1
|
Ikeda S, Hasegawa K, Kogue Y, Arimori T, Kawamoto R, Wibowo T, Yaga M, Inada Y, Uehara H, Matsubara M, Tachikawa M, Suga M, Kida S, Shibata K, Tsutsumi K, Fukushima K, Fujita J, Ueda T, Kusakabe S, Hino A, Ichii M, Hirose A, Nakamae H, Hino M, Nakao T, Inoue M, Yoshihara K, Yoshihara S, Ueda S, Tachi T, Kuroda H, Murakami K, Kijima N, Kishima H, Igashira E, Murakami M, Takiuchi T, Kimura T, Hiroshima T, Kimura T, Shintani Y, Imai C, Yusa K, Mori R, Ogino T, Eguchi H, Takeda K, Oji Y, Kumanogoh A, Takagi J, Hosen N. CAR T or NK cells targeting mismatched HLA-DR molecules in acute myeloid leukemia after allogeneic hematopoietic stem cell transplant. NATURE CANCER 2025; 6:595-611. [PMID: 40128569 DOI: 10.1038/s43018-025-00934-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/19/2025] [Indexed: 03/26/2025]
Abstract
Acute myeloid leukemia (AML)-specific target antigens are difficult to identify. Here we demonstrate that HLA-DRB1 can serve as a leukemia-specific target of chimeric antigen receptor (CAR) T cells in patients with AML after allogeneic hematopoietic stem cell transplantation (allo-HCT). We identified KG2032 as a monoclonal antibody specifically bound to AML cells in about half of patients, but not to normal leukocytes other than B lymphocytes. KG2032 reacted with a subset of HLA-DRB1 molecules, specifically those in which the 86th amino acid was not aspartic acid. KG2032 reacted minimally with nonhematopoietic tissues. These results indicate that KG2032 reactivity is highly specific for AML cells in patients who carry KG2032-reactive HLA-DRB1 alleles and who received allo-HCT from a donor carrying KG2032-nonreactive HLA-DRB1 alleles. KG2032-derived CAR T or natural killer cells showed significant anti-leukemic activity in preclinical models in female mice, suggesting that they may cure patients with AML who are incurable with allo-HCT.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Hematopoietic Stem Cell Transplantation/methods
- Animals
- Humans
- Mice
- Female
- Killer Cells, Natural/immunology
- HLA-DRB1 Chains/immunology
- HLA-DRB1 Chains/genetics
- Receptors, Chimeric Antigen/immunology
- Transplantation, Homologous
- Male
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- Antibodies, Monoclonal/immunology
- Middle Aged
- Adult
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shunya Ikeda
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Kana Hasegawa
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Yosuke Kogue
- Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Company, Osaka, Japan
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Arimori
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Ryuhei Kawamoto
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tansri Wibowo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuri Inada
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Uehara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Miwa Matsubara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mana Tachikawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makiko Suga
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Kida
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kumi Shibata
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhito Tsutsumi
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jiro Fujita
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinsuke Kusakabe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihisa Hino
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Asao Hirose
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hirohisa Nakamae
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hino
- Department of Hematology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takafumi Nakao
- Department of Hematology, Osaka City General Hospital, Osaka, Japan
| | - Megumu Inoue
- Department of Hematology, Itami City Hospital, Hyogo, Japan
| | - Kyoko Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Hyogo, Japan
| | - Satoshi Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Hyogo, Japan
| | - Shuji Ueda
- Department of Hematology, Hyogo Prefectural Nishinomiya Hospital, Hyogo, Japan
| | - Tetsuro Tachi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Kuroda
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eri Igashira
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mari Murakami
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Takiuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takashi Hiroshima
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Kimura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chihaya Imai
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryota Mori
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Takeda
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kumanogoh
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Junichi Takagi
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Naoki Hosen
- World Premier Interenational Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
| |
Collapse
|
2
|
Murias-Closas A, Prats C, Calvo G, López-Codina D, Olesti E. Computational modelling of CAR T-cell therapy: from cellular kinetics to patient-level predictions. EBioMedicine 2025; 113:105597. [PMID: 40023046 PMCID: PMC11914757 DOI: 10.1016/j.ebiom.2025.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapy is characterised by the heterogeneous cellular kinetic profile seen across patients. Unlike traditional chemotherapy, which displays predictable dose-exposure relationships resulting from well-understood pharmacokinetic processes, CAR T-cell dynamics rely on complex biologic factors that condition treatment response. Computational approaches hold potential to explore the intricate cellular dynamics arising from CAR T therapy, yet their ability to improve cancer treatment remains elusive. Here we present a comprehensive framework through which to understand, construct, and classify CAR T-cell kinetics models. Current approaches often rely on adapted empirical pharmacokinetic methods that overlook dynamics emerging from cellular interactions, or intricate theoretical multi-population models with limited clinical applicability. Our review shows that the utility of a model does not depend on the complexity of its design but on the strategic selection of its biological constituents, implementation of suitable mathematical tools, and the availability of biological measures from which to fit the model.
