The protective activity and underlying mechanisms were studied in a MRL/lpr lupus mouse model. The blood cells, autoantibodies, metabolites and the cytokines in serum were identified with a hematology analyzer, specific ELISA kit, GC/MS system and cytometric assays. The histological and immunohistochemical analysis were engaged in the morphologic, and the expression and translocation of the crucial protein observation. The dual luciferase reporter assay was applied to identifying the regulative activity of HDW. The transcription and translation expression of the protein was studied by real-time PCR and Western blot assays. The network pharmacology analysis was employed to predict the IL-6/STAT3 pathway regulators and the screen the STAT3 inhibitors in HDW. RESULTS The results revealed the capability of HDW to attenuate the production of autoantibodies, secretion of inflammatory cytokines (IL-6 and IFN-γ), and suppressed the IgG and C3 deposition, the development of glomerular lesions in MRL/lpr mice. Serum metabolomics study showed the improvement in serum metabolites, especially aminoacyl-tRNA biosynthesis, by HDW. IL-6 was clarified to be highly associated with the significantly changed metabolites in network analysis. We further demonstrated the effects of HDW on the IL-6/STAT3 pathway in vivo and in vitro. CONCLUSIONS This study suggested that HDW exerts a therapeutic effect in SLE model mice by suppressing the IL-6/STAT3 pathway.
Collapse
Affiliation(s)
- Li Xu
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Ying Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Jinjun Ji
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Yahui Lai
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Jing Chen
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Tao Ding
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Haichang Li
- College of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Bin Ding
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| | - Weihong Ge
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
| |
Collapse
|
24
|
Treatment with an antigen-specific dual microparticle system reverses advanced multiple sclerosis in mice. Proc Natl Acad Sci U S A 2022; 119:e2205417119. [PMID: 36256820 PMCID: PMC9618088 DOI: 10.1073/pnas.2205417119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Antigen-specific therapies hold promise for treating autoimmune diseases such as multiple sclerosis while avoiding the deleterious side effects of systemic immune suppression due to delivering the disease-specific antigen as part of the treatment. In this study, an antigen-specific dual-sized microparticle (dMP) treatment reversed hind limb paralysis when administered in mice with advanced experimental autoimmune encephalomyelitis (EAE). Treatment reduced central nervous system (CNS) immune cell infiltration, demyelination, and inflammatory cytokine levels. Mechanistic insights using single-cell RNA sequencing showed that treatment impacted the MHC II antigen presentation pathway in dendritic cells, macrophages, B cells, and microglia, not only in the draining lymph nodes but also strikingly in the spinal cord. CD74 and cathepsin S were among the common genes down-regulated in most antigen presenting cell (APC) clusters, with B cells also having numerous MHC II genes reduced. Efficacy of the treatment diminished when B cells were absent, suggesting their impact in this therapy, in concert with other immune populations. Activation and inflammation were reduced in both APCs and T cells. This promising antigen-specific therapeutic approach advantageously engaged essential components of both innate and adaptive autoimmune responses and capably reversed paralysis in advanced EAE without the use of a broad immunosuppressant.
Collapse
|
25
|
Liang J, Xie F, Feng J, Huang C, Shen J, Han Z, Luo W, He J, Chen H. Progress in the application of body fluid and tissue level mRNAs-non-coding RNAs for the early diagnosis and prognostic evaluation of systemic lupus erythematosus. Front Immunol 2022; 13:1020891. [PMID: 36325322 PMCID: PMC9618628 DOI: 10.3389/fimmu.2022.1020891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
The diagnosis and differential classification of systemic lupus erythematosus (SLE) is difficult, especially in patients with early-onset SLE who are susceptible to systemic multi-organ damage and serious complications and have difficulties in individualized treatment. At present, diagnosis is based mainly on clinical manifestations and the detection of serological antinuclear antibodies. The pathogenesis of SLE involves multiple factors, is clinically heterogeneous, and lacks specific biomarkers. Therefore, it is necessary to identify new biomarkers for the diagnosis and subtype classification of SLE. Non-coding RNAs (ncRNAs) are composed of microRNAs, long non-coding RNAs, small nucleolar RNAs, circular RNAs, and transfer RNAs. They play an important role in the occurrence and development of diseases and are used widely in the early diagnosis and prognosis of autoimmune diseases. In this review, we focus on the research progress in the diagnosis and prognostic assessment of SLE using humoral to tissue level ncRNAs.