Collapse
Affiliation(s)
- Adrià Murias-Closas
- Department of Clinical Pharmacology, Division of Medicines, Hospital Clínic of Barcelona, Barcelona, Spain; Computational Biology and Complex Systems (BIOCOM-SC), Department of Physics, Institute for Research and Innovation in Health (IRIS), Universitat Politècnica de Catalunya, Barcelona, Spain; Clinical Pharmacology Interdisciplinary Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Clara Prats
- Computational Biology and Complex Systems (BIOCOM-SC), Department of Physics, Institute for Research and Innovation in Health (IRIS), Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - Gonzalo Calvo
- Department of Clinical Pharmacology, Division of Medicines, Hospital Clínic of Barcelona, Barcelona, Spain; Clinical Pharmacology Interdisciplinary Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Daniel López-Codina
- Computational Biology and Complex Systems (BIOCOM-SC), Department of Physics, Institute for Research and Innovation in Health (IRIS), Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - Eulàlia Olesti
- Department of Clinical Pharmacology, Division of Medicines, Hospital Clínic of Barcelona, Barcelona, Spain; Clinical Pharmacology Interdisciplinary Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Pharmacology Unit, Department of Clinical Foundations, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Oh S, Khani-Habibabadi F, O’Connor KC, Payne AS. Composition and function of AChR chimeric autoantibody receptor T cells for antigen-specific B cell depletion in myasthenia gravis. SCIENCE ADVANCES 2025; 11:eadt0795. [PMID: 40020066 PMCID: PMC11870065 DOI: 10.1126/sciadv.adt0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/27/2025] [Indexed: 03/03/2025]
Abstract
In acetylcholine receptor (AChR)-seropositive myasthenia gravis (MG), anti-AChR autoantibodies impair neuromuscular transmission and cause severe muscle weakness. MG therapies broadly suppress immune function, risking infections. We designed a chimeric autoantibody receptor (CAAR) expressing the 210-amino acid extracellular domain of the AChR α subunit (A210) linked to CD137-CD3ζ cytoplasmic domains to direct T cell cytotoxicity against anti-AChRα B cells. A210-CAART incorporating a CD8α transmembrane domain (TMD8α) showed functional but unstable surface expression, partially restored by inhibiting lysosomal degradation. A210-CAART with a CD28 TMD showed sustained surface expression, independent of TMD dimerization motifs. In a mouse xenograft model, A210.TMD8α-CAART demonstrated early control of anti-AChR B cell outgrowth but subsequent rebound and loss of surface CAAR expression, whereas A210.TMD28-CAART induced sustained surface CAAR expression and target cell elimination. This study demonstrates the importance of the CD28 TMD for CAAR stability and in vivo function, laying the groundwork for future development of precision cellular immunotherapy for AChR-MG.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kevin C. O’Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Aimee S. Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
5
|
Prikhodko IV, Guria GT. The method for assessing the specificity of developing CAR therapies. BIOPHYSICAL REPORTS 2024; 4:100172. [PMID: 39025235 PMCID: PMC11344002 DOI: 10.1016/j.bpr.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The effectiveness of antitumor chimeric antigen receptor (CAR) therapy mainly dealt with an elevated sensitivity of CAR cells to target cells. However, CAR therapies are associated with nonspecific side effects: on-target off-tumor toxicity. Sensitivity and specificity of CAR cells are the most important properties of the recognition process of target cells among other cells. Current developments are mainly concentrated on exploring molecular biology methods for designing CAR cells with the highest sensitivity, while the problem of the CAR cell specificity is rarely considered. For the assessment of CAR cell specificity, we suggest that, in addition to an elevated level of CAR-antigen affinity, the ability of CARs for clustering should be taken into account. We assume that the CAR cell cytotoxicity is determined by CAR clustering. The latter is treated within the framework of nucleation theory. The master equation for the probability of CAR cell cytotoxicity is derived. The size of a critical CAR cluster is found to be one of two most essential parameters. The conditions for necessary sensitivity and sufficient specificity are explored. Relevant parametric diagrams are derived. Possible applications of the method for assessing the specificity of developing CAR therapies are discussed.
Collapse
Affiliation(s)
- Ivan V Prikhodko
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia
| | - Georgy Th Guria
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia; Chair of the Living Systems Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
6
|
Hoces D, Miguens Blanco J, Hernández-López RA. A synthetic biology approach to engineering circuits in immune cells. Immunol Rev 2023; 320:120-137. [PMID: 37464881 DOI: 10.1111/imr.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 07/20/2023]
Abstract
A synthetic circuit in a biological system involves the designed assembly of genetic elements, biomolecules, or cells to create a defined function. These circuits are central in synthetic biology, enabling the reprogramming of cellular behavior and the engineering of cells with customized responses. In cancer therapeutics, engineering T cells with circuits have the potential to overcome the challenges of current approaches, for example, by allowing specific recognition and killing of cancer cells. Recent advances also facilitate engineering integrated circuits for the controlled release of therapeutic molecules at specified locations, for example, in a solid tumor. In this review, we discuss recent strategies and applications of synthetic receptor circuits aimed at enhancing immune cell functions for cancer immunotherapy. We begin by introducing the concept of circuits in networks at the molecular and cellular scales and provide an analysis of the development and implementation of several synthetic circuits in T cells that have the goal to overcome current challenges in cancer immunotherapy. These include specific targeting of cancer cells, increased T-cell proliferation, and persistence in the tumor microenvironment. By harnessing the power of synthetic biology, and the characteristics of certain circuit architectures, it is now possible to engineer a new generation of immune cells that recognize cancer cells, while minimizing off-target toxicities. We specifically discuss T-cell circuits for antigen density sensing. These circuits allow targeting of solid tumors that share antigens with normal tissues. Additionally, we explore designs for synthetic circuits that could control T-cell differentiation or T-cell fate as well as the concept of synthetic multicellular circuits that leverage cellular communication and division of labor to achieve improved therapeutic efficacy. As our understanding of cell biology expands and novel tools for genome, protein, and cell engineering are developed, we anticipate further innovative approaches to emerge in the design and engineering of circuits in immune cells.
Collapse
Affiliation(s)
- Daniel Hoces
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Jesús Miguens Blanco
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Rogelio A Hernández-López
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Stanford Cancer Institute, Stanford, California, USA
- Chan-Zuckerberg Biohub-San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Smith R. Bringing cell therapy to tumors: considerations for optimal CAR binder design. Antib Ther 2023; 6:225-239. [PMID: 37846297 PMCID: PMC10576856 DOI: 10.1093/abt/tbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells have revolutionized the immunotherapy of B-cell malignancies and are poised to expand the range of their impact across a broad range of oncology and non-oncology indications. Critical to the success of a given CAR is the choice of binding domain, as this is the key driver for specificity and plays an important role (along with the rest of the CAR structure) in determining efficacy, potency and durability of the cell therapy. While antibodies have proven to be effective sources of CAR binding domains, it has become apparent that the desired attributes for a CAR binding domain do differ from those of a recombinant antibody. This review will address key factors that need to be considered in choosing the optimal binding domain for a given CAR and how binder properties influence and are influenced by the rest of the CAR.
Collapse
Affiliation(s)
- Richard Smith
- Department of Research, Kite, a Gilead Company, 5858 Horton Street, Suite 240, Emeryville, CA 94070, USA
| |
Collapse
|
8
|
Wang Y, Wang L, Seo N, Okumura S, Hayashi T, Akahori Y, Fujiwara H, Amaishi Y, Okamoto S, Mineno J, Tanaka Y, Kato T, Shiku H. CAR-Modified Vγ9Vδ2 T Cells Propagated Using a Novel Bisphosphonate Prodrug for Allogeneic Adoptive Immunotherapy. Int J Mol Sci 2023; 24:10873. [PMID: 37446055 DOI: 10.3390/ijms241310873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The benefits of CAR-T therapy could be expanded to the treatment of solid tumors through the use of derived autologous αβ T cell, but clinical trials of CAR-T therapy for patients with solid tumors have so far been disappointing. CAR-T therapy also faces hurdles due to the time and cost intensive preparation of CAR-T cell products derived from patients as such CAR-T cells are often poor in quality and low in quantity. These inadequacies may be mitigated through the use of third-party donor derived CAR-T cell products which have a potent anti-tumor function but a constrained GVHD property. Vγ9Vδ2 TCR have been shown to exhibit potent antitumor activity but not alloreactivity. Therefore, in this study, CAR-T cells were prepared from Vγ9Vδ2 T (CAR-γδ T) cells which were expanded by using a novel prodrug PTA. CAR-γδ T cells suppressed tumor growth in an antigen specific manner but only during a limited time window. Provision of GITR co-stimulation enhanced anti-tumor function of CAR-γδ T cells. Our present results indicate that, while further optimization of CAR-γδ T cells is necessary, the present results demonstrate that Vγ9Vδ2 T cells are potential source of 'off-the-shelf' CAR-T cell products for successful allogeneic adoptive immunotherapy.
Collapse
Affiliation(s)
- Yizheng Wang
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Linan Wang
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Naohiro Seo
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Satoshi Okumura
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Tae Hayashi
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Yasushi Akahori
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Hiroshi Fujiwara
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | | | | | | | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, Nagasaki 852-8588, Sakamoto, Japan
| | - Takuma Kato
- Cellular and Molecular Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
| | - Hiroshi Shiku
- Department of Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan
- Center for Comprehensive Cancer Immunotherapy, Mie University, Tsu 514-8507, Mie, Japan
| |
Collapse
|
9
|
Yang M, Zhang C, Wang R, Wu X, Li H, Yoon J. Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. SMALL METHODS 2023; 7:e2201381. [PMID: 36609838 DOI: 10.1002/smtd.202201381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy has been a revolutionary cancer treatment modality because it can not only eliminate primary tumors but also prevent metastases and recurrent tumors. Immunogenic cell death (ICD) induced by various treatment modalities, including chemotherapy, phototherapy, and radiotherapy, converts dead cancer cells into therapeutic vaccines, eliciting a systemic antigen-specific antitumor. However, the outcome effect of cancer immunotherapy induced by ICD has been limited due to the low accumulation efficiency of ICD inducers in the tumor site and concomitant damage to normal tissues. The boom in smart nanomaterials is conducive to overcoming these hurdles owing to their virtues of good stability, targeted lesion site, high bioavailability, on-demand release, and good biocompatibility. Herein, the design of targeted nanomaterials, various ICD inducers, and the applications of nanomaterials responsive to different stimuli, including pH, enzymes, reactive oxygen species, or dual responses are summarized. Furthermore, the prospect and challenges are briefly outlined to provide reference and inspiration for designing novel smart nanomaterials for immunotherapy induced by ICD.
Collapse
Affiliation(s)
- Mengyao Yang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Cheng Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| |
Collapse
|
10
|
Tan Y, Khan HM, Sheikh BA, Sun H, Zhang H, Chen J, Huang D, Chen X, Zhou C, Sun J. Recent advances in 2D material-based phototherapy. Front Bioeng Biotechnol 2023; 11:1141631. [PMID: 36937746 PMCID: PMC10020212 DOI: 10.3389/fbioe.2023.1141631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Phototherapy, which generally refers to photothermal therapy (PTT) and photodynamic therapy (PDT), has received significant attention over the past few years since it is non-invasive, has effective selectivity, and has few side effects. As a result, it has become a promising alternative to traditional clinical treatments. At present, two-dimensional materials (2D materials) have proven to be at the forefront of the development of advanced nanomaterials due to their ultrathin structures and fascinating optical properties. As a result, much work has been put into developing phototherapy platforms based on 2D materials. This review summarizes the current developments in 2D materials beyond graphene for phototherapy, focusing on the novel approaches of PTT and PDT. New methods are being developed to go above and beyond conventional treatment to fully use the potential of 2D materials. Additionally, the efficacy of cutting-edge phototherapy is assessed, and the existing difficulties and future prospects of 2D materials for phototherapy are covered.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Sun
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Zhang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinmei Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Sasahara Y, Wada T, Morio T. Impairment of cytokine production following immunological synapse formation in patients with Wiskott-Aldrich syndrome and leukocyte adhesion deficiency type 1. Clin Immunol 2022; 242:109098. [PMID: 35973636 DOI: 10.1016/j.clim.2022.109098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
T cells following immunological synapse (IS) formation with antigen-presenting cells produce multiple cytokines through T cell receptor, integrin, and costimulatory signaling. Here, we investigated the cytokine profiles following IS formation in response to staphylococcal superantigen exposure in three adolescent patients with classical Wiskott-Aldrich syndrome (WAS) and in one patient with leukocyte adhesion deficiency (LAD) type 1. All WAS patients showed lower Th1 and Th2-skewed cytokine production; similar results were observed in the flow cytometric analysis of IFNγ- and IL-4-producing T cells. The patient with LAD type 1 with somatic mosaicism in 2% of CD8+ T cells showed lower Th1 and Th2 cytokine production than healthy controls. The patients with WAS were susceptible to infections and atopic manifestations, and the patients with LAD type 1 showed cold abscess on their skin, our findings using patient samples provide clinical insights into the mechanisms underlying immunodeficiency related to the symptoms of each disease.