Collapse
Affiliation(s)
- Jiabin Liang
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fangmei Xie
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jie Feng
- Radiology Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Huang
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Zeping Han
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wenfeng Luo
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jinhua He
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- *Correspondence: Hanwei Chen, ; Jinhua He,
| | - Hanwei Chen
- Central Laboratory of Guangzhou Panyu Central Hospital, Guangzhou, China
- Radiology Department of Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
- *Correspondence: Hanwei Chen, ; Jinhua He,
| |
Collapse
|
26
|
Wang J, Huang Z, Ji L, Chen C, Wan Q, Xin Y, Pu Z, Li K, Jiao J, Yin Y, Hu Y, Gong L, Zhang R, Yang X, Fang X, Wang M, Zhang B, Shao J, Zou J. SHF Acts as a Novel Tumor Suppressor in Glioblastoma Multiforme by Disrupting STAT3 Dimerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200169. [PMID: 35843865 PMCID: PMC9475553 DOI: 10.1002/advs.202200169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/28/2022] [Indexed: 05/28/2023]
Abstract
Sustained activation of signal transducer and activator of transcription 3 (STAT3) is a critical contributor in tumorigenesis and chemoresistance, thus making it an attractive cancer therapeutic target. Here, SH2 domain-containing adapter protein F (SHF) is identified as a tumor suppressor in glioblastoma Multiforme (GBM) and its negative regulation of STAT3 activity is characterized. Mechanically, SHF selectively binds and inhibits acetylated STAT3 dimerization without affecting STAT3 phosphorylation or acetylation. Additionally, by blocking STAT3-DNMT1 (DNA Methyltransferase 1) interaction, SHF relieves methylation of tumor suppressor genes. The SH2 domain is documented to be essential for SHF's actions on STAT3, and almost entirely replaces the functions of SHF on STAT3 independently. Moreover, the peptide C16 a peptide derived from the STAT3-binding sites of SHF inhibits STAT3 dimerization and STAT3/DNMT1 interaction, and achieves remarkable growth inhibition in GBM cells in vitro and in vivo. These findings strongly identify targeting of the SHF/STAT3 interaction as a promising strategy for developing an optimal STAT3 inhibitor and provide early evidence of the potential clinical efficacy of STAT3 inhibitors such as C16 in GBM.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Zixuan Huang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Li Ji
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Cheng Chen
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Quan Wan
- Department of NeurosurgeryThe Affiliated Wuxi Second Hospital of Nanjing Medical UniversityWuxiJiangsu214002P. R. China
| | - Yu Xin
- Key Laboratory of Industry BiotechnologySchool of BiotechnologyJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zhening Pu
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Koukou Li
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jiantong Jiao
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Ying Yin
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Yaling Hu
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Lingli Gong
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Rui Zhang
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xusheng Yang
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Xiangming Fang
- Department of RadiologyWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Mei Wang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Bo Zhang
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Junfei Shao
- Department of NeurosurgeryThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| | - Jian Zou
- Department of Laboratory MedicineWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
- Center of Clinical ResearchWuxi People's Hospital of Nanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
27
|
A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Mol Psychiatry 2022; 27:3343-3354. [PMID: 35491410 DOI: 10.1038/s41380-022-01566-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Immune dysregulation plays a key role in the pathogenesis of autism. Changes occurring at the systemic level, from brain inflammation to disturbed innate/adaptive immune in the periphery, are frequently observed in patients with autism; however, the intrinsic mechanisms behind them remain elusive. We hypothesize a common etiology may lie in progenitors of different types underlying widespread immune dysregulation. By single-cell RNA sequencing (sc-RNA seq), we trace the developmental origins of immune dysregulation in a mouse model of idiopathic autism. It is found that both in aorta-gonad-mesonephros (AGM) and yolk sac (YS) progenitors, the dysregulation of HDAC1-mediated epigenetic machinery alters definitive hematopoiesis during embryogenesis and downregulates the expression of the AP-1 complex for microglia development. Subsequently, these changes result in the dysregulation of the immune system, leading to gut dysbiosis and hyperactive microglia in the brain. We further confirm that dysregulated immune profiles are associated with specific microbiota composition, which may serve as a biomarker to identify autism of immune-dysregulated subtypes. Our findings elucidate a shared mechanism for the origin of immune dysregulation from the brain to the gut in autism and provide new insight to dissecting the heterogeneity of autism, as well as the therapeutic potential of targeting immune-dysregulated autism subtypes.
Collapse
|
28
|
Huang D, Zhang C, Wang P, Li X, Gao L, Zhao C. JMJD3 Promotes Porphyromonas gingivalis Lipopolysaccharide-Induced Th17-Cell Differentiation by Modulating the STAT3-RORc Signaling Pathway. DNA Cell Biol 2022; 41:778-787. [PMID: 35867069 PMCID: PMC9416562 DOI: 10.1089/dna.2022.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The immune response mediated by Th17 cells is essential in the pathogenesis of periodontitis. Emerging evidence has demonstrated that lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS) could promote Th17-cell differentiation directly, while the downstream signaling remains elusive. This study was aimed to explore the role of JMJD3 (a JmjC family histone demethylase) and signal transducers and activators of transcription 3 (STAT3) in Th17-cell differentiation triggered by Pg-LPS and clarify the interaction between them. We found that the expression of JMJD3 and STAT3 was significantly increased under Th17-polarizing conditions. Pg-LPS could promote Th17-cell differentiation from CD4+ T cells, with an increased expression of JMJD3 and STAT3 compared to the culture without Pg-LPS. The coimmunoprecipitation results showed that the interactions of JMJD3 and STAT3, STAT3 and retinoid-related orphan nuclear receptor γt (RORγt) were enhanced following Pg-LPS stimulation during Th17-cell differentiation. Further blocking assays were performed and the results showed that inhibition of STAT3 or JMJD3 both suppressed the Th17-cell differentiation, JMJD3 inhibitor could reduce the expression of STAT3 and p-STAT3, while JMJD3 expression was not affected when STAT3 was inhibited. Taken together, this study found that JMJD3 could promote Pg-LPS induced Th17-cell differentiation by modulating the STAT3-RORc signaling pathway.
Collapse
Affiliation(s)
- Doudou Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Lambert K, Diggins KE, Jones BE, Hundhausen C, Maerz MD, Hocking AM, Sanda S, Greenbaum CJ, Linsley PS, Cerosaletti K, Buckner JH. IL-6-Driven pSTAT1 Response Is Linked to T Cell Features Implicated in Early Immune Dysregulation. Front Immunol 2022; 13:935394. [PMID: 35911690 PMCID: PMC9327741 DOI: 10.3389/fimmu.2022.935394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Elevated levels and enhanced sensing of the pro-inflammatory cytokine interleukin-6 (IL-6) are key features of many autoimmune and inflammatory diseases. To better understand how IL-6 signaling may influence human T cell fate, we investigated the relationships between levels of components of the IL-6R complex, pSTAT responses, and transcriptomic and translational changes in CD4+ and CD8+ T cell subsets from healthy individuals after exposure to IL-6. Our findings highlight the striking heterogeneity in mbIL-6R and gp130 expression and IL-6-driven pSTAT1/3 responses across T cell subsets. Increased mbIL-6R expression correlated with enhanced signaling via pSTAT1 with less impact on pSTAT3, most strikingly in CD4+ naïve T cells. Additionally, IL-6 rapidly induced expression of transcription factors and surface receptors expressed by T follicular helper cells and altered expression of markers of apoptosis. Importantly, many of the features associated with the level of mbIL-6R expression on T cells were recapitulated both in the setting of tocilizumab therapy and when comparing donor CD4+ T cells harboring the genetic variant, IL6R Asp358Ala (rs2228145), known to alter mbIL-6R expression on T cells. Collectively, these findings should be taken into account as we consider the role of IL-6 in disease pathogenesis and translating IL-6 biology into effective therapies for T cell-mediated autoimmune disease.
Collapse
Affiliation(s)
- Katharina Lambert
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Kirsten E. Diggins
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Britta E. Jones
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Christian Hundhausen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Megan D. Maerz
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Anne M. Hocking
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Srinath Sanda
- Immune Tolerance Network, Seattle, WA, United States
- Department of Pediatrics, University of California, San Francisco, CA, United States
| | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Peter S. Linsley
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Karen Cerosaletti
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Jane H. Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| |
Collapse
|
30
|
Yang Y, Shi GN, Wu X, Xu M, Chen CJ, Zhou Y, Wei YZ, Wu L, Cui FF, Sun L, Zhang TT. Quercetin Impedes Th17 Cell Differentiation to Mitigate Arthritis Involving PPARγ-Driven Transactivation of SOCS3 and Redistribution Corepressor SMRT from PPARγ to STAT3. Mol Nutr Food Res 2022; 66:e2100826. [PMID: 35384292 DOI: 10.1002/mnfr.202100826] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 03/03/2022] [Indexed: 01/08/2023]
Abstract
SCOPE Quercetin (QU) is one of the most abundant flavonoids in plants and has attracted the attention of researchers because of its remarkable antirheumatoid arthritis (RA) effects and extremely low adverse reactions. However, the underlying mechanism needs further study. METHODS AND RESULTS Flow cytometry, immunofluorescence, enzyme linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) reveal the obvious inhibitory effects of QU on Th17 cell differentiation in arthritic mice. More importantly, QU markedly limits the development of Th17 cell polarization, which is virtually compromised by the treatment with peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662 and knockdown of PPARγ. Additionally, molecular dynamics simulation and immunofluorescence exhibit QU directly binds to PPARγ and increases PPARγ nuclear translocation. Besides, QU confers its moderation effect on suppressor of cytokine signaling protein (SOCS3)/signal transducer and activator of transcription 3 (STAT3) axis partially depending on PPARγ. Furthermore, coimmunoprecipitation shows QU redistributes the corepressor silencing mediator for retinoid and thyroid-hormone receptors (SMRT) from PPARγ to STAT3. Finally, the inhibition of Th17 response and the antiarthritic effect of QU are nullified by GW9662 treatment in arthritic mice. CONCLUSION QU targets PPARγ and consequently inhibits Th17 cell differentiation by dual inhibitory activity of STAT3 to exert antiarthritic effect. The findings facilitate its development and put forth a stage for uncovering the mechanism of other naturally occurring compounds with chemical structures similar to QU.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Gao-Na Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Min Xu
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Cheng-Juan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ya-Zi Wei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fen-Fang Cui
- Department of Pharmacy, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Lan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tian-Tai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Luo S, Wu R, Li Q, Zhang G. Epigenetic Regulation of IFI44L Expression in Monocytes Affects the Functions of Monocyte-Derived Dendritic Cells in Systemic Lupus Erythematosus. J Immunol Res 2022; 2022:4053038. [PMID: 35592687 PMCID: PMC9113863 DOI: 10.1155/2022/4053038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background Interferon-inducible 44 like (IFI44L) is a newly discovered interferon-induced gene and has been reported to overexpress in systemic lupus erythematosus (SLE). However, little is known about the mechanism and function of IFI44L overexpression in SLE. In this study, we aimed to investigate the epigenetic mechanism of IFI44L overexpression in SLE monocyte and its potential functions contributing to the pathogenesis of SLE. Methods We collected peripheral blood from 20 SLE patients and 20 healthy controls. Expression of IFI44L in monocytes and effects of different signal transducers and activators of transcription (STAT) pathway inhibitors on IFI44L expression were detected. Recruitment of ten-eleven translocation protein (TET) by STAT and methylation of IFI44L promoter were evaluated. Effects of IFI44L overexpression on the expression of surface markers on monocyte-derived dendritic cells (Mo-DCs) were analyzed. T cell differentiation mediated by Mo-DCs and related cytokines production were also analyzed. Results Expression level of IFI44L was significantly increased in SLE monocyte. IFI44L expression was decreased most significantly in STAT3 inhibitor compared with other inhibitors. STAT3 regulated IFI44L expression and interacted with TET2 which induced DNA demethylation of IFI44L promoter. Overexpression of IFI44L in monocyte enhanced the maturation and functions of Mo-DC by upregulating costimulatory receptors and inducing Th1/Th17-related cytokines when cocultured with naïve CD4+ T cells. Conclusion TET2 recruited by STAT3 induces DNA demethylation of IFI44L promoter which promotes IFI44L overexpression in monocyte contributing to the pathogenesis of SLE by enhancing the maturation and functions of Mo-DC. IFI44L is expected to become a new target for treatment of SLE.
Collapse
Affiliation(s)
- Shuaihantian Luo
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Ruifang Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianwen Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| | - Guiying Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
32
|
|
33
|
Peng Q, Sha K, Liu Y, Chen M, Xu S, Xie H, Deng Z, Li J. mTORC1-Mediated Angiogenesis is Required for the Development of Rosacea. Front Cell Dev Biol 2022; 9:751785. [PMID: 34993194 PMCID: PMC8724421 DOI: 10.3389/fcell.2021.751785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
Although multiple evidences suggest that angiogenesis is associated with the pathophysiology of rosacea, its role is still in debate. Here, we showed that angiogenesis was enhanced in skin lesions of both rosacea patients and LL37-induced rosacea-like mice. Inhibition of angiogenesis alleviated LL37-induced rosacea-like features in mice. Mechanistically, we showed that mTORC1 was activated in the endothelial cells of the lesional skin from rosacea patients and LL37-induced rosacea-like mouse model. Inhibition of mTORC1 decreased angiogenesis and blocked the development of rosacea in mice. On the contrary, hyperactivation of mTORC1 increased angiogenesis and exacerbated rosacea-like phenotypes. Our in vitro results further demonstrated that inhibition of mTORC1 signaling significantly declined LL37-induced tube formation of human endothelial cells. Taken together, our findings revealed that mTORC1-mediated angiogenesis responding to LL37 might be essential for the development of rosacea and targeting angiogenesis might be a novel potential therapy.