Collapse
Affiliation(s)
- Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
12
|
Cellular kinetics: A clinical and computational review of CAR-T cell pharmacology. Adv Drug Deliv Rev 2022; 188:114421. [PMID: 35809868 DOI: 10.1016/j.addr.2022.114421] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 12/20/2022]
Abstract
To the extent that pharmacokinetics influence the effectiveness of nonliving therapeutics, so too do cellular kinetics influence the efficacy of Chimeric Antigen Receptor (CAR) -T cell therapy. Like conventional therapeutics, CAR-T cell therapies undergo a distribution phase upon administration. Unlike other therapeutics, however, this distribution phase is followed by subsequent phases of expansion, contraction, and persistence. The magnitude and duration of these phases unequivocally influence clinical outcomes. Furthermore, the "pharmacodynamics" of CAR-T cells is truly dynamic, as cells can rapidly become exhausted and lose their therapeutic efficacy. Mathematical models are among the translational tools commonly applied to assess, characterize, and predict the complex cellular kinetics and dynamics of CAR-T cells. Here, we provide a focused review of the cellular kinetics of CAR-T cells, the mechanisms underpinning their complexity, and the mathematical modeling approaches used to interrogate them.
Collapse
|
13
|
Sandberg ML, Wang X, Martin AD, Nampe DP, Gabrelow GB, Li CZ, McElvain ME, Lee WH, Shafaattalab S, Martire S, Fisher FA, Ando Y, Liu E, Ju D, Wong LM, Xu H, Kamb A. A carcinoembryonic antigen-specific cell therapy selectively targets tumor cells with HLA loss of heterozygosity in vitro and in vivo. Sci Transl Med 2022; 14:eabm0306. [PMID: 35235342 DOI: 10.1126/scitranslmed.abm0306] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The CEACAM5 gene product [carcinoembryonic antigen (CEA)] is an attractive target for colorectal cancer because of its high expression in virtually all colorectal tumors and limited expression in most healthy adult tissues. However, highly active CEA-directed investigational therapeutics have been reported to be toxic, causing severe colitis because CEA is expressed on normal gut epithelial cells. Here, we developed a strategy to address this toxicity problem: the Tmod dual-signal integrator. CEA Tmod cells use two receptors: a chimeric antigen receptor (CAR) activated by CEA and a leukocyte Ig-like receptor 1 (LIR-1)-based inhibitory receptor triggered by human leukocyte antigen (HLA)-A*02. CEA Tmod cells exploit instances of HLA heterozygous gene loss in tumors to protect the patient from on-target, off-tumor toxicity. CEA Tmod cells potently killed CEA-expressing tumor cells in vitro and in vivo. But in contrast to a traditional CEA-specific T cell receptor transgenic T cell, Tmod cells were highly selective for tumor cells even when mixed with HLA-A*02-expressing cells. These data support further development of the CEA Tmod construct as a therapeutic candidate for colorectal cancer.
Collapse
Affiliation(s)
- Mark L Sandberg
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Xueyin Wang
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Aaron D Martin
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Daniel P Nampe
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Grant B Gabrelow
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Chuck Z Li
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Michele E McElvain
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Wen-Hua Lee
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Sanam Shafaattalab
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | | | - Fernando A Fisher
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Yuta Ando
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Edwin Liu
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - David Ju
- Process Development, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Lu Min Wong
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Han Xu
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| | - Alexander Kamb
- Discovery Research, A2 Biotherapeutics, Inc., 30301 Agoura Road, Agoura Hills, CA 91301, USA
| |
Collapse
|
14
|
Burnell SEA, Capitani L, MacLachlan BJ, Mason GH, Gallimore AM, Godkin A. Seven mysteries of LAG-3: a multi-faceted immune receptor of increasing complexity. IMMUNOTHERAPY ADVANCES 2021; 2:ltab025. [PMID: 35265944 PMCID: PMC8895726 DOI: 10.1093/immadv/ltab025] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Despite three decades of research to its name and increasing interest in immunotherapies that target it, LAG-3 remains an elusive co-inhibitory receptor in comparison to the well-established PD-1 and CTLA-4. As such, LAG-3 targeting therapies have yet to achieve the clinical success of therapies targeting other checkpoints. This could, in part, be attributed to the many unanswered questions that remain regarding LAG-3 biology. Of these, we address: (i) the function of the many LAG-3-ligand interactions, (ii) the hurdles that remain to acquire a high-resolution structure of LAG-3, (iii) the under-studied LAG-3 signal transduction mechanism, (iv) the elusive soluble form of LAG-3, (v) the implications of the lack of (significant) phenotype of LAG-3 knockout mice, (vi) the reports of LAG-3 expression on the epithelium, and (vii) the conflicting reports of LAG-3 expression (and potential contributions to pathology) in the brain. These mysteries which surround LAG-3 highlight how the ever-evolving study of its biology continues to reveal ever-increasing complexity in its role as an immune receptor. Importantly, answering the questions which shroud LAG-3 in mystery will allow the maximum therapeutic benefit of LAG-3 targeting immunotherapies in cancer, autoimmunity and beyond.