Collapse
Affiliation(s)
- Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Ke Sha
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Yingzi Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Molecular Radiation Oncology of Hunan Province, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
34
|
Di Y, Zhang M, Chen Y, Sun R, Shen M, Tian F, Yang P, Qian F, Zhou L. Catalpol Inhibits Tregs-to-Th17 Cell Transdifferentiation by Up-Regulating Let-7g-5p to Reduce STAT3 Protein Levels. Yonsei Med J 2022; 63:56-65. [PMID: 34913284 PMCID: PMC8688372 DOI: 10.3349/ymj.2022.63.1.56] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, and Th17 cells are key factors in the pathogenesis of human inflammatory conditions, such as RA. Catalpol (CAT), a component in Rehmanniae Radix (RR), has been found to regulate human immunity. However, the effects of CAT on Th17 cell differentiation and improvement of RA are not clear. MATERIALS AND METHODS Collagen-induced arthritis (CIA) mice were constructed to detect the effects of CAT on arthritis and Th17 cells. The effect of CAT on Th17 differentiation was evaluated with let-7g-5p transfection experiments. Flow cytometry was used to detect the proportion of Th17 cells after CAT treatment. Levels of interleukin-17 and RORγt were assessed by qRT-PCR and enzyme-linked immunosorbent assay. The expression of signal transducer and activator of transcription 3 (STAT3) was determined by qRT-PCR and Western blot. RESULTS We found that the proportion of Th17 cells was negatively associated with let-7g-5p expression in CIA mice. In in vitro experiments, CAT suppressed traditional differentiation of Th17 cells. Simultaneously, CAT significantly decreased Tregs-to-Th17 cells transdifferentiation. Our results demonstrated that CAT inhibited Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p and that the suppressive effect of CAT on traditional differentiation of Th17 cells is not related with let-7-5p. CONCLUSION Our data indicate that CAT may be a potential modulator of Tregs-to-Th17 cells transdifferentiation by up-regulating let-7g-5p to reduce the expression of STAT3. These results provide new directions for research into RA treatment.
Collapse
Affiliation(s)
- Yuxi Di
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingfei Zhang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichang Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruonan Sun
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiyu Shen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengxiang Tian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiya Qian
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
35
|
Lutter L, van der Wal MM, Brand EC, Maschmeyer P, Vastert S, Mashreghi M, van Loosdregt J, van Wijk F. Human regulatory T cells locally differentiate and are functionally heterogeneous within the inflamed arthritic joint. Clin Transl Immunology 2022; 11:e1420. [PMID: 36204213 PMCID: PMC9525321 DOI: 10.1002/cti2.1420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Objective Tregs are crucial for immune regulation, and environment‐driven adaptation of effector (e)Tregs is essential for local functioning. However, the extent of human Treg heterogeneity in inflammatory settings is unclear. Methods We combined single‐cell RNA‐ and TCR‐sequencing on Tregs derived from three to six patients with juvenile idiopathic arthritis (JIA) to investigate the functional heterogeneity of human synovial fluid (SF)‐derived Tregs from inflamed joints. Confirmation and suppressive function of the identified Treg clusters was assessed by flow cytometry. Results Four Treg clusters were identified; incoming, activated eTregs with either a dominant suppressive or cytotoxic profile, and GPR56+CD161+CXCL13+ Tregs. Pseudotime analysis showed differentiation towards either classical eTreg profiles or GPR56+CD161+CXCL13+ Tregs supported by TCR data. Despite its most differentiated phenotype, GPR56+CD161+CXCL13+ Tregs were shown to be suppressive. Furthermore, BATF was identified as an overarching eTreg regulator, with the novel Treg‐associated regulon BHLHE40 driving differentiation towards GPR56+CD161+CXCL13+ Tregs, and JAZF1 towards classical eTregs. Conclusion Our study reveals a heterogeneous population of Tregs at the site of inflammation in JIA. SF Treg differentiate to a classical eTreg profile with a more dominant suppressive or cytotoxic profile that share a similar TCR repertoire, or towards GPR56+CD161+CXCL13+ Tregs with a more distinct TCR repertoire. Genes characterising GPR56+CD161+CXCL13+ Tregs were also mirrored in other T‐cell subsets in both the tumor and the autoimmune setting. Finally, the identified key regulators driving SF Treg adaptation may be interesting targets for autoimmunity or tumor interventions.
Collapse
Affiliation(s)
- Lisanne Lutter
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - M Marlot van der Wal
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Eelco C Brand
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Patrick Maschmeyer
- Therapeutic Gene Regulation Deutsches Rheuma‐Forschungszentrum (DRFZ), an Institute of the Leibniz Association Berlin Germany
| | - Sebastiaan Vastert
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Mir‐Farzin Mashreghi
- Therapeutic Gene Regulation Deutsches Rheuma‐Forschungszentrum (DRFZ), an Institute of the Leibniz Association Berlin Germany
- BIH Center for Regenerative Therapies (BCRT) Berlin Institute of Health at Charité – Universitätsmedizin Berlin Charitéplatz 1 Berlin Germany
| | - Jorg van Loosdregt
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht Utrecht University Utrecht The Netherlands
| |
Collapse
|
36
|
Zeinalzadeh E, Valerievich Yumashev A, Rahman HS, Marofi F, Shomali N, Kafil HS, Solali S, Sajjadi-Dokht M, Vakili-Samiani S, Jarahian M, Hagh MF. The Role of Janus Kinase/STAT3 Pathway in Hematologic Malignancies With an Emphasis on Epigenetics. Front Genet 2021; 12:703883. [PMID: 34992627 PMCID: PMC8725977 DOI: 10.3389/fgene.2021.703883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway has been known to be involved in cell growth, cellular differentiation processes development, immune cell survival, and hematopoietic system development. As an important member of the STAT family, STAT3 participates as a major regulator of cellular development and differentiation-associated genes. Prolonged and persistent STAT3 activation has been reported to be associated with tumor cell survival, proliferation, and invasion. Therefore, the JAK-STAT pathway can be a potential target for drug development to treat human cancers, e.g., hematological malignancies. Although STAT3 upregulation has been reported in hematopoietic cancers, protein-level STAT3 mutations have also been reported in invasive leukemias/lymphomas. The principal role of STAT3 in tumor cell growth clarifies the importance of approaches that downregulate this molecule. Epigenetic modifications are a major regulatory mechanism controlling the activity and function of STAT3. So far, several compounds have been developed to target epigenetic regulatory enzymes in blood malignancies. Here, we discuss the current knowledge about STAT3 abnormalities and carcinogenic functions in hematopoietic cancers, novel STAT3 inhibitors, the role of epigenetic mechanisms in STAT3 regulation, and targeted therapies, by focusing on STAT3-related epigenetic modifications.
Collapse
Affiliation(s)
- Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sajjadi-Dokht
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Vakili-Samiani
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Wang X, Zhang Q, Luo S, Zhang H, Lu Q, Long H. Advances in therapeutic targets-related study on systemic lupus erythematosus. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:1267-1275. [PMID: 34911862 PMCID: PMC10929849 DOI: 10.11817/j.issn.1672-7347.2021.200056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic and autoimmunity-mediated diffuse connective tissue disease. The mainstay of treatments for SLE mainly relies on corticosteroids and immunosuppressants, which have a series of unavoidable side effects. Therefore, it is of fundamental importance to search novel therapeutic targets for better treatment with favorable efficacy and minor side effects. Recent studies shed light on potential therapeutic targets for SLE, mainly covering the followings: B-cell/plasmocyte-related targets [B cell activating factor (BAFF), a proliferation-inducing ligand (APRIL), CD20, CD22, CD19/FcγRIIb, Bruton tyrosine kinase (Btk), and proteasome], T cell-related targets [calcineurin, mammalian target of rapamycin (mTOR), regulatory factor X1 (RFX1), and Rho kinase], macrophage-related targets (macrophage migration inhibitory factor), intracellular signaling molecules, cytokines (cereblon, histone deacetylase 6, Janus activated kinase/signal transducer and activator of transcription), co-stimulating factors (CD28/B7, CD40/CD154), IgE autoantibody, and gut microbiome. Among them, belimumab (a humanized monoclonal antibody against B-lymphocyte stimulator) and telitacicept (a recombinant human B-lymphocyte stimulator receptor-antibody fusion protein) have been sequentially approved for the clinical treatment of SLE in China. A variety of new targeted-therapy drugs are in the Phase 2 or Phase 3 clinical trials,among which anifrolumab (a human monoclonal antibody against type I interferon receptor subunit 1) has completed a Phase 3 clinical trial with good responses achieved, although its incidence of herpes zoster is higher than that in the control group. The research progress in both molecular mechanisms and new drug development for different therapeutic targets have greatly promoted our better and in-depth understanding of the pathogenesis of SLE, and have also reflected the complexity and heterogeneity of the disease. Successful development and clinical application of more novel therapies would no doubt usher in a new era of individualized treatment for SLE in the future.
Collapse
Affiliation(s)
- Xin Wang
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011.
| | - Qing Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011
| | - Shuaihantian Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011
| | - Huilin Zhang
- Department of Nursing, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011
- Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Hai Long
- Department of Dermatology, Second Xiangya Hospital, Central South University; Hunan Key Laboratory of Medical Epigenomics; Hunan Clinical Medical Research Center of Major Skin Diseases and Skin Health, Changsha 410011.
| |
Collapse
|
38
|
Santos GSP, Costa AC, Picoli CC, Rocha BGS, Sulaiman SO, Radicchi DC, Pinto MCX, Batista ML, Amorim JH, Azevedo VAC, Resende RR, Câmara NOS, Mintz A, Birbrair A. Sympathetic nerve-adipocyte interactions in response to acute stress. J Mol Med (Berl) 2021; 100:151-165. [PMID: 34735579 PMCID: PMC8567732 DOI: 10.1007/s00109-021-02157-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022]
Abstract
Psychological stress predisposes our body to several disorders. Understanding the cellular and molecular mechanisms involved in the physiological responses to psychological stress is essential for the success of therapeutic applications. New studies show, by using in vivo inducible Cre/loxP-mediated approaches in combination with pharmacological blockage, that sympathetic nerves, activated by psychological stress, induce brown adipocytes to produce IL-6. Strikingly, this cytokine promotes gluconeogenesis in hepatocytes, that results in the decline of tolerance to inflammatory organ damage. The comprehension arising from this research will be crucial for the handling of many inflammatory diseases. Here, we review recent advances in our comprehension of the sympathetic nerve-adipocyte axis in the tissue microenvironment.
Collapse
Affiliation(s)
- Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sheu O Sulaiman
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Debora C Radicchi
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Laboratory of Neuropharmacology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Miguel L Batista
- Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil.,Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, BA, Barreiras, Brazil
| | - Vasco A C Azevedo
- Cellular and Molecular Genetics Laboratory, Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Niels O S Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
39
|
Lv Q, Xing Y, Liu J, Dong D, Liu Y, Qiao H, Zhang Y, Hu L. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation. Acta Pharm Sin B 2021; 11:2880-2899. [PMID: 34589402 PMCID: PMC8463273 DOI: 10.1016/j.apsb.2021.03.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/08/2021] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant activation of NLRP3 inflammasome in colonic macrophages strongly associates with the occurrence and progression of ulcerative colitis. Although targeting NLRP3 inflammasome has been considered to be a potential therapy, the underlying mechanism through which pathway the intestinal inflammation is modulated remains controversial. By focusing on the flavonoid lonicerin, one of the most abundant constituents existed in a long historical anti-inflammatory and anti-infectious herb Lonicera japonica Thunb., here we report its therapeutic effect on intestinal inflammation by binding directly to enhancer of zeste homolog 2 (EZH2) histone methyltransferase. EZH2-mediated modification of H3K27me3 promotes the expression of autophagy-related protein 5, which in turn leads to enhanced autophagy and accelerates autolysosome-mediated NLRP3 degradation. Mutations of EZH2 residues (His129 and Arg685) indicated by the dynamic simulation study have found to greatly diminish the protective effect of lonicerin. More importantly, in vivo studies verify that lonicerin dose-dependently disrupts the NLRP3–ASC–pro-caspase-1 complex assembly and alleviates colitis, which is compromised by administration of EZH2 overexpression plasmid. Thus, these findings together put forth the stage for further considering lonicerin as an anti-inflammatory epigenetic agent and suggesting EZH2/ATG5/NLRP3 axis may serve as a novel strategy to prevent ulcerative colitis as well as other inflammatory diseases.