Collapse
Affiliation(s)
- Stephanie E A Burnell
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Lorenzo Capitani
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Bruce J MacLachlan
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Georgina H Mason
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Awen M Gallimore
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
| | - Andrew Godkin
- Division of Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, UK
- Department of Gastroenterology and Hepatology, University Hospital of Wales, Heath Park, Cardiff, UK
| |
Collapse
|
15
|
See K, Kadonosono T, Miyamoto K, Tsubaki T, Ota Y, Katsumi M, Ryo S, Aida K, Minegishi M, Isozaki T, Kuchimaru T, Kizaka-Kondoh S. Antibody-guided design and identification of CD25-binding small antibody mimetics using mammalian cell surface display. Sci Rep 2021; 11:22098. [PMID: 34764369 PMCID: PMC8585965 DOI: 10.1038/s41598-021-01603-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Small antibody mimetics that contain high-affinity target-binding peptides can be lower cost alternatives to monoclonal antibodies (mAbs). We have recently developed a method to create small antibody mimetics called FLuctuation-regulated Affinity Proteins (FLAPs), which consist of a small protein scaffold with a structurally immobilized target-binding peptide. In this study, to further develop this method, we established a novel screening system for FLAPs called monoclonal antibody-guided peptide identification and engineering (MAGPIE), in which a mAb guides selection in two manners. First, antibody-guided design allows construction of a peptide library that is relatively small in size, but sufficient to identify high-affinity binders in a single selection round. Second, in antibody-guided screening, the fluorescently labeled mAb is used to select mammalian cells that display FLAP candidates with high affinity for the target using fluorescence-activated cell sorting. We demonstrate the reliability and efficacy of MAGPIE using daclizumab, a mAb against human interleukin-2 receptor alpha chain (CD25). Three FLAPs identified by MAGPIE bound CD25 with dissociation constants of approximately 30 nM as measured by biolayer interferometry without undergoing affinity maturation. MAGPIE can be broadly adapted to any mAb to develop small antibody mimetics.
Collapse
Affiliation(s)
- Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takuya Tsubaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Marina Katsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Sumoe Ryo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazuki Aida
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Misa Minegishi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tatsuhiro Isozaki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Takahiro Kuchimaru
- Center for Molecular Medicine, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
16
|
Du L, Nai Y, Shen M, Li T, Huang J, Han X, Wang W, Pang D, Jin A. IL-21 Optimizes the CAR-T Cell Preparation Through Improving Lentivirus Mediated Transfection Efficiency of T Cells and Enhancing CAR-T Cell Cytotoxic Activities. Front Mol Biosci 2021; 8:675179. [PMID: 34179083 PMCID: PMC8220804 DOI: 10.3389/fmolb.2021.675179] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Adoptive immunotherapy using CAR-T cells is a promising curative treatment strategy for hematological malignancies. Current manufacture of clinical-grade CAR-T cells based on lentiviral/retrovirus transfection of T cells followed by anti-CD3/CD28 activation supplemented with IL-2 has been associated with low transfection efficiency and usually based on the use of terminally differentiated effector T cells. Thus, improving the quality and the quantity of CAR-T cells are essential for optimizing the CAR-T cell preparation. In our study, we focus on the role of IL-21 in the γc cytokine conditions for CAR-T cell preparation. We found for the first time that the addition of IL-21 in the CAR-T preparation improved T cell transfection efficiency through the reduction of IFN-γ expression 24-48 h after T cell activation. We also confirmed that IL-21 enhanced the enrichment and expansion of less differentiated CAR-T cells. Finally, we validated that IL-21 improved the CAR-T cell cytotoxicity, which was related to increased secretion of effector cytokines. Together, these findings can be used to optimize the CAR-T cell preparation.
Collapse
Affiliation(s)
- Li Du
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Yaru Nai
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tingting Li
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Jingjing Huang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Xiaojian Han
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Wang Wang
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Aishun Jin
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Trendel N, Kruger P, Gaglione S, Nguyen J, Pettmann J, Sontag ED, Dushek O. Perfect adaptation of CD8 + T cell responses to constant antigen input over a wide range of affinities is overcome by costimulation. Sci Signal 2021; 14:eaay9363. [PMID: 34855472 PMCID: PMC7615691 DOI: 10.1126/scisignal.aay9363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reduced T cell responses by contrast antigen stimulation can be rescued by signals from costimulatory receptors.