Collapse
Key Words
- 3-MC, 3-methylcholanthrene
- 5-ASA, 5-aminosalicylic acid
- AIM2, absent in melanoma 2
- ATG5, autophagy-related protein 5
- ATG7, autophagy-related protein 7
- ATP, adenosine triphosphate
- Autophagy
- BMDMs, bone marrow-derived macrophages
- CETSA, cellular thermal shift assay
- CHX, cycloheximide
- ChIP, chromatin immunoprecipitation
- Colitis
- DAI, disease activity index
- DAMPs, damage-associated molecular patterns
- DMSO, dimethyl sulfoxide
- DSS, dextran sulfate sodium
- DTT, dithiothreitol
- ECL, enhanced chemiluminescent
- EDTA, ethylenediaminetetraacetic acid
- ELISA, enzyme-linked immunosorbent assay
- EZH2
- EZH2, enhancer of zeste homolog 2
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- LPS, lipopolysaccharide
- Lonicerin
- M-CSF, macrophage colony stimulating factor
- MDP, muramyldipeptide
- MPO, myeloperoxidase
- MSU, monosodium urate crystals
- NLRP3 inflammasome
- NLRP3, nucleotide-binding domain-like receptors family pyrin domain containing 3
- PAMPs, pathogen-associated molecular patterns
- PMA, phorbol myristate acetate
- PMSF, phenylmethanesulfonyl fluoride
- PRC2, polycomb repressive complex 2
- RMSD, root mean-square deviation
- RMSF, root mean-square fluctuation
- SIP, solvent-induced protein precipitation
- TEM, transmission electron microscopy
- UC, ulcerative colitis
Collapse
|
40
|
Yang F, Lin J, Chen W. Post-translational modifications in T cells in systemic erythematosus lupus. Rheumatology (Oxford) 2021; 60:2502-2516. [PMID: 33512488 DOI: 10.1093/rheumatology/keab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Systemic erythematosus lupus (SLE) is a classic autoimmune disease characterized by multiple autoantibodies and immune-mediated tissue damage. The aetiology of this disease is still unclear. A new drug, belimumab, which acts against the B-lymphocyte stimulator (BLyS), can effectively improve the condition of SLE patients, but it cannot resolve all SLE symptoms. The discovery of novel, precise therapeutic targets is urgently needed. It is well known that abnormal T-cell function is one of the most crucial factors contributing to the pathogenesis of SLE. Protein post-translational modifications (PTMs), including phosphorylation, glycosylation, acetylation, methylation, ubiquitination and SUMOylation have been emphasized for their roles in activating protein activity, maintaining structural stability, regulating protein-protein interactions and mediating signalling pathways, in addition to other biological functions. Summarizing the latest data in this area, this review focuses on the potential roles of diverse PTMs in regulating T-cell function and signalling pathways in SLE pathogenesis, with the goal of identifying new targets for SLE therapy.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Jin Lin
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weiqian Chen
- Division of Rheumatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Abstract
The term "epigenetics" refers to a series of meiotically/mitotically inheritable alterations in gene expression, related to environmental factors, without disruption on DNA sequences of bases. Recently, the pathophysiology of autoimmune diseases (ADs) has been closely linked to epigenetic modifications. Actually, epigenetic mechanisms can modulate gene expression or repression of targeted cells and tissues involved in autoimmune/inflammatory conditions acting as keys effectors in regulation of adaptive and innate responses. ADs, as systemic lupus erythematosus (SLE), a rare disease that still lacks effective treatment, is characterized by epigenetic marks in affected cells.Taking into account that epigenetic mechanisms have been proposed as a winning strategy in the search of new more specific and personalized therapeutics agents. Thus, pharmacology and pharmacoepigenetic studies about epigenetic regulations of ADs may provide novel individualized therapies. Focussing in possible implicated factors on development and predisposition of SLE, diet is feasibly one of the most important factors since it is linked directly to epigenetic alterations and these epigenetic changes may augment or diminish the risk of SLE. Nevertheless, several studies have guaranteed that dietary therapy could be a promise to SLE patients via prophylactic actions deprived of side effects of pharmacology, decreasing co-morbidities and improving lifestyle of SLE sufferers.Herein, we review and discuss the cross-link between epigenetic mechanisms on SLE predisposition and development, as well as the influence of dietary factors on regulation epigenetic modifications that would eventually make a positive impact on SLE patients.
Collapse
|
42
|
Cui Z, Feng R, Liu Z, Gong Y, Zhang Y. Receptor Activator of Nuclear Factor (Nf)-kb Ligand Promotes T Helper 17 Cell Differentiation through Fas. Immunol Invest 2021; 51:1385-1397. [PMID: 34238108 DOI: 10.1080/08820139.2021.1948050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T helper 17 (Th17) cells play important role in the defense against pathogens and autoimmune diseases. Many cytokines can induce Th17 cell differentiation. However, the mechanism of Th17 cell differentiation is not well clarified. RankL, a member of the TNF superfamily, binds with Rank and then participates in the proliferation and differentiation of many kinds of cells. Recent studies showed that RankL-Rank signaling is closely related to Th17 differentiation and function. The detail of the Rank-RankL pathway in Th17 cell differentiation is still unclear. To illustrate the role of Rank-RankL in Th17 differentiation, naive CD4 + T cells were differentiated into Th17 cells with or without RankL stimulation. During Th17 differentiation, the expression of Rank obviously increased. The RankL stimulation significantly increased Th17 cell differentiation indicated by increased IL-17-positive cell number, highly expressed IL-17 and IL-22 and elevated IL-17 secretion. These effects were canceled by Rank-Fc addition. In further study, RankL treatment during Th17 differentiation up-regulated Fas expression. Fas knockdown inhibited the Th17 differentiation promoted by RankL. In this study, it was confirmed that Rank-RankL signaling could promote Th17 cell differentiation through Fas induction.
Collapse
Affiliation(s)
- Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Rui Feng
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yehong Gong
- Department of General Surgery, Xincheng Hospital of Tianjin University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
43
|
Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021; 21:253. [PMID: 33964962 PMCID: PMC8106159 DOI: 10.1186/s12935-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Ani V Das
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
44
|
Deng Z, Chen M, Liu Y, Xu S, Ouyang Y, Shi W, Jian D, Wang B, Liu F, Li J, Shi Q, Peng Q, Sha K, Xiao W, Liu T, Zhang Y, Zhang H, Wang Q, Sun L, Xie H, Li J. A positive feedback loop between mTORC1 and cathelicidin promotes skin inflammation in rosacea. EMBO Mol Med 2021; 13:e13560. [PMID: 33734592 PMCID: PMC8103105 DOI: 10.15252/emmm.202013560] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Rosacea is a chronic inflammatory skin disorder whose pathogenesis is unclear. Here, several lines of evidence were provided to demonstrate that mTORC1 signaling is hyperactivated in the skin, especially in the epidermis, of both rosacea patients and a mouse model of rosacea-like skin inflammation. Both mTORC1 deletion in epithelium and inhibition by its specific inhibitors can block the development of rosacea-like skin inflammation in LL37-induced rosacea-like mouse model. Conversely, hyperactivation of mTORC1 signaling aggravated rosacea-like features. Mechanistically, mTORC1 regulates cathelicidin through a positive feedback loop, in which cathelicidin LL37 activates mTORC1 signaling by binding to Toll-like receptor 2 (TLR2) and thus in turn increases the expression of cathelicidin itself in keratinocytes. Moreover, excess cathelicidin LL37 induces both NF-κB activation and disease-characteristic cytokine and chemokine production possibly via mTORC1 signaling. Topical application of rapamycin improved clinical symptoms in rosacea patients, suggesting mTORC1 inhibition can serve as a novel therapeutic avenue for rosacea.
Collapse
|
45
|
Liu Y, Li C, Yang Y, Li T, Xu Y, Zhang W, Li M, Xiao Y, Hu J, Liu K, Li Q, Gui M, Zuo X, Li Y, Zhang H. The TGF-β/miR-31/CEACAM1-S axis inhibits CD4 + CD25 + Treg differentiation in systemic lupus erythematosus. Immunol Cell Biol 2021; 99:697-710. [PMID: 33655578 DOI: 10.1111/imcb.12449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Defects causing concomitant loss of CD25 expression in regulatory T cells (Tregs) have been identified in systemic lupus erythematosus (SLE). However, the cause of this deficiency is not fully understood. Carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1), an immune co-receptor, contributes to general T-cell function and activation. Our previous study revealed that CEACAM1 expression was upregulated in peripheral blood mononuclear cells (PBMCs) from patients with SLE. However, its role remains unclear. Herein, we confirmed CEACAM1, especially CEACAM1-S, was upregulated in PBMCs from patients with SLE. CEACAM1-S over-expression inhibits CD4+ CD25+ Treg differentiation, whereas knockdown of CEACAM1 had the opposite effect in vitro. CEACAM1-S is the target of miR-31. MiR-31 mimic inhibits CEACAM1 expression and enhances CD4+ CD25+ Treg differentiation, which was reversed by CEACAM1-S over-expression. Moreover, the circulating TGF-β level was upregulated in SLE patients and TGF-β reduced miR-31 expression via enhancing NF-κB activity. Importantly, CEACAM1 and TGF-β mRNA levels were downregulated, while the miR-31 level and the abundance of CD4+ CD25+ Tregs were increased in inactive patients compared with that in patients with active SLE. In addition, CEACAM1-S expression was positively correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, while CD4+ CD25+ Treg abundance and miR-31 level were negatively correlated with the SLEDAI score. In conclusion, reduced activity of miR-31 by TGF-β, via the inhibition of NF-ᴋB, acted to inhibit the differentiation of CD4+ CD25+ Tregs by directly targeting CEACAM1-S and to promote autoimmunity.
Collapse
Affiliation(s)
- Yanjuan Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China.,Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha City, Hunan Province, China
| | - Caiyan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Yang Yang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Tao Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Yunfei Xu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Wenqin Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Muyuan Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Yizhi Xiao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Jie Hu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China
| | - Quanzhen Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Gui
- Department of Nephropathy and Rheumatology, The Third Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.,Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan Province, Changsha City, China.,Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
46
|
Xia Y, Fang X, Dai X, Li M, Jin L, Tao J, Li X, Wang Y, Li X. Iguratimod ameliorates nephritis by modulating the Th17/Treg paradigm in pristane-induced lupus. Int Immunopharmacol 2021; 96:107563. [PMID: 33812258 DOI: 10.1016/j.intimp.2021.107563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Iguratimod, an anti-rheumatic drug, has been widely used in the treatment of rheumatoid arthritis, but is still at an investigative stage for treatment of systemic lupus erythematosus (SLE). We examined the therapeutic effects of iguratimod and the mechanism underlying the efficacy in murine lupus model. METHODS Pristane-induced lupus model of BALB/c mice (PI mice) were treated with iguratimod and mycophenolate mofetil. Proteinuria, anti-dsDNA antibodies and immunoglobulins production were measured. Renal pathology was evaluated. The percentage of Th17 and Treg cells in spleen and the expression of cytokines and mRNAs related to Th17 and Treg cells was analyzed. RESULTS Iguratimod attenuated the severity of nephritis in PI mice in a dose-dependent manner. Proteinuria was continuously decreased and pathology of glomerulonephritis and tubulonephritis was significantly reduced along with reduction of glomerular immune complex deposition. Also, serum anti-dsDNA and total IgG and IgM levels were reduced by iguratimod in mice. It is worth mentioning that the efficacy of the 30 mg/kg/d iguratimod dose is comparable to, or even better than, 100 mg kg/d of mycophenolate mofetil. Furthermore, the percentage of Th17 cells was found decreased and the percentage of Treg cells increased. ROR-γt mRNA and serum cytokines (IL-17A and IL-22) of Th17 cells decreased accordingly. By contrast, Foxp3 mRNA and cytokines (TGF-β and IL-10) of Treg cells increased. CONCLUSION Iguratimod ameliorates nephritis of SLE and modulates the Th17/Treg ratio in murine nephritis of SLE, suggesting that Iguratimod could be an effective drug in treatment of SLE.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuan Fang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojuan Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Manyun Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Li Jin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiangpei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
47
|
Yang M, Cao P, Zhao Z, Wang Z, Jia C, Guo Y, Yin H, Zhao M, Ding Y, Wu H, Lu Q. An Enhanced Expression Level of CXCR3 on Tfh-like Cells from Lupus Skin Lesions Rather Than Lupus Peripheral Blood. Clin Immunol 2021; 226:108717. [PMID: 33775870 DOI: 10.1016/j.clim.2021.108717] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease, and the etiopathogenesis is unclear. Follicular helper T (Tfh) cells have been reported as an important pathogenic cell type in SLE. CXCR3 was reported to be decreased on lupus peripheral CD4+T cells. However, the expression level of CCR4, CCR6 and CXCR3 on Tfh-like cells in SLE peripheral blood and skin lesions is unknown. In this study, we detected CCR4, CCR6 and CXCR3 expression level on Tfh-like cells in the peripheral blood and skin lesions from SLE patients and normal controls (NCs). A decreased expression level of CXCR3 on Tfh-like cells was found in lupus peripheral blood. However, an increased CXCR3 expression was observed on total CD4+T and Tfh-like cells from lupus skin lesions. Moreover, we observed a higher expression level of CXCR3 in Tfh cells from human tonsils. These findings indicate that CXCR3 might help Tfh-like cells to migrate into the inflammatory sites.