Collapse
Affiliation(s)
- Nicola Trendel
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Philipp Kruger
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Stephanie Gaglione
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - John Nguyen
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Eduardo D Sontag
- Electrical and Computer Engineering & Bioengineering, Northeastern University, USA
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| |
Collapse
|
18
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
19
|
Abstract
Multiple myeloma remains an incurable disease despite great advances in its therapeutic landscape. Increasing evidence supports the belief that immune dysfunction plays an important role in the disease pathogenesis, progression, and drug resistance. Recent efforts have focused on harnessing the immune system to exert anti-myeloma effects with encouraging outcomes. First-in-class anti-CD38 monoclonal antibody, daratumumab, now forms part of standard treatment regimens in relapsed and refractory settings and is shifting to front-line treatments. However, a non-negligible number of patients will progress and be triple refractory from the first line of treatment. Antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptors (CAR) are being developed in a heavily pretreated setting with outstanding results. Belantamab mafodotin-blmf has already received approval and other anti-B-cell maturation antigen (BCMA) therapies (CARs and bispecific antibodies are expected to be integrated in therapeutic options against myeloma soon. Nonetheless, immunotherapy faces different challenges in terms of efficacy and safety, and manufacturing and economic drawbacks associated with such a line of therapy pose additional obstacles to broadening its use. In this review, we described the most important clinical data on immunotherapeutic agents, delineated the limitations that lie in immunotherapy, and provided potential insights to overcome such issues.
Collapse
|
20
|
Salzer B, Schueller CM, Zajc CU, Peters T, Schoeber MA, Kovacic B, Buri MC, Lobner E, Dushek O, Huppa JB, Obinger C, Putz EM, Holter W, Traxlmayr MW, Lehner M. Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nat Commun 2020; 11:4166. [PMID: 32820173 PMCID: PMC7441178 DOI: 10.1038/s41467-020-17970-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ON-switch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cells, Cultured
- Cytokines/immunology
- Cytokines/metabolism
- Cytotoxicity, Immunologic/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Benjamin Salzer
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | | | - Charlotte U Zajc
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria
| | - Timo Peters
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael A Schoeber
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Boris Kovacic
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Michelle C Buri
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria
| | - Eva M Putz
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
| | - Wolfgang Holter
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria
- Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, 1090, Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria.
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190, Vienna, Austria.
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute (CCRI), 1090, Vienna, Austria.
- Christian Doppler Laboratory for Next Generation CAR T Cells, 1090, Vienna, Austria.
- Department of Pediatrics, St. Anna Kinderspital, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
21
|
Rad S. M. AH, Poudel A, Tan GMY, McLellan AD. Promoter choice: Who should drive the CAR in T cells? PLoS One 2020; 15:e0232915. [PMID: 32706785 PMCID: PMC7380635 DOI: 10.1371/journal.pone.0232915] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy is an effective treatment for B cell malignancies, with emerging potential for the treatment of other hematologic cancers and solid tumors. The strength of the promoter within the CAR cassette will alter CAR-polypeptide levels on the cell surface of the T cell-impacting on the kinetics of activation, survival and memory cell formation in T cells. In addition to the CAR, promoters can be used to drive other genes of interest to enhance CAR T cell function. Expressing multiple genes from a single RNA transcript can be effectively achieved by linking the genes via a ribosomal skip site. However, promoters may differ in their ability to transcribe longer RNAs, or could interfere with lentiviral production, or transduction frequencies. In this study we compared the ability of the strong well-characterized promoters CMV, EF-1, hPGK and RPBSA to drive functional expression of a single RNA encoding three products: GFP, CAR, plus an additional cell-survival gene, Mcl-1. Although the four promoters produced similarly high lentiviral titres, EF-1 gave the best transduction efficacy of primary T cells. Major differences were found in the ability of the promoters to drive expression of long RNA encoding GFP, CAR and Mcl-1, highlighting promoter choice as an important consideration for gene therapy applications requiring the expression of long and complex mRNA.
Collapse
Affiliation(s)
| | - Aarati Poudel
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Grace Min Yi Tan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
García-Guerrero E, Sierro-Martínez B, Pérez-Simón JA. Overcoming Chimeric Antigen Receptor (CAR) Modified T-Cell Therapy Limitations in Multiple Myeloma. Front Immunol 2020; 11:1128. [PMID: 32582204 PMCID: PMC7290012 DOI: 10.3389/fimmu.2020.01128] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease regardless of recent advances in the field. Therefore, a substantial unmet need exists to treat patients with relapsed/refractory myeloma. The use of novel agents such as daratumumab, elotuzumab, carfilzomib, or pomalidomide, among others, usually cannot completely eradicate myeloma cells. Although these new drugs have had a significant impact on the prognosis of MM patients, the vast majority ultimately become refractory or can no longer be treated due to toxicity of prior treatment, and thus succumb to the disease. Cellular therapies represent a novel approach with a unique mechanism of action against myeloma with the potential to defeat drug resistance and achieve long-term remissions. Genetic modification of cells to express a novel receptor with tumor antigen specificity is currently being explored in myeloma. Chimeric antigen receptor gene-modified T-cells (CAR T-cells) have shown to be the most promising approach so far. CAR T-cells have shown to induce durable complete remissions in other advanced hematologic malignancies like acute lymphocytic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). With this background, significant efforts are underway to develop CAR-based therapies for MM. Currently, several antigen targets, including CD138, CD19, immunoglobulin kappa (Ig-Kappa) and B-cell maturation antigen (BCMA), are being used in clinical trials to treat myeloma patients. Some of these trials have shown promising results, especially in terms of response rates. However, the absence of a plateau is observed in most studies which correlates with the absence of durable remissions. Therefore, several potential limitations such as lack of effectiveness, off-tumor toxicities, and antigen loss or interference with soluble proteins could hamper the efficacy of CAR T-cells in myeloma. In this review, we will focus on clinical outcomes reported with CAR T-cells in myeloma, as well as on CAR T-cell limitations and how to overcome them with next generation of CAR T-cells.