Collapse
Affiliation(s)
- Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Pengpeng Cao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Zhidan Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Zheyu Wang
- University of South China, Hengyang, Hunan, China
| | - Chen Jia
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yunkai Guo
- Department of Otolaryngology Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Heng Yin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yan Ding
- Hainan Province Dermatol Disease Hospital, Haikou, Hainan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis. J Immunol Res 2021; 2021:6693542. [PMID: 33816637 PMCID: PMC7990547 DOI: 10.1155/2021/6693542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that T helper 17 (Th17) cells play a central role in the pathogenesis of ocular immune disease. The association between pathogenic Th17 cells and the development of uveitis has been confirmed in experimental and clinical studies. Several cytokines affect the initiation and stabilization of the differentiation of Th17 cells. Therefore, understanding the mechanism of related cytokines in the differentiation of Th17 cells is important for exploring the pathogenesis and the potential therapeutic targets of uveitis. This article briefly describes the structures, mechanisms, and targeted drugs of cytokines-including interleukin (IL)-6, transforming growth factor-β1 (TGF-β1), IL-1β, IL-23, IL-27, IL-35, IL-2, IL-4, IL-21, and interferon (IFN)-γ-which have an important influence on the differentiation of Th17 cells and discusses their potential as therapeutic targets for treating autoimmune uveitis.
Collapse
Affiliation(s)
- Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
49
|
Chen XJ, Zhang H, Yang F, Liu Y, Chen G. DNA Methylation Sustains "Inflamed" Memory of Peripheral Immune Cells Aggravating Kidney Inflammatory Response in Chronic Kidney Disease. Front Physiol 2021; 12:637480. [PMID: 33737884 PMCID: PMC7962671 DOI: 10.3389/fphys.2021.637480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/19/2023] Open
Abstract
The incidence of chronic kidney disease (CKD) has rapidly increased in the past decades. A progressive loss of kidney function characterizes a part of CKD even with intensive supportive treatment. Irrespective of its etiology, CKD progression is generally accompanied with the development of chronic kidney inflammation that is pathologically featured by the low-grade but chronic activation of recruited immune cells. Cumulative evidence support that aberrant DNA methylation pattern of diverse peripheral immune cells, including T cells and monocytes, is closely associated with CKD development in many chronic disease settings. The change of DNA methylation profile can sustain for a long time and affect the future genes expression in the circulating immune cells even after they migrate from the circulation into the involved kidney. It is of clinical interest to reveal the underlying mechanism of how altered DNA methylation regulates the intensity and the time length of the inflammatory response in the recruited effector cells. We and others recently demonstrated that altered DNA methylation occurs in peripheral immune cells and profoundly contributes to CKD development in systemic chronic diseases, such as diabetes and hypertension. This review will summarize the current findings about the influence of aberrant DNA methylation on circulating immune cells and how it potentially determines the outcome of CKD.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Hong Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fei Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Guochun Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| |
Collapse
|
50
|
Lee HS, Jeong GS. 6,7,4'-Trihydroxyflavanone Protects against Dextran Sulfate Sodium-Induced Colitis by Regulating the Activity of T Cells and Colon Cells In Vivo. Int J Mol Sci 2021; 22:2083. [PMID: 33669855 PMCID: PMC7923236 DOI: 10.3390/ijms22042083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022] Open
Abstract
Colitis is a multifactorial disorder that mostly occurs in the gastrointestinal tract. Despite improvements in mucosal inflammation research, little is known regarding the small bioactive molecules that are beneficial for regulating T cells and colon cell activity. 6,7,4'-trihydroxyflavanone (THF) is a flavanone that possesses anti-osteoclastogenesis activity and exerts protective effects against methamphetamine-induced immunotoxicity. Whether THF mitigates intestinal inflammation by regulating T cells and colon cell activity remains unknown. In the present study, Jurkat and HT-29 cells were used for in vitro experiments, and dextran sulfate sodium (DSS)-induced colitis model in mice was used for in vivo experiment. We observed that THF did not have a negative effect on the viability of Jurkat and HT-29 cells. Quantitative PCR and Western blot analysis revealed that THF regulates the activity of Jurkat cells and HT-29 cells via the NFκB and MAPK pathways under stimulated conditions. In the DSS-induced colitis model, oral administration of THF attenuated the manifestations of DSS-induced colitis, including a reduction in body weight, shrinkage of the colon, and enhanced expression of pro-inflammatory cytokines in the colon and mesenteric lymph nodes. These data suggest that THF alleviates DSS-induced colitis by modulating the activity of T cells and colon cells in vivo.
Collapse
Affiliation(s)
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea;
| |
Collapse
|