Collapse
Affiliation(s)
- Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| | - Jose Antonio Pérez-Simón
- Instituto de Biomedicina de Sevilla, UGC de Hematología, Hospital Universitario Virgen del Rocío and Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Universidad de Sevilla, Seville, Spain
| |
Collapse
|
23
|
Abdalla AME, Xiao L, Miao Y, Huang L, Fadlallah GM, Gauthier M, Ouyang C, Yang G. Nanotechnology Promotes Genetic and Functional Modifications of Therapeutic T Cells Against Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903164. [PMID: 32440473 PMCID: PMC7237845 DOI: 10.1002/advs.201903164] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Indexed: 05/24/2023]
Abstract
Growing experience with engineered chimeric antigen receptor (CAR)-T cells has revealed some of the challenges associated with developing patient-specific therapy. The promising clinical results obtained with CAR-T therapy nevertheless demonstrate the urgency of advancements to promote and expand its uses. There is indeed a need to devise novel methods to generate potent CARs, and to confer them and track their anti-tumor efficacy in CAR-T therapy. A potentially effective approach to improve the efficacy of CAR-T cell therapy would be to exploit the benefits of nanotechnology. This report highlights the current limitations of CAR-T immunotherapy and pinpoints potential opportunities and tremendous advantages of using nanotechnology to 1) introduce CAR transgene cassettes into primary T cells, 2) stimulate T cell expansion and persistence, 3) improve T cell trafficking, 4) stimulate the intrinsic T cell activity, 5) reprogram the immunosuppressive cellular and vascular microenvironments, and 6) monitor the therapeutic efficacy of CAR-T cell therapy. Therefore, genetic and functional modifications promoted by nanotechnology enable the generation of robust CAR-T cell therapy and offer precision treatments against cancer.
Collapse
Affiliation(s)
- Ahmed M. E. Abdalla
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Department of BiochemistryCollege of Applied ScienceUniversity of BahriKhartoum1660/11111Sudan
| | - Lin Xiao
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yu Miao
- Department of Vascular SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuan750004China
| | - Lixia Huang
- Hubei Key Laboratory of Purification and Application of Plant Anti‐Cancer Active IngredientsSchool of Chemistry and Life SciencesHubei University of EducationWuhan430205China
| | - Gendeal M. Fadlallah
- Department of Chemistry and BiologyFaculty of EducationUniversity of GeziraWad‐Medani2667Sudan
| | - Mario Gauthier
- Department of ChemistryUniversity of WaterlooWaterlooN2L 3G1Canada
| | - Chenxi Ouyang
- Department of Vascular SurgeryFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Guang Yang
- Department of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
24
|
Han C, Choi BK, Kim SH, Sim SJ, Han S, Park B, Tsuchiya Y, Takahashi M, Kim YH, Eom HS, Kitaguchi T, Ueda H, Kwon BS. Polymorphic Region-Specific Antibody for Evaluation of Affinity-Associated Profile of Chimeric Antigen Receptor. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:293-305. [PMID: 32368617 PMCID: PMC7191539 DOI: 10.1016/j.omto.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 01/09/2023]
Abstract
Antibody applications in cancer immunotherapy involve diverse strategies, some of which redirect T cell-mediated immunity via engineered antibodies. Affinity is a trait that is crucial for these strategies, as optimal affinity reduces unwanted side effects while retaining therapeutic function. Antibody-antigen pairs possessing a broad affinity range are required to define optimal affinity and to investigate the affinity-associated functional profiles of T cell-engaging strategies such as bispecific antibodies and chimeric antigen receptor-engineered T cells. Here, we demonstrate the unique binding characteristic of the developed antibody clone MVR, which exhibits robust binding to B-lymphoid cell lines. Intriguingly, MVR specifically recognizes the highly polymorphic human leukocyte antigen (HLA)-DR complex and exhibits varying affinities that are dependent upon the HLA-DRB1 allele type. Remarkably, MVR binds to the conformational epitope that consists of two hypervariable regions. As an application of MVR, we demonstrate an MVR-engineered chimeric antigen receptor (CAR) that elicits affinity-dependent function in response to a panel of target cell lines that express different HLA-DRB1 alleles. This tool evaluates the effect of affinity on cytotoxic killing, polyfunctionality, and activation-induced cell death of CAR-engineered T cells. Collectively, MVR exhibits huge potential for the evaluation of the affinity-associated profile of T cells that are redirected by engineered antibodies.
Collapse
Affiliation(s)
- Chungyong Han
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Beom K Choi
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Seon-Hee Kim
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Su-Jung Sim
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Seongeun Han
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Bomi Park
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yohei Tsuchiya
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaki Takahashi
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Young H Kim
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea.,Eutilex Institute for Biomedical Research, Eutilex, Seoul, Republic of Korea
| | - Hyeon-Seok Eom
- Center for Hematologic Malignancy, Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Byoung S Kwon
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, Republic of Korea.,Eutilex Institute for Biomedical Research, Eutilex, Seoul, Republic of Korea.,Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
25
|
Approach to the Adult Acute Lymphoblastic Leukemia Patient. J Clin Med 2019; 8:jcm8081175. [PMID: 31390838 PMCID: PMC6722778 DOI: 10.3390/jcm8081175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
During recent decades, understanding of the molecular mechanisms of acute lymphoblastic leukemia (ALL) has improved considerably, resulting in better risk stratification of patients and increased survival rates. Age, white blood cell count (WBC), and specific genetic abnormalities are the most important factors that define risk groups for ALL. State-of-the-art diagnosis of ALL requires cytological and cytogenetical analyses, as well as flow cytometry and high-throughput sequencing assays. An important aspect in the diagnostic characterization of patients with ALL is the identification of the Philadelphia (Ph) chromosome, which warrants the addition of tyrosine kinase inhibitors (TKI) to the chemotherapy backbone. Data that support the benefit of hematopoietic stem cell transplantation (HSCT) in high risk patient subsets or in late relapse patients are still questioned and have yet to be determined conclusive. This article presents the newly published data in ALL workup and treatment, putting it into perspective for the attending physician in hematology and oncology.
Collapse
|
26
|
Viardot A, Wais V, Sala E, Koerper S. Chimeric antigen receptor (CAR) T-cell therapy as a treatment option for patients with B-cell lymphomas: perspectives on the therapeutic potential of Axicabtagene ciloleucel. Cancer Manag Res 2019; 11:2393-2404. [PMID: 31114317 PMCID: PMC6489634 DOI: 10.2147/cmar.s163225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Axicabtagene lisoleucel (Axi-cel) is the second approved gene-alterating cancer treatment and the first in aggressive lymphoma using the "chimeric antigen receptor" (CAR) technology. T-cells from patients were transfected with CARs and reinfused after a lymphodepleting chemotherapy. CAR T-cells are "living drugs" with the ability to persist and expand after a single infusion. Axi-cel is a "second generation" CAR product characterized by the use of a retroviral gene vector transfer and by CD28 as costimulatory domain. In a phase II trial with heavily pretreated patients with aggressive B-cell lymphoma, the overall response rate was 82% with an ongoing complete response rate of 40% after 6 months - with expectations of long-term remissions and cure, even though follow-up data are still limited. There are some prominent side effects like cytokine release syndrome (Grade 3-5: 13%) and neurotoxicity (Grade 3-5: 28%). Novel strategies for prediction, prevention and treatment of these critical side effects are warranted. There are new concepts to enhance the efficacy and prevent resistance in lymphomas. CAR T-cells represent an extremely evolving field with an inestimable potential in general and particularly in aggressive lymphoma. However, we are still learning how to use Axi-cel and other CAR-T cells compounds effectively to optimize the long-term results.
Collapse
Affiliation(s)
- Andreas Viardot
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Verena Wais
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Elisa Sala
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Sixten Koerper
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
27
|
Dai X, Park JJ, Du Y, Kim HR, Wang G, Errami Y, Chen S. One-step generation of modular CAR-T cells with AAV-Cpf1. Nat Methods 2019; 16:247-254. [PMID: 30804551 PMCID: PMC6519746 DOI: 10.1038/s41592-019-0329-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Enhancing production efficiency, stability, effector function, and other desired features is of prime interest for chimeric antigen receptor engineered T cells (CAR-Ts). Here, we developed a new system for efficient generation of CAR-T with significantly enhanced features by streamlined genome engineering. Leveraging tracrRNA-independent CRISPR/Cpf1 systems with adeno-associated virus (AAV), building a stable CAR-T with homology-directed repair (HDR) knockin and checkpoint knockout (KIKO CAR-T) was achieved at high efficiency in one step. The modularity of the AAV-Cpf1 KIKO system enables flexible and highly efficient generation of double knockin of two different CARs in the same T cell. Compared to Cas9-based methods, the AAV-Cpf1 system generates double knockin CAR-Ts more efficiently. Dual-targeting CD22-specific AAV-Cpf1 KIKO CAR-T cells have potency comparable to Cas9 CAR-Ts in cytokine production and cancer cell killing, while expressing lower levels of exhaustion markers. This versatile system opens new capabilities of T cell immune engineering with simplicity and precision.
Collapse
Affiliation(s)
- Xiaoyun Dai
- System Biology Institute, Yale University, West Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- System Biology Institute, Yale University, West Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, Yale University, West Haven, CT, USA.,Yale MD-PhD Program, Yale University, New Haven, CT, USA
| | - Yaying Du
- System Biology Institute, Yale University, West Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, Yale University, West Haven, CT, USA
| | - Hyunu R Kim
- System Biology Institute, Yale University, West Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, Yale University, West Haven, CT, USA
| | - Guangchuan Wang
- System Biology Institute, Yale University, West Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, Yale University, West Haven, CT, USA
| | - Youssef Errami
- System Biology Institute, Yale University, West Haven, CT, USA.,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,Center for Cancer Systems Biology, Integrated Science & Technology Center, Yale University, West Haven, CT, USA
| | - Sidi Chen
- System Biology Institute, Yale University, West Haven, CT, USA. .,Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. .,Center for Cancer Systems Biology, Integrated Science & Technology Center, Yale University, West Haven, CT, USA. .,Yale MD-PhD Program, Yale University, New Haven, CT, USA. .,Immunobiology Program, Yale University, New Haven, CT, USA. .,Yale Comprehensive Cancer Center, Yale University, New Haven, CT, USA. .,Yale Stem Cell Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
Gatzka MV. Targeted Tumor Therapy Remixed-An Update on the Use of Small-Molecule Drugs in Combination Therapies. Cancers (Basel) 2018; 10:E155. [PMID: 29794999 PMCID: PMC6025289 DOI: 10.3390/cancers10060155] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor combinations or immune checkpoint inhibitors are current first-line treatments for metastatic melanoma. However, despite great improvements of survival rates limitations due to tumor heterogeneity, primary and acquired therapy resistance, immune evasion, and economical considerations will need to be overcome. Accordingly, ongoing clinical trials explore the individualized use of small-molecule drugs in new targeted therapy combinations based on patient parameters and tumor biopsies. With focus on melanoma therapy this review aims at providing a comprehensive overview of such novel alternative and combinational therapy strategies currently emerging from basic research. The molecular principles and drug classes that may hold promise for improved tumor therapy combination regimens including kinase inhibition, induction of apoptosis, DNA-damage response inhibition, epigenetic reprogramming, telomerase inhibition, redox modulation, metabolic reprogramming, proteasome inhibition, cancer stem cell transdifferentiation, immune cell signaling modulation, and others, are explained in brief. In addition, relevant targeted therapy combinations in current clinical trials and individualized treatment strategies are highlighted.
Collapse
Affiliation(s)
- Martina V Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|